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Abstract

Recent work has aimed to improve LLM gen-
erations by filtering out hallucinations, thereby
improving the precision of the information
in responses. Correctness of a long-form re-
sponse, however, also depends on the recall of
multiple pieces of information relevant to the
question. In this paper, we introduce Atomic
Self-Consistency (ASC), a technique for improv-
ing the recall of relevant information in an LLM
response. ASC follows recent work, Univer-
sal Self-Consistency (USC) in using multiple
stochastic samples from an LLM to improve
the long-form response. Unlike USC which only
focuses on selecting the best single generation,
ASC picks authentic subparts from the samples
and merges them into a superior composite an-
swer. Through extensive experiments and abla-
tions, we show that merging relevant subparts
of multiple samples performs significantly bet-
ter than picking a single sample. ASC demon-
strates significant gains over USC on multiple
factoids and open-ended QA datasets - ASQA,
QAMPARI, QUEST, ELIS with ChatGPT and
Llama3. Our analysis also reveals untapped
potential for enhancing long-form generations
using approach of merging multiple samples.

1 Introduction

Large language models (LLM) with their ability to
perform mathematical reasoning (Wei et al., 2022),
planning (Ahn et al., 2022), and generating human-
like text (Bubeck et al., 2023) have become an inte-
gral component of many Al systems. Long-form
question answering (LFQA) is an important bench-
mark task whose performance reflects the reliability
of these Al systems at providing comprehensive
and accurate responses to user queries.

In LFQA, each response comprises multiple
pieces of information, described in the literature
as atomic facts (Min et al., 2023), that collectively
contribute to the overall correctness of the answer.
Despite various improvements, LLMs are still very
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Q:What are the main causes of climate change?

Al: The primary causes of climate change include human
activities like burning fossil fuels, deforestation,
and industrial processes.

A2: The primary causes of climate change include
human activities like burning fossil fuels, deforestation,
and industrial processes. Natural factors such as volcanic
eruptions and changes in solar radiation also contribute.

Figure 1: A;: A precise answer to the question Q. As:
A complete answer with higher recall of atomic facts
relevant to Q. A, is hence a more preferred over A;.

prone to producing hallucinatory content such as in-
correct atomic facts, especially when the responses
are longer (Ren et al., 2023). Recent works on mit-
igating hallucinations have primarily involved the
removal of inaccurate atomic facts from the gen-
erated content (Manakul et al., 2023; Dhuliawala
etal., 2023; Ren et al., 2023). While these methods
produce responses with high precision over atomic
facts, the correctness of the response also depends
on the inclusion of all information relevant to the
question, i.e., the recall of atomic facts relevant to
the question. E.g. In Fig. 1, A; is a precise re-
sponse. Ag is a more complete high recall response
to Q.

On the other hand, in QA with closed-form an-
swers (such as a math problem with a numeric
answer), remarkable improvements in response
quality have been achieved by stochastically sam-
pling multiple model responses and then using con-
sistency criteria to select one as the final answer
(Wang et al., 2022). Recently, similar efforts were
extended to long-form generation. Universal Self
Consistency (USC) (Chen et al., 2023), is one such
example which uses LLMs to determine consis-
tency between model responses. The output of
USC is the single most consistent generation among
multiple candidate samples from the model.

However, picking a single final answer among
the candidate generations might miss out on
relevant atomic facts from other candidates and not
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Figure 2: Best possible recall (oracle performance) with
increasing number of samples on ASQA(ChatGPT).
Merging subparts from multiple samples has a much
higher ceiling. ASC beats USC, Direct; almost matches
the ceiling performance of picking one best sample.

optimize the recall of information. Further, it is
still prone to some atomic hallucinations within
the final selected candidate. To overcome these
challenges, we propose a simple approach called
Atomic Self-Consistency (ASC), which combines
authentic atomic facts from multiple candidate
responses to generate a superior composite
response. To motivate the readers on the potential
benefits of this approach, Fig. 2 shows the oracle
performance (best possible performance) of
picking one single generation vs merging subparts
of multiple generations on the ASQA dataset
(details in §4.7). Merging answers from multiple
samples have significant performance potential
over picking a single answer. USC would not be
able to capture this potential. Fig. 2 also shows
the performance of ASC and other baselines. ASC
matches the ceiling performance possible of
picking the best sample.

Key Contributions 1. We introduce a simple
and efficient method, ASC, that: (i) clusters atomic
parts of multiple candidate generations, (ii) uses a
consistency-based criterion to pick the best clusters
relevant to the question, and (iii) finally combines
them all into a single superior answer. ASC oper-
ates in black box mode and does not require access
to LLM weights or logits. 2. We systematically
establish the superiority of combining multiple gen-
erations over picking a single generation. 3. We
extensively evaluate and show significant perfor-
mance improvements of ASC over USC and other
hallucination reduction baselines on four diverse
long-form QA tasks—ASQA, QAMPARI, QUEST
and ELI5. We justify the benefits of ASC through

rigorous ablations. 4. We show strong empirical
evidence for minimizing the number of stochastic
samples required by ASC. 5. Finally, our analysis
reveals untapped potential for enhancing LL.Ms by
merging multiple generations into a superior com-
posite output. This insight underscores a promising
avenue for advancing LLM performance further.

2 Related Work

We discuss key methodologies that are used to iden-
tify hallucinations and alleviate hallucinations. We
further talk about the importance of consistency
as a measure for correctness and finally talk about
how this is used to improve LLM response. We also
discuss concurrent work using stochastic samples
to improve LLM generation quality.

2.1 Detecting and alleviating hallucination

FactScore (Min et al., 2023) proposed a mecha-
nism to identify atomic facts using an LLM and
then individually check each fact’s correctness us-
ing a retrieval-based solution. CoVe (Dhuliawala
et al., 2023) used the LLM to generate multiple
verification questions over a candidate generation
and prompted an LLM to answer them. Answers to
these verifying questions were used to draft a high-
precision response. Agrawal et al. (2023) used indi-
rect prompts to verify individual units in list-style
answers.

2.2 Consistency as a measure for Correctness

Consistency between model responses resulted in
performance leaps in mathword problems, code
generation, etc (Xiong et al., 2022; Shi et al., 2022).
SelfCheckGPT (Manakul et al., 2023) is another
work very relevant to ASC which detects hallucina-
tion in model responses. It verifies the correctness
of individual sentences in a generation by measur-
ing their agreement with multiple other stochas-
tic samples by the LLM. It showed the benefit of
consistency-based measures to identify sentence-
level hallucination, within long-form generations.
HalLo (Elaraby et al., 2023) also used consistency-
based measures to identify sentence-level halluci-
nations in a generated text. It also explored tech-
niques like knowledge injection and distillation.

2.3 Using stochastic samples to improve LLM
response

USC (Chen et al., 2023) uses the consistency-based
measure to pick the most consistent individual re-
sponse among stochastically generated sample re-
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Figure 3: Overall Pipeline proposed. Generated samples are split into smaller parts and clustered. Clusters are
then filtered by a consistency based criterion (higher strength clusters are selected while lower strength clusters are
removed). Selected cluster representatives are then summarized by an LLM to generate a final answer.

sponses. It feeds in all responses to the LLM and
asks to output the most consistent response. Simi-
lar to USC, Ren et al. (2023) pick one best answer
from a list of candidates by a hybrid mechanism
which contains a score from the samples posed as a
multiple choice question and a score based on self
evaluation from the same LLM.

Despite remarkable improvements, these meth-
ods are confined to either filtering atomic facts from
a response or picking a single final answer from
multiple samples. Our research on the other hand,
focuses on combining subparts of multiple stochas-
tic samples to produce higher quality generations.

Concurrent to our work, Wang et al. (2024a)
used multiple stochastic samples from an LLM,
used the same LLM to identify atomic facts, ver-
ified each fact by a consistency measure with
other facts (by using pairwise queries to the LLM).
This however is an extremely expensive requiring
O(n x m) LLM calls. In contrast, ASC requires
much fewer calls as will be described later.

Also concurrent to our work, (Wang et al.,
2024b) used consistency principle to identify the
most authentic candidates, used clustering to re-
move redundant candidates and finally drafted an
answer response based on fine grained consistency
of the selected response candidates. It relies on the
LLM to identify authentic subparts of responses
and integrate them in the final answer. ASC on the
other hand already supplies authentic subparts of
original responses and uses the LLM to merge them.
ASC is more suited for tasks where responses can
be broken and merged back like factoid QA.

3 Methodology

Given a question ¢, our task is to use an LLM £
to produce an answer which answers the question
both accurately (i.e., with high precision) and com-
prehensively (i.e., with high recall). We describe
the specific metrics used to measure this for each
dataset in §4. Let a1, ag, .., a,, be m independent
samples directly generated by £ when query q is
fed to it in a prompt P. This work merges consis-
tent subparts from the multiple samples to produce
a final answer aasc in a four-step process. 1. Split:
Split each generation into its constituent atomic
facts. 2. Cluster: Grouping atomic facts for ef-
ficiency 3. Filter: Selecting the most consistent
clusters. 4. Summarize: Combine the selected
cluster representatives to generate a final answer.

3.1 Splitting Generations for Atomic Facts

Since atomic facts can be verified for their truth,
the first step in our approach is to break down can-
didate generations into atomic facts. A candidate
generation to a question might comprise multiple
sentences and multiple atomic facts within each
sentence. Min et al. (2023) used an InstructGPT
model to break down a long-form generation into
its atomic facts. While we believe that use of such
neural models can produce better quality atomic
facts, it is extremely expensive in our setting as this
needs to be performed for m different generations
per question. Hence, following Arslan et al. (2020);
Manakul et al. (2023); Liu et al. (2023), we used
individual sentences within a candidate generation
as its atomic facts. We used sentence tokenization
models (Bird et al., 2009) to split the generation
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into its constituent sentences (atomic facts).

3.2 Clustering Atomic Facts

Each of the m generations typically contains mul-
tiple individual sentences/atomic facts, say k£ on
average. Each of these units needs to be verified
for relevance and truthfulness before inclusion in
the final answer. However, evaluating each atomic
unit either by external sources like retrieval or by
prompting £ would require m * k steps and prove
very expensive. Note that multiple of these atomic
units share content because they were generated
addressing the same question. We hence perform
a round of clustering to collect atomic facts con-
veying the same meaning. Despite being cubic in
computational complexity, we found agglomerative
clustering (Pedregosa et al., 2011) of sentence em-
beddings obtained from SimCSE (Gao et al., 2021)
has less overhead and is much faster compared to
using retrieval/LLM calls to filter them.

Given the clusters, verifying only the representa-
tives of each cluster would contribute to substantial
savings in compute and time. We chose the longest
sentence in each cluster as its representative.

3.3 Filtering Clusters

The objective now is to identify and eliminate inac-
curate atomic facts, ensuring that only valid and re-
liable atomic facts are retained for the final answer
generation in the subsequent steps. Multiple meth-
ods have been used in the literature to verify facts,
e.g., retrieval-based verification Min et al. (2023)
and self-evaluation Manakul et al. (2023). These
methods are still expensive to perform even if it’s
just cluster representatives that we evaluate. Con-
sistency between model responses when used as a
metric resulted in significant gains in reasoning. In
our case, a measure of consistency is readily avail-
able in the form of the clusters’ strengths. Hence,
we use the individual cluster strengths to pick the
most consistent of them. Specifically, all clusters
having count below a fixed threshold © (tuned on
a validation set) are filtered and the consistent clus-
ters’ representatives are selected {cy, 2, 3, ..C, }.
We also experimented with self evaluation in our
preliminary analysis but found consistency-based
measures worked better. We also compare with
retrieval-based method to filter clusters in the §4.

3.4 Summarizing Selected Clusters

The representatives {ci, co, c3, ...c, } are fed into
the same LLM £ with a summarizing prompt

P.ombine(mentioned in §A) to produce the final an-
swer aasc. Note that the number of representatives
z < m (most times) and hence is much easier to
process by £ compared to USC (feeds m inputs).
This call to the LLM not only summarizes the
selected cluster representatives but also filters any
slack/filler sentences that were selected by the con-
sistency metric. Overall pipeline is shown in Fig. 3.

Adapting ASC to list style datasets: We also ex-
tend the ASC methodology to list style datasets.
Here, for a given question, the answer produced is
typically a list of entities. Following Agrawal et al.
(2023), we directly used each item in the list as an
atomic fact. We used surface-form based cluster-
ing where two atomic units are placed in the same
cluster if their normalized edit distance is below
a threshold. © threshold (tuned on validation set)
based filtering is applied to select consistent clus-
ters. The first item in each cluster is considered its
representative. The final answer is just the list of
selected cluster representatives [c1, c2, €3, ...C2].

4 Experiments

ASQA (Stelmakh et al., 2022): A long-form factoid
dataset comprising ambiguous questions. Follow-
ing Gao et al. (2023), performance on this dataset
is evaluated by 1. ‘Str_EM’: checking if reference
short answers have an exact match in the LLM gen-
erated answer, 2. ‘QA-F1°: Does an external QA
model identify these short answers from reference
disambiguating questions. Str_EM is very closely
related to the recall of atomic facts relevant to the
question. Additionally, we also present the ‘Mauve’
score which compares the fluency and style of the
model generated text to the reference answer.

QAMPARI (Rubin et al., 2022): QAMPARI is
a list-style factoid QA dataset constructed from
Wikipedia knowledge graphs and tables with the
questions paraphrased by humans.

QUEST (Malaviya et al., 2023): QUEST is another
list-style dataset constructed using Wiki category
lists. ‘Precision’, ‘Recall’, ‘F1°, ‘Recall-5(100 if
atleast 5 correct entities are present)’ are used to
evaluate QAMPARI and QUEST.

ELIS (Fan et al., 2019): A long-form QA dataset
containing how/why/what questions from Reddit.
We use ‘Claims_NIi’ of golden subclaims follow-
ing Gao et al. (2023). Details on datasets and met-
rics in §A.2.1.
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ASQA ELI5
#Clusters | length | Mauve | Str_EM | QA-F1 || #Clus. | length | Mauve | Claims_NIi
Direct 56.29 | 44.64 37.13 29.33 104.35 | 24.57 18.66
ACF 4299 | 53.66 36.16 28.98 84.11 20.73 18.2
FCF - 45 52.68 36.84 29.64 - 94.75 27.97 18.7
ChatGPT USC-LLM 56.72 | 44.88 37.91 29.71 104.13 | 21.11 18.76
usc 64.52 | 40.19 39.05 30.88 97.36 | 24.09 17.4
ASC-F (Ours) 30.74 106.7 | 41.25 44.96 31.91 56.83 | 172.66 | 22.68 22.16
ASC (Ours) 15.7 101.17 | 47.01 44.1 32.22 16.68 | 163.58 | 21.29 21.43
Direct 40.68 | 62.31 35.46 28.67 95.76 | 26.77 18.09
ACF 34.67 | 54.01 35.65 29.48 83.1 29 19.73
Llama3.70b | FEF ) 3473 | 59.37 | 3571 | 2941 i 82.21 | 25.32 19.53
usc 55.26 | 47.33 38.29 30.11 128.55 | 21.14 21.97
ASC-F 11.94 71.41 69.25 41.89 31.19 51.86 | 167.11 | 2291 23.63
ASC 7.57 66.88 | 71.16 40.97 30.61 28.17 | 16491 | 21.06 23.73

Table 1: ASQA, ELIS5 results. ASC does the very well on QA-F1 and demonstrates strong Str_EM. ASC-F picks
a large number of clusters and also does well. ASC also demonstrates strong Mauve. ASC, ASC-F achieve best
Claims_Nli score on ELIS. Results justify that merging of samples is better than picking one sample.

OAMPARI QUEST
Method | #Pred | Prec | Rec | Rec-5| F1 F1-5 | #Pred | Prec | Rec | Rec-5 | F1 | F1-5
Direct 5.2 21.35 | 13.82 | 23.47 | 15.35 | 21.83 || 5.56 | 12.05| 6.76 | 1291 | 745 | 11.6
ACF 361 | 2416 | 125 | 21.96 | 15.04 | 22.18 || 3.07 | 1471 | 5.65 | 10.67 | 7.06 | 11.53
FCF 441 | 2259 | 13.29 | 23.16 | 1533 | 22.16 | 3.61 | 13.55| 591 | 11.03 | 7.01 | 11.27

ChatGPT USC-LLM || 495 | 20.88 | 13.39 | 2291 | 1494 | 21.33 || 5.10 | 11.86 | 6.18 | 11.92 | 7.08 | 11.16
usc 8.97 20.7 | 19.21 | 31.28 | 18.07 | 24.2 783 | 1198 | 843 | 15.19 | 823 | 12.21
ASC-F 40.83 | 13.42 | 29.81 | 45.04 | 157 | 18.82 | 399 7.94 | 17.31 | 30.73 | 8.47 | 10.84
ASC 7.09 | 2298 | 20.5 | 33.04 | 19.46 | 26.21 | 8.44 | 12.47 | 10.41 | 19.15 | 9.75 | 14.09
Direct 4.65 | 25.84 | 14.57 | 25.29 | 16.85 | 2394 || 4.62 | 13.16 | 595 | 11.28 | 7.07 | 11.21
ACF 343 2504 | 11.99 | 21.12 | 14.86 | 21.55 3 13.88 | 4.91 9.3 |6.34|10.33

Llama3-70b FCF 4 26.71 | 13.79 | 23.82 | 16.47 | 23.5 3.08 155 | 532 | 10.07 | 6.8 | 11.15
usc 7.23 | 23.93 | 18.35 | 30.16 | 18.79 | 25.07 | 7.65 | 1297 | 8.01 | 14.65 | 8.27 | 12.37
ASC-F 24.65 | 17.8 | 26.72 | 41.72 | 18.28 | 22.24 || 30.82 | 897 | 13.82 | 25.77 | 8.64 | 11.37
ASC 9.61 | 22.94 | 22.09 | 35.86 | 20.16 | 26.02 | 11.75 | 11.04 | 10.24 | 19.21 | 8.94 | 12.6

Table 2: ASC outperforms Direct, USC and ASC-F. ASC-F picks a large number of clusters and does worse on P, F1,
F1-5. Results justify that consistency-based cluster selection does better than retrieval-based cluster selection.

4.1 Methods

We compare the following methods. The first two
are strong hallucination reduction methods. The
later ones include stochastic sampling methods.
ACF (adapted from Self CheckGPT, (Manakul et al.,
2023)): Abbreviated from Atomic Consistency-
based Filter. Only one generation (very first seed)
out of the m is used. We use cluster strengths from
the m generations to filter out facts from the one
generation. Selected facts are combined as men-
tioned in §3.4.

FCF (adapted from FActScore, (Min et al., 2023)):
Abbreviated from Factual Correctness based Filter.
Uses FactScore (Min et al., 2023) filter to throw
out facts from the one generation similar to ACF.
Leftover facts are combined as mentioned in §3.4.
Direct: Direct generation from the LLM. Results
are averaged over five different seeds.

USC-LLM: This is the original formulation which

used a list of samples as input to the LLM and
found the most consistent response. We reduced
the input list when it did not fit the context win-
dow. We observed that this method picks the first
response a majority of the time possibly because of
LLM’s longer list problems (Qin et al., 2023).
USC: Consistency based method proposed in Chen
et al. (2023). To overcome LLM list problems in
USC-LLM, we use the same clustering pipeline as
mentioned for ASC. Each of the m generations is
given a score equal to the sum of the strengths of
all clusters it contributes to. The highest scoring
generation is selected as the final answer.

ASC: The method that we propose in this work.
Splits multiple samples into smaller parts, and clus-
ters them. The best clusters (picked by consistency
score) are summarised using an LLM.

ASC-F: Similar to ASC but uses FActScore to pick
the relevant clusters instead of the cluster strength
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in §3.3. We use 5 retrieved passages and Instruct-
GPT from FactScore to verify the correctness of
each cluster. ASC-F doesn’t use any consistency
measures despite sharing the name.

4.2 Model Details and Setup

We use m = 50 for generations. The same set of
generations are used by ASC, ASC-F, USC. Direct
is the average of five seeds among the 50. ACF, FCF
use only one seed for the answer. ACF uses all 50
seeds but for building a consistency-based selection
mechanism. Sentence embeddings for clustering
were generated using robert-large SimCSE (Gao
et al., 2021), agglomerative clustering (d = 0.15)
is used to perform clustering in ASQA, ELIS. More
details on models/hyperparams/O used in §A.1

4.3 Results

Table 1 demonstrates results for ASQA. ASC, ASC-F
do much better than USC in Str_EM (exact match)
and QA-F1 (QA model performance). This shows
that merging parts of multiple answers performs
better than picking a single answer. ACF and FCF
are more picky in selecting what facts can show up
in the final answer and hence have worse Str_EM,
QA-F1 even compared to Direct in some cases.
The short answers in ACF, FCF help achieve a better
Mauve scores. ASC beats Direct, USC, and ASC-F
in achieving better Mauve score. Table 1 also
shows the eval set results of ELIS. ASC, ASC-F per-
form better than all other models yet again demon-
strating the strength of merging multiple model
responses. Mauve is lower in this case because the
reference answers are from Reddit subposts and the
style didn’t match the long answers generated by
ASC. As will be shown in ablations, ASC offers easy
control over Mauve by changing ©. Fig. 7 shows
that © can be adjusted to improve ASC’s Mauve
score over others while retaining Claims_Nli.

Table 2 shows test set results for QAMPARI. ASC
performs the best. ASC-F similar to the previous
case selects a large number of clusters. It does
well on recall but significantly drops on precision
leading to a worse overall performance. This also
shows that longer answers are not always helpful.
Since this is a list-style dataset, we also show #Pre-
dictions (size of the list) which is somewhat equiva-
lent to #Clusters in the previous case. Note that ASC
beats USC despite having lower #Predictions with
ChatGPT. As expected, ACF, FCF have much lower
#Predictions and have higher precision compared to
others. ASC relies on consistency to predict a much

higher #Predictions while also matching/improv-
ing precision. This strongly justifies the strength
of consistency-based cluster selection. Specifically,
it achieves the two goals we had set out in this ex-
ploration. It removes incorrect atomic facts from
a sample (increase in precision compared to USC)
and adds correct atomic facts from other samples
(increase in recall compared to USC). Table 2 also
shows test set results for QUEST. The trends are
very similar to QAMPARI with ASC performing the
best. Summarizing all the observations from above,
we conclude that

1. Merging LLM samples is better than selecting
one single sample.

2. Atomic-Consistency is a strong measure to
select clusters and improve correctness.

4.4 Ablations
4.4.1 Ablation 1: Dissecting ASC

To effectively understand the contribution of dif-
ferent components of ASC, we analyze the effect
of each subcomponent. Table 3 shows results
with ASQA. ASC first clusters individual sentences
from all 50 generations and merges sentences with
high cluster strength using an LLM. The Random
Clusters method follows the same clustering as
ASC but randomly picks clusters before merging
them using an LLM. Random Sentences doesn’t
perform any clustering and randomly picks the sen-
tences from all generations and summarizes them.
In both runs, we pick the exact same number of sen-
tences that were picked by ASC. Random Clusters
drops both Str_Em and QA-F1 but still does bet-
ter than Direct, USC in Table 3. This shows the
strength of including diverse sentences from multi-
ple samples into the answer generation. In the case
of ASQA and ELIS, there is less hallucination com-
pared to QAMPARI and QUEST. Hence, randomly
picking clusters does fairly well better than most
other baselines. Random Sentences further drops
in metrics while still maintaining a high Str_EM.
Table 3 also does the same analysis for QAM-
PARI. Here again, we run the two random baselines.
Similar to the previous case, ASC does the best.

4.4.2 Ablation 2: Longer length answers

From Table 2, 1, ASC and ASC-F often have higher
length answers and higher #predictions. One might
deduce that longer generations tend to give better
results on the datasets tested. Hence, we perform
an additional experiment which picks the longest
length sample (among the 50 samples) for ASQA
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ASQA QAMPARI
Ablation | Method #Clusters | length | Mauve | Str_ EM | QA-F1 || #Pred | Prec | Rec | Rec-5| F1 | F1-5
ASC 15.7 101.17 | 47.01 4.1 32.22 7.09 | 2298 | 20.5 | 33.04 | 19.46 | 26.21
1 Random Clusters 15.7 85.31 | 49.97 42.62 31.75 7.09 | 11.86 | 10.08 | 18.62 | 9.77 | 14.05
Random Sentences 15.7 99.45 | 42.08 41.5 29.36 7.09 | 22.19 | 13.8 | 2442 | 1539 | 22.1
usc 64.52 | 40.19 39.05 30.88 897 | 20.7 | 19.21 | 31.28 | 18.07 | 24.2
2 High Token/#Pred 82.93 | 40.59 37.8 28.79 1048 | 17.19 | 183 | 29.28 | 16.07 | 21.01

Table 3: Ablation 1: ASC performs better than randomly picking clusters and randomly picking sentences on ASQA,
QAMPARI. Ablation 2: Larger length or higher #Predictions in response is not critical for better performance.

and pick the sample with the highest #Predictions
(among the 50 samples) for QAMPARI as the final
answer. Results are shown in Table 3. Despite
having a larger length or higher #predictions, USC
with a lower length and lower #predictions perform
much better. This shows length is not the most
important factor for improved performance.

4.4.3 Ablation 3: ASC is simple to control
with O (Sensitivity Analysis)

O is a parameter which critically affects the perfor-
mance of ASC. For Table 2, we used a value of ©
that performed the best on the validation set. Dif-
ferent number of selected clusters result in differ-
ences in various performance metrics. For example,
ASC-F which selects a large number of clusters is
more suited to high recall scenarios where preci-
sion is less important. Hence, to better understand
this effect, we experiment with different values of
O in this subsection. Fig. 4 shows the effect of
varying © on ASQA. A lower O resulted in se-
lecting a large number of clusters and resulted in
improving QA-F1. This also increased the length
of the final response. Reducing © on the other hand
improved the Mauve fluency score as the shorter
final answer matched more with the reference an-
swer. Hence, one might easily adjust © to obtain
an answer aligned with their preference (Mauve or
QA-F1). From the Fig. 4, ASC can outperform all
other methods in Mauve(can achieve >65) while
still retaining a QA-F1 (>31). The best of other
methods was Mauve (53.66) and QA-F1 (30.99).
A similar result was seen in ELIS where increasing
O achieved the highest Mauve §7.

Fig. 5 shows the effect of varying © on QAM-
PARI. The relationship here is more linear. Increas-
ing O results in fewer clusters with high strength
(high precision). Reducing © results in higher re-
call. ASC-F’s criterion enabled it to select a larger
number of clusters resulting in higher recall. Here
again, one can easily change © to obtain an answer
with preferred qualities.

70
Method
65 «— ASC (varying ©)
® ASC P
60 usc \
® Direct .
vss ‘ \
5 \
T \
=50 \
]
45
40
o
29.5 30.0 30.5 31.0 31.5 32.0
QA-F1

Figure 4: ASQA. Increasing © improves QA-F1, re-
duces Mauve. Adjusting © produces a preferred answer.

. Method
.54 —— ASC (varying ©)
® AsC

25.0 usc
0595 \ ® Direct
220.0 \o\
17.5 ’
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12.5 e
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Precision

Figure 5: QAMPARI. Increasing © improves precision,
reduces recall. Adjusting © produces preferred answer.

4.5 Analysis: Can ASC work with fewer
number of generations? Use Entropy

Cost of generation using an LLM linearly scales
with the number of samples. ASC used a large
number of samples, m = 50 in our earlier exper-
iments. It might not always be feasible to gener-
ate this large number of samples due to time and
budget constraints. In this subsection, we investi-
gated if we could generate fewer samples and yet
capture the gains provided by ASC. While we fo-
cused on QAMPARI for this analysis, we found
similar trends with other datasets as well. We first
looked at how the entropy of the clusters (consider-
ing each cluster to have a probability proportional
to its strength) changes with increasing number of
generations. In the beginning (m = 1), all clusters
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Figure 6: QAMPARI. Performance starts to stagnate
when clusters’ entropy stagnates.

have one member and equal probability. Hence, the
entropy is lower. As and when more samples get
added, some clusters accumulate higher strength
and some others remain low strength. Hence, the
entropy increases due to unequal probabilities of
clusters. We empirically found that entropy starts
to stagnate with higher values of m. To measure
the performance of m samples, we scaled the op-
timal © we found in Table. 2 by £5. We found
that performance follows a similar trend increasing
quickly at the beginning while slowly stagnating.
Performance and Entropy curves values with m
are shown in Fig. 6. Interestingly, performance
starts to stagnate right around when entropy starts
to stagnate. Entropy stagnation can thus be used
as an indication to stop generating more samples
from the LLM and fix m.

4.6 Analysis: Clustering

Clustering being a core component of ASC, we
perform an extensive quantitative and qualitative
analysis over it. Firstly, we try multiple embedding
and clustering methods results of which are shown
in Table 4. Note that the results are consistent
across different choices of embedding models
and clustering methods thus justifying our earlier
choice of embedding models/clustering methods.

Method | Emb. | Clus. | Mauve | Str_EM | QA-F1
usCc |- - 40.19 | 39.05 | 30.88
ASC | SimCSE | Agglom. | 47.01 | 44.1 | 3222
ASC | SimCSE | KMeans | 5525 | 4342 | 31.09
ASC | GTR | Agglom. | 53.66 | 42.61 | 32.14
ASC | GTR | KMeans | 4985 | 43.62 | 3218

Table 4: Different embedding and clustering methods
for ASC. Agglomerative (d=0.15) and Kmeans (K=39)

Quantitative Analysis: Further, for each cluster in
all examples, we pass all constituent atomic facts

Embedding Clustering Purity (%)
Simcseroberta_Large | Agglomerative 97.32
Simcseroberta_Large | KMeans 96.48
GTR5.xx1 Agglomerative 96.23
GTR¢s5-xx1 KMeans 95.04

Table 5: Purity of Different Embeddings and Clustering
Methods. Clustering parameters set to approximately
result in same number of clusters i.e. d=0.15 and K=39.

(sentences in our case) to GPT4 and zero-shot ask
You are given a list of sentences. What percentage
of them convey similar meaning?”’. We parse
a number(%) from this and average it over all
clusters of all examples and present it as Purity in
Table 5. Across different embedding and clustering
methods, we observe high purity of clusters.

Qualitative Analysis: For further qualitative anal-
ysis, we demonstrate clustered example question
from ASQA in Table 9. As can be seen each clus-
ter contains sentences that convey similar mean-
ing. Eventhough the meaning is similar, they might
contain some slightly different facts (E.g. exact
number of goals scores in Cluster 3). Sometimes,
we found that sentences conveying similar meaning
formed more than one cluster - For Ex: Cluster 3
and Cluster 5. We left it for the LLM summariza-
tion step to filter out such repetitions. We pick one
representative from each cluster and sent them to
the LLM for summarization.

4.7 Analysis: Room for improvement

ASQA QAMPARI

Method | #Gen || Str_EM | QA-F1 Rec | Rec-5
1 36.32 22.88 || 13.94 | 24.24

2 40.64 28.05 18.15 | 30.46

Oracle 5 45.65 34.03 || 24.53 | 39.02
15 50.97 39.28 || 32.29 | 48.78

25 53.1 41.29 || 35.86 | 52.76

50 56.09 45.2 40.06 | 56.90

ASC 50 44.1 32.22 |1 20.50 | 33.04

Table 6: Oracle results reveal sizable scope for improve-
ment using our approach of merging multiple responses.

To better understand the gains of ASC, we look
at the best possible performance offered by our
mechanism of merging multiple sample genera-
tions. We use the same 50 generations that were
used to produce the ASC results. Table 6 shows the
best possible performance (Oracle) with the num-
ber of generations. Exact procedure for obtaining
the oracle numbers is described in §A.4.
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The experiment presents interesting observa-
tions. 1. Using just five generations significantly
increases the oracle performance. 2. Oracle’s per-
formance stagnates at a higher number of genera-
tions. Our observations on ASC performance stag-
nating after 20 generations are in line with these
results. 3. ASC only captures 20.50 of the 40.06
possible recall on QAMPARI and 44.1 of the 56.09
possible Str_EM on ASQA. Thus while ASC cap-
tures a fair share of the performance gain offered
by merging multiple generations, a sizable portion
of performance gain still remains untapped. Future
work aims at capturing this potential gain by using
stronger verification methods involving a combina-
tion of ASC with ASC-F and methods in §2.

5 Discussion

5.1 Hallucination Reduction Methods vs ASC

We compared with adaptations of two strong
hallucination reduction methods in FCF, ACF -
FactScore (Min et al., 2023), Self CheckGPT (Man-
akul et al., 2023) respectively. Hallucination reduc-
tion methods like Dhuliawala et al. (2023), Ren
et al. (2023) operate similarly in terms of removing
any hallucinatory facts and retaining correct facts in
the generated answer (improved precision). These
methods lag in recall as shown in Table. 2. In con-
trast, ASC additionally captures authentic content
from other generations which was not included in
the original answer.

5.2 Stochastic Sampling Methods vs ASC

As shown in Fig. 2, merging best subparts of multi-
ple generations has significantly higher scope over
picking the single best generation. Hence, ASC
does better than other stochastic sampling methods
like Ren et al. (2023), USC. Wang et al. (2024b)
although asks to generate a final response based
on the consensus of the stochastic samples, still
presents entire responses to the LLM making it
prone for any hallucinations to seep into the fi-
nal response. ASC on the other hand only presents
authentic atomic facts to the LLM and asks it to
summarize them into a coherent response.

5.3 Runtime Analysis

The exact same number of LLM calls are required
by ASC (50 generation + 1 summarization) and
USC (50 generation + 1 consistent answer picking).
While ASC additionally requires extra compute to
perform clustering, this can be done using smaller

language models on sentences and is less costly.
In contrast, Ren et al. (2023) uses (50 + multiple)
LLM calls to select the best answer and hence is
more expensive. Similarly Wang et al. (2024a)
uses (50 X m) number of LLM calls where m is
the number of atomic facts in the 50 generations.

6 Conclusion

In this work, we propose ASC, a simple way of
merging subparts of multiple answer samples pro-
duced by an LLM. Through extensive experiments
and ablations, we show the 1. Benefits of merg-
ing subparts of multiple answers over picking one
single answer. 2. Strength of consistency as a mea-
sure for improving correctness. ASC significantly
outperforms USC, a strong baseline for generating
long-form answers. We show empirical evidence
for minimizing the number of samples required by
ASC. Finally, our analysis also reveals untapped po-
tential for enhancing long-form generations using
our approach of merging multiple responses.

7 Limitations

Smaller language models not tried Some of the
datasets used in our work are very challenging
and not suitable for smaller language models. To
effectively prove the strength of our approach, we
stuck to ChatGPT, Llama-70b.

Multiple samples still need to be generated
A general limitation of most stochastic sample
based methods. These methods rely on generating
multiple samples and picking the final answer
among them. However, this might be slightly
expensive. Speculative Decoding (Li et al., 2024)
has recently made great strides in reducing the
amount of compute required to sample from Large
Language Models. Speculative decoding can be
used to significantly reduce the compute required
by ASC and USC.

Replicability:
Sourcecode: https://github.com/raghavlite/ASC

Broader Impact and Discussion of Ethics:

While our model is not tied to any specific applica-
tions, it could be used in sensitive contexts such
as health-care, etc. Any work using our method is
requested to undertake extensive quality-assurance
and robustness testing before applying in their
setting. To the best of our knowledge, the datasets
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used in our work do not contain any sensitive
information.

License: Refer to the licenses of individual
training datasets used Stelmakh et al. (2022),
(Rubin et al., 2022), (Malaviya et al., 2023), (Fan
et al., 2019) and LLM models used Touvron et al.
(2023), (Achiam et al., 2023).
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A Appendix

A.1 Implementation Details

For ASC-F, FCF, retrieval, query and document em-
beddings were generated using GTR-TS5-XXL (Ni
et al., 2021) and Wikipedia following (Gao et al.,
2023). In ASC-F, FCF, each cluster/fact used 5 re-
trieved passages for verification. InstructLlama
model from Min et al. (2023) was used to verify
facts in ASC-F,FCF. A fact was called true if at least
1 of the 5 passages supported it. Experiments on

all four datasets were performed with both Chat-
GPT, Llama-3(70b), Llama-2(70b) (Touvron et al.,
2023). In all the experiments, the same LLM is
used to perform both generation and summariza-
tion. Generation and summarization prompts along
with other details are presented in §A.1.

ASC uses hyperparam © tuned over the devel-
opment set to maximise F1-5 for QAMPARI and
QUEST. For ASQA, ELI5, © was chosen such
that the number of selected clusters comfortably
fit the context window of ChatGPT, Llama3. ACF
used the same threshold as ASC in filtering atomic
facts. FCF, USC did not require tuning any hyperpa-
rameters. Clustering parameters were same for all
models that used it.

A.2 Runtime Details

We followed (Gao et al., 2023) to generate 50 re-
sponses from ChatGPT and Llama. We used four
48gb A6000 gpus for all experiments. Generating
responses using ChatGPT was much faster and only
took 3hrs per dataset. Generating the responses
with Llama2/3 was much more challenging and
took 24 hrs per dataset.

As ASC only contains simple clustering steps, it
runs fairly fast with an average of 3hrs per dataset
with ChatGPT. ASC with Llama includes the final
summarizarion step which took 15 hrs on average
over datasets.

A.2.1 Tasks

ASC didn’t use the training set of these datasets.
ASQA (Stelmakh et al., 2022): ASQA is a long-
form factoid dataset comprising ambiguous ques-
tions. The ambiguous nature of the questions re-
quires answers to comprise diverse facts from mul-
tiple documents. The dataset provides individual
reference disambiguating short answers for each
question and also a reference long answer com-
bining all short answers. Evaluation was done on
the eval set (948 examples). Following Gao et al.
(2023), performance on this dataset is evaluated by
1. ‘Str_EM’: checking if reference short answers
have an exact match in the LLM generated answer,
2. ‘QA-F1’: Does an external QA model identify
these short answers from reference disambiguat-
ing questions. Str_Em is very closely related to
the recall of atomic facts relevant to the question.
Additionally, we also present the ‘Mauve’ score
which compares the fluency and style of the model
generated text to the reference answer.
QAMPARI (Rubin et al., 2022): QAMPARI is

12691



ASQA ELI5S
#Clusters | length | Mauve | Str_EM | QA-F1 || #Clus. | length | Mauve | Claims_NIi
Direct 41.88 68 28.71 23.58 84.38 | 46.59 13.98
ACF 2578 | 63.79 28.48 24.73 5820 | 38.22 13.70
Llama2 FCF ) 2871 | 68.22 28.38 24.64 i 66.96 | 35.20 14.57
usc 63.7 63.63 33.16 26.42 115.82 | 35.21 17.70
ASC-F (Ours) 33.57 108.18 | 62.68 39.26 26.54 || 83.42 | 148.30 | 35.25 18.97
ASC (Ours) 12.68 9191 | 70.52 38.82 27.16 14.32 | 143.07 | 28.09 19.40

Table 7: ASQA, ELIS results. ASC does the best on QA-F1 and demonstrates strong Str_EM. ASC-F picks a large
number of clusters and does well on Str_EM. ASC also demonstrates strong Mauve. ASC, ASC-F achieve best
Claims_Nli score on ELIS. Results justify that merging of samples is better than picking one sample.

QAMPARI QUEST

Method || #Pred | Prec | Rec | Rec-5 F1-5 || #Pred | Prec | Rec | Rec-5 | F1 | F1-5

Direct 4.86 13.5 | 925 | 1623 | 1022 | 1447 | 546 | 6.74 | 4.16 | 7.66 | 442 | 6.7

ACF 317 | 1494 | 796 | 13.84 | 9.69 | 13.85 | 3.48 79 | 347 | 634 | 414 | 6.54
Llama2 FCF 3.88 14.1 893 | 1536 | 10.15 | 1422 || 343 | 8.06 | 3.78 | 6.75 | 438 | 6.77

usc 744 | 14.07 | 11.61 | 20.04 | 11.64 | 1599 || 9.36 | 7.76 | 5.4 10.16 | 5.38 | 7.96

ASC-F 27.35 | 10.74 | 18.44 | 29.88 | 11.52 | 144 | 28.07 | 5.63 | 10.64 | 19.08 | 5.81 | 7.67

ASC 6.08 | 14.51 | 12.15 | 20.58 | 12.15 | 1644 || 6.77 | 742 | 552 | 997 | 53 | 7.86

Table 8: ASC outperforms Direct, USC and ASC-F. ASC-F picks a large number of clusters and does worse on P, F1,
F1-5. Results justify that consistency-based cluster selection does better than retrieval-based cluster selection.

a list-style factoid QA dataset constructed from
Wikipedia knowledge graphs and tables with the
questions paraphrased by humans. Performance
over this dataset is evaluated by ‘Precision’, ‘Re-
call’ and ‘F1’ between the generated answer list
and reference answer list. As the reference lists are
often huge, another measure ‘Recall-5’ scores the
answer 100 if at least 5 correct entities are present.
Evaluation was done on the 1000 test set examples.

QUEST (Malaviya et al., 2023): QUEST is another
list-style dataset constructed using Wiki category
lists. This is a much more challenging dataset com-
pared to QAMPARI. Following Dhuliawala et al.
(2023), we transform each category name into a
question by prepending "Name Some". For Eg.
"Name Some Mary Stewart novels". Performance
over this dataset is evaluated by Precision, Recall,
F1 and Recall-5. Evaluation was done on the test
set with 1727 examples.

ELIS (Fan et al., 2019): This is a long-form QA
dataset containing how/why/what questions from
Reddit. Gao et al. (2023) had generated three sub-
claims from each golden answer and showed that
an answer’s entailment score over these sub-claims
provides a more accurate measure of its correct-
ness. We use this same ‘Claim-Recall’ to measure
the correctness of a generated answer in this work.
Similar to Str_EM in ASQA, this again is very re-
lated to the recall of atomic facts relevant for the
question. We use the same randomly sampled 1000
questions from the eval set as Gao et al. (2023).

We use the test sets for QAMPARI, QUEST and
validation sets for ASQA, ELIS.

231 Method

ASC (varying ©)
® ASC

211 usc

® Direct

18 19 20 21 22
Claims_NLI

Figure 7: ELIS. Increasing © improves QA-F1 and re-
duces Mauve. Adjusting © produces preferred answer.

A.3 Results Continued

We additionally present results from Llama2 in
Tables 7 and 8. The trends are exactly similar to
ChatGPT, Llama3 described in the main paper.

A4 Generating oracle Numbers

In both ASQA and QAMPARI, we have access
to reference short answers. Evaluation metrics -
QA_F1 and precision, recall are all built over these
short answers first and then averaged over the entire
dataset. For each of these short answers, we find
the maximum possible metric value among the 50
generations. This maximum value per short answer
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Figure 8: QUEST. Increasing © improves precision,
reduces recall. Adjusting © produces preferred answer.

is averaged over the entire dataset to get the oracle
numbers. For Fig. 2, we use maximum values
at the entire response level rather than at a short
answer level.

A.5 Prompts
A.5.1 Generation Prompts

We used the exact same generation prompts and few
shot exemplars from (Gao et al., 2023) for ASQA,
QAMPARI, ELI5. For QUEST (not analysed by
(Gao et al., 2023)), we used the same prompt as
QAMPARI.

A.6 Summarization Prompt P_.,,,pine

Summarization prompts followed the template
shown below. An example for asqa summariza-
tion with few shot examples is shown later. We
used two shot summarization for both ASQA and
ELIS.

Summarization Template

{task instruction }
Question: {....}
Sentencel: {...}
Sentence2: {...}

Answer: {....}

{task instruction }
Question: {....}
Sentencel: {...}
Sentence?2: {...}

Answer: {....}

{task instruction }
Question: { ....}
Sentencel: {...}

Sentence2: {...}

Answer:

12693

Summarization Prompt Example

Instruction: You are given an ambiguous question
and a few sentences which have some parts of
its answer and some irrelevant content. Remove
irrelevant sentences and combine all relevant
ones i nto a single answer that can address all
interpretations of the question. Do not miss any
minor details relevant to the question. Also, add any
missing details.

Question: Where did bruno live in the boy in the
striped pajamas?

Sentencel: Bruno lived in Germany

Sentence2: Bruno moves to Auschwitz when his
father got promoted.

Sentence3: He is upset about the move.

Sentence4: Bruno liked playing with his friends.
Sentence5: Bruno lives in Berlin.

Sentence6: Bruno discovered a concentration camp
near his new home.

Sentence7: Bruno was an innocent boy.

Answer: Bruno lived in Berlin in Nazi Germany
during World War II. His father Ralf gets promoted,
and relocates the family to Auschwitz (occupied
Poland).

Instruction: You are given an ambiguous question
and a few sentences which have some parts of its
answer and some irrelevant content. Remove irrele-
vant sentences and combine all relevant ones i nto a
single answer that can address all interpretations of
the question. Do not miss any minor details relevant
to the question. Also, add any missing details.
Question: Who played nathan on young and the
restless? Sentencel: Randy Brooks played nathan on
young and restless.

Sentence2: It was played by Lazarre-White in 1994.
Sentence3: He did an amazing job.

Sentence4: Brooks played Nathan.

Sentence5: From 1992, Brooks played nathan.
Sentence6: He was much younger to his predeces-
SOrS.

Sentence7: He was much younger to his predeces-
SOrS.

Sentence8: Audience liked nathan’s portrayal.
Answer: The role was played by Nathan Purdee from
1984 to 1992. Randy Brooks took over in 1992 but
was replaced in 1994 with a younger version of the
character, played by Adam Lazarre-White.

Instruction: You are given an ambiguous question
and a few sentences which have some parts of
its answer and some irrelevant content. Remove
irrelevant sentences and combine all relevant
ones into a single answer that can address all
interpretations of the question. Do not miss any
minor details relevant to the question. Also, add any
missing details.

Question: What’s the marketing strategy of skipping
a number in a numbered line of products?




Question

Who has the highest goals in world football?

Cluster 1

* As of August 2021, the soccer player recognized as having the highest number of goals in world

football is Josef Bican.
As of 2021, the title for the highest goals scorer in world football is held by Josef Bican from
Austria.

Cluster 2

* As of July 2021, the player with the highest number of goals in world football is the Portuguese

forward, Cristiano Ronaldo.

* As of October 2021, the professional footballer who holds the record for the most career goals in

international football is Cristiano Ronaldo of Portugal.

* As of August 2021, Cristiano Ronaldo from Portugal is the player with the highest number of

goals in world football.

Cluster 3

As of September 2021, Lionel Messi holds the record for the most career goals in world football,
with a total of 740 goals in 943 games for club and country.

* The name that currently holds the title of having the most official goals scored in world football

by a male player is Lionel Messi of Argentina, with a total of 756 goals scored as of January
2021.

¢ As of August 2021, Messi has scored a total of 744 goals in his professional career, surpassing

previous record-holder Pele’s 767 career goals.

* As of May 2021, Lionel Messi holds the record for the most goals scored in world football with

a total of 673 goals in his career.

Cluster 4

However, there are differing opinions and methods of calculating all-time goals in soccer, so the
number of goals scored by individual players may vary depending on the criteria used.
However, it is worth noting that determining the "highest goals" can be subjective due to variations
in scoring records and counting methods across different leagues and competitions.

Cluster 5

In club football, the player with the highest number of goals is Lionel Messi of Argentina, who
holds the record for the most goals scored for a single club, with 682 goals for Barcelona.
Lionel Messi, the Argentine forward for FC Barcelona, currently holds the record for the most
goals scored in world football.

* The player with the highest number of goals in world football is currently Lionel Messi, an

Argentine professional footballer who plays for FC Barcelona and the Argentine national team.

Table 9: Qualitative Analysis - Clustering.
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