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Abstract

Recently, there has been a growing interest
in studying how to construct better code in-
struction tuning data. However, we observe
Code models trained with these datasets ex-
hibit high performance on HumanEval but per-
form worse on other benchmarks such as Live-
CodeBench. Upon further investigation, we
find that many datasets suffer from severe data
leakage. After cleaning up most of the leaked
data, some well-known high-quality datasets
perform poorly. This discovery reveals a new
challenge: identifying which dataset genuinely
qualify as high-quality code instruction data.
To address this, we propose an efficient code
data pruning strategy for selecting good sam-
ples. Our approach is based on three dimen-
sions: instruction complexity, response qual-
ity, and instruction diversity. Based on our
selected data, we present XCoder1, a family
of models finetuned from LLaMA3. Our ex-
periments show XCoder achieves new state-of-
the-art performance using fewer training data,
which verify the effectiveness of our data strat-
egy. Moreover, we perform a comprehensive
analysis on the data composition and find exist-
ing code datasets have different characteristics
according to their construction methods, which
provide new insights for future code LLMs.

1 Introduction

Code pre-trained models have achieved remark-
able progress in the era of large language models
(LLMs), such as Codex (Chen et al., 2021b), Al-
phaCode (Li et al., 2022), PaLM-Coder (Chowd-
hery et al., 2022) and StarCoder (Li et al., 2023a).
Training on large code corpora (Kocetkov et al.,
2022) has been shown to enhance the coding ca-
pabilities of current LLMs (Lozhkov et al., 2024;

* Equal contribution.
† Corresponding author.
1Models and dataset are released in https://github.

com/banksy23/XCoder
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Figure 1: The left figure shows performance comparison
on different benchmarks and the right displays varying
results after data decontamination. Magicoder Evol-
Instruct and Code-Feedback may have data leakage on
HumanEval.

Rozière et al., 2023). In addition to costly pre-
training, recent research has garnered increased in-
terest in code instruction tuning and obtains promis-
ing results on several code benchmarks (Chaud-
hary, 2023; Luo et al., 2023a; Team, 2024; Wei
et al., 2023; Yang et al., 2024; Song et al., 2024;
Muennighoff et al., 2023; Wang et al., 2024a).

Differing from the high demand of pre-training
for data quantity, instruction tuning aligns existing
model abilities towards a desired direction using
high-quality but much smaller datasets. To con-
struct code instruction datasets, earlier research pre-
dominantly relies on heuristic automation (e.g. dis-
tillation from ChatGPT) or manual selection. For
example, Code Alpaca (Chaudhary, 2023) and Wiz-
ardCoder (Luo et al., 2023a) use distillation signals
from ChatGPT via self-instruct and evol-instruct.
Other methods such as OctoPack (Muennighoff
et al., 2023) and Magicoder (Wei et al., 2023)
construct code instructions from pre-training code
corpora. Although these code instruction datasets
seem excellent on popular code benchmarks like
HumanEval2, we find some of them dramatically
drop on another contamination-free benchmark
LiveCodeBench (Jain et al., 2024) which contin-
uously collects new problems over time from on-

2https://github.com/openai/human-eval
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line contests. As shown in Figure 1, Magicoder
Evol-Instruct and Code-Feedback (Zheng et al.,
2024) achieve top ranks on HumanEval but drop
on LiveCodeBench. We perform a further decon-
tamination process and find that several existing
code models achieve abnormally high performance
on HumanEval because of the potential use of the
benchmark or benchmark-similar data. Thus, it
remains unclear what good code instruction data
is and how these datasets actually work. Besides,
all the data come from different pipelines and have
no unified principle to ensure good quality. We
need to systematically define what constitutes good
examples of data for code instruction tuning and
establish an effective principle for achieving com-
petitive performance using only highly valuable
samples.

In this work, we aim to define the characteristics
of good data for code instruction tuning based on a
diverse range of existing code datasets. Our goal
is to select the most influential samples through a
comprehensive and quantitative data assessment
measure. Drawing inspiration from Liu et al.
(2024); Ni et al. (2024), we propose a paradigm of
data-efficient instruction tuning for code capabili-
ties. Generally, we assume good code samples are
complex, of high quality, and diverse. For the com-
plexity aspect, we adopt the evolved complexity
scorer to predict the complexity of a given instruc-
tion. The scorer is trained on evolved samples via
the complexity prompt (Luo et al., 2023a) with
ChatGPT. For the aspect of quality, we train a veri-
fied model to generate multiple test cases given an
(instruction, response) pair and evaluate its qual-
ity via the pass rate of the generated test cases.
For the aspect of diversity, we select the sample
with a large distance to a data pool via instruction
embeddings. Combining the three measures, our
simple but effective data selection strategy pursues
valuable code instruction data and achieves more
efficient instruction tuning where fewer training
samples yield performance on par with, or even
surpassing, models trained on significantly larger
datasets. Moreover, we also analyze the composi-
tion of our selected data mixture and give sugges-
tions for future code instruction tuning research.

We present XCoder, a family of models fine-
tuned from LLaMA33 using our selected code
instruction data mixture. Experiments on Live-
CodeBench and HumanEval demonstrate that

3https://LLaMA.meta.com/LLaMA3/

XCoder is able to outperform or be on par with
state-of-the-art code instruction models such as
WizardCoder (Luo et al., 2023a), Magicoder (Wei
et al., 2023), StarCoder2-Instruct4 and Open-
CodeInterpreter (Zheng et al., 2024) while using
fewer automatically selected data examples. For ex-
ample, XCoder-8B based on LLaMA3-8B achieves
43.66 LiveCodeBench-Easy and 54.9 HumanEval
when trained on only 40K data samples. Besides,
our XCoder-70B based on LLaMA3-70B achieves
top-tier results compared to the state-of-the-art
open-source models.

2 Deep Dive into Existing Datasets

We present mainstream and open-source Code In-
struction Tuning datasets in Table 1. And then we
select several influential datasets from these for
training and test their performance on HumanEval
and LiveCodeBench benchmarks, with the results
shown in Table 2.

From the results, we observe that different train-
ing datasets lead to significant performance differ-
ences on HumanEval, but the differences on Live-
CodeBench are minimal. This phenomenon leads
us to suspect whether the remarkably high perfor-
mance of some data in HumanEval is due to data
leakage. Therefore, we propose the Test Leakage
Index (TLI) to detect the degree of data leakage for
each dataset in the test set.

TLI The Test Leakage Indicator is a metric for
quantifying the extent of data leakage from a train-
ing set to a test set. To compute TLI, n-grams are
generated for both datasets, and the overlap be-
tween the n-grams of each test sample and those
of all training samples is measured. The similar-
ity score S(ti, rj) between a test sample ti and a
training sample rj is calculated as the fraction of
common n-grams over the total n-grams in the test
samples. For each test sample, the maximum simi-
larity score among all training samples is recorded.
The final TLI metric is the average of these max-
imum similarity scores across all test set. Higher
TLI values indicate greater risks of leakage, high-
lighting significant similarities between the training
and test data.

We calculate the TLI metrics for different
datasets on HumanEval, as shown in Table 2. More
dataset can be viewed in Appendix B. we find that

4https://github.com/bigcode-project/
starcoder2-self-align
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Dataset Data Size Instruction Source Response Source
Code-290k-ShareGPT-Vicun (cod) 289k - -
CodeExercise-Python-27k (Cod) 27k GPT GPT
Code-Feedback(Zheng et al., 2024) 66k GPT GPT
CodeUp (Cod) 19k GPT(Self-Instruct) GPT
Glaive-code-assistant-v3 (gla) 950k Glaive Glaive
oa_leet10k (oa-) 23k - -
Code-Alpaca (Chaudhary, 2023) 20k GPT(Self-Instruct) GPT
Codefuse-Evol-Instruct (Liu et al., 2023) 66k GPT(Evol-Instruct) GPT
DolphCoder (Wang et al., 2024b) 79k GPT(Evol-Instruct) GPT
Magicoder-Evol-Instruct (Wei et al., 2023) 110k GPT(Evol-Instruct) GPT
Magicoder-OSS-Instruct (Wei et al., 2023) 75k GPT(OSS-Instruct) GPT
CommitPackFT (Muennighoff et al., 2023) 702k GitHub GitHub
StarCoder2-Self-Align (sc2) 50k StarCoder2(OSS-Instruct) StarCoder2
Leet10k_alpaca (lee) 10k - -

Table 1: Open-source code instruction tuning datasets. Self-Instruct (Taori et al., 2023) uses LLMs to generate new
instructions based on a seed instruction set. Evol-Instruct (Xu et al., 2023; Luo et al., 2023b) use In-Depth Prompts
to generate more compelxity instructions. OSS-Instruct (Wei et al., 2023) synthesises diversity instructions through
real code snippets.

Dataset Size TLI HumanEval LiveCodeBench

Base-Pass@1 Plus-Pass@1 Pass@1 Easy-Pass@1
Codefuse-Evol-Instruct 66862 8.9 61.0 53.7 13.5 34.5
+Clean 66404 (-0.7%) 4.8 (-4.1) 59.1 (-1.9) 53.7 (0) 12.3 (-1.3) 33.1 (-1.4)
Magicoder-Evol-Instruct 111183 43.2 68.3 64.0 15.3 38.7
+Clean 108063 (-2.8%) 4.9 (-38.3) 65.9 (-2.4) 59.8 (-4.2) 13.0 (-2.3) 34.5 (-4.2)
Code-Feedback 66383 30.5 64.0 57.3 13.8 35.2
+Clean 64134 (-3.4%) 4.6 (-25.9) 56.7 (-7.3) 51.8 (-5.5) 14.8 (+1.0) 38.0 (+2.8)

Table 2: Comparison of performance across three datasets with data leakage and their cleaned versions on Hu-
manEval and LiveCodeBench. TLI measures the extent of data leakage in the training set on HumanEval. Size and
performance changes after cleaning are highlighted in red.

most datasets maintain a TLI of around 5% on Hu-
manEval, but Codefuse-Evol-Instruct, Magicoder-
Evol-Instruct, and Code-Feedback exhibit TLI in-
dices exceeding 30%. Therefore, we further clean
these datasets ensuring that the TLI of all cleaned
datasets is controlled at 5%, and then conduct re-
experiments with these datasets. From the result
we can observe that the cleaned datasets, after filter-
ing only a small portion, show a significant perfor-
mance drop on HumanEval, but their performance
on LiveCodeBench remains almost unchanged or
even slightly improved. For example, after filter-
ing out 3.4% samples from the Code-Feedback
dataset, its performance on the HumanEval Base-
Pass@1 metric drops by 7.3%, but its performance
on LiveCodeBench slightly increases. This further
substantiates the presence of data leakage. Addi-
tionally, we discover numerous cases where the
training data are almost identical to the test data in

HumanEval, confirming the serious data leakage in
these datasets. The leaked cases can be viewed in
Appendix B.

3 What Characteristics Do Good Data
Have

In this section, we first define the characteristics
of good data for code instruction tuning and then
select the most influential samples via data pruning.
Inspired by Deita (Liu et al., 2024), we select the
samples in the Data Pool from three dimensions:
instruction complexity, response quality, and in-
struction diversity. For a data pool P , we first use
the a complexity score C and Unit Test Model U to
calculate the complexity score c and quality score q
for each data. Then, we use linearly combine c′ and
q′ to obtain a score s representing complexity and
quality. Finally, we sort the data pool P and apply
the Diversity-based Sampling to iteratively select
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Figure 2: Illustration of our data selection approach.

samples from the data pool into the final training
set D, until D reaches the budget size. Our data
selection approach is illustrated in the Figure 2 and
Algorithm 1. The details of Complexity Score, Unit
Test Model and Diversity-based Sampling are as
follows.

3.1 Instruction Complexity: Complexity
Scorer

Inspired by Evol Complexity (Liu et al., 2024),
which is a complexity measure based on the
evolution algorithm. We use evolved instruc-
tions to train our complexity scorer. Specif-
ically, we use self-instruct to obtain a small-
scale dataset Seed = {S1, S2, . . . , SN} as the
seed for evolution. Then, we apply the in-depth
evolving prompting from WizardCoder for M
rounds of evolution. This process results in an
instruction set where each seed instruction si has
M evolved instructions and their corresponding
rounds {(Si, 0), (I1, 1), . . . , (IM ,M)}. We then
treat the rounds as a complexity measure and train
the complexity scorer to predict the complexity
score given the input instruction. In multi-turn dia-
logues, we score each turn separately and use the
sum of them as the final score.

3.2 Response Quality: Unit Test Model

We consider the number of test cases passed as
a measure of response quality, which, as demon-
strated in our experiments in Section 4.4.3, is an
effective way to assess code quality for code gen-
eration tasks compared to directly scoring the lan-
guage model.

To obtain test cases for each training sample,
we utilize a unit test model that can generate a
fully executable unit test program according to the

provided instructions and code snippet for testing,
which can be formulated as: T = U(I,R), where
we denote the instruction as I , the code solution as
R, and the generated unit test as T . We collect 6k
TACO(Li et al., 2023b) data to train the unit test
model based on LLaMA3-70B-Base. During appli-
cation, we prompt the Unit Test Model to generate
12 test cases for each training sample, and execute
the unit testing program. The number of passed
test cases is considered as the quality score.

We also show some cases output by our unit test
model which can be found in Appendix C.

3.3 Instruction Diversity: Diversity-based
Sampling

We use Diversity-based Sampling method to en-
sure the diversity of the selected data. The it-
erative method selects samples Pi one by one
from the pool P , and when pi contributes to the
diversity of the selected dataset D, it is added
to D. This process continues until the budget
Q is reached or all samples pi in P have been
enumerated. Specifically, the benefit of the di-
versity brought by the newly considered sample
pi can be formulated as an indicator function
F (pi, D) := distance(pi, D) < τ , which equals 1
only when F (pi, D) is true, otherwise it is 0. Only
when F (pi, D) equals 1, pi will be added to D.
We use the embedding distance between the sam-
ple pi and its nearest neighbor in D to calculate
distance(pi, D). And τ is a hyperparameter.

4 Experiments

4.1 Benchmarks

• HumanEval: HumanEval (Chen et al., 2021a)
is a widely researched benchmark test for
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Algorithm 1 Data Selection For XCoder
1: Input: Code Instructing Tuning Data Pool

P = {(I1, R1), (I2, R2), . . . , (IN , RN )},
Num of data samples to be selected Q,
Complexity Scorer C, Unit Test Model
U , Code Interpreter E, Hyperparameter τ ,
Weight α.

2: Output: The selected subset D
3: Initialize Empty Dataset D
4: for i = 1 to N do
5: ci ← C(Ii)
6: ui ← U(Ii, Ri)
7: qi ← E(ui)
8: end for
9: for i = 1 to N do

10: c′i ← Normalized(ci)
11: q′i ← Normalized(qi)
12: si ← α× c′i + (1− α)× q′i
13: end for
14: P ∗ ← sort(P, key = s, reverse = True)
15: for k = 1 to N do
16: // distance(Ik, D) denotes the distance

between Ik and its nearest neighbor in D

17: if distance(Ik, D) < τ then
18: D ← D ∪ {(Ik, Rk)}
19: end if
20: if |D| ≥ Q then
21: break
22: end if
23: end for

code language models, specifically designed
to evaluate the ability of code generation. It
includes 164 hand-written programming prob-
lems, each problem includes a function sig-
nature, docstring, body, and several unit tests,
with an average of 7.7 tests per problem.

• LiveCodeBench: LiveCodeBench (Jain et al.,
2024) is a comprehensive and pollution-free
benchmark for evaluating Large Language
Models in code assessment. It updates new
problems in real-time from competitions on
three competitive platforms (LeetCode, At-
Coder, and CodeForces).

4.2 Implementaion Details
Data Pools To construct the best Code Instruc-
tion Tuning dataset, we gathered various available
open-source datasets, as detailed in Table 1. This

resulted in a collection of 2.5M data samples. How-
ever, this amount of data is excessively large. To
control the size of the Data Pools, we implemented
a straightforward filtering process according to the
following rules: Firstly, We include datasets pro-
posed by academic work: Magicoder-OSS-Instruct,
Magicoder-Evol-Instruct, and Code-Feedback. We
also select the longest 200K samples to add to the
Data Pools. Following this, we sort the data by
complexity score and add the top 200K highest-
scoring samples. Finally, we performed deduplica-
tion on the Data Pools, resulting in a final dataset
of 336K samples.

Complexity Scorer We use ChatGPT to evolve
the dataset over 4 iterations on Code-Alpaca as the
training set and train on LLaMA3-8B-Instruct with
a learning rate of 2e-5 for 1 epoch.

Unit Test Model We use 6k TACO data to train
our unit test model based on LLaMA3-70B-Base.
TACO is a dataset for code generation that each
sample contains question, code solutions and test
cases. We train the final unit test model using a
learning rate of 5e-6 over 3 epochs.

Diversity We use LLaMA3-8B-Base to get the
instruction embedding. We set τ to 0.945 which
means we consider an example pi could increase
the diversity of selected dataset D when the embed-
ding distance between pi and its nearest neighbor
is smaller than 0.945.

4.3 Main Results

To validate the effectiveness of XCoder, we con-
ducted experiments on LLaMA3-8B-Base, with
the results shown in Table 3. From the results we
can observe that XCoder achieves the best results
on LiveCodeBench and BigCodeBench among
other open-source dataset. It also also achieves
the best level performance on HumanEval among
the clean datasets. Additionally, we observe that
XCoder is highly efficient with samples, achieving
superior performance on LiveCodeBench and Big-
CodeBench with only 40K data compared to base-
lines. As the data size increases further, XCoder
continues to improve on HumanEval and Big-
CodeBench. We also notice that Magicoder-Evol-
Instruct and Codefuse-Evol-Instruct still achieve
leading results on HumanEval. The reason may
be that the decontamination algorithm cannot com-
pletely filter out all leaked data, so some data leak-
age still exists within these training sets on Hu-
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Dataset Size LiveCodeBench BigCodeBench HumanEval

Pass@1 Easy-Pass@1 Pass@1 Base-Pass@1 Plus-Pass@1
Code-Alpaca 20k 0.0 0.0 11.9 30.5 25.6
StarCoder2-Self-Align 50k 9.5 24.7 14.5 37.8 34.8
Codefuse-Evol-Instruct* 66k 12.3 33.1 25.4 59.1 53.7
Magicoder-OSS-Instruct 75k 12.8 33.8 22.0 54.3 50.0
Magicoder-Evol-Instruct* 100k 13.0 34.5 21.8 65.9 59.8
Code-Feedback* 64k 14.8 38.0 27.0 56.7 51.8
XCoder 40k 16.5 43.7 27.4 54.9 50.6
XCoder 80k 16.8 43.7 29.6 57.3 53.0

Table 3: Comparison of the performance using XCoder data and other mainstream data on HumanEval and
LiveCodeBench. All models are trained based on LLaMA3-8B-Base and use greedy decoding. For HumanEval, we
report both Base-Pass@1 and Plus-Pass@1 results, where Plus-Pass@1 uses more test cases compared to Base-
Pass@1 during evaluation. On LiveCodeBench, we report Pass@1 and Easy-Pass@1 results, with Easy-Pass@1
considering only problems categorized as easy, making it more stable and providing better differentiation than
Pass@1. * means that the original dataset may have data leakage, and we perform a n-gram decontamination.

manEval.
We also train XCoder-70B based on LLaMA3-

70B-Base. Figure 3 shows that XCoder-70B is one
of the best open-source Code LLMs.

4.4 Analysis

4.4.1 Ablation Study
To validate the effectiveness of each data dimen-
sion, we conducted ablation experiments with the
results shown in Table 4. As observed across both
data sizes, the model’s final performance on Live-
CodeBench improves with the addition of each
dimension, indicating the effectiveness of each di-
mension.

4.4.2 Complexity Dimension
Table 5 illustrates the performance of models
trained on 40K selected data samples using var-
ious complexity measures on LiveCodeBench. Our
Complexity Scorer measure exhibits the best perfor-
mance across all measures, surpassing the Random
method by 2.1% on Pass@1 and by 3.5% on Easy-
Pass@1. The results also indicate that instruction
length is a good measure for observing the Code
Instruction Tuning data, second only to Complexity
Scorer, which contrasts with observations made on
general alignment data. Interestingly, perplexity, as
an intuitive measure of complexity, performs com-
parably to the random selection method, consistent
with observations by Liu et al. (2024).

4.4.3 Quality Dimension
Using Unit Test for Ranking To validate our
Unit Test Model’s ability to rank the quality of code,

Method Data Size
LiveCodeBench

Pass@1 Easy-Pass@1
Random 40k 11.5 31.0
Complexity 40k 13.3 34.5
+ Quality 40k 15.0 39.4
+ Diversity 40k 16.5 43.7
Random 80k 11.8 30.3
Complexity 80k 15.0 37.3
+ Quality 80k 16.8 41.6
+ Diversity 80k 16.8 43.7

Table 4: We conduct ablation experiments based on
LLaMA3-8B-Base with two data sizes to validate the
effectiveness of each dimension.

Measures Data Size
LiveCodeBench

Pass@1 Easy-Pass@1
Random 40k 11.5 31.0
PPL 40k 11.8 31.0
Length 40k 13.0 33.1
Complexity Scorer 40k 13.6 34.5

Table 5: Comparison of performance on Live-
CodeBench using different complexity measurement
methods. All models are trained based on LLaMA3-8B-
Base and use Greedy decoding. We calculate PPL for
each data point using LLaMA3-8B-Base. For the length
strategy, we only count the instruction length.

we conducted the following experiment. Specifi-
cally, we generate 10 candidate solutions for each
question in HumanEval, then use our unit test
model to generate test cases for each solution, rank-
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Figure 3: Comparison of the performance of XCoder and other mainstream models on LiveCodeBench. Results
for other models are sourced from LiveCodeBench Leaderboard (Liv) For XCoder, we maintain the same settings
with other models, where we use 0.2 temperature, sampling 10 solutions for each question. The full name of
GPT-4, Glaude-3, Gemini Pro 1.5, GPT-3.5-Turbo, CQ-7B-Chat and MagicoderS-CL-7B are GPT-4o-2024-05-13,
GPT-4-Turbo-2024-04-09, Claude-3-opus, Gemini Pro 1.5-May, GPT-3.5-Turbo-0125, CodeQwen15-7B-chat and
MagicoderS-CodeLLaMA-7B. We also compare the performance of the model on HumanEval. The complete results
can be found in Appendix D.

ing them based on the number of test cases passed.
We select the best one as the final solution. And we
use random selection from the candidate solutions
as the baseline. The results are shown in Table 6.
Additionally, we consider another method where
using LLMs to output the correctness of the code
directly. We choose GPT-4-0409 to do that. From
the results, we observe that compared to random
selection, using the unit test model significantly im-
proves the accuracy of the chosen answers, with an
increase of nearly 13.6% in the Base-Pass@1 met-
ric and 10.3% in the Plus-Pass@1 metric. Notably,
the unit test model trained on LLaMA3-70B-Base
also outperforms GPT-4, with improvements of
around 3% in both metrics.

From the results, we can observe that using unit
tests improves the BoN-Pass@1 metric by approxi-
mately 14%, which is higher than merely using lan-
guage model judgment. However, we also notice a
gap in evaluation accuracy per solution compared
to GPT-4. We believe this discrepancy may arise
because, for unit tests, a solution must pass all the
test cases to be considered correct. Any error in
generating a test case can cause the solution to fail.
Nevertheless, the effectiveness of unit tests in the
Best-of-N metric demonstrates that this approach
might be more suitable for ranking the quality of
code solutions.

Accuracy of Generated Test Cases We also ex-
perimented with the impact of different model sizes
on the accuracy of the Unit Test Model in generat-

Method BoN-Base-Pass@1 BoN-Plus-Pass@1
Random 62.6 54.9
GPT-4 72.6 62.8
Unit Test Model 76.2 65.2

Table 6: We report the Best-of-N metric on HumanEval.
"Random" indicates selecting a solution randomly from
the candidates. "GPT-4" involves direct evaluation of
each candidate using GPT-4-0409. "Unit Test Model"
represents using our unit test model to generate and rank
based on test cases passed.

ing test cases. Specifically, we instructed the model
to generate 10 test cases for the golden solutions
in HumanEval, execute them, and count the num-
ber of passing test cases. The results are shown
in Figure 4. Additionally, we evaluated GPT-4’s
capability in generating test cases.

We observed that increasing the model parame-
ters significantly improves the accuracy of generat-
ing test cases, from 64.8% to 78.7%. Further, we
find that the test case model trained on LLaMA3-
70B performs very close to GPT-4 in generating
test cases, with a difference of less than 2%.

4.4.4 Data Scaling
To study the impact of our data selection strategy
on data scaling efficiency, we conduct experiments
using different data budgets. Table 7 shows that
XCoder outperforms randomly sampled data across
different data sizes. Surprisingly, XCoder achieves
performance comparable to using 160K training
samples with only 10K samples, and it matches
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Figure 4: Comparison of the accuracy of Unit Test
Models trained on different sizes when generating test
cases. We also additionally evaluated the ability of GPT-
4 to generate test cases.

Method Data Size
LiveCodeBench

Pass@1 Easy-Pass@1
Random 10k 9.8 26.1
Random 40k 11.5 31.0
Random 80k 11.8 30.3
Random 160k 15.0 38.8
Random 320k 16.8 44.4
XCoder 10k 14.5 38.0
XCoder 40k 16.5 43.7
XCoder 80k 16.8 43.7
XCoder 160k 17.0 44.4

Table 7: Comparison of performance on Live-
CodeBench with different datasets as the data scales
up. We conducted the training on LLaMA3-8B-Base.

the performance of using the full dataset at 80K
samples. This demonstrates the high efficiency
of XCoder’s data samples and the effectiveness of
XCoder in data selection.

4.5 Data Analysis

In this section, we analyze the data composition
of XCoder, reassess the strengths and weaknesses
of different data sources, and develop new insights
into different data generation methods.

Complexity: We sorted all samples according
to the Complexity Score and analyzed the source
datasets of the top 160K samples. The results are
shown in Figure 5(a). We observe that the multi-
turn Code-Feedback dataset, which includes code
refinement data, contributes the largest amount of
samples. And OctoPack, which uses real Git com-
mit information as instructions, results in limited
instruction complexity and contributes only 0.1%.

However, We also observe that StarCoder2-Self-
Align contributes the second largest amount of sam-
ples, indicating that, besides Evol-Instruct, convert-
ing pre-training data appropriately can also yield
complex instructions.

Quality: Figure 5(b) shows the contribution of
different data sources in the top 160K quality score
samples. We observe that OctoPack, which uses
real code data, contributes the most high-quality
samples. Moreover, we notice that Magicoder-
Evol-Instruct, which used GPT-4 to evolve instruc-
tions and generate responses, contributes almost as
many high-quality samples as OctoPack. How-
ever, Dolphcoder-Evol-Instruct, which used the
same Evol-Instruct method but with GPT-3.5 for
response generation, only contributes 11.16% of
the samples. And Code-Alpaca, which was gener-
ated with text-davinci-003, contributes the fewest
high-quality samples, comprising only 2.04% of
the total. We assert that in the Evol-Instruct process,
responses generated by more capable models tend
to have higher quality. Notably, we observe that
StarCoder2-Self-Align contributes a considerable
amount, which we think is potentially due to its use
of self-synthesized test cases and the rejection of
samples that do not execute correctly.

Diversity: The XCoder method relies on the
added samples when calculating the diversity of
the samples, meaning it dynamically measures the
diversity of the samples and cannot independently
calculate diversity scores for each sample. There-
fore, we present the composition of the top 160K
data before and after applying Diversity-based Sam-
pling method, considering the changes as the im-
pact brought by data diversity. Figure 5(c) displays
the source statistics of the top 160K samples before
using Diversity-based Sampling, while Figure 5(d)
illustrates the composition of the data after apply-
ing Diversity-based Sampling for the top 160K data.
We find that the most notable change is that, after
applying the Diversity-based Sampling method, Oc-
toPack jumps from having the lowest contribution
to the second highest. We believe this phenomenon
may be due to OctoPack directly gathering instruc-
tions from the real world, thus possessing better
diversity.

Overall, we find that in terms of complexity: data
with more rounds has longer context and higher
complexity. Additionally, Evol-Instruct is an effec-
tive method for improving instruction complexity.
In terms of quality: Code LLMs that deliver accu-
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rate responses. Data with added test case feed-
back verification during data synthesis tends to
have higher quality. Furthermore, using a stronger
model to synthesize data is a simpler, more direct,
but effective approach. In terms of diversity: We
find that directly sampling from the real world and
transforming it results in instructions with better
diversity compared to other methods that only ex-
pand instructions using fixed seeds.

5 Related Work

Code Instruction Tuning. Code instruction tun-
ing is a necessary step for models to accurately
understand human instructions and generate rele-
vant code responses. Xu et al. (2023) apply the
Evol-Instruct method (Xu et al., 2023) to Code-
Alpaca(Chaudhary, 2023) dataset and obtain a in-
struction dataset with high complexity. Muen-
nighoff et al. (2023) take git commits as natu-
ral instruction data. They collect 4TB git com-
mits across 350 programming language. Wang
et al. (2024b) propose Diverse Instruction Tun-
ing and Multi-Objective Tuning to train Dolph-
coder, which proves that more diverse code so-
lutions and code evaluation instruction data are
also beneficial for code generation tasks. Consid-
ering Evol-Instruct depends on a seed instruction
data which is less diversity, Wei et al. (2023) pro-
poses OSS-Instruct, which leverages open-source
code cnippets to generate high-diversity instruc-
tions. They also propose Magicoder-Evol-Instruct
dataset and train Magicoder-S, which is the first
7B model to exceed 70% on HumanEval Pass@1.
However, we find this dataset suffers from serious
data contamination (Dong et al., 2024b; Xu et al.,
2024). Motivated by various works with execution
feedback (Cao et al., 2024; Le et al., 2022; Chen
et al., 2023; Qiao et al., 2023, 2024; Dong et al.,
2024a), OpenCodeInterpreter (Zheng et al., 2024)
and AutoCoder (Lei et al., 2024) leverages GPT-4
and Code Interpreter as code feedback to generate
multi-turn instruction data which instruct model to
refine incorrect code snippets acrroding to feedback
information.

Data Selection for Instruction Tuning. While
instruction fine-tuning primarily relies on a large
volume of data, research such as LIMA (Zhou
et al., 2024) indicates that data quality is more
critical than quantity. Li et al. (2024a) proposes a
novel metric Instruction Following Difficulty(IFD)
to assess the challenge of responding to specific

instructions. Li et al. (2024b) harnesses the dis-
parity between one-shot and zero-shot scores to
calculate a definitive ’gold score’ for each instruc-
tion. Kung et al. (2023) present Active Instruction
Tuning, which introduces the concept of Prompt
Uncertainty. Tasks that exhibit higher Prompt Un-
certainty are prioritized for instruction tuning. Fur-
thermore, Lu et al. (2023) introduce an automated
instruction tagging method (INSTAG), which em-
ploys ChatGPT to generate detailed, open-ended
labels for instructions. It starts by sorting instruc-
tions in descending order of label count and then
iteratively adds instructions to a subset based on the
uniqueness of their labels. Deita (Liu et al., 2024)
integrates a multifaceted approach for selecting in-
struction data, focusing on complexity, quality, and
diversity. Utilizing the WizardLM technique, Chat-
GPT is employed to augment instructions, which
are then evaluated for both complexity and quality
by specially trained scorers.

6 Conclusion And Future Work

Code LLMs have raised great interest in cur-
rent LLM research and plenty of code instruction
datasets are proposed over time. However, although
many of them claim that good results are achieved
on the popular benchmark HumanEval, we find sev-
eral datasets may have data leakage by using bench-
mark samples as seed data in self-instruct or evolve-
instruct. In this paper, we aim to identify which
dataset genuinely qualifies as high-quality code in-
struction data and propose an efficient code data
selection strategy for selecting valuable samples.
Based on three dimensions of assessing data, we
present XCoder, a family of models finetuned from
LLaMA3 on our selected dataset. XCoder achieves
superior performance than the SOTA baselines us-
ing fewer training samples. From the composition
of our selected data mixture, we find existing code
datasets have different characteristics correspond-
ing to their construction methods, which provide
new insights for developing better code LLMs.

7 Limitation

Our limitations are two-fold: (1) We only explore
our method on the LLaMA3-Base model. More
experiments on different model bases are needed to
confirm our conclusions. (2) We only focus on the
Code Generation task, and in the future, we need
to incorporate data containing more tasks.
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8 Broader Impacts

Similar to the other LLMs, our XCoder could also
generate unethical, harmful, or misleading informa-
tion, which is not considered in our work. Future
research to address the ethical and societal impli-
cations is needed. XCoder is also susceptible to
hallucination in ungrounded generation use cases
due to its smaller size. This model is solely de-
signed for research settings, and its testing has only
been carried out in such environments. It should
not be used in downstream applications, as addi-
tional analysis is needed to assess potential harm
or bias in the proposed application
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A Other Implementation Details

Training Details: We trained on LLaMA3-8B-
Base and LLaMA3-70B-Base. For the 8B model,
we train with a learning rate of 2e-5, while for the
70B model, we use a learning rate of 5e-6. All
models are trained for 2 epochs. The batch size
during training varies according to the dataset size:
for datasets with fewer than 40K samples, the batch
size is set to 256; for datasets between 40K and 80K
samples, the batch size is set to 512; for datasets
between 80K and 160K samples, the batch size
is set to 1024; and for datasets larger than 160K
samples, the batch size is set to 2048.

B Case Study on Data Leakage

We show examples of data leakage in Codefuse-
Evol-Instruct, Magicoder-Evol-Instruct and Code-
Feed-back in Figure 6. The statistical information
of data leakage can be seen in Table 8.

C Example of input and output for unit
test model

We present an input and output case of unit test
model in Figure 8.

D Comparion of XCoder and other
mainstream models

We Compare the performance of XCoder and
other mainstream models on HumanEval and Live-
CodeBench. The result is shown on Figure 7 and
Table 9
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Figure 5: The contribution ratio of different data sources to XCoder, with (a) representing the source of the 160K
samples with the highest complexity, (b) representing the 160K samples with the highest quality, and (c) and (d)
reflecting which dataset has better diversity.

Dataset Size TLI HumanEval LiveCodeBench

Base-Pass@1 Plus-Pass@1 Pass@1 Easy-Pass@1
Code-Alpaca 20022 3.4 30.5 25.6 0.0 0.0
StarCoder2-Self-Align 50661 4.7 37.8 34.8 9.5 24.7
Magicoder-OSS-Instruct 75197 4.5 54.3 50.0 12.8 33.8
Codefuse-Evol-Instruct 66862 8.9 61.0 53.7 13.5 34.5
Magicoder-Evol-Instruct 111183 43.2 68.3 64.0 15.3 38.7
Code-Feedback 66383 30.5 64.0 57.3 13.8 35.2
Codefuse-Evol-Instruct-clean 66404 (-0.7%) 4.8 (-4.1) 59.1 (-1.9) 53.7 (0) 12.3 (-1.3) 33.1 (-1.4)
Magicoder-Evol-Instruct-clean 108063 (-2.8%) 4.9 (-4.0) 65.9 (-2.4) 59.8 (-4.2) 13.0 (-2.3) 34.5 (-4.2)
Code-Feedback-clean 64134 (-3.4%) 4.6 (-25.9) 56.7 (-7.3) 51.8 (-5.5) 14.8 (+1.0) 38.0 (+2.8)

Table 8: Data Leakage Statistics on HumanEval
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Case of HumanEval:

def closest_integer(value):
    '''Create a function that takes a value 
(string) representing a number  and returns 
the closest integer to it. If the number is 
equidistant from two integers, round it 
away from zero.

    Examples
    >>> closest_integer("10")
    10
    >>> closest_integer("15.3")
    15

    Note:
    Rounding away from zero means that if 
the given number is equidistant
    from two integers, the one you should 
return is the one that is the
    farthest from zero. For example 
closest_integer("14.5") should
    return 15 and closest_integer("-14.5") 
should return -15.
    '''
Case of data leaked in Code-Feedback:

Add two more constraints to the existing code problem: 
Firstly, validate if the input is a legitimate integer、or float, 
otherwise return an error.Secondly, verify if the rounded 
integer is a prime number. If not, return the nearest prime 
number. Modify the given Python function:

def closest_prime_integer(value):
    '''  Craft a function that accepts a string (representing a 
number), verifies it to be a valid  integer or float, and then 
rounds it to the nearest integer; you are not permitted to use 
the built-in round() function. In case the input is not a valid 
representation, return an error message. If this rounded 
number is not a prime, your task is to find the closest prime 
number. When the numerical value is mid-way between two 
integers, you should round away from zero.

    Examples 
    >>> closest_prime_integer("10")
    11 
    >>> closest_prime_integer("15.3")
    13 
    >>> closest_prime_integer("invalid")
    "Error: Invalid input."

    Note: 
    ‘Rounding away from zero’ implies that for a number 
equally distanced between two integers, you should choose 
the integer that is furthest from zero. So, 
closest_prime_integer(“14.5”) should return 15, whilst 
closest_prime_integer("-14.5") should 
     return -15.
    '''

Case of HumanEval:

def common(l1: list, l2: list):
    """Return sorted unique common 
elements for two lists.
    >>> common([1, 4, 3, 34, 653, 2, 
5], [5, 7, 1, 5, 9, 653, 121])
    [1, 5, 653]
    >>> common([5, 3, 2, 8], [3, 2])
    [2, 3]

    """

Case of data leaked in Codefuse-
Evol-Instruct:

Formulate a function that delivers the 
unique entities present in two input catalogs, 
arranged in an ascending sequence. The 
function's time complexity must align with 
or surpass O(nlogn), while discarding 
Python's built-in catalog functions when it 
comes to sorting the outcome or eliminating 
redundancy:

def shared_elements(list1: list, list2: list):
    """Produce an ascending-ordered catalog 
of singular entities from two provided 
catalogs, refraining from using Python's 
catalog-builtin functionality. The designed 
time complexity stands at O(nlogn) or 
superior.
    >>> shared_elements([1, 4, 3, 34, 653, 2, 
5], [5, 7, 1, 5, 9, 653, 121])
    [1, 5, 653]
    >>> shared_elements([5, 3, 2, 8], [3, 2])
    [2, 3]

    """

Case of HumanEval:

def solution(lst):
    """Given a non-empty list of integers, return the 
sum of all of the odd elements that are in even 
positions.
    

    Examples
    solution([5, 8, 7, 1]) ==> 12
    solution([3, 3, 3, 3, 3]) ==> 9
    solution([30, 13, 24, 321]) ==>0
    """

Case of data leaked in Magicoder-Evol-
Instruct:

Refine the provided code to precisely calculate the 
sum of odd elements situated at even indices in a 
non-empty list of integers. Additionally, ensure your 
code operates efficiently for large inputs (up to 
10^6 elements). The solution should use a multi-
step reasoning approach. 

def solution(lst):
    """Given a non-empty list of integers, return the 
sum of all of the odd elements that are in even 
positions.    

    Examples
    solution([5, 8, 7, 1]) ==> 12
    solution([3, 3, 3, 3, 3]) ==> 9
    solution([30, 13, 24, 321]) ==>0
    """

Figure 6: Examples of data leakage.
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Figure 7: Comparison of the performance of XCoder and other mainstream models on HumanEval and Live-
CodeBench. Results for other models are sourced from Eval Plus Leaderboard and LiveCodeBench Leaderboard.
For XCoder, we maintain the same settings with other models, where for HumanEval we use a greedy decoding
strategy and for LiveCodeBench we use 0.2 temperature, sampling 10 solutions for each question. The full name of
GPT-4, Glaude-3, Gemini Pro 1.5, GPT-3.5-Turbo ,CQ-7B-Chat and MagicoderS-CL-7B are GPT-4o-2024-05-13,
GPT-4-Turbo-2024-04-09, Claude-3-opus, Gemini Pro 1.5-May, GPT-3.5-Turbo-0125, CodeQwen15-7B-chat and
MagicoderS-CodeLLaMA-7B.

Please write a hard-coded unit test script according to the provided task description and the solution to be tested, following the format in the demonstration.

Test script framework demonstration:

def test_code_name(x, y): # The unit test script needs to contain the code to be tested 

return x + y 

def test_script(): # The entry point of the test script needs to be called test_script(), and unittest, pytest and other libraries are not used in the test script.

# use hard code to descripe test case, each test_case is stored in the list in the form of a tuple, 

input_output = [ ((1,2),(3)),

((2,-4),(-2)), 

((-100,99),(-1)) ] 

for id, (input, output) in enumerate(input_output): 

try: # avoid program interruption 

result = test_code_name(*input) == output # The test result is stored as a boolean type 

print(f'Test case {{id+1}}: {{result}}') # print in specified format 

except: 

pass 

if __name__ == '__main__’:

test_script()

Task Description:
Implement a function which multiplies two numbers.

Code to be tested
def multiply(x, y): 

return x * y

1.Give a complete unit test script, which needs to include the code snippet to be tested, referring to the test_code_name function in the test script framework demonstration.

2. If the code to be tested needs standard input and output, please simulate the standard input and output environment.

3. It needs to be strictly generated according to the test script framework, do not use unittest and other libraries. 

4. Each unit test script includes 3 test cases.

5. Test cases need to use a hard-coded approach. 

6. Test cases need to follow the same format as the demonstration.

Input:

Output:
def multiply(x, y): # The code snippet to be tested 

return x * y 

def test_script(): # The entry point of the test script needs to be called test_script() 
input_output = [ # use hard code to describe test case, each test_case is stored in the list in the form of a tuple, 

((2,3), 6), 
((-1,100), -100), 
((0,0), 0) ] 

for id, (input, output) in enumerate(input_output): 
try: # avoid program interruption 

result = multiply(*input) == output # The test result is stored as a boolean type 
print(f'Test case {id+1}: {result}') # print in specified format 

except: 
pass 

if __name__ == '__main__’: 
test_script()

Figure 8: Input and output case of unit test model.
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Model LiveCodeBench HumanEval

Pass@1 Easy-Pass@1 Base-Pass@1 Plus-Pass@1
GPT-4O 48.8 89.2 - -
GPT-4 43.9 81.5 90.2 86.6
Claude-3 35.9 78.5 82.9 77.4
Gemini-Pro-1.5 35.9 74.7 68.3 61.0
Mixtral-8x22B-Ins 26.4 60.7 76.2 72.0
LLaMA3-70B-Ins 27.6 59.1 77.4 72.0
Mistral-Large 25.4 58.1 69.5 62.2
GPT-3.5-Turbo 21.4 50.4 76.8 70.7
CQ1.5-7B-chat 21.8 41.0 83.5 78.7
LLaMA3-8b-Ins 14.3 36.4 61.6 56.7
Mixtral-8x7B-Ins 12.1 31.8 45.1 39.6
MagicoderS-CL-7B 11.4 29.9 70.7 67.7
XCoder-80k-8B 14.4 38.1 57.3 53.0
XCoder-80k-70B 25.9 60.4 78.7 71.3

Table 9: Comparison of the performance of XCoder and other mainstream models on HumanEval and Live-
CodeBench. Results for other models are sourced from Eval Plus Leaderboard (Eva) and LiveCodeBench Leader-
board. For XCoder, we maintain the same settings with other models, where for HumanEval we use a greedy
decoding strategy and for LiveCodeBench we use 0.2 temperature, sampling 10 solutions for each question. The full
name of GPT-4, Glaude-3, Gemini Pro 1.5, GPT-3.5-Turbo ,CQ-7B-Chat and MagicoderS-CL-7B are GPT-4o-2024-
05-13, GPT-4-Turbo-2024-04-09, Claude-3-opus, Gemini Pro 1.5-May, GPT-3.5-Turbo-0125, CodeQwen15-7B-chat
and MagicoderS-CodeLLaMA-7B.
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