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Abstract

The advent of large language models has ex-
perienced a remarkable improvement in the
field of machine translation. However, machine
translation is still vulnerable to critical meaning
deviations, which may incur catastrophic issues
in social or ethical contexts. In particular, ex-
isting critical error detection primarily focuses
on identifying sentence-level errors, leaving
the precise localization of such errors within
the sentence unaddressed. In this paper, we
introduce a new task, word-level critical error
detection (WCED), to detect critical errors at
a fine-grained level in machine translation sen-
tences. The task aims to identify the parts of
a machine translation that contain catastrophic
meaning distortions. We hypothesize that the
ability to determine errors at the sentence level
will positively influence the detection of more
granular errors. We propose a sentence-level er-
ror detection module to predict which words in
a sentence have critical errors. Experimental re-
sults demonstrate that our method outperforms
existing methodologies and LLM in En-De, Zh-
En, En-Ru, and En-Ko. Our method is helpful
for determining the fine-grained location of er-
rors. We hope that such studies will improve
the capacity to address critical errors adeptly.

1 Introduction

Recent advancements in large language mod-
els (LLMs) have significantly improved the per-
formance of machine translation (MT), leading to
an increased demand for such systems (Moslem
et al., 2023; Zhang et al., 2023; Wang et al., 2023;
Xu et al., 2023). Concurrently, the necessity for
quality estimation (QE), which automatically eval-
uates the output of MT systems, has also grown.
QE measures the quality of MT outputs based on
the source and the MT sentence without a human
reference (Specia et al., 2009; Yankovskaya et al.,
2019; Fomicheva et al., 2020; Zheng et al., 2021).
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Figure 1: An English to Korean translation example of
the WCED and a proposed method. Source (SRC) and
MT sentences are given as input to the models. The
word-level error detection model predicts a binary label
for each representation of an MT word. These proba-
bilities are calculated and combined with the predicted
probability of the sentence-level error detection model.
The detected errors are presented within <v> and </v>
tags.

Despite improvements in MT systems, critical
errors remain a challenge (Karpinska and Iyyer,
2023). The QE sub-task, called critical error de-
tection (CED), focuses on identifying instances
where critical errors occur (Specia et al., 2021;
Zerva et al., 2022). A critical error is a catastrophic
meaning distortion with the potential to cause ad-
verse personal or societal impacts (Sudoh et al.,
2021; Freitag et al., 2021; Al Sharou and Specia,
2022). Hence, MT outputs must be checked and
prevented from containing such critical errors. Al-
though research into CED is conducted in response
to this necessity, prior studies primarily concen-
trate on sentence-level verification to detect the
presence of errors in MT sentences (Jiang et al.,
2021; Chen et al., 2021; Rubino et al., 2021; Eo
et al., 2022). This approach is insufficient as it
fails to accurately identify the precise location of
errors within sentences, making it challenging to
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determine the cause.
To address the issues outlined above, we intro-

duce a new task, word-level critical error detection
(WCED), which focuses on identifying segments
containing critical errors from the MT sentence. As
shown in Figure 1, this task involves analyzing both
the source and MT sentences to identify critical er-
rors at the word level within the MT sentence. An
example provided illustrates the mistranslation of
“pacemaker” as “자동 심장 충격기 (automated exter-
nal defibrillator)”. Such a translation error can lead
to significant safety risks for patients due to the
dissemination of incorrect information. Through
WCED, we are able to identify the specific details
of these translation errors, thereby enhancing inter-
pretability.

To predict critical errors at the word level, We
propose a method that utilizes a sentence-level de-
tection module. We employ linear interpolation
to incorporate the probability representations from
the sentence-level detection module into the model
calculations for the WCED. This is based on the hy-
pothesis that with a separate module guiding errors
within the sentence, errors will be more precisely
recognized during the detailed analysis.

In the experiment, we demonstrate that the pro-
posed method evaluates errors with higher accuracy
than the baselines. Our model’s error detection ca-
pability outperforms cutting-edge LLMs such as
GPT-3.5 (OpenAI-Blog, 2022) and GPT-4 (Ope-
nAI, 2023). We compare our method with other
approaches that utilize the sentence-level detec-
tion task, showing that our method is well-suited
for the performance enhancement of WCED. Also,
we conduct a qualitative analysis and find that our
method reacts more sensitively to sentences con-
taining critical errors. By indicating fine-grained
critical translation error location, rather than merely
detecting the presence of errors in sentences, we
provide detailed information about the errors. We
expect that incorporating such error detection into
MT systems will inform users of potential risk
areas. When linked with automatic post-editing,
it enables corrections of specific erroneous parts,
among other varied applications.

To summarize, our contributions are as follows:

• We enhance the comprehensibility of word-
level critical errors by refining the sentence-
level CED into a more granular one at the
word level.

• We propose a method to improve the perfor-

mance of the WCED. Our approach aims to
increase sensitivity towards errors by utilizing
the probability values from the sentence-level
detection module.

• The experiments outperform the baseline and
demonstrate the feasibility of our method.
Therefore, our approach contributes to advanc-
ing the task of identifying and correcting criti-
cal errors in MT.

2 Related Work

QE was first proposed by Blatz et al. (2004), and
its initial studies primarily relied on traditional nat-
ural language processing (NLP) techniques (Gra-
ham, 2015; Beck et al., 2016). However, the ac-
celeration of deep learning, including the develop-
ment of neural network architectures like Trans-
former (Vaswani et al., 2023) and BERT (Devlin
et al., 2019), shifts the focus towards developing
neural frameworks for QE. DeepQuest (Ive et al.,
2018) proposes a framework that adopts a sentence-
level approach and generalizes it for document-
level QE. OpenKiwi (Kepler et al., 2019) intro-
duces a new open-source QE framework based on
bidirectional LSTM. TransQuest (Ranasinghe et al.,
2020) leverages a cross-lingual transformer, sup-
porting two different architectures at the sentence
level for QE.

The 2021 conference on machine translation
(WMT21) introduces the CED as a sub-task for
QE (Specia et al., 2021). Critical errors can ap-
pear as mistranslations, hallucinations, or dele-
tions. Mistranslation is characterized by the in-
correct translation of the source sentence, leading
to a distortion of the original meaning. Halluci-
nation refers to the introduction of content not
present in the original sentence, while deletion in-
volves the omission of content that is present in the
source sentence. Prior research has introduced var-
ious methodologies for developing models that per-
form binary classification of critical errors. These
methodologies encompass extracting sentence fea-
tures (Jiang et al., 2021), employing task-specific
classifiers (Chen et al., 2021), altering the archi-
tecture of models, and leveraging large volumes of
synthetic data (Rubino et al., 2021), as well as in-
corporating additional information (Eo et al., 2022)
to enhance performance.

Previous studies do not perform word-level de-
tection on critical errors. Although existing re-
search concentrates on identifying spans contain-
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Figure 2: Overview of the proposed method. In this process, the English source sentence and the Korean MT
sentence serve as inputs for both word-level and sentence-level error detection models. The word-level model
predicts the presence of errors based on the token representations of the MT sentence. The sentence-level model
predicts error for the [CLS] token representation. The predictions from the sentence-level model are then combined
with those from the word-level, guiding the word-level model.

ing errors (Geng et al., 2023; Guerreiro et al.,
2023; Kocmi and Federmann, 2023), these are not
specifically designed to detect critical errors. This
presents a significant challenge: even if a sentence
contains a critical error, it is difficult to pinpoint
where the error has occurred. Therefore, we pro-
pose the WCED that detects critical errors at the
word level. This approach allows for a more de-
tailed and accurate identification of critical errors
within MT.

3 Word-level Critical Error Detection
(WCED)

In this section, we define the task of word-level
critical error detection (WCED) and propose meth-
ods to enhance the word-level error detection pro-
cess. To provide appropriate guidance for explor-
ing errors in a granular manner, we hypothesize
an ideal sentence-level CED module capable of ac-
curately identifying the presence of errors at the
fine-grained level. Even in the absence of a perfect
CED module, leveraging existing modules will be
sufficient to assess their effectiveness in approxi-
mating our hypothesis.

3.1 Problem Formulation

WCED refers to identifying specific portions of
a sentence that contain errors leading to significant
changes in meaning, potentially causing confusion
or misinterpretation for the reader. This task fo-
cuses on detecting critical errors at the word level.
To achieve this, the model takes as input a source
sentence s = {s1, s2, ..., sn} with length n and an
MT sentence t = {t1, t2, ..., tm} with length m.
The model assesses semantic differences between
the source and MT sentences to determine words
that contain critical errors. Consequently, each
word ti in the MT sentence is associated with a
label yi ∈ {ok, bad}, where 1 ≤ i ≤ m. The label
ok indicates that the corresponding word ti is cor-
rectly translated, while bad signifies the presence
of critical errors.

3.2 Proposed Method

As depicted in Figure 2, our proposed method
involves taking a source sentence s and an MT sen-
tence t as inputs and utilizing a model P (yi|s, t)
to detect errors at the word level. The model con-
catenates the source and MT sentences using a
separator token ([SEP]), and employs an encoder

3002



structure to process this combined input. The en-
coder outputs a multi-dimensional last hidden state,
represented by a d-dimensional vector. Word-level
error detection extracts the hidden state correspond-
ing to each token in the MT sentence. It determines
whether each word contains an error, thereby pro-
viding word-level predictions ŷi ∈ {ok, bad}.

We introduce a sentence-level CED module
P (c|s, t) that assesses the presence of critical errors
in an MT sentence, adopting a binary classification
approach for determining the existence of errors.
Specifically, the CED module serves as a guide
at the sentence level, providing broad indicators
of errors within the sentence. The application of
this module enables the WCED model to be more
sensitively tuned to errors. This module infers the
presence of errors at the sentence level by passing
the hidden state of the first token ([CLS]) through
a binary classification head. The binary variable c
is represented as ok when no error is present in the
MT sentence and bad when an error exists.

In this structure, leveraging the probability of
the CED module P (c|s, t), we derive the final pre-
diction score of error prediction at the word level
as follows:

logS(yi) = λ logP (c|s, t) + logP (yi|s, t) (1)

where λ represents an additional weight used to
adjust the influence of the CED module. By tun-
ing this hyper-parameter, we can finely calibrate
the contribution of the CED module to the final
error detection score. This formula combines the
probability of predicting an error at the word level
from the WCED model P (y|s, t) with the proba-
bility of the existence of an error in the sentence
obtained through the CED module P (c|s, t). The
CED module is provided in pre-trained and frozen
parameters during this process. The loss function
L is defined as:

L = − 1

m

m∑

i=1

wyi logS(yi) (2)

where m denotes the number of tokens in the sen-
tence, and wyi denotes the class weights given for
the ok and bad tags. Through this approach, we
present a WCED model that effectively responds
to errors and more precisely identifies errors.

3.2.1 Inference
Each word in MT sentences is processed through

the token-level linear layers, resulting in a dis-
tribution. We calculate the average of these dis-
tributions to construct a set of word-level tags,
ŷ = {ŷ1, ŷ2, ..., ŷm}. From these tags, words iden-
tified as critical errors are marked with <v> and
</v>.

4 Experiments

4.1 Settings

Datasets We leverage datasets from the
WMT23 QE (Blain et al., 2023), which are founded
on the expert-based multi-dimensional quality met-
rics (MQM) dataset (Freitag et al., 2021), to collect
data for WCED across English-German (En-De),
Chinese-English (Zh-En), and English-Russian
(En-Ru) language pairs. This dataset defines major
errors as those that result in significant alterations
to the intended meaning, potentially leading to user
misunderstandings. Given the contextual alignment
with the definition of critical errors, we selectively
extract sentences manifesting major errors from
the dataset. We select data comprised exclusively
of sentences that have reached a consensus on the
presence of such errors and employ it within our
experimental framework.

We utilize a dataset for the CED task in the
English-Korean (En-Ko) language pair, employing
an En-Ko CED dataset1. The En-Ko CED dataset
comprises target sentences with critical errors and
reference sentences. This dataset is designed to
intentionally insert critical errors into the reference
sentences, allowing for the identification of incor-
rect words by comparing the target sentences with
the reference sentences. After conducting this task
with GPT-4 and reviewing the overall results gen-
erated, we are confident that the task was executed
as intended. We provide statistical details of the
datasets in Appendix A.

Implementation Details The implementation
is predicated on the COMET GitHub repository2,
with experiments conducted using the large ver-
sions of XLM-RoBERTa (Conneau et al., 2020)
and InfoXLM (Chi et al., 2021) as the backbone.
Training is carried out on an NVIDIA RTX A6000
GPU, with a batch size 32 for 20 epochs. The crite-
rion for early stopping is set at 10 epochs. Perfor-
mance evaluations of the model are conducted in 2

1https://www.aihub.or.kr/
2https://github.com/Unbabel/COMET/
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epochs during training, with fine-tuning processes
taking approximately two hours. The AdamW op-
timizer is employed for model optimization, set-
ting the learning rate at 1.5e-05 during the fine-
tuning. All hyperparameters are manually adjusted.
We train a CED module utilizing mBERT (Li-
bovický et al., 2019), XLM-RoBERTa, InfoXLM,
and COMETKIWI (Rei et al., 2022). The training
settings are consistent with those applied in the
training of the WCED model.

Evaluation We adopt F1 score, recall, and pre-
cision in alignment with the evaluation criteria set
forth by the WMT23 (Blain et al., 2023) error span
detection task. Additionally, we incorporate the
Matthews correlation coefficient (MCC) (Chicco
and Jurman, 2020) as an evaluation metric for
sentence-level detection. This metric, previously
utilized in the evaluations of WMT21 (Specia et al.,
2021) and WMT22 (Zerva et al., 2022) QE tasks,
assesses the correlation between actual and pre-
dicted error detections.

Baselines Our method is compared against base-
lines composed of multilingual language models
and methods applicable to sentence-level error de-
tection.

• Fine-Tuning (FT): We employ mBERT,
XLM-RoBERTa, and InfoXLM, which are
multilingual language models, as our base-
lines, fine-tuning them.

• Multi-Task Learning (MTL): This method
aims to enhance the performance of the pri-
mary task by simultaneously training on sev-
eral related tasks (Ruder, 2017). It leverages
the shared knowledge gained from various
tasks to aid the model in learning more gener-
alized representations. In this paper, we show
the performance of conducting CED along-
side WCED. The MTL model concurrently
predicts sentence-level label c and word-level
label yi. This framework is built upon the
COMETKIWI and is capable of executing two
tasks. Sentence-level modeling predicts the
overall sentence evaluation score using the
hidden state of the first input token, whereas
word-level modeling assesses the correctness
of MT tokens. We convert sentence-level
score prediction into sentence-level binary
classification for utilization.

• Soft Prompt Tuning (SPT): This approach
involves augmenting the model’s input with

prompts represented in vector representa-
tion (Lester et al., 2021; Liu et al., 2022). We
incorporate the last hidden state of the CED
module into the input embeddings for use
as input. This method facilitates knowledge
transfer from the CED module to the WCED
model, aiding in generating appropriate out-
puts. We maintain only the added embedding
portions as trainable layers while training for
the WCED task.

• Adaptive Prompting (AP): The vector repre-
sentation used in SPT is modified into a form
understandable in natural language. This ap-
proach involves integrating the results from
the CED module into the text input of the
WCED model. If the CED module predicts
the presence of errors in the source and trans-
lated sentences, it adds the word ‘terrible’;
otherwise, it adds ‘great’ in natural language.
This prefix makes the presence of errors in the
sentences more explicit, thereby providing a
more intuitive reflection of the CED module’s
outcomes in executing the WCED task.

4.2 Main Results

As shown in Table 1, we report the performance
of predicting word-level critical errors. Our pro-
posed method demonstrates enhanced performance
for the majority of language pairs when compared
to the comparative methods.

In our experiments, we select the InfoXLM and
XLM-R models, which demonstrate significantly
superior performance among the models consid-
ered in FT. Our method is an augmentation to the
FT, allowing for direct comparison. Notably, our
method achieves remarkable performance with In-
foXLM, resulting in F1 scores of 0.4272, 0.4333,
0.7002, and 0.4037 for each language pair, com-
pared to the FT scores of 0.3782, 0.3930, 0.6712,
and 0.3492. These improvements can be attributed
to utilizing methods within the CED module that
provide precise guidelines for error detection.

The application of MTL reveals a performance
decline across all language pairs relative to the FT,
indicating that conducting sentence-level and word-
level error detection simultaneously negatively im-
pacts word-level detection. The results suggest that
focusing on a single task within a single model may
be more effective.

While the SPT method shows less efficient per-
formance than ours, it still represents an improve-
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En-De Zh-En En-Ru En-Ko

Method Model F1 R P F1 R P F1 R P F1 R P
Baselines

FT
mBERT 0.1408 0.1665 0.1475 0.1915 0.2289 0.2058 0.6558 0.6888 0.6503 0.0712 0.0845 0.0734
InfoXLM 0.4151 0.4485 0.4606 0.4052 0.4428 0.4213 0.4355 0.3642 0.6203 0.3898 0.3965 0.4490
XLM-R 0.3782 0.4106 0.4462 0.3930 0.4332 0.4145 0.6712 0.7206 0.6679 0.3492 0.3457 0.4289

MTL
InfoXLM 0.3536 0.3724 0.4321 0.3079 0.3124 0.3782 0.3866 0.3781 0.5135 0.3684 0.3674 0.4420
XLM-R 0.3314 0.3069 0.4679 0.2010 0.1738 0.3477 0.4628 0.3871 0.6768 0.2538 0.2839 0.3072

SPT
InfoXLM 0.3797 0.4016 0.4520 0.4208 0.4550 0.4454 0.5882 0.5597 0.6578 0.3616 0.3557 0.4260
XLM-R 0.4268 0.4418 0.4853 0.3747 0.3813 0.4146 0.6408 0.6898 0.6275 0.3396 0.3538 0.4145

AP
InfoXLM 0.3951 0.4154 0.4798 0.3695 0.3903 0.4194 0.4567 0.4223 0.5831 0.4303 0.4332 0.4915
XLM-R 0.3698 0.3684 0.4856 0.3470 0.3641 0.3926 0.6672 0.7116 0.6563 0.3732 0.3960 0.4217

LLMs

Zero-shot
GPT-3.5 0.0332 0.0276 0.0771 0.0408 0.0388 0.0767 0.0153 0.0108 0.0412 0.0395 0.0319 0.0873
GPT-4 0.1659 0.2117 0.1867 0.1399 0.1867 0.1276 0.0808 0.0909 0.0758 0.4166 0.4176 0.4600

Few-shot
GPT-3.5 0.0587 0.0687 0.0792 0.0341 0.0525 0.0464 0.0157 0.0138 0.0199 0.1603 0.1663 0.1746
GPT-4 0.2151 0.2566 0.2292 0.1159 0.1481 0.1204 0.0895 0.0899 0.1047 0.4265 0.4720 0.4335

GEMBA
GPT-3.5 0.0827 0.0943 0.1256 0.0413 0.0562 0.0511 0.0226 0.0184 0.0470 0.1491 0.1367 0.1780
GPT-4 0.2038 0.2199 0.2367 0.1341 0.1614 01392 0.0514 0.0391 0.111 0.3801 0.4062 0.4083

Ours
InfoXLM 0.4272 0.4449 0.4946 0.4333 0.4652 0.4463 0.6130 0.6077 0.6634 0.4037 0.4210 0.4660
XLM-R 0.4008 0.4258 0.4794 0.4232 0.4347 0.4604 0.7002 0.7649 0.6896 0.3641 0.4044 0.4364

Table 1: Performance comparison of the proposed method, baseline method, and ChatGPT. We conduct experiments
on four language pairs: En-De, Zh-En, En-Ru, and En-Ko. Our proposed method is compared to the following
methodologies: fine-tuning (FT), multi-task learning (MTL), soft prompt tuning (SPT), and adaptive prompting (AP).
We present the F1 score (F1), Recall (R), and Precision (P) as evaluation metrics. XLM-R is the XLM-RoBERTa
model. The best performance is bold, and the second is underlined.

ment over the FT. This improvement indicates that
the hidden state of the CED module aids word-
level detection, underscoring the positive impact
of utilizing this module. However, we demonstrate
through experimentation that using the representa-
tion from the CED module as input is less efficient
than our approach, which directly adjusts the error
prediction probability.

For the AP, results indicate a decrease in per-
formance compared to FT for the En-De, Zh-En,
and En-Ru. This method introduces confusion to
the model by providing more definitive natural lan-
guage outcomes rather than probabilities regarding
the presence of errors. Conversely, the performance
of the En-Ko language pair is superior with an F1
score of 0.4303 compared to all benchmarked meth-
ods. This suggests that providing certainty in sen-
tences where the model is unsure about errors can
be beneficial. However, it is important to note that,
unlike the proposed method, AP does not consis-
tently show performance improvements across all
datasets.

4.3 Comparative Performance with Large
Language Models

We experiment to compare the performance of
LLMs in the WCED task against our method. We
evaluate GPT-4 and GPT-3.5 in both zero-shot and
few-shot settings. For GPT-4, we use the ‘gpt-4-
0125-preview’ version; for GPT-3.5, we use the
‘gpt-3.5-turbo-0125’ version. We include a detailed
description of the WCED task in the prompts and
provide five demonstrations for the few-shot set-
ting. Appendix B shows the prompts used in this
experiment. We further present the performance of
GEMBA-MQM (Kocmi and Federmann, 2023), a
GPT-based approach for translation quality assess-
ment.

Table 1 shows a comparison between the per-
formance outcomes of ChatGPT and our method.
GPT-4 demonstrates superior performance com-
pared to GPT-3.5, showing significant improve-
ments in zero-shot, few-shot scenarios, and
GEMBA-MQM. GPT-4 exhibits relatively robust
performance in the few-shot setting in the En-De,
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En-De Zh-En En-Ru En-Ko

F1 R P F1 R P F1 R P F1 R P
ok 0.3213 0.3211 0.4241 0.3958 0.4326 0.4171 0.6084 0.6039 0.6558 0.3517 0.4068 0.4278
bad 0.3133 0.3038 0.4281 0.3953 0.4001 0.4508 0.6115 0.6051 0.6588 0.3440 0.3420 0.3936

all 0.4008 0.4258 0.4794 0.4232 0.4347 0.4604 0.7002 0.7649 0.6896 0.3641 0.4044 0.4364

Table 2: Performance comparison to observe the label-induced probability adjustment effect

Figure 3: Variation of F1 score with an additional weight
λ that adjusts for the impact of the CED module. The
model uses XLM-R.

Method Model En-
De

Zh-
En

En-
Ru

En-
Ko

FT
mBERT 0.4423 0.4349 0.8007 0.1464
InfoXLM 0.7208 0.6033 0.7601 0.5203
XLM-R 0.7478 0.6160 0.8007 0.1929

COMET
InfoXLM 0.7137 0.6318 0.5178 0.3761
XLM-R 0.7481 0.5796 0.8204 0.6506

Table 3: MCC performance comparison of CED module
for sentence-level error classification

En-Ru, and En-Ko language pairs. However, the
examples did not positively impact task compre-
hension in the Zh-En. Our model significantly out-
performs both GPT-3.5 and GPT-4 in the En-De,
Zh-En, and En-Ru, indicating that the WCED task
presents challenges for LLMs and highlighting the
necessity of this work. Even in constrained set-
tings, GPT-4 slightly surpasses the performance
of our method in the En-Ko. However, despite its
good performance, GPT-4 faces limitations such as
cost per token and extended generation times. In
contrast, our method is significant in that it can be
rapidly utilized for error detection when integrated
with MT systems, offering a practical advantage
over the computational and financial costs associ-
ated with models like GPT-4.

5 Analysis

5.1 The Impact of Weight on CED Module

Figure 3 investigates the impact of λ, a weight
that modulates the influence of the CED module, on
the model by adding the probability P (c|s, t) from
the CED module to P (yi|s, t) from the WCED
model. For all language pairs, performance peaks
when λ is set to 1 and diminishes from this point.
The improvement in performance when λ is set to 0,
where the CED module has no influence, suggests
that both excessively low and high weights can
negatively affect the model’s performance.

5.2 The Performance of CED Module

The performance of the CED module utilized
in our experiments is presented in Table 3. Our
experiments employ the model with the highest
MCC for each language pair. As FT, we use
mBERT, InfoXLM, and XLM-R, with the COMET
method aiming to evaluate errors at the sentence
level through InfoXLM and XLM-R models. Com-
pared to the FT, the COMET demonstrates superior
performance in this task. Unlike the word-level
error detection, XLM-R generally exhibits higher
performance than InfoXLM, particularly for En-
Ru and En-Ko, where InfoXLM scores are notably
lower at 0.5178 and 0.3761, respectively, compared
to the FT scores of 0.7601 and 0.5203. This indi-
cates that while InfoXLM is efficient for word-level
detection, XLM-R models are more effective for
sentence-level detection.

5.3 The Impact of Using Separate
Probabilities for each Label

Table 2 demonstrates the effect of adding the
probability from the CED module on the labels.
It involves combining the probability values cor-
responding to the absence of errors (ok) and the
presence of errors (bad) from the sum of the proba-
bilities from both the CED module and the WCED
model. Thus, the experiment may involve opera-
tions that add values to only one of the labels, ok
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Figure 4: Output examples of the WCED. Gold indicates the correct answer for the span of the MT sentence where
the error exists. FT and Ours use InfoXLM, and GPT-4 is the few-shot. If the model finds no errors, we write “No
critical errors”, and if there are errors, we write only the span where the error exists.

or bad. The conclusion is that applying values to
all labels across all language pairs proves superior.
It is observed that adjusting values for only one la-
bel significantly decreases performance, especially
in the En-De and En-Ru pairs. Moreover, for all
language pairs except En-Ru, adjustments made to
the ok label, indicating the absence of errors, have
a more positive impact than adjustments made to
the bad label.

5.4 Qualitative Examples

Figure 4 provides examples generated by the
model for each language pair. For En-De, the
source phrase ‘solvent trading’ implies a company
operating continuously without debt, but its literal
translation could be misinterpreted as trading in
chemical solvents—an error not detected by the FT.
Both GPT-4 and our method identify the erroneous
segment, with our method explicitly focusing on
the error. While the source mentions a specific
company name in the Zh-En, the translation am-
biguously renders it. The FT fails to detect this, and
GPT-4 extracts an unrelated segment, whereas our

model accurately identifies the error’s location. For
En-Ru, a misinterpretation regarding the subject of
travel is noted. Our method accurately predicts this,
whereas the FT detects only typographical errors,
and GPT-4 includes ranges without errors. The
En-Ko example demonstrates that GPT-4 and ours
correctly identify sentences without errors, com-
pared to FT. Consequently, our method exhibits a
superior ability to detect critical errors compared
to GPT-4 accurately and shows greater sensitivity
to errors than FT.

6 Conclusion

In this study, we introduced WCED to detect
fine-grained critical errors in MT. This task aimed
to identify catastrophic meaning distortions at the
word level effectively. We proposed a method that
utilizes a sentence-level error detection module to
predict words containing critical errors within sen-
tences. Experimental results demonstrated that our
proposed method significantly enhanced the accu-
racy of error detection compared to comparison
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methods and ChatGPT. These findings indicated
that a sentence-level detection module could accu-
rately guide the task of detecting word-level errors.
Our approach contributed to a more nuanced eval-
uation and understanding of MT quality and was
crucial in preventing potential issues caused by
critical errors. Future research may improve the
WCED performance and extend its applicability
across various languages and domains. Also, we
hope that our methods can be adopted in develop-
ing and evaluating MT systems to improve their
ability to cope with critical errors.

Limitations

The proposed method exhibits certain limitations
in terms of computational efficiency. While em-
ploying the CED module, we fix its parameters
to reduce computational overhead, leading to in-
creased memory usage compared to conventional
models. Also, as the module’s output needs to
be generated for every sentence during the train-
ing process, the total training time extends by the
module’s inference duration. Nevertheless, once
training is complete, it demonstrates advantages in
inference costs.

The CED module’s applicability is limited as it
relies on the same training dataset as the model it is
integrated with. To overcome these limitations and
achieve similar or improved performance, we can
address the issue of generality by enhancing the
task with models trained on datasets from different
tasks. Future study and development efforts should
focus on concretizing and validating these ideas,
thereby maximizing the practicality and efficiency
of the model. Given the significance of preventing
critical errors in MT systems, we hope our work
will significantly contribute to advancements in this
field.
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Sentences Tokens

Language
Pairs

Split all bad all bad

En-De
train 8,041 634 368,011 6,476
dev 1,000 81 46,932 874
test 1,000 82 44,257 869

Zh-En
train 8,221 945 337,293 6,832
dev 1,028 108 42,896 746
test 1,029 112 43,926 736

En-Ru
train 7,342 330 307,849 2,090
dev 500 18 20,295 111
test 500 32 21,477 195

En-Ko
train 7,265 659 186,792 3,892
dev 500 56 12,786 372
test 1,000 76 25,138 462

Table 4: Statistical information about the WCED
datasets. We present datasets for four language pairs,
divided into train, dev, and test set. The table shows
the number of sentences in each dataset (all sentences),
the number of sentences labeled as having errors (bad
sentences), the total number of tokens (all tokens), and
the number of tokens containing errors (bad tokens).

A Dataset Details

We propose statistical information about the
dataset in Table 4. We follow previous study (Spe-
cia et al., 2021) and keep the proportion of labels
containing errors at around 10% across all language
pairs. The dataset does not include other minor er-
rors.

B Prompt Example for ChatGPT

We provide ChatGPT with the following instruc-
tions, which include a definition of a critical error
and a detailed description of the task:

You are an expert at detecting the span
of critical errors in translations.
Given a source sentence and a
translated sentence , print out the
parts of the entire sentence containing
critical errors , marked with <v> and
</v>. A critical error is a translation
error that completely changes the
meaning of the source text to the
extent that it can have a negative
impact on individuals or society.
Critical errors appear in the following
forms:

- Mistranslation occurs when essential
content is inaccurately translated ,
resulting in a change of meaning , or
when it is either not translated at all
(remaining in the source language) or
translated into incomprehensible text.

- Hallucination refers to the addition
of critical content in the translation
that does not exist in the source , such
as the insertion of profanity not
present in the original text.
- Deletion involves the omission of
crucial content from the source
sentence in the translation , which can
include the removal of negations or
offensive words that were present in
the original.

We want to detect words in the
translated sentence with these critical
errors. If there are no critical
errors , print `NONE '. No additional
annotations are required.

Source: {source sentence}
Translation: {target sentence}

C Efficiency of CED module in LLM

Table 5 presents the results of experiments con-
ducted by integrating the sentence-level CED mod-
ule outputs with the LLM baseline. The results
demonstrate a notable performance improvement,
indicating that the CED module enhanced the per-
formance of the LLM. This aligns with the trends
demonstrated in our proposed method, which em-
phasizes the efficiency of integrating sentence-level
features. Nevertheless, the performance indicates
that our method, which controls probability during
training, is more effective.
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En-De Zh-En En-Ru En-Ko

Method Model F1 R P F1 R P F1 R P F1 R P
w/o CED module

Zero-shot
GPT-3.5 0.0332 0.0276 0.0771 0.0408 0.0388 0.0767 0.0153 0.0108 0.0412 0.0395 0.0319 0.0873
GPT-4 0.1659 0.2117 0.1867 0.1399 0.1867 0.1276 0.0808 0.0909 0.0758 0.4166 0.4176 0.4600

Few-shot
GPT-3.5 0.0587 0.0687 0.0792 0.0341 0.0525 0.0464 0.0157 0.0138 0.0199 0.1603 0.1663 0.1746
GPT-4 0.2151 0.2566 0.2292 0.1159 0.1481 0.1204 0.0895 0.0899 0.1047 0.4265 0.4720 0.4335

w/ CED module

Zero-shot
GPT-3.5 0.1362 0.1206 0.2534 0.0910 0.0677 0.2042 0.1552 0.1130 0.4379 0.1630 0.1446 0.2826
GPT-4 0.1770 0.2318 0.1778 0.1137 0.1572 0.1019 0.0111 0.0167 0.0083 0.2037 0.2057 0.2382

Few-shot
GPT-3.5 0.1899 0.2411 0.2427 0.1099 0.1250 0.1122 0.0646 0.0571 0.1167 0.2528 0.2893 0.2553
GPT-4 0.2356 0.2898 0.2575 0.1758 0.2446 0.1622 0.1429 0.1000 0.2500 0.4390 0.4640 0.4570

Ours
InfoXLM 0.4272 0.4449 0.4946 0.4333 0.4652 0.4463 0.6130 0.6077 0.6634 0.4037 0.4210 0.4660
XLM-R 0.4008 0.4258 0.4794 0.4232 0.4347 0.4604 0.7002 0.7649 0.6896 0.3641 0.4044 0.4364

Table 5: Comparison of LLM performance with the addition of CED module
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