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Abstract

We describe an approach for aligning an LLM-
based dialogue agent for long-term social dia-
logue, where there is only a single global score
given by the user at the end of the session.
In this paper, we propose the usage of denser
naturally-occurring multimodal communicative
signals as local implicit feedback to improve
the turn-level utterance generation. Therefore,
our approach (dubbed GELI) learns a local,
turn-level reward model by decomposing the
human-provided Global Explicit (GE) session-
level reward, using Local Implicit (LI) mul-
timodal reward signals to crossmodally shape
the reward decomposition step. This decom-
posed reward model is then used as part of
the RLHF pipeline to improve an LLM-based
dialog agent. We run quantitative and qualita-
tive human studies on two large-scale datasets
to evaluate the performance of our GELI ap-
proach, and find that it shows consistent im-
provements across various conversational met-
rics compared to baseline methods.

1 Introduction

Developing social dialogue agents that can inter-
act and collaborate with humans over a long hori-
zon remains a longstanding goal of artificial intelli-
gence. Large language models (LLM) pretrained
at scale on the next-word prediction objective and
then aligned to human preference via RLHF (Rein-
forcement with Human Feedback) represent a sig-
nificant step in this direction (Ouyang et al., 2022),
leading to successful commercial applications.

However, existing methods for alignment usually
assume that preference labels are annotated at the
turn-level (i.e., after each utterance). This makes
it difficult to extend this framework to cases where
human preference labels are only available at the
session-level, i.e., after an entire dialogue session
(which could span 30 minutes or more). Insofar as
we are interested in developing dialogue agents that
can continually learn from session-level dialogue

data “in the wild” (e.g., through in-person con-
versations), there is a need to develop techniques
that can (1) align agents based on global rewards
at the session level and (2) take into account ex-
tralinguistic multimodal signals that are pervasive
in naturally-occurring conversations.

Concretely, a session-level score obtained post-
conversation is a form of global explicit feedback,
which provides a holistic assessment of a conver-
sation session. Such feedback can be obtained
naturally at scale by, for example, asking partici-
pants to rate how they felt about the dialog session.
However, it is not possible to use such data directly
as part of an RLHF pipeline, since current methods
generally require local, turn-level signals for align-
ing an LLM-based agent to human preferences.

Moreover, in real world settings, agents are
deployed in multisensory environments (Benford
et al., 1997) where they have access to rich mul-
timodal signals (e.g., facial expressions during a
video conversation). An ideal agent should lever-
age these signals as proxy rewards to improve its be-
havior. In dialogue, previous work attribute many
multimodal cues such as body mimicry, vocal ac-
commodation, and emotion, as implicit measures
of conversation quality (Louwerse et al., 2012).
Hence, we can utilize multimodal signals as local
implicit feedback, which presents an opportunity to
use multimodal local implicit feedback as signals
to crossmodally guide the decomposition of the
single global explicit (GE) post-interaction score.

In this paper, we describe a joint framework
called GELI, which integrates global explicit (GE)
and local implicit (LI) feedback. GELI makes it
possible to align an LLM-based dialogue agent
based on global rewards, while simultaneously tak-
ing into account naturally-occurring multimodal
signals. Our formulation brings together the idea
of training a reward model which decomposes a sin-
gle global explicit annotation score that is shaped
by local implicit multimodal signals, which is sub-
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sequently used to align an LLM-based dialogue
agent via RLHF. Specifically, we use GELI to learn
a reward function based on the overall affect of the
user (i.e., how positive the user felt at the end of the
conversation) from a large-scale long-horizon mul-
timodal dialogue dataset (Reece et al., 2023) and
evaluate on two datasets for the generated dialogue.
Our local implicit multimodal signal comes from an
affect classifer based on facial expression. We find
that the reward function learned via GELI can be
used train a dialogue agent that has improved abil-
ity across various metrics of conversational quality
including sensibleness, reusability, and specificity
(Lee et al., 2022).

2 Related Works

Reward Design The design of the reward func-
tion can drastically change the performance of
RL agents. Paradigms such as reward shaping
have shown to be effective at enabling the RL
agent to converge quickly and improve perfor-
mance (Mataric, 1994; Ng et al., 1999a; Devlin
et al., 2011; Wu and Tian, 2016; Song et al., 2019).
In addition, inverse RL (Ng et al., 2000; Fu et al.,
2017) has shown to be useful at extracting rewards
from human expert trajectories. Furthermore, in-
trinsic reward functions (Sorg et al., 2010; Zheng
et al., 2018, 2020; Guo et al., 2018; Gangwani
et al., 2018), a class of methods which uses the
agent’s own learning progress, have shown to be
useful at guiding the agent’s behavior by fostering
self-improvement and adaptive exploration.

Temporal Credit Assignment Temporal Credit
Assignment (TCA) is a concept within the field of
reinforcement learning and artificial intelligence
that addresses the challenge of attributing credit to
actions over time. It involves determining the ex-
tent to which past actions contributed to the current
outcome, allowing an intelligent agent to under-
stand the consequences of its decisions. One way
to apply TCA to reinforcement learning is by ma-
nipulating the λ-discount factor and investigating
how this affects policy learning (Petrik and Scher-
rer, 2008; Jiang et al., 2015). Recently, a line of
works have been proposed to treat TCA as a return
decomposition. RUDDER (Arjona-Medina et al.,
2019) assigns step-wise credit by the predictive
difference between two consecutive states. IRCR
(Gangwani et al., 2020) is an instantiation of uni-
form reward redistribution. Randomized return de-
composition (RRD) (Ren et al., 2021) formulate a

surrogate problem through Monte-Carlo sampling
estimating step-wise rewards via least-squares esti-
mation.

Aligning Language Models To Human Prefer-
ences Incorporating human preference feedback
into a reward model, and subsequently optimiz-
ing a language model to output text that reward
model scores highly with an RL algorithm, has
been shown to result in language models that gener-
ate outputs humans generally prefer (Ouyang et al.,
2022). This process has been applied to summariza-
tion (Ziegler et al., 2019; Stiennon et al., 2020; Wu
et al., 2021), answering questions with long-form
answers using text retrieved from the web (Nakano
et al., 2021; Menick et al., 2022), generating en-
gaging responses in a dialogue settings (Thoppilan
et al., 2022; Cohen et al., 2022) and following hu-
man instructions (Kojima et al., 2021; Suhr and
Artzi, 2022; Kim et al., 2023b). However, these
methods generally require collecting fine-grained
annotations for each generated response to train the
reward function, which is difficult to obtain at scale
for long-horizon dialogue.

Utilizing Implicit Signals for Dialogue Agents
There has been previous works that utilize local
implicit signals found in the text, such as existence
of next human turn, next human turn length, mean
conversation length, sentiment and reaction in the
next human utterance (Pang et al., 2023), or other
metadata such as retry rate, retention rate, or user
rating (Irvine et al., 2023). In contrast, ours is the
first (1) to additionally utilize multimodal signals,
and (2) use global signals in conjunction with the
local implicit signals, which has been a crucial
finding that contributed significantly to the perfor-
mance boost in the human evaluation.

3 Background

Language Models As Conversational Agents.
We are interested in generating conversational re-
sponses with an autoregressive language model in a
multi-sensory setting. We treat a conversational lan-
guage model as an agent with a policy πϕ (Liu et al.,
2018; Liang et al., 2020; Wen et al., 2016; Thoppi-
lan et al., 2022), which is parameterized by ϕ. The
utterance generated at turn t, given access to the
textual dialogue history st is defined to be the ac-
tion at. To be more specific, the dialogue until turn
t−1 is defined as s1, a1..., st2 , at−2, st−1 = s[:t−1],
for brevity we will call this s[:t−1] = st. Therefore,
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the auto-regressive LLM policy, πϕ(st), takes in as
input st and outputs a distribution over at.

Reinforcement Learning with Human Feedback
(RLHF). RLHF is commonly used to adapt an
agent πϕ to be aligned to human feedback. Given a
reward function which can gauge the quality of indi-
vidual generated utterances, we can perform adap-
tation via reinforcement learning with human feed-
back (RLHF) (Ouyang et al., 2022; Jaques et al.,
2020; Stiennon et al., 2020). For turn t, our reward
function rθ(st, at) parameterized by θ takes in as
input the context utterance st and the generated
response at to predict the reward at the utterance
level. It is common to use a KL term to penalize the
policy from diverging from the pretrained model,
resulting in the following objective:

max
ϕ

E[rθ (st, at)]− γDKL(πϕ (·|st) ||πη (·|st)), (1)

where πη is a reference model.

4 Methods: GELI

The reward function rθ in standard adaptation tech-
niques relies on intermediate fine-grained anno-
tations, requiring manual human annotations at
each generated utterance. However, in many long-
term dialogue settings there is only a single global
explicit (GE) annotated reward for each session.
Given a trajectory of the multi-turn dialogue τ , the
global explicit reward RGE(τ) is a scalar reward
at the end of the interaction, such as how posi-
tively the user felt about the conversation. This
GE reward can be decomposed via sum decom-
position (more details in Sec. 4.1) with the GE
loss function LGE. A core novelty of our proposed
GELI approach is that the decomposition of the
GE reward will be guided by some Local Implicit
(LI) feedback. Concretely, in many dialog applica-
tions/datasets of interest there are rich multimodal
signals, which is can provide intermediate signals
that are useful for the decomposition of the sin-
gle global explicit reward. We thus perform cross-
modal distillation of the signals from such multi-
modal signals into the individually decomposed
text-only reward function via the LI loss function
LLI (more details in Sec. 4.2).

In practice, our reward function rθ is optimized
with a joint objective which enables the (1) redis-
tribution of the global explicit (GE) reward and (2)
inclusion of local implicit (LI) reward signals as a
reward shaping function.

LGELI = λLGE(θ) + (1− λ)LLI(θ) (2)

In the following sections, we share more details
about the global explicit decomposition and local
implicit crossmodal reward shaping.

4.1 GE: Decomposing One Global Explicit
Annotation

Global explicit reward is a human annotation at
the end of the interaction, which can come in
the form of a post-interaction score. Let τ de-
note the trajectory of the episode, i.e. τ =
⟨s0, a0, s1, a1 · · · , sT , aT ⟩. This reward repre-
sents the overall reward of trajectory τ , RGE(τ).
The agent in this episodic reinforcement learning
paradigm must maximize the expected global ex-
plicit reward at the end of the conversation. One
way to approximate the global explicit reward
RGE(τ) is by sum decomposition via considering
the sum of rθ(st, at), across all the previous states
st and newly generated at:

RGE(τ) ≈
T−1∑

t=0

rθ (st, at) (3)

Then, this idea of sum-based return decomposi-
tion (RD), can be implemented via a least-squares-
based approach, where the reward distribution is
given by a learnt reward function, decomposing
the episodic reward RGE(τ) in an additive way
(Arjona-Medina et al., 2019).

LGE(θ) = E
τ∼D

[(
RGE(τ)−

T−1∑

t=0

rθ(st, at)

)2
]

(4)

Application to Conversational LLMs: To alle-
viate the computation costs arising from the long
horizon nature of conversations and language mod-
eling costs, we employ an alternative of the least-
squares-based return decomposition method, by uti-
lizing Randomized Return Decomposition (RRD;
Ren et al., 2021). RRD improves the scalability of
least-squares-based reward redistribution methods
by using a Monte-Carlo estimator to compute the
predicted episodic return. We refer the readers to
Appendix A for more details on RRD.

4.2 LI: Crossmodal Reward Shaping with
Local Implicit Multimodal Signals

The reward decomposition offers a way to redis-
tribute the rewards from a single reward in an
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Dialogue History: 
[Previous 10 turns of Dialogue]
…

Alice: How are you?

Bob: Uh huh. All right. And you? 

Alice: Oh yes, good. 

Bob: Yeah. So um what do you would 
like to talk about? Do you have any 
interests or hobbies?"

0.046

-0.032

0.029

0.056

-0.037

Bob: Well? Um 
and I'm kind of 
into video games.

Bob: Mhm. Bob: Um Like 
Grand theft Auto, 
the new ones 
coming out, so I 
can't wait if I ever 
get a PlayStation 
five..

Alice:
Uh huh

Bob: Right…

Examining conversation 
rewards at turn 5 to 10

Alice: Um um I 
don't know. Um I 
like tv shows, I 
like sports which 
which is like my 
hobby?

Alice:
Video 
games?

Alice:
What do you 
play?

Alice:
Okay, 
pray for 
you play 
Fortnite, 
Call of 
Duty.

Figure 1: Example of GELI reward score predictions for an unseen conversation from the dataset. Top left: Reward
scores unrolled over an unseen conversation, where the mean is subtracted. We examine a random sampled snippet,
where we find that our decomposed reward function assigns higher values to meaningful utterances.

application-agnostic way. However, in natural di-
alogue there are rich extralinguistic signals (e.g.,
facial expressions, prosody) that provide an indi-
cation of how the conversation is being received.
We thus propose to guide the decomposition such
that it is shaped by local implicit (LI) multimodal
signals. This is essentially using such signals as a
form of reward shaping, which is valuable if they
are known to be aligned with the final objective
(Ng et al., 1999b).

In our multi-sensory setting, we have access to
the multimodal signals in response to the agent’s
actions at, which contains implicit signals that are
correlated with the final reward. We will call this
multimodal state smm

at . If we have access such mul-
timodal signals, we can design a reward function
Γ which utilizes the multimodal signal smm

at to de-
termine a proxy reward. Then, we can formulate
this problem set up as a form of crossmodal knowl-
edge distillation (KD) (Xue et al., 2022; Thoker
and Gall, 2019) for reward shaping. Therefore, we
can express the local implicit reward rLI with a
proxy label from a multimodal input.

rLI(s
mm
at

) = Γ(smm
at

) (5)

Γ indicates a designed score function from do-
main knowledge which captures the relationship
the GE reward and the multimodal local implicit
signals. Therefore, a general formulation of the
loss function to induce the crossmodal knowledge
distillation of local implicit multimodal feedback
signals to the reward function rθ which only has ac-
cess to textual dialogue states and actions (st, at),
we have the following:

LLI(θ) = E
st,at,smm

at
∼D

[
(rLI(s

mm
at

)− rθ (st, at))
2
]

(6)

Application to Conversational LLMs: Our GE
reward indicates how positively the conversation
made the other participant feel. It is known from
previous work (Ruusuvuori, 2012), that the facial
affect of the listener is related to how the conver-
sation is being perceived and the implicit conver-
sation quality. Thus, we design the shaped reward
rLI(s

mm
at ) to capture this intuition. Therefore, we

utilize the implicit visual feedback from a facial
affect classifier as a way to encourage a decompo-
sition informed by visual affective signals. Given a
facial affect classifier f and access to multimodal
states smm

at (in this case vision), which outputs the
affect of the listener, we implement an indicator
function where we assign a score of 1 if the facial
affect of the listener is positive and 0 otherwise.

Γ(smm
at

) =

{
1, f(smm

at
) = positive affect

0, otherwise
(7)

Note, that this is one of many ways to design the
score function Γ, The design of the score function
Γ, to capture the relationship between local multi-
modal signals and the single global explicit reward
leaves exciting research opportunities.

5 Experiments

In this section, we describe our experiments to
evaluate our proposed GELI framework which per-
forms reward function training with global explicit
reward decomposition and local implicit visual
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Figure 2: Overview of our proposed method: GELI. The reward function training involves decomposing a single
global explicit (GE) feedback, with the guidance of multimodal local implicit (LI) feedback, such as visual facial
affect. Then, we utilize the decomposed reward function to update the language model, where the language model
generates utterances and the reward function assigns a score to be optimized via PPO (Schulman et al., 2017). Best
viewed zoomed and in color.

feedback. All experiments are performed by (1)
first, training a reward function (e.g. using GELI or
one of its ablation variant only GE or only LI) (2)
and use the trained reward functions in a reinforce-
ment learning setup with PPO (Schulman et al.,
2017) to adapt the language model in generating
better conversational responses. Due to computa-
tional resources, the training of reward functions
and adaptations are performed over a single run.

5.1 Dataset

Our training and evaluation experiments are based
on the CANDOR (Reece et al., 2023) dataset, due
to its long-term dialogue nature (159.4 turns on
average, 31.3 mins on average, 17.81 words per
turn), large-size (1656 conversations, 7+ million
word, 850-hours). The CANDOR dataset also in-
cludes video data, which is often found in other
face-to-face conversation datasets. CANDOR is
used to train our reward function and to sample
dialogue histories for the generations. We con-
struct separate held-out sets for the reward func-
tion training (∼ 30,000 dialogue history-utterance
pairs) and updating the language model (∼100,000
history-utterance pairs). We optimize for the
“overall-affect” global explicit score from the post-
interaction survey, which given by the answer to the
following question: “Overall during your conversa-
tion, to what extent did you feel positive feelings
(e.g., good, pleasant, happy) or negative feelings
(e.g., bad, unpleasant, unhappy)?”

We further evaluate on another dataset SODA
(Kim et al., 2023a), a large social dialogue dataset
that was distilled from a social commonsense
knowledge graph and generated via GPT 3.5. Hu-
man evaluation demonstrates that the dialogue in
SODA is more consistent, natural and specific than
human-authored datasets. We use this data to see
whether or not our method could generalize to un-
seen datasets. The dataset consists of 1.5M conver-
sations, 7.6 average turns, 16.1 words per turn.

5.2 Baseline Models

We compare GELI with multiple state-of-the art re-
ward decomposition methods which could decom-
pose the single global explicit (GE) reward. For
fair comparison, we also compare the performance
of the reward decomposition when we only use
the local implicit (LI) multimodal rewards. For all
the methods mentioned below, we fine-tune addi-
tional linear layers on top of a small BART (Lewis
et al., 2019) language model, which was previously
finetuned for conversational summary.1 This also
demonstrates that smaller language models may be
powerful enough to discern patterns for desirable
adaptations.
GE: (RRD) Randomized return decomposi-
tion (Ren et al., 2021) is aimed at learning a proxy
reward function for episodic reinforcement learn-

1https://huggingface.co/kabita-choudha
ry/finetuned-bart-for-conversation-summa
ry
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ing. It formulates the decomposition as a surrogate
problem through Monte-Carlo sampling, enabling
the extension of least-squares-based reward redis-
tribution to address long-horizon problems.
GE: (IRCR) Iterative Relative Credit Refine-
ment (Gangwani et al., 2020) is an instantia-
tion of uniform reward redistribution. The non-
parametric reward redistribution mechanism em-
ployed by IRCR involves setting the proxy reward
for a transition as the normalized value of the asso-
ciated trajectory return.
GE: (RUDDER) Return Decomposition for De-
layed Rewards (Arjona-Medina et al., 2019) em-
ploys a return predictor trained on trajectories,
and step-wise credit assignment is determined by
the predictive difference between two consecutive
states. Through the utilization of the LSTM warm-
up technique, this transformation ensures that its
training computation costs are not contingent on
the task horizon T, enabling adaptability to long-
horizon tasks.
LI: Visual Affect (VA): As a form of implicit feed-
back, we use facial affect present in visual signals
as described in section 4.2. The facial affect classi-
fier is a CNN-based image-based emotion detection
model trained on AffectNet (Mollahosseini et al.,
2017). The predictions are captured in 2 second
sliding windows.
LS: Language Sentiment (LS): We also utilize
the utterance of the speaker to check whether if
we could utilize the sentiment of this utterance as a
form of implicit feedback, equivalent to the method
in (Pang et al., 2023). We utilize a mDeBERTa (He
et al., 2020) pretrained sentiment classifier.2.
Evaluation: For the trained reward functions, we
compute the Global Loss, LGE(θ), which is the
MSE between RGE and the sum of all predicted
rewards rθ(st, at) as described in Eq. 4. We also
calculate the Local Difference, the difference of the
expected predicted returns of ∆r̂LI conditioned
on the local implicit multimodal reward: Γ(smm

t ).
With our choice of the score function as described
in Eq. 7, this can be written as:

∆r̂LI = E [rθ(st, at)|f(smm
at

) = positive affect]
− E [rθ(st, at)|f(smm

at
) ̸= positive affect]

(8)

Intuitively, this can be seen as the difference in
the predicted reward scores of the text-only utter-
ance conditioned on the visual facial expression

2https://huggingface.co/lxyuan/distil
bert-base-multilingual-cased-sentiment
s-student

which we are using as local implicit feedback re-
wards (e.g. the difference of the reward score of the
utterance when the User responds with a positive
affect vs. a negative affect). Given our choice of
the score function Γ, given Eq. 7, ∆r̂LI should
be greater than 0, if assume that a positive visual
affect indicates that the associated utterance is con-
tributing positively to RGE , i.e. how the utterance
is being received by the listener.

5.3 Updating Language Models with
Reinforcement Learning

We use LLAMA-2 (Touvron et al., 2023) 3 as the
base model and with a default prompt shown in
Fig. 3. We adapt the LLAMA-2 model with rein-
forcement learning with human feedback by utiliz-
ing the above-mentioned reward functions which
has been trained to decompose the reward and per-
form ablations to demonstrate the effectiveness of
GELI. We utilize TRL implementation of RLHF
with PPO (von Werra et al., 2020). Furthermore,
we utilize LoRA (Hu et al., 2021) for computational
constraints. We share our detailed hyperparameters
in Appendix F.

Evaluation: We run a human study based on the
8 metrics commonly used in literature to evaluate
the quality of the generated utterances (Lee et al.,
2022). We recruited a total of 300 crowd work-
ers on Amazon Mechanical Turk. For each of the
sample, including dialogue history and responses,
users were asked to rate which model(s) satisfied
the given criterion. At the end of the survey, anno-
tators were asked to describe which chatbot they
would talk to again.

6 Results

In this section, we discuss the quantitative results
and human evaluation of our experiments.

6.1 Human Evaluation

We refer the reader to Table 1 where we evaluate
the performance of GELI on an unseen split of the
CANDOR dataset (Reece et al., 2023), We find that
the LLAMA-2 model with GELI outperforms all
other approaches in most evaluation metrics and
performs comparably with other baselines other-
wise. We find that the ablations with GE, or LI,
leads to a drop in performance which suggests that

3LLAMA-3 was not available during experimentation and
time of writing.
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CANDOR (Reece et al., 2023) Connection Positivity Social Inclination Interestingness Reuse Specific Sensible GELI Score
(/100%) ↑ ↑

Human 16.00 ± 2.83 16.33 ± 4.03 19.67 ± 1.89 17.33 ± 6.65 17.33 ± 6.55 17.33 ± 3.09 82.67 ± 7.93 85.33 ± 4.5 N/A
LLAMA2 30.67 ± 8.73 26.67 ± 6.65 25.67 ± 8.38 26.00 ± 5.66 24.33 ± 7.76 28.0 ± 5.72 77.33 ± 6.18 80.33 ± 5.91 0.4929
LLAMA2 + GE: RRD 21.33 ± 6.80 16.33 ± 1.70 18.00 ± 2.16 17.67 ± 1.25 18.00 ± 2.83 11.33 ± 4.03 68.67 ± 6.34 69.0 ± 5.1 0.5072
LLAMA2 + LI: LS (Language Sentiment) 20.67 ± 7.04 21.00 ± 4.90 21.00 ± 5.72 18.33 ± 8.22 23.00 ± 3.56 22.0 ± 6.98 82.0 ± 3.74 89.67 ± 4.19 0.4852
LLAMA2 + LI: VA (Visual Affect) 22.67 ± 4.19 25.33 ± 5.44 31.33 ± 0.47 28.67 ± 3.4 19.33 ± 3.68 26.0 ± 0.82 67.67 ± 4.71 90.0 ± 2.16 0.4858
LLAMA2 + GELI: RRD+VA (Ours) 39.67 ± 7.32** 44.33 ± 12.23** 35.33 ± 10.87* 37.33 ± 6.85** 38.0 ± 10.2** 41.67 ± 7.04** 80.33 ± 4.5 80.67 ± 10.5 0.5419

Table 1: Human evaluation results on 100 samples for 3 seeds for 8 preference metrics where mean and std. are
reported. Green indicates best score. GELI performs better on 6 out of 8 metrics (emotional connection, positivity,
social understanding, inclination, interestingness, reuse) and comparably to the best performing model on the other
2 metrics: specific and sensible. We compare the statistical significance against the best performing models, where
we indicate the alpha-level of 0.01 as ** and 0.05 as *.
SODA (Kim et al., 2023a) Connection Positivity Social Inclination Interestingness Reuse Specific Sensible

(/100%) ↑

GPT-3.5 (text-davinci-002) 40.1 ± 7.56 43.05 ± 3.4 48.13 ± 9.08 46.05 ± 3.44 49.11 ± 7.69 44.03 ± 2.01 78.14 ± 9.49 80.07 ± 7.72
LLAMA2 66.04 ± 4.79 70.0 ± 2.51 71.99 ± 6.28 67.0 ± 0.46 55.05 ± 8.24 65.99 ± 6.3 89.04 ± 2.65 89.99 ± 3.81
LLAMA2 + GE: RRD 30.98 ± 2.66 30.98 ± 5.04 34.04 ± 3.28 27.0 ± 7.43 24.98 ± 2.69 30.0 ± 2.51 43.97 ± 3.3 47.06 ± 4.34
LLAMA2 + LI: LS 62.0 ± 3.71 70.06 ± 4.52 75.02 ± 5.06 68.04 ± 3.41 59.0 ± 1.24 68.01 ± 3.72 86.04 ± 2.61 92.99 ± 1.47
LLAMA2 + LI: VA 55.02 ± 1.92 57.1 ± 7.21 63.04 ± 4.76 51.99 ± 0.67 43.97 ± 3.3 51.04 ± 3.08 76.03 ± 2.16 82.0 ± 2.49
LLAMA2 + GELI: RRD + VA (Ours) 71.01 ± 1.27** 73.98 ± 1.76** 76.98 ± 3.01** 71.99 ± 1.65** 66.97 ± 6.69** 70.0 ± 2.51** 90.02 ± 7.53* 88.06 ± 4.73

Table 2: Human evaluation results on an unseen dataset, SODA (Kim et al., 2023a) to demonstrate generalizability
across datasets and dialogue scenarios. 33 samples for 3 seeds for 8 preference metrics where mean and std. are
reported. Green indicates best score. GELI outperforms best performing approach 7 out of 8 metrics (emotional
connection, positivity, social understanding, inclination, interestingness, reuse) and comparably for sensible. We
compare the statistical significance against the best performing models, where we indicate the alpha-level of 0.01 as
** and 0.05 as *.

the joint optimization of GE and LI is crucial. Over-
all, compared to the base LLAMA-2, we see that
our adaptation on LLAMA-2 leads to a significant
improvement in the level of emotional connection
(+9%), positivity (+18%), understanding of social
context (+10%), and how interesting the responses
are (+14%). It is especially impressive to note that
there is a large improvement in how inclined peo-
ple wanted to talk to our model over others (+11%),
and how much they would want to reuse our chatbot
again (+14%). We see the greatest improvement
in results for positivity, which is the most closely
related to our optimization objective overall-affect,
and inclination, reuse, indicating which chatbot the
User would speak to again.

In Table 2, we show generalizability of GELI-
adapted LLM by running the same experiment and
human evaluation on a new unseen dataset to show
generalization on SODA (Kim et al., 2023a). We
use the LLAMA2 + GELI model trained and CAN-
DOR and evaluate on 100 unseen samples from
SODA. We find the GELI performs even better in
SODA when compared to CANDOR, performing
significantly better results in 7 out of 8 conver-
sational metrics compared to the base unadapted
LLAMA-2 model (by up to 11%). SODA was
generated by GPT-3.5, and we find that our pro-
posed approach significantly outperforms GPT-3.5
by up to 30%. Hence, we can conclude that this
approach is generalizable across different datasets

and dialogue scenarios.

6.2 Reward Function

As shown in Table 1, the usage of both GE and
LI leads is critical in the performance boost. We
describe the quantitative results of the reward func-
tion in two axes: the global reward decomposition
LGE and the local reward difference from multi-
modal feedback ∆r̂LI to elucidate the contribution
of GE and LI in GELI.

Global Loss (LGE): We refer the readers to the
rows corresponding to "GE" on the left side of
Table 3, where we display the MSE of the reward
decomposition loss, as described in Eq. 4. We
find that amongst the three return decomposition
methods, RRD performs the best. We also compare
the results when we use only the local implicit (LI)
multimodal rewards directly as rewards and find
that they perform significantly worse than that of
GE decomposition methods.

Local Difference (∆r̂LI ): On the right side of
Table 3, we display the difference of the expected
predicted reward conditioned on the local implicit
multimodal feedback, ∆r̂LI . In our setting, this is
the difference of the predicted reward when the vi-
sual affect is positive and when the visual affect is
negative. We find that after the GE decomposition
methods without any LI feedback training is un-
able to discern between positive and non-positive
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Feedback Baselines LGE ↓ ∆r̂LI > 0
Type (Global Loss) (Local Difference)

Human N/A 0.087 ± 0.05
Mean 245.495 0.000
Mode 289.473 0.000

GE

IRCR 394.041 0.008
RUDDER 285.720 0.003
RRD (K = 32) 172.246 0.007
RRD (K = 160) 188.382 0.008

LI
Visual Affect (VA) 1546.17 0.256
Language Sentiment (LS) 825.31 0.010

GELI
IRCR + VA 722.687 0.392
RUDDER + VA 623.882 0.030
RRD + VA (Ours) 176.897 0.063

Table 3: Automatic Evaluation on Reward Function
Training. Left: Results for Global Loss for reward de-
composition, LGE . We find that RRD and RRD+VA
perform the best. Right: Local Difference: the differ-
ence of expected predicted reward conditioned on the
local implicit multimodal feedback, ∆r̂LI . We find the
GELI achieves the best of both worlds with low reward
decomposition scores and sufficient delta values.

facial affect, as indicated by the ∆r̂LI values be-
ing close to zero. The LI baseline with only the
language sentiment is unsurprisingly unable to as
well. On the other hand, the LI baseline with vi-
sual response is able to recognize differences in the
utterances which will induce positive and negative
affect. We refer the reader to Appendix Section L
where we run human studies to verify the intuition
that conversation quality is associated with visual
affect.

GELI: Considering Both Global Loss (LGE) and
Local Difference (∆r̂LI ) We refer the readers
to the bottom of Table 3. The results are shown
for the reward function trained with GELI: global
explicit reward decomposition informed by local
implicit multimodal feedback shaping. We find that
the combination of random return decomposition
(RRD) and visual affect (VA) achieves the best of
both worlds, resulting in low LGE and high ∆r̂LI .
The trained reward function with GELI, with low
LGE and high ∆r̂LI improves the performance as
shown in Tables 1, 2, whereas other reward func-
tions that performs only well on LGE , or ∆r̂LI
does not yield better performance.

7 Discussion

We describe components of GELI with ablations
and further analysis and visualizations.

7.1 Quantitative Analysis and Ablations on
GE and LI

It is important to look at both error metrics (GE
and LI): the LGE metric is evaluating performance

globally, comparing the final predicted score of the
whole conversation with the ground truth (which
is a single scalar value for the entire conversation).
The ∆r̂LI metric evaluates the local predictions for
each speaking turn, confirming whether the local
predictions are aligned to the local implicit reward.
It is normal that the GE-RRD baseline performs
well on the first metric, LGE , since it is optimized
with this loss function specifically. However, as
we observe in the human evaluations and the qual-
itative visualizations, this GE-RRD baseline ends
up being very conservative in its predictions, with
little variability in its local predications and often
converging to the mean (variance of predicted re-
wards from GE:RRD is 0.0231 ± 0.004, for GELI:
RRD+VA is 0.0778 ± 0.006). Hence, it is impor-
tant to also look at the LI metric, ∆r̂LI , where we
can observe that for GE:RRD in Table 3 is near 0.

To evaluate the contributions of the individual
components, we performed ablation studies in Ta-
ble 1, which shows how the different type of re-
ward functions with various components affects
the overall performance. We find the local im-
plicit rewards (LLAMA2+LI) perform better than
that of LLAMA2+GE, where we observe up to a
10% performance boost. However, we find the im-
provements are often worse than that of the base
LLAMA-2 model (3 out of 8 evaluation measures
are worse). This leads to the conclusion that the
reward signals in GE and LI separately do not con-
tain enough reward signals to be used as a reward
model in a reinforcement learning set up to adapt
the language model to be more conversational. On
the other hand, we find that GELI, by utilizing both
GE and LI, gains consistent performance boosts
across most conversational evaluation metrics (6
out 8 measures are better, the remaining are com-
parable), which indicates the combination of both
GE and LI contain valuable reward signals for the
RL algorithm to utilize.

7.2 Qualitative Analysis

Visualization of GELI Decomposed Rewards:
In Figure 1, we display the unrolled reward from
GELI from an unseen conversation sample from
the dataset. We find that the GELI decomposition
has learned to assign meaningful scores which indi-
cates the contribution of each utterance to the over-
all quality of the conversation (i.e interesting, co-
herent responses are rewarded, whereas less mean-
ingful repetitions and backchannels are assigned
lower scores).
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Dialogue History
AI: Yeah, it's definitely a challenge. But I think it's really good. Like one 
of the things in the pandemic has been um like it's gotten so much 
easier to access like mental health care because like things can um 
happen online now, which I think seems like a good thing, wow.
User: Oh yeah accessibility is uh is always is always great.
AI: Yeah. Yeah.
User: Although there's the whole well there's all this stuff about like 
zoom anxiety is this as good as face to face, but I mean it's certainly 
safer.
AI: Uh Okay. Okay.
User: So mm.
AI: Yeah. Uh I had previously worked from home before the pandemic 
and had a lot of phone calls um and now everyone just wants to do the 
phone calls via zoom and like this doesn't need to be a like zoom call, 
like we can just be on the phone. There's there's not there's like not any 
added value here. It's really it's really interesting like just this sense 
now that everyone is working from home, like this idea that like all 
things are video calls.
User: Yeah I mean I I see a psychiatrist actually I've got I've got a D.
AI: Yeah. Uh huh.
User: D. So I need to I need to get it, I need to get my my prescription 
renewed and talk to a doctor and I used I used to go up to his office 
every two weeks and see him and now we just do it by phone and he 
asked if I wanted to do it in person and I was like yeah that seems 
unnecessary.

GELI: (Visual Affect + Random Return Decomposition)
Yeah, um, that makes a lot of sense. I think it's it's really important to have like 
access to mental health care in like, in a way that's convenient for people, like, 
you know, especially during like a pandemic or something like that. And I think 
it's it's really great that like you can, like, access it in a way that's safe and like, 
you know, it's not like it's not like you have to go to a physical office or anything 
like that. So, like, I think it's really great.

Human:
Uh huh. Yeah. Uh huh. Yeah. Some people prefer video though. Um It's 
interesting how different people's preferences are between phone versus 
video versus texting. Um I think a lot of the like companies that are doing 
mental health care are trying to offer all of them so that you know, no matter 
what like no matter what someone's preferences, they can offer it.

GE: Random Return Decomposition (RRD):
Absolutely, I, like, totally get it, um, it's, uh, really, like, super, you know, 
important to, like, have, like, these, uh, calls, like, for, like, totally, you know, 
mental heath reasons.

LI: Visual Affect (VA):
Okay that makes sense. Yeah it's definitely nice to have more flexibility with 
healthcare.

LI: Language Sentiment (LS):
Okay, yeah. Yeah, I see.

Base LLAMA-2:
Yeah, yeah. Yeah, no, I completely understand. Like, it's definitely nice to have 
the option to do things remotely, especially during the pandemic. But, you know, 
there are definitely some downsides too. Like, as you said, sometimes it can feel 
less personal or less meaningful than in-person interactions. And also, like, there 
are some things that are just better in person, you know? Like, you can read 
people's body language and expressions and get a better sense of their emotions. 
But yeah, I think it's a trade-off.

Prompt: "You are AI. You are having a casual social conversation 
with a User. AI is polite, kind, obedient, honest, and does not 
swear. You are given the dialogue history, generate the response 
to the User in under 100 words."

Figure 3: Generated utterances with colors indicating aligned conversational topics. We display our proposed
approach GELI alongside human groundtruth, the best performing global explicit decomposition methods (RRD),
local implicit rewards (visual affect and language sentiment). We find that GELI adapts the language model to
generate more coherent, personable and empathetic conversational response.

Qualitative improvement in Generations: We
refer the reader to Fig. 3, where we showcase a
randomly sampled generation. We display the gen-
erations from our proposed approach GELI along-
side human groundtruth, the best performing global
explicit (GE) decomposition methods: RRD, and
local implicit rewards (LI) (visual affect and lan-
guage sentiment). We find that our approach gener-
ates responses that are more aligned to the User’s
implicit intent, and is more coherent. Furthermore,
the dialogue style is aligned to the optimization
objective overall-affect, and speaks in a manner to
induce a positive feeling to the User. In compari-
son, other methods are not proficient at recognizing
the intent, being coherent, being empathetic, or too
generic. Comparing LI methods with GELI, LI
responses are generic, which showcases again the
importance of utilizing both global explicit and lo-
cal implicit feedback (GELI). We highly refer the
reader to Appendix J for more examples.

8 Conclusion

We introduce GELI, which automatically decom-
poses a single Global Explicit post-interaction
score, incorporating Local Implicit feedback from
multimodal behaviors. GELI performs global align-
ment of multi-turned interactions by locally reward-

ing parts of the interaction, shaped by multimodal
local implicit feedback. Our proposed approach
complements previous alignment approaches, such
as RLHF, alleviating the need for fine-grained man-
ual reward annotations.

9 Limitations

Here we discuss the limitations and risks of our
work. We present a framework in which global
explicit rewards, in the form of a single post-
interaction survey could be used for alignment. In
addition, we utilize the multimodal signals as form
of local implicit shaping reward. Our approach
presents one of many ways in which global explicit
rewards could be decomposed, and there are many
other methods which are yet to be explored. Local
implicit feedback can be not only used as a reward
shaping function, but in other methods as well, such
as a meta-learning paradigm. Again, more methods
to incorporate local implicit feedback needs to be
researched. Furthermore, the interaction and rela-
tionship between the local implicit feedback and
global explicit feedback is understudied. Due to
computational resources, we were only able to run
a single run over experiments.

There are risks that could arise as a result of
more social, dialogue agents that can interact with
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people in a long-term interaction. Conversational
agents could be used maliciously for deception,
manipulation, and the spread of misinformation.
Furthermore, conversational agents which use mul-
timodal data could enhance seriousness of these
issues, as models can detect subtle cues such as
microexpressions to infer and manipulate the user.

As a potential measure to mitigate such misuse,
we plan to release our code and model weights un-
der a license which prevents the use of our assets by
any party that support or contribute to false imper-
sonation or hate speech (Do No Harm, Nonviolent
Public or Hippocratic License).
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A Randomized Return Decomposition (Ren et al., 2021)

LRRD(θ) = E
τ∼D


 E
I∼ρT (·)



(
Rep(τ)−

T

|I|
∑

t∈I
R̂θ (st, at)

)2



 (9)

Randomized return decomposition (RRD), improves the scalability of least-squares-based reward
redistribution methods by using a Monte-Carlo estimator to compute the predicted episodic return. This
model is optimized via the above loss function. I denotes a subset of indices. ρT (·) denotes an unbiased
sampling distribution where each index t has the same probability to be included in I. In this work,
without further specification, ρT (·) is constructed by uniformly sampling K distinct indices and K is
a hyper-parameter. Therefore, instead of computing rθ (st, at) for the whole agent trajectory, we are
efficiently able to estimate the true reward for the trajectory via subsamples in expectation.

B Human Evaluation Metrics Definitions

Here list the human evaluation metrics utilized in the study, which we draw from (Lee et al., 2022).

• Sensibleness (turn-level; binary; reversed scores for the negated question): Mark responses where
the chatbot did NOT make sense.

• Specificity (turn-level; binary; reversed scores for the negated question): Mark the responses that
were NOT specific to what you had said, i.e., responses that could have been used in many different
situations. For example, if you say “I love tennis” then “That’s nice” would be a non-specific
response, but “Me too, I can’t get enough of Roger Federer!” would be a specific response.

• Emotional Connection (turn-level; binary): Which responses did you feel an emotional connection
to? (EmpatheticDialogues)

• Social: Which responses made you feel the chatbot understood social contexts and situations?
(CommonsenseDialogues)

• Interestingness (turn-level; binary): Mark the responses that were particularly interesting or boring

• Inclination (turn-level; binary; reversed scores for the negated question): Which responses made you
NOT want to talk with the chatbot again?

• Reuse (turn-level; binary): Would you want to talk to this chatbot again?

• Positivity (turn-level; binary): Which AI responses most likely made User feel positive feelings?
conversation?

The human evaluation scores are conducted via a binary-level classification. For a given question, the
annotators can select the models that satisfy the question. For example, for ‘Positivity’, the annotators are
given the following question and answer choices:

Which AI responses most likely made User feel positive feelings? (A) (B) (C) (D) (E) (F)
The options A-F refer to models which are randomized in order and anonymized. The annotators can

select multiple models if they satisfy the question. Therefore, Table 1 can be interpreted as the percentage
of instances out of the samples (300 in our case) where each model satisfied the question.

C PPO Objective

objective (ϕ) =E(x,y)∼D
πRL
ϕ

[
rθ(x, y)− β log

(
πRL
ϕ (y | x)/πSFT(y | x)

)]
+

γEx∼Dpretrain

[
log(πRL

ϕ (x))
] (10)

General form of PPO objective.

15749



D Artifacts & Resources

Did you discuss the license or terms for use and/or distribution of any artifacts?
TRL (von Werra et al., 2020): Apache License 2.0
LLAMA-2 (Touvron et al., 2023): License can be found here: https://ai.meta.com/llama/license/
CANDOR (Reece et al., 2023): Terms of Use from https://betterup-data-requests.herokuapp.com/:

These are the terms of use we require all users and downloaders of this dataset, including you, the applicant,
to abide by. Please select the answer option "I agree to fully abide by these terms of use" if you wish
to continue. Terms of Use: (1) You agree to only use this data for legitimate academic and/or scientific
research, meaning no analyses, reviews, or derivative works of this dataset may be used for commercial or
for-profit purposes in any way; (2) You agree not to re-publish any new versions of this dataset, whether
original or derivative (i.e. modified or updated in some way), without explicit permission from BetterUp,
Inc.; (3) You agree not to use any part of this dataset for the purpose of personally identifying, locating,
or gathering any kind of information about individuals who appear in the recordings in this dataset,
beyond the information that is provided in the dataset itself; (4) In the case that an individual shares
personally-identifiable information about themselves in a recording, you agree not to use, analyze, share,
or publish that information in any form.

Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that
is compatible with the original access conditions (in particular, derivatives of data accessed for
research purposes should not be used outside of research contexts)?

We rigorously examined the terms of use and the intended use, and ensured that it is consistent with the
intended use.

E Data Collection & Anonymization

Did you discuss the steps taken to check whether the data that was collected/used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect/anonymize it?

We utilize the CANDOR dataset and follow its terms of use by agreeing not to use the dataset personally
identifying, locating, or gathering any kind of information about individuals who appear in the recordings
in this dataset, beyond the information that is provided in the dataset itself. We do not use any explicit
information that uniquely identifies people.

Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and linguistic
phenomena, demographic groups represented, etc.? Did you report the basic demographic and
geographic characteristics of the annotator population that is the source of the data?

The coverage of the domains discussed in the CANDOR dataset is presented in the original paper
(Reece et al., 2023), we find that the discussion topics are centered around COVID-19, family, politics.
The language used is english. The demographic groups represented can also be found in the in the
original paper (Reece et al., 2023), specifically in the supplementary Table S.2. We share a screenshot for
reference.

Was the data collection protocol approved (or determined exempt) by an ethics review board?
The data is sourced from public available dataset (Reece et al., 2023). The usage was approved by an
ethics review board. The human annotations were approved by an ethics review board.

F Training Details

Did you report relevant statistics like the number of examples, details of train/test/dev splits, etc. for
the data that you used/created?

For reward shaping with LI: we use 500 conversations as the training set and 50 conversations for the
test set. For reward decomposition, we use the same 500 conversations for LI as the training set and 50
conversations for the test set. For LLM adaptation, we use a separate 600 conversations for LI as the
training set.
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Figure 4: Candor Demographics

F.1 Distribution of GE score (overall-affect):
• <50: 2.2

• 50-60: 6.7

• 60-70: 14.5

• 70-80: 30.4

• 80-90: 24.6

• 90-100: 21.6

Distribution of Emotions Polarity (only Happiness is considered as positive polarity):

• Anger: 3.9

• Contempt: 0.08

• Disgust: 1.98

• Fear: 2.23

• Sadness: 8.84

• Neutral: 35.61

• Happiness: 40.01

• Surprise: 7.35

Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?

The BART model used for the reward function has 406M parameters. The LLAMA-2 model has 7B
parameters. However, we use a LoRA implementation with the hyperparameters in the next question,
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resulting in actual training parameters of 13M. We train with 4 NVIDIA RTX A6000 GPUs, each
experiment reward function training and RLHF took around 19 hours.

Did you discuss the experimental setup, including hyperparameter search and best-found hyper-
parameter values?

We perform grid search for all of our experiments and here we report the best parameters.

Reward Function Training:

• learning rate = 5e-6,

• batch size = 32 (for LI), 1 (forGE) ,

• optimizer = AdamW,

RLHF:

• batch size = 24,

• clip range = 0.2,

• learning rate = 0.000014,

• gamma = 0.05,

• use score norm = true,

Lora:

• r=24,

• alpha=48,

• dropout=0.05,
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G Human Annotation Screenshots

Did you report the full text of instructions given to participants, including e.g., screenshots, dis-
claimers of any risks to participants or annotators, etc.?

We show the full text of instructions given to participants below:

Figure 5: Mturk experiment for human evaluation fo generated samples
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Figure 6: Mturk experiment for human study on gauging reward scores for visual affect signals

Did you report information about how you recruited (e.g., crowdsourcing platform, students) and
paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

We utilzed the MTurk crowdsourcing platform. We did an internal annotation, given that each assign-
ment took less than 3 minutes to complete, we paid 0.4 USD per assignment, which equates to 8 dollars
per hour of work.

Did you discuss whether and how consent was obtained from people whose data you’re us-
ing/curating (e.g., did your instructions explain how the data would be used)?

As shown in the screenshots above, our instructions explained how the data would be used. i.e.
’You are invited to participate in a research study on understanding human-human communication and
evaluating the quality of conversation. Our goal is to learn what makes up a good conversation You will
examine response for a given dialogue history and you will examine the respone, you will be asked to
answer feedback questions about the interaction. Data from responses and annotation will be analysed in
deidentified format and extracts edited to preserve confidentiality may be featured in any published work
resulting out of the study.’.

Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?

While we did not explicitly collect the basic demographic and geographic characteristics. The demo-
graphics of Amazon Mturkers (Difallah et al., 2018) are comprised of 75% US workers and 16% India
workers, other countries include Canada, Great Britain, Philippines and Germany. More females work
than males in the US (female: 55%, male: 45%) and more males work females in India (female: 35%,
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male: 65%). Generally, 51% are male, and 49% are female. 20% of the MTurk workers are born after
1990, 60 % are born after 1980, and 80 1970. Roughly 40 % report being single, and 40 % report being
married.

H Use of AI assistants

Did you use AI assistants (e.g., ChatGPT, Copilot) in your research, coding, or writing?
We utilized AI assistants in paraphrasing and summarizing content from our paper, to improve the

writing quality and improve precision.

I Full Reward Function Training Result

Feedback Type Baselines
Reward Decomposition Reward conditioned on Visual Affect

MSE MAE Positive (1) Non-Positive (0) ∆ (↑)

Human N/A N/A 0.607 ± 0.02 0.52 ± 0.03 0.087 ± 0.05
Mean 245.495 15.668 0.458 0.458 0.000
Mode 289.473 17.013 0.438 0.438 0.000

GE

IRCR (Gangwani et al., 2020) 394.041 19.850 0.384 0.375 0.008
RUDDER (Arjona-Medina et al., 2019) 285.720 16.903 0.410 0.407 0.003
RRD (K = 32) (Ren et al., 2021) 172.246 13.124 0.474 0.468 0.007
RRD (K = 160) (Ren et al., 2021) 188.382 13.725 0.457 0.449 0.008

LI
Visual Affect (VA) 1546.17 39.321 0.455 0.199 0.256
Language Sentiment (LS) 825.31 28.728 0.496 0.486 0.010

GELI
IRCR + VA 722.687 26.882 0.752 0.361 0.392
RUDDER + VA 623.882 24.977 0.542 0.513 0.030
RRD + VA (Ours) 176.897 13.300 0.507 0.444 0.063

Table 4: Automatic Evaluation on Reward Function Training. Left: MSE and MAE for return decomposition.
We find that RRD and RRD+VA performs the best. Right: Reward function scores conditioned on positive and
non-positive visual response samples. ∆ indicates the difference of scores between positive and non-positive visual
response samples. We find the GELI: RRD + VA achieves the best of both world with low reward decomposition
scores and sufficient delta in visual response scores

J Generations
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K Training Curves
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L ∆r̂LI to distinguish fingrained differences in affect

To verify our intuition that visual feedback is correlated with actual perceived conversational quality, we
ran a human study (displayed in the first row of Table 3), where we only show annotators the language
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dialogue history and speaker’s next utterance. They are asked to rate whether the speaker’s next response
would induce a positive or non-positive feeling in the listener. We average the scores of their annotations
conditioned on non-positive and positive affect samples, where we find a large difference. This indicates
that the visual feedback is correlated with people’s perception of the conversation quality.

M Multiple Runs Results

We performed multiple runs of our reward models. Then, we re-evaluated the best performing GE, LI,
GELI reward function over N test sets (N=3), each test set with 50 full length conversations (consisting of
160 number of utterances each).

The LGE scores are as follows:
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• GE: RRD : 160.13 ± 17.6

• LI: VA: 1089.19 ± 42.04

• LI: LR: 604.79 ± 62.16

• GELI: VA+RRD: 190.17 ± 24.63

The ∆r̂LI scores are as follows:
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GELI: RRD + Visual Affect

KLReward

Figure 7: GELI RL Training during adaptation. Left: Reward scores over steps, Right: KL divergence over steps

LI: Language Sentiment

KLReward

Figure 8: LI: Language Sentiment RL Training during adaptation. Left: Reward scores over steps, Right: KL
divergence over steps

LI: Visual Affect

KLReward

Figure 9: LI: Visual Affect RL Training during adaptation. Left: Reward scores over steps, Right: KL divergence
over steps

GE: RRD

KLReward

Figure 10: GE: RRD RL Training during adaptation. Left: Reward scores over steps, Right: KL divergence over
steps

• GE: RRD : 0.002 ± 0.002
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• LI: VA: 0.295 ± 0.038

• LI: LR: 0.010 ± 0.0053

• GELI: VA+RRD: 0.074 ± 0.006

We see the same pattern as the original Table 1 reported before, where GE and GELI perform comparably
for LGE . However, GE’s low ∆r̂LI values indicate that it is unable to discern positive and negative
affect samples, whereas GELI’s values indicate that it is able to. We find that these values are statistically
significant.

N Human Annotator Agreement

For our human evaluation, we generated utterances from unseen conversational histories. Then, as
described in Appendix G, we recruit human annotators on MTurk, where each annotator sees the generated
dialogue from baseline and our models. As per reviewer’s suggestion, we annotate another identical
evaluation set of 100 samples with a new annotator and measure the pairwise inter-rater agreement over
across each criterion:

Overall, across all criteria, we get an average agreement percentage of 60.67%± 3.87

• Specific: 63%

• Connection: 60%

• Positivity: 60%

• Social: 60%

• Inclination: 61%

• Interestingness: 52%

• Reuse: 59%

• Sensibleness: 64%
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