Foundational Autoraters: Taming Large Language Models for Better Automatic Evaluation
Tu Vu, Kalpesh Krishna, Salaheddin Alzubi, Chris Tar, Manaal Faruqui, Yun-Hsuan Sung
Abstract
As large language models (LLMs) evolve, evaluating their output reliably becomes increasingly difficult due to the high cost of human evaluation. To address this, we introduce FLAMe, a family of Foundational Large Autorater Models. FLAMe is trained on a diverse set of over 100 quality assessment tasks, incorporating 5M+ human judgments curated from publicly released human evaluations. FLAMe outperforms models like GPT-4 and Claude-3 on various held-out tasks, and serves as a powerful starting point for fine-tuning, as shown in our reward model evaluation case study (FLAMe-RM). On Reward-Bench, FLAMe-RM-24B achieves 87.8% accuracy, surpassing GPT-4-0125 (85.9%) and GPT-4o (84.7%). Additionally, we introduce FLAMe-Opt-RM, an efficient tail-patch fine-tuning approach that offers competitive RewardBench performance using 25×fewer training datapoints. Our FLAMe variants outperform popular proprietary LLM-as-a-Judge models on 8 of 12 autorater benchmarks, covering 53 quality assessment tasks, including RewardBench and LLM-AggreFact. Finally, our analysis shows that FLAMe is significantly less biased than other LLM-as-a-Judge models on the CoBBLEr autorater bias benchmark.- Anthology ID:
- 2024.emnlp-main.949
- Volume:
- Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
- Month:
- November
- Year:
- 2024
- Address:
- Miami, Florida, USA
- Editors:
- Yaser Al-Onaizan, Mohit Bansal, Yun-Nung Chen
- Venue:
- EMNLP
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 17086–17105
- Language:
- URL:
- https://preview.aclanthology.org/add-emnlp-2024-awards/2024.emnlp-main.949/
- DOI:
- 10.18653/v1/2024.emnlp-main.949
- Cite (ACL):
- Tu Vu, Kalpesh Krishna, Salaheddin Alzubi, Chris Tar, Manaal Faruqui, and Yun-Hsuan Sung. 2024. Foundational Autoraters: Taming Large Language Models for Better Automatic Evaluation. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 17086–17105, Miami, Florida, USA. Association for Computational Linguistics.
- Cite (Informal):
- Foundational Autoraters: Taming Large Language Models for Better Automatic Evaluation (Vu et al., EMNLP 2024)
- PDF:
- https://preview.aclanthology.org/add-emnlp-2024-awards/2024.emnlp-main.949.pdf