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Abstract

Large Language Models (LLMs) are increas-
ingly relied upon to evaluate text outputs of
other LLMs, thereby influencing leaderboards
and development decisions. However, con-
cerns persist over the accuracy of these assess-
ments and the potential for misleading conclu-
sions. In this work, we investigate the effective-
ness of LLMs as evaluators for text generation
tasks. We propose FBI, a novel framework
designed to examine the proficiency of Eval-
uator LLMs in assessing four critical abilities
in other LLMs: factual accuracy, instruction
following, coherence in long-form writing, and
reasoning proficiency. By introducing targeted
perturbations in answers generated by LLMs,
that clearly impact one of these key capabili-
ties, we test whether an Evaluator LLM can
detect these quality drops. By creating a total
of 2400 perturbed answers covering 22 pertur-
bation categories, we conduct a comprehen-
sive study using different evaluation strategies
on five prominent LLMs commonly used as
evaluators in the literature. Our findings re-
veal significant shortcomings in current Eval-
uator LLMs, which failed to identify quality
drops in over 50% of cases on average. Single-
answer and pairwise evaluations demonstrated
notable limitations, whereas reference-based
evaluations showed comparatively better per-
formance. These results underscore the unre-
liable nature of current Evaluator LLMs and
advocate for cautious implementation in prac-
tical applications. Code and data are available
at https://github.com/AI4Bharat/FBI.

1 Introduction

Large Language Models (LLMs) are gaining
widespread acceptance as the gold standard for
evaluation in numerous applications, thanks to their
efficiency and significant reductions in cost & time
compared to human evaluators (Kim et al., 2023,
2024a; Chiang and Lee, 2023; Chen et al., 2023;
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Figure 1: We present FBI, our novel meta-evaluation
framework designed to assess the robustness of evalua-
tor LLMs across diverse tasks and evaluation strategies.

Dubois et al., 2023). Furthermore, Evaluator LLMs
are increasingly being utilized in the creation and
maintenance of leaderboards for benchmarking var-
ious AI models (Watts et al., 2024; Zheng et al.,
2023). While this reliance on LLMs offers signif-
icant advantages, it also presents potential draw-
backs that warrant careful consideration. If LLMs
are not effective evaluators, the resulting rankings
and assessments could be fundamentally flawed,
leading to inaccurate conclusions and misguided
decisions. Therefore, it is crucial to pause and rig-
orously assess the evaluation capabilities of LLMs.

Recent studies have explored the effectiveness
of LLMs as evaluators and have reported strong
correlations with human evaluations (Dubois et al.,
2023; Zheng et al., 2023). While these findings
are promising, accepting LLMs as reliable evalua-
tors necessitates more nuanced assessments (Zeng
et al., 2023). As LLMs become integral in a diverse
range of tasks, they are expected to demonstrate
a wide array of abilities, including factual accu-
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racy, instruction following, coherence in long-form
writing, and reasoning proficiency. Consequently,
it is crucial to determine if Evaluator LLMs can
indeed do a fine grained assessment of these var-
ied abilities. Specifically, can they evaluate factual
correctness, grammar, spelling, mathematical pro-
ficiency, and adherence to instructions in answers
generated by other LLMs? (ref. Fig. 1) The neces-
sity for such thorough fine-grained assessments is
underscored by the Checklist (Ribeiro et al., 2020)
approach, initially applied to BERT (Devlin et al.,
2019) and subsequently adapted in studies across
various tasks and models (Sai et al., 2021).

In this work, we introduce FBI, a comprehen-
sive framework designed to Find Blind spots in
evaluator LLMs using an Interpretable checklist
across four fundamental text generation abilities:
(a) factual accuracy, (b) instruction following, (c)
coherence in long-form writing, and (d) reason-
ing proficiency. To rigorously assess an Evaluator
LLM’s ability to grade answers along these dimen-
sions, we introduce perturbations that degrade the
quality of the answer in one of these areas, expect-
ing that good Evaluator LLMs will detect these
quality drops and adjust their scores accordingly.
Additionally, we develop quality-preserving pertur-
bations where an Evaluator LLM should maintain
consistent scoring. A detailed description of the 22
perturbation categories that we used is provided in
Table 2. Staring with 500 prompts, we first gen-
erate long-form responses using GPT-4-TURBO.
We then use a human-in-the-loop approach, to sys-
tematically perturb these responses, resulting in a
dataset of 2400 tuples, where each tuple contains a
prompt, response, and perturbed response.

Using the generated perturbations, we employed
three evaluation paradigms (a) single-answer evalu-
ation, (b) pairwise evaluation, and (c) reference-
guided evaluation. Within each paradigm, we
try multiple popular strategies of using Evaluator
LLMs, such as, providing a rubric, asking for a
justification, specifying the axis of evaluation, etc.
Using these strategies, we assess the evaluation
capabilities of five widely-used Evaluator LLMs.
Our findings indicate that LLMs are currently far
from being reliable evaluators for text generation
tasks. Even with the best models and evaluation
strategies, Evaluator LLMs failed to identify errors
in over 50% of cases, on average. Interestingly,
across all evaluation strategies, we observed that
all popular Evaluator LLMs consistently performed
poorly. Notably, even basic perturbation categories,

such as, fluency perturbations (e.g. spellings and
grammar) posed challenges for the evaluators. We
also observed cases where Evaluator LLMs did not
adjust their scores for perturbed responses despite
correctly identifying the perturbations in their ex-
planations. When used for single-answer grading
and pairwise evaluation, Evaluator LLMs showed
significant limitations, suggesting they are not re-
liable in these setups. In contrast, when used for
reference-based evaluation, they demonstrated rel-
atively better performance. Overall, our experi-
ments uncovered significant blind spots in Evalua-
tor LLMs, warranting caution in their direct appli-
cation in practical settings.

2 Related Work

LLMs as Evaluators. LLMs have been increas-
ingly used for automated evaluation for various
NLG tasks (Wang et al., 2023a; Chiang and yi Lee,
2023; Kocmi and Federmann, 2023). We broadly
classify this into two paradigms - (i) reference-
driven evaluations (Fu et al., 2023; Kim et al.,
2023), and (ii) reference-free evaluations (Liu
et al., 2023; Zheng et al., 2023). The evalua-
tor is either asked for a score (score-based eval-
uation) (Liu et al., 2023; Zheng et al., 2023;
Hada et al., 2023) or to choose the best amongst
two given responses (pairwise comparison evalua-
tion) (Zheng et al., 2023; Wang et al., 2023b; Liusie
et al., 2023). Additionally, various open-source
evaluation-specific trained models have also been
proposed (Wang et al., 2023d; Kim et al., 2023;
Zhu et al., 2023). Further, advanced ensemble ap-
proaches include evaluation via multi-agent inter-
actions (Chan et al., 2023; Zhang et al., 2023) or
with external agents (Min et al., 2023; Hasanbeig
et al., 2023).
Biases in Evalautor LLMs. Studies around Eval-
uator LLMs have highlighted the various biases
- position bias (Zheng et al., 2023; Wang et al.,
2023c), self preference bias (Panickssery et al.,
2024; Liu et al., 2023), verbosity bias (Wu and Aji,
2023; Zeng et al., 2023), etc. Various approaches,
including chain-of-thought reasoning (Zheng et al.,
2023; Zeng et al., 2023), position-swapping (Zeng
et al., 2023), among others, have been suggested to
mitigate some of these. Recent studies (Hada et al.,
2023; Saha et al., 2023) also show the effectiveness
of the evaluators can be increased by evaluating spe-
cific axes and providing detailed rubrics/rules (Ye
et al., 2023; Kim et al., 2024a).
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Evaluation of Evaluator LLMs. Critically
analysing evaluation metrics and suggesting meth-
ods to improve their robustness has always been of
interest to the NLP community (Sai B et al., 2023;
Mathur et al., 2020). Recent studies have evalu-
ated the efficacy of LLMs as evaluators for specific
types of tasks (Hada et al., 2024; Shen et al., 2023)
and evaluation paradigms (Wang et al., 2023b,a)
by assessing their agreement with human evalua-
tions (Hada et al., 2023; Chiang and Lee, 2023;
Zheng et al., 2023). Additionally, the robustness of
these evaluators has been tested using adversarial
examples (Kamoi et al., 2024; Chen et al., 2024;
Wu and Aji, 2023), further showing their strengths
and weaknesses.

Our proposed framework represents a significant
departure from these existing approaches in several
key aspects. First, we focus on a broader set of
essential abilities: factual understanding, instruc-
tion following, long-form writing, and reasoning.
Second, all prompts and the 2400 perturbed an-
swers in our framework are carefully crafted and/or
validated by humans, ensuring high quality and
relevance to the abilities being evaluated. Third,
our framework offers finer granularity in pertur-
bation types, allowing us to finely identify and
isolate the capabilities and limitations of Evalua-
tor LLMs. This detailed analysis assists in mak-
ing more knowledgeable choices about when to
utilize LLMs as evaluators. Lastly, we focus on
three popular evaluation paradigms, viz., reference-
less single answer scoring, reference-less pairwise
comparison, and reference based scoring, thereby
providing a comprehensive toolkit for evaluating
LLM performance across different dimensions.

3 FBI: Meta-Evaluation Checklist

We introduce FBI, a meta-evaluation benchmark
designed to assess the capabilities of Evaluator
LLMs in examining the outputs of other LLMs
across four distinct task abilities: (i) Factual accu-
racy, (ii) Reasoning ability, (iii) instruction follow-
ing, and (iv) proficiency in long-form writing. Each
instance within the benchmark comprises a tuple
(I , Agold, Aperturb), where I represents the input
instruction or prompt given to the model, Agold

denotes the correct or gold answer, and Aperturb

signifies a perturbed version of the gold answer.
The perturbed answers, Aperturb, are generated by
introducing specific types of errors across each of
the four task abilities (Table 2) to evaluate whether

Category # Instances

Long Form (LF) 528
GRAMMAR 92
SPELLING 100
CONSISTENCY 84
CHRONOLOGY 71
COHERENCE 91
COMPREHENSIVENESS 90

Factual (F) 483
CONTEXTUAL 94
ENTITY 87
INCORRECT FACT 68
NUMBER ERRORS 74
OPPOSITE FACT 91
REMOVE FACT 69

Instruction Following (IF) 379
DO MORE 50
DO LESS 100
IGNORE FORMAT 99
SEQUENCE ERRORS 49
ASSUMPTIONS 81

Reasoning (R) 494
CALCULATIONS 149
COPYING NUMBERS 83
FINAL ERRORS 97
INCORRECT UNITS 77
WRONG FORMULA 88

Score Invariant (SI) 516

Total 2400

Table 1: Statistics of perturbations across all the 4 task
abilities and each of the perturbation categories.

LLM evaluators can accurately identify and ac-
count for these errors in the perturbed answers.

The perturbations are based on perturbation cat-
egories carefully crafted by human annotators, in-
formed by the prevalent failure modes in current
LLMs (Min et al., 2023; Wu et al., 2023; Zhou et al.,
2023b). These human annotators are graduate stu-
dents who are well aware of the typical errors made
by LLMs. Such human oversight is used through-
out the benchmark’s development, from prompt
selection (§ 3.1) to defining perturbation categories
(§ 3.2) and creating the perturbations (§ 3.3). To
ensure a high standard of accuracy and reliability,
all perturbations within FBI undergo rigorous man-
ual vetting(§ 3.4). Table 1 presents some statistics
about FBI, and the detailed generation process is
discussed in the following sub-sections.

3.1 Prompt Selection

We selected six test sets containing prompts in
English, viz., WizardLM (Xu et al., 2023), MT
Bench (Zheng et al., 2023), UltraChat (Ding et al.,
2023), LIMA (Zhou et al., 2023a), LLMBar (Zeng
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et al., 2023), and IFEval (Zhou et al., 2023b). These
test sets were selected for their recency and be-
cause they contain prompts for long-form genera-
tion, creativity, and open-ended tasks that require
instruction-following. Collectively, these test sets
comprise of 1809 prompts. We manually catego-
rized each prompt into one of the 4 task categories:
Long Form Writing (LF): These prompts require
generating long pieces of text and explore generic
topics, often including detailed analysis and story-
telling. For example, How can I improve my time
management skills?
Factual (F): These prompts seek objective infor-
mation or facts. For example, What is the primary
function of a capacitor in an electrical circuit?
Instruction Following (IF): These prompts require
executing specific steps or guidelines to achieve a
particular outcome or answer. For example, Write
a poem with four lines and the following words:
peace, sky, race, ground.
Reasoning (R): These prompts necessitate the ap-
plication of logic, mathematics, and critical think-
ing to analyze information and draw conclusions.
For example, A bat and a ball together cost $1.10.
The bat costs $1.00 more than the ball. How much
does the ball cost?

We sampled 100 questions from each of the four
abilities, supplementing prompts requiring reason-
ing ability from the GSM8k (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021) benchmarks.
Additionally, we created 200 prompts tailored to
instruction following to address specific perturba-
tion categories1. The gold answers (Agold) for all
prompts were generated using the GPT-4-TURBO

model. To ensure the quality and accuracy of
Agold, we conducted manual verification by ran-
domly sampling 25% instances from each category
and found that the gold answers maintain a high
level of correctness. Importantly, we emphasize
that the quality of gold answers is not critical in
our study, as our primary focus is on directional
score changes (i.e., we are interested in knowing
if a perturbed answer with clear errors scores rela-
tively lower than the original answer which did not
have these errors).

3.2 Perturbation Categories

LLMs exhibit numerous failure modes, encompass-
ing shortcomings in reasoning (Wu et al., 2023;

1Based on our categorization, we were unable to find a
sufficient number of prompts in existing test sets to fit the
perturbation categories.

Wei et al., 2022), factuality (Hu et al., 2024; Min
et al., 2023), instruction-following (Zhou et al.,
2023b; Li et al., 2023), and, in some instances,
coherence and consistency (Naismith et al., 2023;
Shen et al., 2023) in generated text. Given that we
utilize Evaluator LLMs to assess responses in one
or more of these abilities, it is imperative for the
evaluator to excel in them. Our perturbations across
each task ability are crafted keeping these failure
modes in mind, as presented in Table 2. While our
perturbations are primarily designed to decrease
scores, we also develop score-invariant perturba-
tions (§ 3.5), which are intended not to affect the
score relative to the gold answer.

3.3 Perturbation Generation

To generate perturbed answers (Aperturb) along
each of the defined categories (§ 3.2), we use GPT-
4-TURBO by prompting it with specific instructions
tailored to each perturbation category. The model
was tasked with producing perturbed answers and
explaining the reasoning behind each perturbation.
We iteratively refined the instructions by manually
reviewing a sample of 25% of perturbed answers
for each category, till we were satisfied with the
generated perturbations.

3.4 Human-In-The-Loop

While GPT generally succeeds in generating the ex-
pected perturbations, we observed instances where
the model (i) deviates from the intended perturba-
tion, (ii) produces the incorrect style of perturba-
tion, or (iii) accurately generates the reasoning but
fails to reflect it in Aperturb. To address these incon-
sistencies, we meticulously vet all generated per-
turbations through a manual review process. Each
perturbed answer produced by GPT-4-TURBO is
examined against Agold, and then categorized as
valid, invalid, or score invariant. A perturbation is
considered valid only if it should logically result
in a scoring penalty as determined by human anno-
tators. The vetting is carried out by students who
possess a comprehensive understanding of LLM
literature, holding at least a bachelor’s or master’s
degree. To aid in validating perturbations, we de-
veloped a tool, the details of which are outlined in
Appendix A.

3.5 Score-Invariant Perturbations

Score-invariant perturbations are those modifica-
tions that do not warrant a scoring penalty. These
are collected in two ways: (i) human annotators
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Task Perturbation Axis Description

LF

GRAMMAR Introducing grammatical errors in the answer. Eg: This is good → This are good.
SPELLING Introducing “valid” spelling errors in the answer. Eg: Toxicity → Tocixity.
CONSISTENCY Introducing errors in the “consistency” of the answer (like tone, terminology, etc.)
CHRONOLOGY Introducing errors in the chronological or the logical flow of the answer.
COHERENCE Introducing errors that affect the coherence of the answer.
COMPREHENSIVENESS Introducing vagueness, irrelevance or lack of context in the answer.

F

CONTEXTUAL Replacing fact with a contextually similar incorrect fact. Eg: electricity → magnetism.
ENTITY Replacing a named entity with an incorrect entity. Eg: Poland → London.
INCORRECT FACT Adding a new contextually relevant incorrect fact in the answer.
NUMBER ERRORS Introducing errors in the various numbers reported in the answer. Eg: 1987 → 1887.
OPPOSITE FACT Replacing a fact in the answer with its negation. Eg: ... will have ... → ... wont have ....
REMOVE FACT Removing a fact critical to the correctness and completeness of the answer.

IF

DO LESS Doing less than what is explicitly requested in the question.
DO MORE Doing more than what is explicitly requested in the question.
IGNORE FORMAT Ignoring the formatting and other constraints mentioned in the question.
SEQUENCE ERRORS Ignoring the sequence in the response when explicitly requested in the instruction.
ASSUMPTIONS Making new incorrect assumptions about the instruction.

R

CALCULATIONS Introducing calculation errors in the answer. Eg: 2 + 3 = 5→ 2 + 3 = 6
COPYING NUMBERS Introducing errors while considering the numbers mentioned in the instruction.
FINAL ERRORS Introducing errors only the final reported answer while retaining the correct solution.
INCORRECT UNITS Introducing errors in the units reported and considered in the answer.
WRONG FORMULA Introducing errors in the formula used in the answer. Eg: πr2 → 2πr

SI SCORE INVARIANT Introducing modifications in the answer which would not result in a score penalty.

Table 2: Perturbation categories across each of the task abilities. The green highlights indicate the original text
and the red highlights indicated the perturbed text. Complete examples of each perturbation can be found in
supplementary material.

categorize specific instances from our initial list as
invariant (§ 3.4), and (ii) prompting GEMINI-1.5-
PRO model to paraphrase Agold ensuring retention
of all original facts and details followed by human
verification on a sample. We collect 516 score
invariant perturbations in total.

4 Strategies for using Evaluator LLMs

In this section, we outline the prompting strate-
gies employed by Evaluator LLMs benchmarked
on FBI. An Evaluator LLM, f(·), takes the input
instruction, LLM generated response and an eval-
uation prompt, Peval, as input, and is required to
generate a score and an optional explanation. To
make the evaluation more robust, the evaluator may
also be provided with additional information spec-
ifying the axes of evaluation, rubrics, rules, and
other criteria. Our study focuses on 3 evaluation
paradigms: (i) Single-answer scoring (§4.1), (ii)
Pairwise comparison (§4.2), and (iii) Reference-
guided evaluation (§4.3). For all the strategies eval-
uation prompts Peval are adapted from Zheng et al.
(2023); Zeng et al. (2023); Hada et al. (2023).

4.1 Single Answer Scoring

In this paradigm, evaluator f(·) is tasked with scor-
ing a model response based solely on its parameter-
ized knowledge.

Vanilla∗ (Zheng et al., 2023): In this strategy,
the evaluator f(·) is presented with only the input
instruction I and a model response Amodel. The
role of f(·) is to evaluate Amodel and assign a score,
denoted as f(Peval, I, Amodel) → (score).

Vanilla (Zheng et al., 2023): This strategy ex-
tends “Vanilla∗”, where the evaluator f(·) is tasked
not only with scoring the model response Amodel

but also providing an explanation for the score - rep-
resented as f(Peval, I, Amodel) → (exp, score).

Rubric (Zeng et al., 2023): In this strategy, in
addition to the instruction I and the model re-
sponse Amodel, we also provide a grading rubric R.
The evaluator f(·) is prompted to first generate an
explanation followed by a score - represented as
f(Peval, R, I, Amodel) → (exp, score).

Axis (Hada et al., 2023): In this strategy, the
evaluator f(·) is prompted to assess the model re-
sponse, Amodel, along a designated axis, Ax, align-
ing with the category of the instruction (§ 3.1).
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For instance, factual questions are evaluated along
the hallucination axis to determine the pres-
ence of fabricated content. This process is for-
mally represented as f(Peval, Ax, I, Amodel) →
(exp, score).

Axis+Rubric (Hada et al., 2023): In this strategy,
the evaluator f(·) is provided with both a specific
evaluation axis Ax and detailed scoring rubrics
R for that axis. The is formally represented as
f(Peval, Ax,R, I, Amodel) → (exp, score).

4.2 Pairwise Comparison

In this paradigm, evaluator f(·) is tasked to choose
the better response from the two given options by
again relying on its parameterized knowledge.

Pairwise∗ (Zheng et al., 2023): The evalua-
tor f(·) here is given only an instruction I and
two model responses A1 and A2 and is tasked
to determine the better response or mark both as
equally valid. This is formally represented as
f(Peval, I, A1, A2) → (verdict).

Pairwise (Zheng et al., 2023): This strategy ex-
tends “Pairwise∗”, where the evaluator is tasked not
only with choosing the better response but also pro-
viding an explanation for the verdict - represented
as f(Peval, I, A1, A2) → (exp, verdict).

Rules (Zeng et al., 2023): In this strategy, in
addition to the instruction I and the two model re-
sponses A1, A2, the evaluator f(·) is given detailed
rules for evaluation and is asked to generate an ex-
planation followed by the verdict. This process is
formally represented as f(Peval, R, I, A1, A2) →
(exp, verdict).

Axis (Hada et al., 2023): Extending the Axis
strategy defined in Sec §4.1, the evaluator f(·) is
asked to choose the better response along a des-
ignated axis Ax. The evaluator is prompted with
the instruction I , two model responses A1, A2,
and the description of the axis Ax - represented as
f(Peval, Ax,R, I, A1, A2) → (exp, verdict).

Axis+Rules (Zeng et al., 2023; Hada et al., 2023):
Extending the Axis+Rubric strategy defined in
Sec §4.1, this strategy involves choosing the bet-
ter response along the designated axis Ax. The
evaluator is prompted with the instruction I , two
model responses A1, A2, details about the axis Ax,
and detailed rules for evaluation - represented as
f(Peval, Ax,R, I, A1, A2) → (exp, verdict).

4.3 Reference-guided Single Answer Scoring

In this paradigm, the evaluator f(·) is tasked to
score a response by comparing against a reference.
It is important to note that this approach may not
be feasible for many open-ended questions.

Reference (Zheng et al., 2023): In this strat-
egy, given an instruction I , a model response
Amodel, and a ground truth reference answer
Agold, the evaluator f(·) is tasked with scor-
ing the model response, along with giving an
explanation. This is formally represented as
f(Peval, I, Agold, Amodel) → (exp, score).

5 Experiments

We use GPT-4-TURBO as our primary evalua-
tion model, given its widespread adoption (Zeng
et al., 2023; Hada et al., 2024; Min et al., 2023).
We also extend our analysis to other proprietary
models - GEMINI-1.5-PRO (Team et al., 2024)
and CLAUDE-3-OPUS (Anthropic, 2024), open-
source models like LLAMA-3-70B-INSTRUCT

(Meta, 2024), and trained evaluator models like
PROMETHEUS 2 (Kim et al., 2024b)2. All eval-
uations are conducted at a temperature of zero to
ensure reproducibility.
In single answer scoring (§ 4.1) paradigm, we mea-
sure the percentage of instances where the score re-
mains unchanged by the perturbation as our metric.
Ideally, except for score-invariant perturbations,
the evaluator should penalize the score of the per-
turbed answer. For pairwise comparison paradigm
(§ 4.2), we include our “gold” answer as one of the
responses, requiring the evaluator to select the best
response between the “gold” and the “perturbed”
answer. Here, we measure the percentage of times
the evaluator does not choose the gold answer as
our metric. To mitigate position bias (Wang et al.,
2023c), we conduct each evaluation twice, swap-
ping the order of the gold and perturbed responses.
For reference-guided single answer scoring
paradigm (§ 4.3), the gold answer serves as the
reference. Here, we measure the percentage of
times the evaluator awards a perfect score to the
perturbed answer as our metric.

5.1 Is GPT-4-Turbo a good evaluator?

Referring to the first section of Table 3, we ob-
serve that in the case of single answer scoring,

2 We reuse the axes and rubrics defined in Section §4.1 as
the evaluation rubrics for PROMETHEUS 2.
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Strategy LF↓ F↓ IF↓ R↓ SI↑
Single Answer Scoring

Vanilla∗ 0.73 0.67 0.71 0.22 0.83
Vanilla 0.57 0.54 0.57 0.25 0.71
Rubric 0.85 0.73 0.80 0.33 0.96
Axis 0.83 0.74 0.75 0.43 0.96
Axis+Rubric 0.86 0.76 0.77 0.37 0.97

Pairwise Comparison
Pairwise∗ 0.73 0.52 0.83 0.36 0.93
Pairwise 0.77 0.46 0.67 0.35 0.74
Rules 0.75 0.63 0.68 0.41 0.74
Axis 0.64 0.44 0.59 0.27 0.71
Axis+Rules 0.64 0.42 0.61 0.32 0.72

Reference-guided Single Answer Scoring
Reference 0.26 0.11 0.49 0.04 0.63

Table 3: Comparison of different evaluation strategies
using GPT-4-TURBO. The numbers indicate the per-
centage of instances where the score/verdict generated
by the LLM evaluator is not affected by the perturba-
tion. Lower values (↓) indicate better performance in
all categories except SI . * denotes evaluators that only
give a score without any justification.

GPT-4-TURBO fails to lower its score for the per-
turbed answer in a majority of the cases, except
for Reasoning tasks. Further, the performance of
GPT-4-TURBO is better when using simpler strate-
gies, such as, Vanilla∗ and Vanilla, as compared to
the more advanced strategies with explicit rubrics
and/or specified axis of evaluation. This could im-
ply that while adding additional rubrics and criteria
may increase the overall thoroughness, it may not
necessarily enhance the model’s ability to detect
subtler errors.

Now, referring to the second section of Table 3,
we observe that in the case of pairwise compari-
son, GPT-4-TURBO fails to detect the perturbed
answer in majority of the cases, except for Reason-
ing tasks. Further, in contrast to the above, in this
case, advanced strategies perform better than the
basic strategies. This indicates that for compara-
tive evaluations, having detailed specific rules can
help improve the reliability of the models. Lastly,
referring to the first row of the last section of Table
3, we observe that when a reference is provided,
GPT-4-TURBO performs much better but there are
still a notable number of failures. The evaluator, de-
spite being presented with the gold answer marked
as a reference answer, fails to recognize the pertur-
bations in many cases, except for reasoning tasks
where it performs very well. Our overall verdict is
that GPT-4-TURBO is not a good evaluator as it
fails to detect perturbations which cause a drop in

Strategy Model LF↓ F↓ IF↓ R↓ SI↑

Vanilla

0.57 0.54 0.57 0.25 0.71

0.61 0.73 0.54 0.41 0.71
0.74 0.84 0.75 0.47 -
0.86 0.95 0.90 0.71 0.75

Axis+Rules
0.64 0.42 0.61 0.32 0.72
0.72 0.58 0.70 0.39 0.65

0.75 0.69 0.70 0.60 0.64

Reference

0.26 0.11 0.49 0.04 0.63
0.25 0.07 0.17 0.03 0.33

0.03 0.01 0.05 0.05 0.13

0.51 0.62 0.53 0.12 0.38

Table 4: Comparison of the performance of different
models across the best-observed evaluation strategies.
Lower values (↓) indicate better performance in all cate-
gories except SI .

the quality of the answer.

5.2 How do other popular Evaluator LLMs
perform?

We extend our evaluation to other models and com-
pare their performance when using the 3 best strate-
gies identified in Table 3. Table 4 shows that GPT-
4-TURBO consistently outperforms other models in
both the reference-less paradigms. Due to the high
API cost of using the CLAUDE-3-OPUS model, we
restrict its evaluation to only the Vanilla strategy,
and note that it performed poorly as an Evaluator
LLM.

In the reference-based paradigm, LLAMA-3-
70B-INSTRUCT model surprisingly outperforms
all others. Upon manually reviewing few instances,
we observe that LLAMA-3-70B-INSTRUCT is a
stringent evaluator and rarely awards perfect scores
to even very well-formed answers when presented
with a reference answer. While this may suggest
that LLAMA-3-70B-INSTRUCT has a high evalua-
tion standard, it also raises concerns about overlyre-
lying on the reference answer, which is typically
not available in most practical scenarios. To fur-
ther investigate this, we evaluate all the models on
Score Invariant perturbations (Section §3.5) using
the Reference evaluation strategy. Consistent with
our prior observations, LLAMA-3-70B-INSTRUCT

seldom awards perfect scores, doing so only in 13%
of the cases as shown in Table 4. Lastly, looking
at the last row of Table 4, we observe that even
trained Evaluator LLMs like PROMETHEUS 2 are
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Figure 2: Comparison of perturbations detected solely
by score analysis versus those identified with explana-
tions. The highlighted region marked with stars denotes
perturbations detected in explanations but not reflected
in scores. Despite this, a significant proportion of per-
turbations remain undetected.

LF↓ F↓ IF↓ R↓
1-3 1-5 1-3 1-5 1-3 1-5 1-3 1-5

R 0.85 0.76 0.73 0.69 0.80 0.72 0.33 0.30
A+R 0.86 0.73 0.76 0.74 0.77 0.74 0.37 0.38

Table 5: Comparing performance of Rubrics and
Axis+Rubrics strategies with score range of 1-3 and
1-5. The numbers indicate the percentage of instances
where the score generated by the LLM evaluator is not
affected by the perturbation. Lower values (↓) indicate
better performance in all categories.

worse than other general Evaluator LLMs.

5.3 Does it help to look beyond scores?

In addition to scoring, our evaluators also gen-
erate explanations that provide a justification for
each score. We investigate whether these explana-
tions detect the perturbations, even though this is
not reflected in the scores. We prompt GPT-3.5-
TURBO model with explanations from the instances
where the evaluator rated the perturbed answer as
equal to the gold answer, asking it to identify if
any mistake or error has been reported in the ex-
planation. Figure 2 reveals that explanations are
only marginally helpful. Although perturbations
are sometimes identified, they are overlooked or
not considered significant enough to penalize the
score. It is important to note that all the perturba-
tions here were intended to incur a scoring penalty.
Thus, while explicitly considering the explanations
offers a slight improvement in the evaluator’s per-
formance, the overall performance is still poor.

5.4 What about score-invariant
perturbations?

We evaluate different Evaluator LLMs using score-
invariant perturbations (§ 3.5). Ideally, the evalua-
tor should not reduce its score for these perturba-
tions in score-based evaluations and should deem
both responses correct in pairwise evaluations. Re-
ferring to Table 3 , in reference-less scoring, GPT-
4-TURBO performs better when using non-vanilla
evaluating strategies, while in pairwise comparison,
it performs better when using simpler evaluation
strategies. Similarly, as shown in Table 4, we ob-
serve that other Evaluator LLMs also perform well
in a majority of cases. However, there is still a sig-
nificant number of responses with score-invariant
perturbations that they rate poorly.

5.5 Does increasing the range help in scoring?

Based on recommendations from Hada et al.
(2023), our initial set-up for the Rubrics and
Axis+Rubrics evaluators used a scoring range of
1 to 3. To explore whether a wider scoring range
could enhance the evaluators’ ability to identify
and account for the perturbations, we extended the
range to 1 to 5. Results presented in Table 5 suggest
that this broader range slightly improves the evalu-
ators’ performance, perhaps due to the availability
of more flexibility in scoring decisions.

6 Conclusion

We propose FBI, a novel framework designed
to evaluate the proficiency of Evaluator LLMs
in assessing four critical abilities: factual accu-
racy, instruction adherence, coherence in long-
form writing, and reasoning proficiency, through
targeted perturbations. Our comprehensive study,
involving 2400 perturbed answers across 22 cate-
gories and using three evaluation paradigms (single-
answer, pairwise, and reference-guided evaluation),
reveals significant shortcomings in current Eval-
uator LLMs. Our findings show that even the
most advanced models failed to identify quality
drops in over 50% of cases on average. While
reference-based evaluations performed relatively
better, single-answer and pairwise evaluations
demonstrated notable limitations. These results un-
derscore the unreliable nature of current Evaluator
LLMs and advocate for cautious implementation
in practical applications. We hope that the FBI
framework will be further extended and used for
continued meta-evaluation of Evaluator LLMs.
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Limitations

In our evaluation setup, detailed in Section 4, we
concentrate on three primary evaluation paradigms:
single-answer assessment, pairwise comparison,
and reference-guided evaluation within a single
model context and leave out multi-agent meta-
evaluation and for future work. While we have
compiled a list of perturbation categories, we be-
lieve it is not exhaustive and there is room for fur-
ther expansion. Our evaluation framework encom-
passes four fundamental task abilities, with plans
to explore more advanced capabilities such as mul-
tilingual generation, tool usage, and planning in
future work.

Ethics

All annotations described in Section 3 were done
by students from our research group, all of whom
hold at least a bachelor’s or master’s degree. This
annotation was done as a part of their routine re-
search work. The datasets used in this paper are all
available under permissible licenses, and we adhere
strictly to their intended usage, maintaining com-
pliance with licensing requirements. Additionally,
the code used for our evaluations and perturbation
generation will be made publicly available under
the MIT License3. We only used ChatGPT4 for
assistance purely with the language of the paper,
e.g., paraphrasing, spell-checking, or polishing the
author’s original content, without suggesting new
content.
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A Manual Verication Process of the
Perturbations

We engaged 17 graduate student volunteers with
a good understanding of Large Language Models
to manually verify the perturbations. Each annota-
tor was provided with the instruction, the original
gold answer, and the GPT-4-TURBO generated
perturbed answer. They were tasked with classify-
ing each perturbation into one of five categories: (i)
Valid Perturbation, (ii) Invalid Perturbation, (iii)
Score Invariant Perturbation, (iv) Not Relevant,
and (v) Not Sure. Additionally, annotators were
given explanations of the expected perturbations
and the reasons why GPT-4-TURBO considered
them valid.

To facilitate this process, we developed a
straightforward application, the interface of which
is depicted in Figure 3. This tool highlights the
differences between the original and perturbed an-
swers to aid easy identification.

Annotators were instructed to label an answer
as “Valid Perturbation” only if they believed the
perturbation warranted a score penalty relative to
the gold answer. Perturbations not affecting the
score were to be labeled “Score Invariant”. If a
perturbation was deemed incorrect or not reflected
in the perturbed answer, annotators were asked to
adjust the perturbation manually. Perturbations
irrelevant to the category were to be marked as
“Not Relevant”.
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Figure 3: Screenshot of the User Application developed for validating perturbations.

B Detailed Results of Single Answer
Evaluators

Detailed results of Single Answer evaluators can
be found in Table 6, 7, 8, 9, 10.

C Detailed Results of Pairwise Evaluators

Detailed results of Pairwise Evaluators can be
found in Table 11, 12, 13, 14, 15.

D Detailed Results of Reference-Guided
Evaluators

Detailed results of Reference-guided Evaluators
can be found in Table 16, 17
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Perturbation Type TOTAL
Errors

Detected
Errors

Undetected
Errors

% Undetected
Errors

LF

COHERENCE 91 78 13 0.14
COMPREHENSIVENESS 90 9 82 0.91
CONSISTENCY 84 16 68 0.81
GRAMMAR 92 25 67 0.73
CHRONOLOGY 71 7 64 0.90
SPELLING 100 11 89 0.89
TOTAL 528 146 383 0.73

F

CONTEXTUAL 94 41 53 0.56
ENTITY 87 29 58 0.67
INCORRECT FACT 68 24 44 0.65
NUMBER ERRORSs 74 22 52 0.70
OPPOSITE FACT 91 39 52 0.57
REMOVE FACT 69 4 65 0.94
TOTAL 483 159 324 0.67

IF

ASSUMPTIONS 81 4 77 0.95
DO LESS 100 32 68 0.68
DO MORE 50 34 16 0.32
IGNORE FORMAT 99 36 63 0.64
SEQUENCE ERRORS 49 4 45 0.92
TOTAL 379 110 269 0.71

R

CALCULATIONS 149 121 28 0.19
COPYING NUMBERS 83 69 14 0.17
FINAL ERRORS 97 54 43 0.44
INCORRECT UNITS 77 66 11 0.14
WRONG FORMULA 88 73 15 0.17
TOTAL 494 383 111 0.22

Table 6: Results from evaluating FBI using Vanilla∗ evaluator. An error is said to be detected if the evaluator
penalizes the score of the perturbed answer.

Perturbation Type TOTAL
Errors

Detected
Errors

Undetected
Errors

% Undetected
Errors

LF

COHERENCE 91 82 9 0.10
COMPREHENSIVENESS 90 30 60 0.67
CONSISTENCY 84 35 49 0.58
GRAMMAR 92 40 52 0.57
CHRONOLOGY 71 18 53 0.75
SPELLING 100 20 80 0.80
TOTAL 528 225 303 0.57

F

CONTEXTUAL 94 45 48 0.51
ENTITY 87 43 44 0.51
INCORRECT FACT 68 29 38 0.56
NUMBER ERRORS 74 30 44 0.59
OPPOSITE FACT 91 48 42 0.46
REMOVE FACT 69 25 44 0.64
TOTAL 483 220 260 0.54

IF

ASSUMPTIONS 81 12 69 0.85
DO LESS 100 57 43 0.43
DO MORE 50 31 19 0.38
IGNORE FORMAT 99 41 57 0.58
SEQUENCE ERRORS 49 20 29 0.59
TOTAL 379 161 217 0.57

R

CALCULATIONS 149 112 34 0.23
COPYING NUMBERS 83 69 12 0.14
FINAL ERRORS 97 53 43 0.44
INCORRECT UNITS 77 60 16 0.21
WRONG FORMULA 88 66 19 0.22
TOTAL 494 360 124 0.25

Table 7: Results from evaluating FBI using Vanilla evaluator. An error is said to be detected if the evaluator
penalizes the score of the perturbed answer.
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Perturbation Type TOTAL
Errors

Detected
Errors

Undetected
Errors

% Undetected
Errors

LF

COHERENCE 91 47 44 0.48
COMPREHENSIVENESS 90 2 88 0.98
CONSISTENCY 84 11 73 0.87
GRAMMAR 92 15 77 0.84
CHRONOLOGY 71 0 71 1.00
SPELLING 100 4 96 0.96
TOTAL 528 79 449 0.85

F

CONTEXTUAL 94 34 60 0.64
ENTITY 87 29 58 0.67
INCORRECT FACT 68 18 50 0.74
NUMBER ERRORS 74 17 57 0.77
OPPOSITE FACT 91 32 59 0.65
REMOVE FACT 69 1 68 0.99
TOTAL 483 131 352 0.73

IF

ASSUMPTIONS 81 1 80 0.99
DO LESS 100 8 92 0.92
DO MORE 50 39 11 0.22
IGNORE FORMAT 99 26 73 0.74
SEQUENCE ERRORS 49 0 49 1.00
TOTAL 379 74 305 0.80

R

CALCULATIONS 149 102 47 0.32
COPYING NUMBERS 83 64 19 0.23
FINAL ERRORS 97 49 48 0.49
INCORRECT UNITS 77 56 21 0.27
WRONG FORMULA 88 61 27 0.31
TOTAL 494 332 162 0.33

Table 8: Results from evaluating FBI using Rubrics evaluator. An error is said to be detected if the evaluator
penalizes the score of the perturbed answer.

Perturbation Type TOTAL
Errors

Detected
Errors

Undetected
Errors

% Undetected
Errors

LF

COHERENCE 91 58 33 0.36
COMPREHENSIVENESS 90 1 89 0.99
CONSISTENCY 84 8 76 0.90
GRAMMAR 92 17 75 0.82
CHRONOLOGY 71 0 71 1.00
SPELLING 100 6 94 0.94
TOTAL 528 90 438 0.83

F

CONTEXTUAL 94 29 65 0.69
ENTITY 87 30 57 0.66
INCORRECT FACT 68 17 51 0.75
NUMBER ERRORS 74 18 56 0.76
OPPOSITE FACT 91 32 59 0.65
REMOVE FACT 69 1 68 0.99
TOTAL 483 127 356 0.74

IF

ASSUMPTIONS 81 5 76 0.94
DO LESS 100 20 80 0.80
DO MORE 50 40 10 0.20
IGNORE FORMAT 99 25 74 0.75
SEQUENCE ERRORS 49 5 44 0.90
TOTAL 379 95 284 0.75

R

CALCULATIONS 149 100 49 0.53
COPYING NUMBERS 83 57 26 0.31
FINAL ERRORS 97 46 51 0.53
INCORRECT UNITS 77 42 35 0.45
WRONG FORMULA 88 63 25 0.28
TOTAL 494 308 186 0.43

Table 9: Results from evaluating FBI using Axis evaluator. An error is said to be detected if the evaluator penalizes
the score of the perturbed answer.
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Perturbation Type TOTAL
Errors

Detected
Errors

Undetected
Errors

% Undetected
Errors

LF

COHERENCE 91 45 46 0.51
COMPREHENSIVENESS 90 0 90 1.00
CONSISTENCY 84 6 78 0.93
GRAMMAR 92 16 76 0.83
CHRONOLOGY 71 0 71 1.00
SPELLING 100 7 93 0.93
TOTAL 528 74 454 0.86

F

CONTEXTUAL 94 28 66 0.70
ENTITY 87 27 60 0.69
INCORRECT FACT 68 15 53 0.78
NUMBER ERRORS 74 15 59 0.80
OPPOSITE FACT 91 28 63 0.69
REMOVE FACT 69 1 68 0.99
TOTAL 483 114 369 0.76

IF

ASSUMPTIONS 81 2 79 0.98
DO LESS 100 17 83 0.83
DO MORE 50 39 11 0.22
IGNORE FORMAT 99 24 75 0.76
SEQUENCE ERRORS 49 4 45 0.92
TOTAL 379 86 293 0.77

R

CALCULATIONS 149 97 52 0.35
COPYING NUMBERS 83 58 25 0.30
FINAL ERRORS 97 48 49 0.51
INCORRECT UNITS 77 44 33 0.43
WRONG FORMULA 88 63 25 0.37
TOTAL 494 310 184 0.37

Table 10: Results from evaluating FBI using Axis+Rubrics evaluator. An error is said to be detected if the evaluator
penalizes the score of the perturbed answer.

16295



Perturbation Type TOTAL
Errors G P Both ✓ Both ✗ ̸= % Undetected

Errors

LF

COHERENCE 91 73 0 11 0 7 0.20
COMPREHENSIVENESS 90 11 0 57 0 22 0.88
CONSISTENCY 84 12 0 59 0 13 0.86
GRAMMAR 92 32 0 46 0 14 0.65
CHRONOLOGY 71 1 0 68 0 2 0.99
SPELLING 100 12 0 77 0 11 0.88
TOTAL 528 141 0 318 0 69 0.73

F

CONTEXTUAL 94 55 0 12 0 27 0.41
ENTITY 87 51 0 16 0 20 0.41
INCORRECT FACT 68 32 0 12 0 24 0.53
NUMBER ERRORS 74 29 1 22 0 22 0.61
OPPOSITE FACT 91 55 0 12 0 24 0.40
REMOVE FACT 69 12 0 42 0 15 0.83
TOTAL 483 234 1 116 0 132 0.52

IF

ASSUMPTIONS 81 6 25 34 0 16 0.93
DO LESS 100 40 0 22 0 38 0.60
DO MORE 50 7 1 17 0 25 0.86
IGNORE FORMAT 99 13 0 56 0 30 0.87
SEQUENCE ERRORS 49 0 0 49 0 0 1.00
TOTAL 379 66 26 178 0 109 0.83

R

CALCULATIONS 149 96 1 18 1 32 0.35
COPYING NUMBERS 83 58 0 7 1 17 0.30
FINAL ERRORS 97 58 1 6 0 32 0.40
INCORRECT UNITS 77 48 0 17 1 11 0.38
WRONG FORMULA 88 56 1 15 3 13 0.36
TOTAL 494 316 3 63 6 105 0.36

Table 11: Results from evaluating FBI using the Pairwise∗ evaluator. An error is said to be detected if the evaluator
chooses the Gold Answer. G indicates the number of times the evaluator has chosen the Gold Answer, P for the
Perturbed Answer, Both ✓ when both answers are correct, Both ✗ when both are incorrect, and ̸= for verdict
inconsistencies.
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Perturbation Type TOTAL
Errors G P Both ✓ Both ✗ ̸= % Undetected

Errors

LF

COHERENCE 91 69 0 2 0 18 0.22
COMPREHENSIVENESS 90 25 0 18 0 47 0.72
CONSISTENCY 84 10 0 40 0 33 0.88
GRAMMAR 92 12 0 24 0 54 0.87
CHRONOLOGY 71 0 0 50 0 19 1.00
SPELLING 100 5 0 56 0 38 0.95
TOTAL 528 121 0 190 0 209 0.77

F

CONTEXTUAL 94 76 0 5 0 13 0.19
ENTITY 87 44 0 11 0 28 0.47
INCORRECT FACT 68 36 0 3 0 27 0.45
NUMBER ERRORS 74 34 0 9 0 28 0.52
OPPOSITE FACT 91 39 0 3 0 48 0.57
REMOVE FACT 69 24 0 16 0 28 0.65
TOTAL 483 253 0 47 0 172 0.46

IF

ASSUMPTIONS 81 4 43 3 0 31 0.95
DO LESS 100 58 0 11 0 30 0.41
DO MORE 50 24 2 0 0 24 0.52
IGNORE FORMAT 99 35 0 27 0 23 0.59
SEQUENCE ERRORS 49 0 0 23 0 26 1.00
TOTAL 379 121 45 64 0 134 0.67

R

CALCULATIONS 149 77 0 6 1 38 0.37
COPYING NUMBERS 83 40 0 1 1 18 0.33
FINAL ERRORS 97 59 0 0 0 18 0.23
INCORRECT UNITS 77 38 0 7 0 20 0.42
WRONG FORMULA 88 39 0 4 1 23 0.42
TOTAL 494 253 0 18 3 117 0.35

Table 12: Results from evaluating FBI using the Pairwise evaluator. An error is said to be detected if the evaluator
chooses the Gold Answer. G indicates the number of times the evaluator has chosen the Gold Answer, P for the
Perturbed Answer, Both ✓ when both answers are correct, Both ✗ when both are incorrect, and ̸= for verdict
inconsistencies.
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Perturbation Type TOTAL
Errors G P Both ✓ Both ✗ ̸= % Undetected

Errors

LF

COHERENCE 91 82 0 2 0 7 0.10
COMPREHENSIVENESS 90 28 0 25 0 37 0.69
CONSISTENCY 84 10 0 46 0 28 0.88
GRAMMAR 92 8 0 24 0 60 0.91
CHRONOLOGY 71 0 0 51 0 20 1.00
SPELLING 100 4 0 48 0 48 0.96
TOTAL 528 132 0 196 0 200 0.75

F

CONTEXTUAL 94 36 0 9 0 48 0.61
ENTITY 87 37 0 14 0 34 0.56
INCORRECT FACT 68 27 0 4 0 36 0.60
NUMBER ERRORS 74 27 0 13 0 32 0.63
OPPOSITE FACT 91 32 0 6 0 53 0.65
REMOVE FACT 69 19 0 18 0 32 0.72
TOTAL 483 178 0 64 0 235 0.63

IF

ASSUMPTIONS 81 3 57 5 0 16 0.96
DO LESS 100 60 2 15 0 23 0.40
DO MORE 50 25 3 0 0 22 0.50
IGNORE FORMAT 99 33 0 29 0 37 0.67
SEQUENCE ERRORS 49 1 0 24 0 24 0.98
TOTAL 379 122 62 73 0 122 0.68

R

CALCULATIONS 149 82 1 12 0 46 0.42
COPYING NUMBERS 83 55 0 6 0 18 0.30
FINAL ERRORS 97 47 1 0 0 42 0.48
INCORRECT UNITS 77 47 0 10 1 19 0.39
WRONG FORMULA 88 46 1 7 0 27 0.43
TOTAL 494 277 3 35 1 152 0.41

Table 13: Results from evaluating FBI using the Rules evaluator. An error is said to be detected if the evaluator
chooses the Gold Answer. G indicates the number of times the evaluator has chosen the Gold Answer, P for the
Perturbed Answer, Both ✓ when both answers are correct, Both ✗ when both are incorrect, and ̸= for verdict
inconsistencies.
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Perturbation Type TOTAL
Errors G P Both ✓ Both ✗ ̸= % Undetected

Errors

LF

COHERENCE 91 82 0 1 0 8 0.10
COMPREHENSIVENESS 90 49 0 9 0 32 0.46
CONSISTENCY 84 16 0 50 0 18 0.81
GRAMMAR 92 34 0 26 0 32 0.63
CHRONOLOGY 71 0 0 57 0 14 1.00
SPELLING 100 11 0 58 0 31 0.89
TOTAL 528 192 0 201 0 135 0.64

F

CONTEXTUAL 94 60 0 8 0 26 0.36
ENTITY 87 60 0 11 0 16 0.31
INCORRECT FACT 68 41 0 4 0 23 0.40
NUMBER ERRORS 74 45 0 10 0 19 0.39
OPPOSITE FACT 91 61 0 7 0 23 0.33
REMOVE FACT 69 5 0 58 0 6 0.93
TOTAL 483 272 0 98 0 113 0.44

IF

ASSUMPTIONS 81 2 62 4 0 13 0.98
DO LESS 100 57 0 11 0 32 0.43
DO MORE 50 40 2 3 0 5 0.20
IGNORE FORMAT 99 53 0 13 0 33 0.46
SEQUENCE ERRORS 49 5 0 23 0 21 0.9
TOTAL 379 157 64 54 0 104 0.59

R

CALCULATIONS 149 108 1 16 0 23 0.27
COPYING NUMBERS 83 69 1 7 0 6 0.17
FINAL ERRORS 97 75 1 2 0 19 0.23
INCORRECT UNITS 77 42 0 20 0 15 0.45
WRONG FORMULA 88 64 0 12 0 12 0.27
TOTAL 494 358 3 57 0 75 0.27

Table 14: Results from evaluating FBI using the Axis evaluator. An error is said to be detected if the evaluator
chooses the Gold Answer. G indicates the number of times the evaluator has chosen the Gold Answer, P for the
Perturbed Answer, Both ✓ when both answers are correct, Both ✗ when both are incorrect, and ̸= for verdict
inconsistencies.
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Perturbation Type TOTAL
Errors G P Both ✓ Both ✗ ̸= % Undetected

Errors

LF

COHERENCE 91 84 0 2 0 5 0.08
COMPREHENSIVENESS 90 47 0 13 0 29 0.47
CONSISTENCY 84 16 0 52 0 16 0.81
GRAMMAR 92 33 0 27 0 32 0.64
CHRONOLOGY 71 2 0 61 0 8 0.97
SPELLING 100 7 0 53 0 40 0.93
TOTAL 528 189 0 208 0 130 0.64

F

CONTEXTUAL 94 56 0 8 0 28 0.39
ENTITY 87 61 0 11 0 13 0.28
INCORRECT FACT 68 43 2 2 0 20 0.36
NUMBER ERRORS 74 43 0 8 0 21 0.40
OPPOSITE FACT 91 66 0 5 0 20 0.27
REMOVE FACT 69 9 0 34 0 26 0.87
TOTAL 483 278 2 68 0 128 0.42

IF

ASSUMPTIONS 81 2 65 2 0 12 0.98
DO LESS 100 59 0 8 0 33 0.41
DO MORE 50 35 2 0 0 13 0.30
IGNORE FORMAT 99 51 0 18 0 30 0.48
SEQUENCE ERRORS 49 1 0 29 0 19 0.98
TOTAL 379 148 67 57 0 107 0.61

R

CALCULATIONS 149 93 0 12 0 23 0.27
COPYING NUMBERS 83 58 0 6 0 12 0.24
FINAL ERRORS 97 57 2 2 0 26 0.34
INCORRECT UNITS 77 38 0 19 0 16 0.48
WRONG FORMULA 88 54 0 10 0 16 0.33
TOTAL 494 300 2 49 0 93 0.32

Table 15: Results from evaluating FBI using the Axis+Rules evaluator. An error is said to be detected if the
evaluator chooses the Gold Answer. G indicates the number of times the evaluator has chosen the Gold Answer,
P for the Perturbed Answer, Both ✓ when both answers are correct, Both ✗ when both are incorrect, and ̸= for
verdict inconsistencies.
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Perturbation Type TOTAL
Errors 10 9 8 <8 % Undetected

Errors

LF

COHERENCE 91 2 5 9 75 0.02
COMPREHENSIVENESS 90 32 39 6 13 0.36
CONSISTENCY 84 31 27 4 22 0.37
GRAMMAR 92 10 51 9 22 0.11
CHRONOLOGY 71 47 21 2 1 0.66
SPELLING 100 14 72 4 10 0.14
TOTAL 528 136 215 34 143 0.26

F

CONTEXTUAL 94 1 27 11 55 0.01
ENTITY 87 8 16 16 47 0.09
INCORRECT FACT 68 2 15 12 39 0.03
NUMBER ERRORS 74 6 21 15 32 0.08
OPPOSITE FACT 91 0 11 4 76 0.00
REMOVE FACT 69 36 18 10 5 0.52
TOTAL 483 53 108 68 254 0.11

IF

ASSUMPTIONS 81 50 17 4 10 0.62
DO LESS 100 32 6 15 47 0.32
DO MORE 50 22 10 12 6 0.44
IGNORE FORMAT 99 43 18 7 30 0.43
SEQUENCE ERRORS 49 39 8 2 0 0.80
TOTAL 379 186 59 40 93 0.49

R

CALCULATIONS 149 6 6 6 131 0.04
COPYING NUMBERS 83 4 4 3 72 0.05
FINAL ERRORS 97 1 2 4 89 0.01
INCORRECT UNITS 77 10 10 4 53 0.13
WRONG FORMULA 88 1 12 1 74 0.01
TOTAL 494 22 34 18 419 0.04

Table 16: Results from evaluating FBI using the Reference evaluator. An error is said to be detected if the evaluator
gives a perfect score of 10 to the perturbed answer. 10 indicates the number of times the evaluator has given the
score of 10, 9 for the score of 9, 8 for the score of 8 and <8 for scores less than 8.
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Generic Specific

Perturbation Type # Errs 5 4 <4 % Errors 5 4 <4 % Errors

LF

COHERENCE 91 9 33 49 0.10 17 18 56 0.19
COMPREHENSIVENESS 90 40 42 8 0.44 40 46 4 0.44
CONSISTENCY 84 36 36 12 0.43 50 26 8 0.60
GRAMMAR 92 44 39 9 0.48 56 31 5 0.61
CHRONOLOGY 71 43 24 4 0.61 42 23 6 0.59
SPELLING 100 46 49 5 0.46 65 28 7 0.65
TOTAL 528 218 223 87 0.41 270 172 86 0.51

F

CONTEXTUAL 94 46 39 9 0.49 56 25 13 0.60
ENTITY 87 34 41 12 0.39 51 22 14 0.59
INCORRECT FACT 68 29 30 9 0.43 45 18 5 0.66
NUMBER ERRORS 74 36 32 6 0.49 47 18 9 0.64
OPPOSITE FACT 91 37 41 13 0.41 52 28 11 0.57
REMOVE FACT 69 41 27 1 0.59 50 18 1 0.72
TOTAL 483 223 210 50 0.46 301 129 53 0.62

IF

ASSUMPTIONS 81 38 41 2 0.47 56 25 0 0.69
DO LESS 100 53 44 3 0.53 54 44 2 0.54
DO MORE 50 17 24 9 0.34 16 28 6 0.32
IGNORE FORMAT 99 49 43 7 0.49 53 35 11 0.54
SEQUENCE ERRORS 49 18 28 3 0.37 21 21 7 0.43
TOTAL 379 175 180 24 0.46 200 153 26 0.53

R

CALCULATIONS 149 23 67 59 0.15 14 75 60 0.09
COPYING NUMBERS 83 11 38 34 0.13 9 42 32 0.11
FINAL ERRORS 97 22 46 29 0.23 10 54 33 0.10
INCORRECT UNITS 77 16 23 38 0.21 8 34 35 0.10
WRONG FORMULA 88 17 48 23 0.19 17 38 33 0.19
TOTAL 494 89 222 183 0.18 58 243 193 0.12

Table 17: Results from evaluating FBI using the Prometheus evaluator. An error is said to be detected if the
evaluator gives a perfect score of 5 to the perturbed answer. 5 indicates the number of times the evaluator has given
the score of 5, 4 for the score of 4, and <4 for scores less than 4. Generic indicates evaluating with general scoring
rubrics and Specific indicates evaluating with task-specific rubrics.
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Llama-3-70B-Instruct Claude-3-Opus Gemini-1.5-Pro

Perturbation Type # Errs # DE # UE % UE # DE # UE % UE # DE # UE % UE

LF

COHERENCE 91 61 21 0.29 72 18 0.20 83 8 0.09
COMPREHENSIVENESS 90 22 59 0.82 19 71 0.79 29 60 0.67
CONSISTENCY 84 9 65 1.00 18 65 0.78 29 55 0.65
GRAMMAR 92 8 80 0.95 12 80 0.87 29 63 0.68
CHRONOLOGY 71 1 60 1.15 6 64 0.91 18 53 0.75
SPELLING 100 7 85 1.01 13 80 0.92 18 82 0.82
TOTAL 528 108 370 0.86 140 378 0.74 206 321 0.61

F

CONTEXTUAL 94 5 82 1.03 14 80 0.85 28 66 0.70
ENTITY 87 13 64 0.94 22 65 0.75 32 55 0.63
INCORRECT FACT 68 6 55 1.02 10 58 0.85 15 53 0.78
NUMBER ERRORS 74 6 61 1.00 8 66 0.89 11 63 0.85
OPPOSITE FACT 91 10 74 0.96 17 74 0.81 32 59 0.65
REMOVE FACT 69 18 49 0.74 8 61 0.88 13 56 0.81
TOTAL 483 58 385 0.95 79 404 0.84 131 352 0.73

IF

ASSUMPTIONS 81 10 55 1.10 10 71 0.88 25 56 0.69
DO LESS 100 34 60 0.68 45 54 0.55 59 41 0.41
DO MORE 50 11 35 0.81 11 39 0.78 26 24 0.48
IGNORE FORMAT 99 12 53 1.71 25 74 0.75 49 49 0.51
SEQUENCE ERRORS 49 16 33 0.67 4 45 0.92 17 32 0.65
TOTAL 379 83 236 0.90 95 283 0.75 176 202 0.54

R

CALCULATIONS 149 55 82 0.65 90 59 0.40 81 64 0.43
COPYING NUMBERS 83 27 47 0.71 42 41 0.49 54 28 0.34
FINAL ERRORS 97 18 70 0.88 35 62 0.64 36 60 0.63
INCORRECT UNITS 77 34 37 0.56 50 27 0.35 59 17 0.22
WRONG FORMULA 88 25 54 0.77 43 44 0.51 55 32 0.37
TOTAL 494 159 290 0.71 260 233 0.47 285 201 0.41

Table 18: Results from evaluating FBI using Vanilla-LLAMA-3-70B-INSTRUCT,CLAUDE-3-OPUS and GEMINI-
1.5-PRO evaluators. An error is said to be detected if the evaluator penalizes the score of the perturbed answer.
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Llama-3-70B-Instruct Gemini-1.5-Pro

Perturbation Type # Errs G P Both ✓ Both ✗ ̸= % Errs G P Both ✓ Both ✗ ̸= % Errs

LF

COHERENCE 91 59 0 0 0 18 0.23 77 0 2 0 12 0.15
COMPREHENSIVENESS 90 40 0 0 0 34 0.46 40 0 24 0 26 0.56
CONSISTENCY 84 8 0 2 0 69 0.90 13 0 49 0 22 0.85
GRAMMAR 92 6 0 9 0 66 0.93 11 0 42 0 39 0.88
CHRONOLOGY 71 0 0 1 0 63 1.00 3 0 52 0 16 0.96
SPELLING 100 4 0 18 0 64 0.95 3 0 76 0 21 0.97
TOTAL 528 117 0 30 0 314 0.75 147 0 245 0 136 0.72

F

CONTEXTUAL 94 20 0 5 0 40 0.69 43 1 8 0 42 0.54
ENTITY 87 24 0 5 0 34 0.62 43 0 14 0 30 0.51
INCORRECT FACT 68 11 1 2 0 34 0.77 30 0 2 0 36 0.56
NUMBER ERRORS 74 16 0 2 0 38 0.71 33 0 10 0 31 0.55
OPPOSITE FACT 91 14 0 4 0 46 0.78 41 0 5 0 45 0.55
REMOVE FACT 69 24 0 4 0 33 0.61 12 0 35 0 22 0.83
TOTAL 483 109 1 22 0 225 0.69 202 1 74 0 206 0.58

IF

ASSUMPTIONS 81 2 21 0 0 12 0.94 25 20 1 0 35 0.69
DO LESS 100 44 1 1 0 37 0.47 38 0 11 2 49 0.62
DO MORE 50 12 9 1 0 14 0.67 14 3 0 1 31 0.71
IGNORE FORMAT 99 17 0 10 0 28 0.69 33 0 24 10 31 0.66
SEQUENCE ERRORS 49 0 0 0 0 41 1.00 4 0 18 0 27 0.92
TOTAL 379 75 31 12 0 132 0.70 114 23 54 13 173 0.70

R

CALCULATIONS 149 48 0 30 0 44 0.61 89 1 12 0 47 0.40
COPYING NUMBERS 83 30 0 6 1 28 0.54 57 1 5 1 19 0.31
FINAL ERRORS 97 30 0 3 0 41 0.59 59 2 0 1 35 0.39
INCORRECT UNITS 77 27 0 11 0 25 0.57 40 0 12 1 24 0.48
WRONG FORMULA 88 25 0 23 0 27 0.67 55 1 8 2 22 0.38
TOTAL 494 160 0 73 1 165 0.60 300 5 37 5 147 0.39

Table 19: Results from evaluating FBI using the Axis+Rules-LLAMA-3-70B-INSTRUCT,CLAUDE-3-OPUS and
GEMINI-1.5-PRO evaluators. An error is said to be detected if the evaluator chooses the Gold Answer. G indicates
the number of times the evaluator has chosen the Gold Answer, P for the Perturbed Answer, Both ✓ when both
answers are correct, Both ✗ when both are incorrect, and ̸= for verdict inconsistencies.
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Llama-3-70B-Instruct Gemini-1.5-Pro

Perturbation Type # Errs 10 9 8 <8 % Errs 10 9 8 <8 % Errs

LF

COHERENCE 91 1 2 3 75 0.02 1 1 2 87 0.01
COMPREHENSIVENESS 90 1 33 23 20 0.01 13 29 26 21 0.14
CONSISTENCY 84 2 41 19 6 0.03 5 48 18 12 0.06
GRAMMAR 92 1 55 11 5 0.01 31 38 17 5 0.34
CHRONOLOGY 71 3 34 13 1 0.06 15 41 12 3 0.21
SPELLING 100 4 52 9 4 0.06 65 28 5 1 0.66
TOTAL 528 12 217 78 111 0.03 130 185 80 129 0.25

F

CONTEXTUAL 94 0 49 19 19 0.00 4 34 24 29 0.04
ENTITY 87 0 50 17 16 0.00 7 29 26 20 0.08
INCORRECT FACT 68 0 38 18 9 0.00 2 31 20 13 0.03
NUMBER ERRORS 74 2 53 10 4 0.03 3 34 22 9 0.04
OPPOSITE FACT 91 0 37 19 30 0.00 4 18 30 38 0.04
REMOVE FACT 69 4 29 22 13 0.06 13 18 26 12 0.19
TOTAL 483 6 256 105 91 0.01 33 164 148 121 0.07

IF

ASSUMPTIONS 81 0 31 23 19 0.00 0 12 20 48 0.00
DO LESS 100 1 23 35 32 0.01 26 15 27 32 0.26
DO MORE 50 1 31 15 1 0.02 1 13 28 7 0.02
IGNORE FORMAT 99 11 29 14 16 0.16 32 17 15 33 0.33
SEQUENCE ERRORS 49 5 28 13 0 0.11 6 26 14 3 0.12
TOTAL 379 18 142 100 68 0.05 65 83 104 123 0.17

R

CALCULATIONS 149 10 35 41 49 0.07 5 17 36 82 0.03
COPYING NUMBERS 83 2 16 23 36 0.03 3 13 14 52 0.04
FINAL ERRORS 97 0 20 56 13 0.00 0 28 44 23 0.00
INCORRECT UNITS 77 2 22 11 34 0.03 3 17 12 45 0.04
WRONG FORMULA 88 7 26 25 25 0.08 2 12 20 53 0.02
TOTAL 494 21 119 156 157 0.05 13 87 126 255 0.03

Table 20: Results from evaluating FBI using the Reference-LLAMA-3-70B-INSTRUCT,CLAUDE-3-OPUS and
GEMINI-1.5-PRO evaluators. An error is said to be detected if the evaluator gives a perfect score of 10 to the
perturbed answer. 10 indicates the number of times the evaluator has given the score of 10, 9 for the score of 9, 8 for
the score of 8 and <8 for scores less than 8.
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Perturbation Type # Errs Detected
Errors

Undetected
Errors

Detected in
Explanation

% Undetected
Errors

LF

COHERENCE 91 82 9 1 0.09
COMPREHENSIVENESS 90 30 60 5 0.61
CONSISTENCY 84 35 49 7 0.50
GRAMMAR 92 40 52 9 0.47
CHRONOLOGY 71 18 53 3 0.70
SPELLING 100 20 80 11 0.69
TOTAL 528 225 303 36 0.51

F

CONTEXTUAL 94 45 48 5 0.47
ENTITY 87 43 44 3 0.47
INCORRECT FACT 68 29 38 4 0.51
NUMBER ERRORS 74 30 44 3 0.55
OPPOSITE FACT 91 48 42 6 0.41
REMOVE FACT 69 25 44 0 0.64
TOTAL 483 220 260 21 0.50

IF

ASSUMPTIONS 81 12 69 7 0.77
DO LESS 100 57 43 6 0.37
DO MORE 50 31 19 12 0.14
IGNORE FORMAT 99 41 57 10 0.48
SEQUENCE ERRORS 49 20 29 1 0.57
TOTAL 379 161 217 36 0.48

R

CALCULATIONS 149 112 34 15 0.15
COPYING NUMBERS 83 69 12 3 0.13
FINAL ERRORS 97 53 43 16 0.29
INCORRECT UNITS 77 60 16 7 0.13
WRONG FORMULA 88 66 19 6 0.18
TOTAL 494 360 124 47 0.18

Table 21: Results from looking at the explanation of the Vanilla evaluator to determine the presence of the error
in the response. Detected in Explanation shows the number of “additional” errors detected by looking at the
explanation in addition to the score.
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Perturbation Type # Errs Detected
Errors

Undetected
Errors

Detected in
Justification

% Undetected
Errors

LF

COHERENCE 91 58 33 1 0.35
COMPREHENSIVENESS 90 1 89 5 0.93
CONSISTENCY 84 8 76 3 0.87
GRAMMAR 92 17 75 7 0.74
CHRONOLOGY 71 0 71 9 0.87
SPELLING 100 6 94 3 0.91
TOTAL 528 90 438 28 0.78

F

CONTEXTUAL 94 29 65 23 0.45
ENTITY 87 30 57 15 0.48
INCORRECT FACT 68 17 51 14 0.54
NUMBER ERRORS 74 18 56 16 0.54
OPPOSITE FACT 91 32 59 23 0.40
REMOVE FACT 69 1 68 20 0.70
TOTAL 483 127 356 111 0.51

IF

ASSUMPTIONS 81 5 76 8 0.84
DO LESS 100 20 80 0 0.80
DO MORE 50 40 10 6 0.08
IGNORE FORMAT 99 25 74 12 0.63
SEQUENCE ERRORS 49 5 44 16 0.57
TOTAL 379 95 284 42 0.64

R

CALCULATIONS 149 100 49 9 0.27
COPYING NUMBERS 83 57 26 9 0.20
FINAL ERRORS 97 46 51 7 0.45
INCORRECT UNITS 77 42 35 7 0.36
WRONG FORMULA 88 63 25 6 0.22
TOTAL 494 308 186 38 0.30

Table 22: Results from looking at the explanation of the Axis evaluator to determine the presence of the error in the
response. Detected in Explanation shows the number of “additional” errors detected by looking at the explanation
in addition to the score.
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Perturbation Type # Errs Detected
Errors

Undetected
Errors

Detected in
Justification

% Undetected
Errors

LF

COHERENCE 91 47 44 2 0.46
COMPREHENSIVENESS 90 2 88 5 0.92
CONSISTENCY 84 11 73 6 0.80
GRAMMAR 92 15 77 6 0.77
CHRONOLOGY 71 0 71 5 0.93
SPELLING 100 4 96 8 0.88
TOTAL 528 79 449 32 0.79

F

CONTEXTUAL 94 34 60 3 0.61
ENTITY 87 29 58 3 0.63
INCORRECT FACT 68 18 50 2 0.71
NUMBER ERRORS 74 17 57 7 0.68
OPPOSITE FACT 91 32 59 6 0.58
REMOVE FACT 69 1 68 10 0.84
TOTAL 483 131 352 31 0.66

IF

ASSUMPTIONS 81 1 80 1 0.98
DO LESS 100 8 92 8 0.84
DO MORE 50 39 11 2 0.18
IGNORE FORMAT 99 26 73 14 0.60
SEQUENCE ERRORS 49 0 49 5 0.90
TOTAL 379 74 305 30 0.73

R

CALCULATIONS 149 102 47 10 0.25
COPYING NUMBERS 83 64 19 3 0.19
FINAL ERRORS 97 49 48 9 0.40
INCORRECT UNITS 77 56 21 4 0.22
WRONG FORMULA 88 61 27 13 0.16
TOTAL 494 332 162 39 0.25

Table 23: Results from looking at the explanation of the Rubrics evaluator to determine the presence of the error
in the response. Detected in Explanation shows the number of “additional” errors detected by looking at the
explanation in addition to the score.
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Perturbation Type # Errs Detected
Errors

Undetected
Errors

Detected in
Justification

% Undetected
Errors

LF

COHERENCE 91 45 46 0 0.51
COMPREHENSIVENESS 90 0 90 11 0.88
CONSISTENCY 84 6 78 8 0.83
GRAMMAR 92 16 76 5 0.77
CHRONOLOGY 71 0 71 12 0.83
SPELLING 100 7 93 6 0.87
TOTAL 528 74 454 42 0.78

F

CONTEXTUAL 94 28 66 19 0.50
ENTITY 87 27 60 9 0.59
INCORRECT FACT 68 15 53 10 0.63
NUMBER ERRORS 74 15 59 12 0.64
OPPOSITE FACT 91 28 63 12 0.56
REMOVE FACT 69 1 68 16 0.75
TOTAL 483 114 369 78 0.60

IF

ASSUMPTIONS 81 2 79 6 0.90
DO LESS 100 17 83 9 0.74
DO MORE 50 39 11 1 0.20
IGNORE FORMAT 99 24 75 14 0.62
SEQUENCE ERRORS 49 4 45 5 0.82
TOTAL 379 86 293 35 0.68

R

CALCULATIONS 149 97 52 14 0.26
COPYING NUMBERS 83 58 25 7 0.22
FINAL ERRORS 97 48 49 12 0.38
INCORRECT UNITS 77 44 33 7 0.34
WRONG FORMULA 88 63 25 9 0.18
TOTAL 494 310 184 49 0.27

Table 24: Results from looking at the explanation of the Axis+Rubrics evaluator to determine the presence of the
error in the response. Detected in Explanation shows the number of “additional” errors detected by looking at the
explanation in addition to the score.
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