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Abstract

With the rise of globalisation, code-switching
(CSW) has become a ubiquitous part of mul-
tilingual conversation, posing new challenges
for natural language processing (NLP), espe-
cially in Grammatical Error Correction (GEC).
This work explores the complexities of apply-
ing GEC systems to CSW texts. Our objectives
include evaluating the performance of state-
of-the-art GEC systems on an authentic CSW
dataset from English as a Second Language
(ESL) learners, exploring synthetic data gener-
ation as a solution to data scarcity, and develop-
ing a model capable of correcting grammatical
errors in monolingual and CSW texts. We gen-
erated synthetic CSW GEC data, resulting in
one of the first substantial datasets for this task,
and showed that a model trained on this data is
capable of significant improvements over exist-
ing systems. This work targets ESL learners,
aiming to provide educational technologies that
aid in the development of their English gram-
matical correctness without constraining their
natural multilingualism.

1 Introduction

Code-switching (CSW), the practice of fluidly al-
ternating between two or more languages in conver-
sation, has become commonplace in recent years.
This linguistic phenomenon, emerging as a natu-
ral consequence of multilingualism, is now widely
accepted in social and professional settings (Yow
et al., 2018). Many works have highlighted the
utility and cultural importance of CSW in general
conversation (Beatty-Martínez et al., 2020; Falbo
and LaCroix, 2021). Further research indicates that
these advantages extend to language learning, with
CSW offering many pedagogical benefits. These
include increasing students’ access to content and
improving their confidence. Nguyen et al. (2022)
discuss the mechanisms for this, where students

∗Work completed whilst at King’s College London.

Example 1:According to the test, [lacks in me → my
shortcomings] are靴下 andご主人様.
Example 2: When we [call → say]ダッシュボード,
do we actually mean a glove compartment in English?

Figure 1: Examples of GEC in ESL learner language.

use a familiar language to grasp foreign, complex
concepts. CSW can also serve as a scaffolding
tool, helping to bridge gaps in a student’s com-
prehension of a language and enabling them to
build upon existing knowledge. These benefits
reduce the barriers between a student and their
target language and help promote a learning en-
vironment conducive with active exploration and
deeper understanding. Therefore, it is essential
that English as a Second Language (ESL) learn-
ers are not penalised for expressing their cultural
identity through CSW. Grammatical error correc-
tion (GEC) is the task of automatically detecting
and correcting errors in text. Research on GEC for
CSW text remained largely unexplored. Chan et al.
(2024) were the first to demonstrate that exposing a
sequence-tagging GEC model to CSW text during
the training process improves performance com-
pared to a monolingual system. However, further
work is essential to ensure language technology
is inclusive and reflective of real-world linguistic
practices. Figure 1 shows two examples of CSW
from our target population with their grammatical
corrections.1

Despite significant advancements in GEC in re-
cent years, a gap persists in addressing CSW texts,
with monolingual GEC datasets labelling CSW as
a type of error (Nguyen et al., 2022). There are
several reasons for this, the most prominent being
the scarcity of high-quality training data, a prob-
lem that plagues monolingual GEC systems. The
unique linguistic features of CSW, including its

1The definition of CSW is a subject of ongoing debate.
Throughout this work, we use the term CSW to refer specifi-
cally to the type of language mixing exhibited by ESL learners.

16957



variable syntax, semantics and pragmatics, add
additional complexity to this task. Monolingual
seq2seq GEC models, e.g. T5 (Rothe et al., 2021),
struggle with CSW text as they fail to represent
the non-English inputs, resulting in their inability
to output the CSW text. On the other hand, multi-
lingual seq2seq models and edit-based GEC mod-
els like GECToR (Omelianchuk et al., 2020) can
handle CSW text but struggle with the ambiguity
present at language switching points. This ambi-
guity challenges the models’ ability to accurately
correct the text.

This paper aims to bridge this gap. Firstly, to ad-
dress the data scarcity issue, we propose a method
for generating high-quality synthetic CSW GEC
data, using which we produce, to our knowledge,
one of the first substantial datasets labelled for this
task2. Secondly, we train a token classification-
style GEC system, tailored to correct errors in texts
produced by ESL learners. This demographic is
significant for our study as they not only present
consistent CSW patterns but also stand to benefit
greatly from a GEC system capable of handling
CSW text.

2 Data

2.1 Genuine CSW GEC Dataset
One of the only datasets labelled for GEC
which does not remove CSW text, is the Lang-
8 dataset (Mizumoto et al., 2013), sourced from
the Lang-8 language learning platform. This
dataset, when filtered to contain entries where
CSW is present, offers a foundation of authen-
tic data, comprises 5,875 pairs of ungrammati-
cal and corrected sentences across 6 CSW lan-
guage pairs: English-Japanese (81.9%), English-
Korean (13.0%), English-Traditional Chinese
(3.4%), English-Russian (1.2%), English-Thai
(0.5%) and English-Arabic (0.1%).

The crowd-sourced nature of Lang-8 required
manual validation to ensure accuracy. We tasked
an annotator with the responsibility of verifying
the original corrections in the dataset, as well as
combing for missed errors, incorrect annotations
and over-annotations.

2.2 Synthetic CSW GEC Data Generation
Given the small size of the available CSW GEC
dataset, we introduced a 2-step approach to syn-
thetic CSW GEC data generation. First, we gener-

2This dataset is available on GitHub.

ated grammatically correct CSW sentences. This
is followed by the introduction of errors.

2.2.1 Step 1: CSW Text Generation
Three different synthetic data generation tech-
niques have been explored to generate CSW data.

Translation-based CSW Text Generation re-
quired a monolingual corpus, a machine transla-
tion (MT) algorithm, and a sentence parser. To
generate a CSW utterance, we used the Stanford
Parser v4.5.43 (Manning et al., 2014) to build a syn-
tactic parse tree. We then randomly selected and
translated a subtree using the ArgosTranslate MT
package4 (Finlay, 2023; Klein et al., 2017). This
method generates plausible CSW text. However,
performance is dependent on the strength of the
parsing and translation algorithms; and the style of
language within the corpus. To approximate the
style of our authentic CSW text, we used corrected
monolingual sentences from the Lang-8 corpus.

Parallel Corpus-based CSW Text Generation
avoids the need for a translation algorithm. In-
stead, we used the same Stanford Parser, this time
with Spanish, French and German configurations;
and the AWESOME word-alignment model5 (Dou
and Neubig, 2021), to identify parts of parallel cor-
pora labelled for MT with similar syntactic struc-
ture. For this method, we use the Europarl corpus
(Koehn et al., 2012) due to the grammatical quality
of its English component. Under the Equivalence
Constraint Theory (Rizvi et al., 2021), these areas
are where CSW is likely to take place. We, there-
fore, randomly chose overlapping subtrees as can-
didates for injection of non-English text. Although
this method does not require MT, it is reliant on
performant word-alignment and parsing systems;
these are rare for many languages.

LLM Prompting-based CSW Text Generation
The other methods of generating CSW text rely on
injecting a second language into existing monolin-
gual corpora. Hence, they are not able to recreate
one of the main switching styles shown by ESL
learners - CSW as a genuine pragmatic strategy. A
common reason for this style of switching is when
quoting another language. It is difficult to recreate
this style using a monolingual foundation as sen-
tences like The Japanese word for “dog” is “犬”
seldom appear in authentic monolingual corpora.

3This can be downloaded from the CoreNLP website.
4We used ArgosTranslate v1.8.0, available on GitHub.
5The authors shared their model on HuggingFace.

16958

https://github.com/tpotterer/Synthetic-CSW-Text-for-GEC
https://stanfordnlp.github.io/CoreNLP/history.html
https://github.com/argosopentech/argos-translate
https://huggingface.co/aneuraz/awesome-align-with-co


Metric Genuine CSW LLM CSW Translation CSW Corpus CSW
CMI 15.52 16.14 27.81 11.42
M-Index 0.007 0.004 0.015 0.006
I-Index 0.21 0.21 0.30 0.20
Burstiness -0.07 -0.04 0.03 -0.11
CF1 6.38 5.82 17.13 2.55
CF2 19.77 19.03 31.11 16.04
CF3 18.34 17.61 30.05 14.20

Table 1: Quantitative Description of the Genuine and Generated CSW Datasets Using Various CSW Metrics.

To generate diverse CSW texts without relying
on existing corpora or inaccurate alignment algo-
rithms, we leveraged the strong general knowl-
edge of Large Language Models (LLMs). We
demonstrated that OpenAI’s GPT-3.5 (Brown et al.,
2020) can create high-quality CSW sentences when
shown examples of authentic utterances. Along
with genuine CSW texts, we supplied a one-shot
example of how to use the switching styles of an
existing CSW text to generate a new sentence.6

Comparison of Synthetic CSW Text We used
several CSW metrics to quantify the qualities of
CSW texts: Code Mixing Index (CMI) (Gam-
bäck and Das, 2016), Multilingual Index (M-Index)
(Barnett et al., 2000), Probability of Switching (I-
Index) (Guzmán et al., 2017), Burstiness (Goh and
Barabási, 2008), and Complexity Factor (CF1-3)
(Ghosh et al., 2017). Table 1 shows the value of
each metric for our genuine CSW dataset, as well
as for these 3 synthetic CSW datasets. We can see
that the LLM prompting-based dataset was superior
in its similarity to the authentic CSW data. Using
this method, we generated a corpus of 73,293 utter-
ances covering over 20 English language pairs, in-
cluding the 6 language pairs in the original dataset.7

2.2.2 Step 2: Synthetic Error Generation
Several works have shown the effectiveness of
rule-based error injection for GEC data genera-
tion. Many use the PIE-synthetic dataset (Awasthi
et al., 2019), a perturbed version of the 1BW cor-
pus (Chelba et al., 2013). For each sentence, the
authors introduce between 0 and 4 errors of ran-
dom type. We extended this work by introducing
a new subset of error types that are not only more
common in ESL learners, but also are areas where
the SOTA performance collapses when faced with
CSW text: noun, pronoun, word order, determiner,

6The full prompt can be seen in Appendix A.
7The LLM does not always generate the language pairs

we ask for. However, these sentences are still included in the
dataset categorised under their actual language pair.

and punctuation errors.8

To increase the diversity of errors, we adopted
a second style of error injection, Backtransla-
tion (Stahlberg and Kumar, 2021). By swapping
the source and target sentences of a monolingual
dataset, we trained a GECToR-based system to in-
duce errors in our synthetic CSW sentences.

Using these methods, we created two datasets:
Syn-CSW PIE and Syn-CSW Rev-GECToR. After
removing pairs containing no injected errors, we
are left with 70,180 and 18,159 sentences each.

3 CSW GEC Systems

For our GEC system targeting CSW texts, we chose
a GECToR model (Omelianchuk et al., 2020), with
a RoBERTa-base foundation, due to its proven effi-
cacy with limited training data and stronger perfor-
mance on CSW texts compared to seq2seq models.
We added a new CSW class to the error detection
head, adding the ability to detect CSW tokens.

Following Tarnavskyi et al. (2022), we used a
3-stage training schedule. In the first, we used
the same distilled 1BW corpus, and added all our
synthetic CSW GEC data. For the second, we
used several GEC datasets: NUCLE (Dahlmeier
et al., 2023), FCE (Yannakoudakis et al., 2011),
W&I Locness (Bryant et al., 2019), Lang-8 and
our 2 synthetic CSW datasets. As our genuine
CSW dataset is a subset of the Lang-8 corpus, we
checked and removed any duplicates. Following
previous works, we finished training using the W&I
Locness dataset due to its superior quality. In this
final stage, we added a sampled subset of our syn-
thetic CSW sentences and 90% of our authentic
CSW data, ensuring exposure to synthetic and gen-
uine CSW text. At each stage, we reserved 5% of
the data for validation.9 Finally, we tuned inference
parameters using a grid-search to optimise the F0.5

on the final validation set. By beginning with pre-
8Error type analysis is presented in Appendix B.
9An exact breakdown of contributions by each dataset is

given in Appendix C.
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Model BEA-2019 Test Genuine CSW
P R F0.5 P R F0.5

Existing GEC systems
GECToR 77.88 53.07 71.22 71.14 27.08 53.67
T5-Small 62.03 47.19 58.34 11.70 24.98 13.09
Our CSW GEC systems
Stage 1 67.23 53.88 64.05 66.15 26.04 50.57
Stage 2 72.64 51.73 67.20 65.41 29.93 52.87
Stage 3 74.32 53.40 68.92 84.66 22.92 55.02
Inference Tweaks 69.01 58.40 66.59 76.02 38.67 63.71

Table 2: ERRANT-based Precision, Recall and F0.5 Scores of Baselines and Our Model Throughout Training

training on large amounts of lower-quality data in
the early stages, this multi-stage learning process
allows the model to first build a robust GEC foun-
dation before refining it with high quality data in
the latter stages. This approach allows the model to
learn incrementally, reducing the risk of the model
being overwhelmed by the complexity of the task
from the outset.

4 Results and Analysis

4.1 Baseline Comparisons

We compared our model against two well-
established systems: a RoBERTa-base GECToR
model (Omelianchuk et al., 2020), with near SOTA
performance on the BEA-2019 test set (Bryant
et al., 2019), and a seq2seq T5 model (Rothe et al.,
2021). To assess these models, we evaluated their
performance on the BEA-2019 test set and the re-
maining 10% of our authentic CSW data. The ER-
RANT (Bryant et al., 2017) GEC evaluation results,
as outlined in Table 2, demonstrate a clear degra-
dation in performance when these two systems are
applied to CSW texts. The ERRANT toolkit de-
tects and classifies edits between source and target
sentence pairs into predefined error categories. It
enables the comparison of a proposed set of edits
with a reference set, providing a way of calculating
metrics, such as precision and recall, across these
categories.

4.2 Detailed Model Performance

The progression of our model throughout training
provided insights into its evolving capabilities and
effectiveness of our synthetic data. We monitored
several metrics, including the ERRANT precision,
recall and F0.5 score, for the BEA-2019 test set and
the remaining unused 10% of our genuine CSW
dataset. These metrics, as displayed in Table 2,
indicate a steady improvement in the ability to
handle CSW texts. Notably, the performance on

the CSW dataset shows a significant leap in the
final stages, where the contribution of our synthetic
dataset is largest. This improvement in CSW text
handling did slightly compromise the model’s per-
formance on monolingual GEC tasks, as seen on
the BEA-2019 test set. This suggests a trade-off in-
herent in specialising the model for CSW contexts.
However, our model remains competitive amongst
SOTA monolingual GEC systems of its size.

Three illustrative examples of our model’s cor-
rections, taken from the CSW test set, can be seen
in Figure 2. The first example demonstrates a case
where the model has correctly identified all of the
changes required, including the incorrect capitalisa-
tion of a word, a missing word, and some missing
punctuation. The second example shows a “near
miss”; here, the model has correctly identified the
majority of the changes required but dropped the
“I” whilst rearranging the start of the sentence. Fi-
nally, the third example presents a scenario where
the model has fallen slightly short, failing to recog-
nise the need for “were” instead of “was” in this
hypothetical context.

4.3 Inference Tweaking and Error Thresholds

The inference tweaking phase was crucial in tun-
ing the balance between precision and recall. The
changes made here, particularly lowering the mini-
mum error thresholds before the model makes an
edit, indicated a clear attempt to force the model
to make more corrections.10 While this slightly
lowered precision on monolingual errors, it signifi-
cantly enhanced the performance on CSW text.

To determine that the improved performance of
our proposed model was not entirely due to the
different inference configuration, we conducted a
similar grid search for the existing GECToR model.
However, instead of using the Stage 3 validation
dataset, as we did with our model, we used the

10Implementation details are presented in Appendix D.
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Gold Correction 1: We have many [New → new] words for [∅ → the] unemployed[∅ → :] "이태백"[∅ → ,] "백
수"[∅ → ,] "백조"
Proposed Correction 1: We have many [New → new] words for [∅ → the] unemployed[∅ → :] "이태백"[∅ → ,]
"백수"[∅ → ,] "백조"

Gold Correction 2: [I and my girlfriend → My girlfriend and I] looked [∅ → at a] picture called "無原罪の聖母"
(Immaculate Conception).
Proposed Correction 2: [I and my girlfriend → My girlfriend and] looked [∅ → at a] picture called "無原罪の聖
母" (Immaculate Conception).

Gold Correction 3: If he [was a → were] Japanese, I suppose I [replied → would reply] like this: "ああ、駅なら
この道を真っすぐ行けばすぐですよ、800mくらい先です".
Proposed Correction 3: If he was [a → ∅] Japanese, I suppose I [replied → would reply] like this: "ああ、駅なら
この道を真っすぐ行けばすぐですよ、800mくらい先です".

Figure 2: Three examples of model’s proposed corrections from the CSW test set.

CSW test set directly. The highest F0.5 achieved by
the baseline model was 56.46, providing evidence
that our proposed model beats all inference con-
figurations of the previous GECToR system when
applied to CSW texts.

4.4 Synthetic Data Impact
The synthetic CSW text and error injection meth-
ods were central to this project. The resemblance
of our synthetic text to real ESL learner data, as
shown by the similarity metrics in Table 1, is a
testament to the effectiveness of our chosen gen-
eration method. The improvements in F0.5 scores
provide further evidence of this.

Our extended PIE-synthetic dataset aimed to in-
troduce four error types common in ESL students:
noun, pronoun, punctuation and word errors. When
compared to the monolingual GECToR, our model
is stronger in all of these areas.11 This provides
strong evidence that the targeted approach to error
injection was successful in boosting the model’s
ability in these areas.

5 Conclusion

The primary aim of this paper was to build a GEC
system capable of effectively correcting English
errors in CSW text, whilst maintaining competi-
tive performance on monolingual data. To address
the scarcity of CSW data, we explored methods of
generating synthetic CSW text. We used several
CSW metrics to establish that the LLM prompting-
based approach was the most capable of generating
text resembling the content in our genuine dataset.
From there, we used two error injection methods
to create the first substantial datasets labelled for
CSW GEC. This significantly expanded the train-
ing data available. Importantly, it also opened up

11Error type analysis of our model is given in Appendix E.

opportunities for future research in CSW GEC and
CSW NLP more generally. We demonstrated the
efficacy of our synthetic data generation techniques
by training the first GEC model aimed at correcting
errors in CSW texts. Our model showed a clear
improvement in performance on CSW data, sur-
passing the SOTA in this area.

6 Limitations

This research, while comprehensive, encounters
several limitations that highlight areas for potential
improvement. One primary limitation lies in the
overrepresentation of Japanese in the genuine CSW
dataset. This raises questions about the model’s ap-
plicability to a broader range of language pairs.
This is an unfortunate consequence of using a
dataset sourced from Lang-8, a Japanese language
learning network. Although our method demon-
strated that it could generate texts from a wider
range of language pairs, it is possible that all CSW
data used shows a bias towards Japanese styles of
CSW. Such a bias in our system could inadvertently
lead to reduced accessibility and effectiveness for
ESL learners who CSW with languages other than
Japanese. If this system were to be used as an aid
in ESL education, steps should be taken to ensure
that it does not contribute to existing inequalities
present in language learning platforms. English
learning tools should be accessible regardless of the
student’s native language and future work should
focus on developing more inclusive datasets to help
mitigate these risks.

Another possible limitation relates to the style
of model chosen. The sequence tagging method
was selected due to its lower data requirements,
but this decision may have constrained the capa-
bilities of the model. Many of the errors typical
of ESL students require complex restructuring of
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the sentence - a notably difficult task for edit-based
GEC systems. Although the data needs are more
substantial, it is likely that NMT GEC systems may
fare better as they are not constrained by a limited
vocabulary of edits.

To assess the likeness of our generated CSW
text, we introduced several common CSW metrics.
Although useful, these metrics are not very sophis-
ticated, and often struggle to accurately capture
the nuances of CSW patterns across different sub-
populations. These language patterns can have a
substantial impact on the optimal approaches to
problems across CSW NLP, and hence, the field
would benefit from further research in this area.
Ideally, we would have conducted a human study
to evaluate the quality of our synthetic data. How-
ever, given the constraints of the project, it was not
possible, and we acknowledge this as a limitation
of our work.

Finally, we reported results for a RoBERTa-
base GECToR system. Although we also tested
other base models, including BERT, DeBERTa and
ELECTRA, we did not look at larger models or en-
semble systems. Future extensions could explore
this area, building upon the observation that larger
models or simple voting ensembles can yield better
results than the smaller base models (Tarnavskyi
et al., 2022).

In summary, whilst the current work makes sig-
nificant contributions to the field of GEC for CSW
text, these limitations indicate crucial areas for fur-
ther research and development.
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A Example LLM Prompt

Figure 3 shows an example LLM prompt used to
generate synthetic CSW sentences from genuine
examples. As we are using a private subset of the
Lang-8 dataset, we are not permitted to share any
of the CSW texts.

B Error Type Analysis of SOTA

Table 3 shows a breakdown of the performance of
a single RoBERTa Large-based GECToR system
trained purely on monolingual GEC data when ap-
plied to two datasets, our genuine CSW dataset
and the BEA-2019 (Bryant et al., 2019) test set.
These datasets are approximately the same size.
The model used represents a current near-SOTA
single model sequence tagging-based GEC system
measured using F0.5 on the BEA-2019 test set. For
brevity, we have removed categories with a low
number of examples in either dataset or where per-
formance is not significantly different.
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Settings: [no prose]
For each of the following code-switched sentences, generate a new sentence that uses the same two
languages and a similar style of code-switching. The topic should be different. Ensure you use the correct
grammar in the English portion of the sentence. Make sure that each sentence contains 2 languages. Only
return the sentences and their number. You must follow all of the instructions.

For example, given the source sentence and label:
1. This food is called “ラーメン” .
An acceptable answer would be:
1. This animal is called a “犬” .

Do not include any other information in the generated sentences. The 10 real examples are as follows:

1. [CSW SENTENCE]
2. [CSW SENTENCE]
3. [CSW SENTENCE]
4. [CSW SENTENCE]
5. [CSW SENTENCE]
6. [CSW SENTENCE]
7. [CSW SENTENCE]
8. [CSW SENTENCE]
9. [CSW SENTENCE]
10.[CSW SENTENCE]

Figure 3: An Example LLM Prompt Used to Generate CSW Text

C Training Data Schedule

In this section, we explicitly detail the data used at
each stage of the training process.

Stage 1 For the initial pre-training stage, we used
the distilled dataset proposed by the SOTA (Tar-
navskyi et al., 2022). This dataset was constructed
by extracting corrections from the monolingual
1BW corpus (Chelba et al., 2013) using the high-
est performing GECToR ensemble. Through this
dataset, we shuffled our PIE-synthetic CSW dataset.
We deemed this dataset to be of lower quality than
its Rev-GECToR counterpart. Consequently, it was
used earlier in the training process. This provided
roughly 1,200,000 examples for the initial training
phase of which we split between train and valida-
tion sets according to a ratio of 19:1. Our synthetic
CSW sentences comprised approximately 5.65%
of this dataset. We aimed to keep this percent-
age small in this phase of the training process to
allow the model to first learn to correct errors in
monolingual texts. In later stages, we boosted the
contribution of the CSW data.

Stage 2 For the second stage, we shuffled several
GEC datasets. These are NUCLE (Dahlmeier et al.,
2023), FCE (Yannakoudakis et al., 2011), W&I
Locness (Bryant et al., 2019), Lang-8 (Mizumoto
et al., 2013) and our 2 newly created CSW datasets.
As our genuine CSW dataset is a subset of the pri-
vate Lang-8 corpus, we checked and removed any
duplicates. Table 4 shows the overall contributions
of each corpus towards the stage 2 dataset. Similar
to the previous stage, the data was split into train
and validation sets.

Stage 3 For the final stage, we combined the high
quality W&I Locness dataset with a sampled subset
of the genuine CSW data and a sampled subset of
the synthetic CSW texts. Again, the stage 3 dataset
is split into train and validation sets. The remaining
unused subset of the genuine CSW dataset was
retained for testing purposes. Table 5 details the
contributions to this stage from each dataset.

D Inference Hyperparameters

After training our model, we used the validation
dataset from stage 3 to tune 2 inference parameters.
These are:
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Category BEA-2019 Test Genuine CSW F0.5 Decrease
F0.5 TP FP FN F0.5 TP FP FN

DET 80.45 432 80 205 46.27 472 351 1336 34.18
NOUN 47.85 29 16 94 4.34 21 147 1725 43.51
ORTH 75.96 201 30 198 36.45 181 264 522 39.51
OTHER 39.51 113 77 557 3.55 39 241 4333 35.96
PREP 75.44 263 58 196 39.14 241 251 870 36.30
PRON 66.38 62 19 81 20.71 21 32 274 45.67
PUNCT 80.93 786 165 266 0.35 1 286 284 80.58
VERB 52.59 61 27 167 18.08 49 77 802 34.51
VERB:FORM 81.62 151 30 50 37.20 61 90 155 44.42
VERB:SVA 88.64 128 14 26 57.58 114 79 104 31.06
VERB:TENSE 65.55 145 62 133 33.80 116 172 448 31.75
WO 58.08 23 5 63 6.33 2 11 104 51.75

Table 3: F0.5 Scores, TP, FP, FN, and Differences in F0.5 Scores (BEA - CSW) for Different Categories in the
BEA-2019 Test Split and our Genuine CSW Dataset.

Dataset Sentences
Lang-8 985,683 (80.54%)
W&I Locness 68,608 (5.61%)
NUCLE 54,258 (4.43%)
FCE 26,929 (2.20%)
Syn-CSW PIE 70,181 (5.73%)
Syn-CSW Rev-GECToR 18,160 (1.48%)
Total 1,223,819

Table 4: Sentence Count and Contribution of Stage 2
Datasets

Dataset Sentences
W&I Locness 68,608 (67.23%)
Syn-CSW Rev-GECToR 18,160 (17.80%)
Syn-CSW PIE 10,000 (9.80%)
CSW Genuine 5,279 (5.17%)
Total 102,047

Table 5: Sentence Count and Contribution of Stage 3
Datasets

• additional_confidence — This value is added
to the probability of the $KEEP token. If this
value is high, recall is likely to decrease and
precision increase. The grid search found the
best value of this to be 0.

• min_error_probability — For a change to be
made to a sentence, the probability of at least
one token in the sentence being an error must
be higher than the min_error_probability. If
this value is high, then precision is likely to

be higher and recall lower. The grid search
found the best value of this to be 0.4.

E Error Type Analysis of Proposed Model

By exploring the ERRANT error classifications of
our proposed model when applied to the CSW test
dataset, we can further explore the effectiveness
of our synthetic data in addressing the problematic
areas identified in Appendix B. A breakdown of
the precision, recall and F0.5 score for each of the
previously identified categories is shown in Table
6.

Category P R F0.5

NOUN 0.2857 0.0833 0.1923
PRON 0.7647 0.4643 0.6771
PUNCT 0.7143 0.1139 0.3460
WO 0.7778 0.2000 0.4930

Table 6: Precision (P), Recall (R) and F0.5 Score of
Our Proposed Model for Targeted Error Types in the
Genuine CSW Test Dataset
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