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Abstract

Recent works often assume that Vision-
Language Model (VLM) representations are
based on visual attributes like shape. However,
it is unclear to what extent VLMs prioritize
this information to represent concepts. We pro-
pose Extract and Explore (EX2), a novel ap-
proach to characterize textual features that are
important for VLMs. EX2 uses reinforcement
learning to align a large language model with
VLM preferences and generates descriptions
that incorporate features that are important for
the VLM. Then, we inspect the descriptions to
identify features that contribute to VLM repre-
sentations. Using EX2, we find that spurious
descriptions have a major role in VLM repre-
sentations despite providing no helpful infor-
mation, e.g., Click to enlarge photo of
CONCEPT. More importantly, among informa-
tive descriptions, VLMs rely significantly on
non-visual attributes like habitat (e.g., North
America) to represent visual concepts. Also,
our analysis reveals that different VLMs priori-
tize different attributes in their representations.
Overall, we show that VLMs do not simply
match images to scene descriptions and that
non-visual or even spurious descriptions signif-
icantly influence their representations. Code:
https://github.com/BatsResearch/ex2

1 Introduction

The ability of contrastive Vision-Language Models
(VLMs) to match related text and images depends
significantly on the content of text descriptions (No-
vack et al., 2023; Radford et al., 2021). Heuristi-
cally, to better identify the related images, humans
seek more detailed information about the physi-
cal appearance of concepts. Many recent works
extend this heuristic to VLMs and augment the
descriptions (also called prompts) with additional
visual information (e.g., shape) to more accurately
identify the related images (Menon and Vondrick,
2023; Yan et al., 2023). However, in practice, even
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Figure 1: Extract: we align Mistral with VLM prefer-
ences and generate descriptions that contain features
that are important for the VLM. Explore: we examine
various aspects of these descriptions to identify features
that contribute to VLM representations.

augmenting the descriptions with random words
improves the performance (Roth et al., 2023), and it
is unclear what factors contribute to VLM concept
representations. Here, we propose a novel analy-
sis method for characterizing textual features that
contribute to the VLM representation of a concept.
Simply put, our goal is to understand how VLMs
encode different concepts.

Despite the growing body of work on various
aspects of VLMs (e.g., sensitivity to word or-
der) (Akula et al., 2020; Ma et al., 2023; Yuksek-
gonul et al., 2022), there is limited understanding
of VLMs’ world knowledge acquired during pre-
training. Yun et al. (2021) show that VLMs and
Large Language Models (LLMs) perform similarly
on language tasks that require knowledge of the
physical world. If VLMs do not learn about the
physical world from images, what do they learn?
Moreover, Yun et al. (2022) show that, the VLM
representation of a concept is often not based on
its visual attributes like color and shape. If not
based on visual attributes, how do VLMs repre-
sent concepts? Our work introduces a new analysis
method for studying such exploratory questions.
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Unlike previous works that focus on a very specific
question, our goal is to explore and characterize
the features that contribute to VLM representations
with the feedback from the VLM itself.

In this paper, we propose Extract and Explore
(EX2), a novel analysis method for understanding
how VLMs represent concepts. Instead of directly
probing the VLM, EX2 uses reinforcement learn-
ing (RL) to align an LLM with VLM preferences.
Our reward function measures the similarity be-
tween the concept description and its images. Thus,
it encourages the LLM to generate descriptions that
incorporate features that are important for the VLM.
Then, we can inspect these descriptions from var-
ious perspectives to identify common factors that
contribute to VLM representations. In this work,
we examine the descriptions to understand how
often VLMs prioritize additional information to
represent concepts and how often this information
explains the physical appearance of concepts.

We use EX2 to analyze seven different VLMs on
six fine-grained classification datasets. The aligned
LLM successfully learns features that are impor-
tant for the VLM and generates descriptions that
achieve better classification accuracy than a set
of generic descriptions. We find that spurious de-
scriptions (e.g., Click to enlarge photo of
CONCEPT) have a major role in VLM represen-
tations despite providing no helpful information
about concepts. More importantly, even when
VLMs prioritize informative descriptions, they sig-
nificantly rely on non-visual attributes1 like habitat
(e.g., North America) to represent visual concepts.
In our fine-grained analysis, we find that different
VLMs represent similar concepts differently, i.e.,
prioritize different attributes. Even the same VLM
prioritizes different attributes for different datasets,
suggesting that extensive experiments across differ-
ent datasets are required to draw conclusions about
VLMs. EX2 is specifically suited to automatically
carry out such analysis on a wide range of exist-
ing classification datasets. Finally, we show EX2’s
application for hypothesis generation and suggest
new research questions based on our findings.

Our findings encourage further work on image-
text pre-training to address VLMs’ reliance on spu-
rious descriptions and the alignment between non-
visual information and images. Moreover, EX2

1Throughout the paper, “attribute” refers to concept at-
tributes like color and shape, while “feature” and “charac-
teristic” refer to properties of descriptions like the type of
information they contain or text style.

provides the future work with a flexible tool to
study the impact of different pre-training methods
and datasets from various aspects. We summarize
our contributions and findings as following:

• We propose EX2, a novel analysis method that
aligns an LLM with VLM preferences in order
to characterize textual features that contribute
to VLM representations.

• We show that EX2 successfully learns features
that are important for the VLM and gener-
ates descriptions that improve the downstream
classification accuracy, highlighting the bene-
fits of adapting to VLM preferences for down-
stream tasks as well as analysis.

• We show that VLMs significantly rely on spu-
rious or non-visual descriptions to represent
visual concepts. We find that different VLMs
prioritize different attributes to represent simi-
lar concepts. Even the same VLM prioritizes
different attributes across datasets, emphasiz-
ing the benefits of EX2’s ability to automati-
cally analyze VLMs on a wide range of exist-
ing classification datasets.

2 Related Work

Reinforcement Learning for Language Models
In recent years, RL has been successfully used
to align LLMs with human preferences, known
as reinforcement learning with human feedback
(RLHF) (Bai et al., 2022; Ramamurthy et al., 2023).
Instead of human preferences, we use similar meth-
ods to Stiennon et al. (2020) and Ziegler et al.
(2019) to align the LLM with VLM’s preferences
for descriptions that it deems more accurate. Un-
like previous methods, we use preference learn-
ing not as our goal but as a tool to understand the
knowledge that VLMs acquire during pre-training.
Vision-Language Models (VLMs) We primarily
focus on contrastive VLMs, which are trained to
push related image-text pairs closer and unrelated
pairs farther in the embedding space (Jia et al.,
2021; Radford et al., 2021). Multimodal language
models (MLMs) are another category of VLMs that
use additional training to incorporate the image fea-
tures into LLMs in order to condition the text gener-
ation on both input text and images (Li et al., 2023a;
Liu et al., 2023). Despite the many advantages of
MLMs, contrastive VLMs are still better suited for
tasks like image classification (Alayrac et al., 2022)
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Figure 2: Extract and Explore (EX2) overview. A) We use RL to fine-tune an LLM to generate concept descriptions
that are closer to the corresponding images in the VLM embedding space, thus, the descriptions incorporate features
that the VLM uses to represent the concepts. We use the aligned LLM to generate the VLM’s preferred description
for all concepts. B) We inspect these descriptions from various aspects, e.g., if they are informative or describe
visual attributes. Based on the aggregate results, we draw conclusions about how the VLM represents concepts.

or creating large search indices for efficient filtering
and retrieval (Schuhmann et al., 2022). Contrastive
VLMs also serve as the backbone for many other
methods or downstream applications like image
manipulation (Patashnik et al., 2021). Even most
MLMs use contrastive VLMs to extract the image
features (Liu et al., 2023). Thus, understanding
how contrastive VLMs represent concepts remains
an important issue that also impacts other types of
VLMs and many downstream applications. We aim
to investigate this question without fine-tuning or
modifying the VLM after pre-training.

Detailed Descriptions for VLMs One line of
work provides VLMs with detailed concept descrip-
tions to improve the classification accuracy (Feng
et al., 2023; Li et al., 2023b; Pratt et al., 2023; Yan
et al., 2023; Yang et al., 2023). For instance, Menon
and Vondrick (2023) suggest augmenting the de-
scriptions with concept attributes. Esfandiarpoor
and Bach (2024) further improve this idea and en-
sure the attributes differentiate the target classes.
However, Roth et al. (2023) question the role of ad-
ditional information and suggest that even adding
random words and characters to descriptions leads
to similar improvements. Here, we propose a novel
model analysis method to study the role of addi-
tional information in VLM representations.

Vision-Language Model Analysis The massive
success of VLMs has sparked an interest in un-
derstanding how they interpret text descriptions.
Previous works have studied VLMs from various
aspects such as the relative importance of verbs and
nouns (Hendricks and Nematzadeh, 2021), VLMs’
sensitivity to word order (Akula et al., 2020), lin-
guistic features of descriptions (Castro et al., 2023),
and, the most popular, their poor compositional
capabilities (Hsieh et al., 2023; Lewis et al., 2022;
Ma et al., 2023; Parcalabescu et al., 2022; Schiappa

et al., 2023; Thrush et al., 2022; Xu et al., 2024).
Although this line of work provides important in-
formation about specific aspects of VLMs’ behav-
ior, our understanding of the world knowledge that
VLMs acquire during pre-training remains limited.
As discussed in Section 1, this becomes even more
important considering that previous works suggest
VLMs’ behavior deviates from the expected re-
sults of vision and language pre-training (Yun et al.,
2022, 2021). Given the importance of concept rep-
resentations (Lovering and Pavlick, 2022; Merullo
et al., 2022; Patel and Pavlick, 2021; Pavlick, 2022),
our goal is to understand what VLMs learn during
pre-training and characterize factors contributing
to their concept representations.

Moreover, we propose a new paradigm for study-
ing VLMs that allows us to conduct such ex-
ploratory analysis. Currently, the most common ap-
proach for VLM analysis relies on custom datasets
that test a specific hypothesis. However, our ap-
proach is compatible with existing classification
datasets and is not tied to a specific hypothesis.
We can even use it to generate new hypotheses
(Section 4.6). There is also a complementary line
of work for understanding VLM representations
in terms of images instead of text (Ghiasi et al.,
2022; Kazemi et al., 2024). For natural language
tasks, Perez et al. (2022) use a similar method,
i.e., LLM alignment, to discover the harmful gen-
erations of other LLMs. We emphasize that our
method is not meant to replace existing VLM anal-
ysis approaches but to provide a complementary
tool that allows for exploratory model analysis.

3 Extract and Explore

Given the large number of textual features that
could contribute to VLM representations (e.g., con-
cept attributes and linguistic patterns), it is very
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costly, if not impossible, to curate and probe VLMs
for an exhaustive set of features. Instead, EX2
learns to automatically generate concept descrip-
tions that incorporate textual features that are im-
portant for the VLM, i.e., Extract VLM’s preferred
descriptions (Fig. 2a). Then, EX2 inspects these
descriptions for common patterns to identify fea-
tures that the VLM uses to represent concepts, i.e.,
Explore VLM’s preferred descriptions (Fig. 2b).

3.1 Extracting VLM’s Preferred Descriptions
A Large Search Space To expand the search space
for potential features, we use LLMs to generate con-
cept descriptions. LLM’s ability to control various
aspects of text generation, such as world knowl-
edge and text style (Jiang et al., 2020; Petroni et al.,
2019), leads to a more thorough search than a pre-
defined set of features. To further expand the search
space, we use 25 different questions to query the
LLM about various aspects of each concept (refer
to Appendix C for the list of question templates).

LLM Alignment with VLM Preferences To
increase the likelihood of VLM’s desired features
in descriptions, we use reinforcement learning to
align the LLM with VLM preferences. Thus, we
define a reward function that gives a higher score to
descriptions that include features that are important
for the VLM. Intuitively, from the VLM’s perspec-
tive, the reward function encourages more accurate
concept descriptions. Since contrastive VLMs like
CLIP are trained to push related text and images
closer, VLMs deem a concept description accurate
if it is close to the embedding of the corresponding
images. Therefore, we define the reward function
as the average cosine similarity between the con-
cept description and concept images.

Specifically, for some description dc and a set of
images Dc for class c, we calculate the reward as:

R(dc) =
1

|Dc|
∑

x∈Dc

τ cos(ΦI(x),ΦT (dc))−βKL ,

where ΦI and ΦT are the VLM image and text
encoders, respectively, τ is a constant scaling fac-
tor, and β is the coefficient for the KL divergence
between the original and current model. The KL
penalty encourages the generation of meaningful
descriptions that we can later analyze and helps
with convergence by constraining the search space.
Since we want to compare the generations across
experiments, we adopt the adaptive KL coefficient
technique of Ziegler et al. (2019) to achieve roughly
similar KL divergences across experiments.

With the 25 questions for all classes as the
LLM input and this reward function, we use the
same method as Stiennon et al. (2020) and Ziegler
et al. (2019), which uses Proximal Policy Optimiza-
tion (Schulman et al., 2017), to update the LLM to
increase the reward score.

Then, for each concept, EX2 uses the aligned
LLM to generate a set of descriptions that are simi-
lar to the corresponding images, i.e., they are the
VLM’s preferred descriptions for the concept.

3.2 Exploring VLM’s Preferred Descriptions

Since the aligned descriptions incorporate features
that are important for the VLM, we inspect these de-
scriptions for desired characteristics to understand
the extent of their contribution to VLM representa-
tions. For instance, we can check if VLMs rely on
attributes to represent concepts or if VLMs are bi-
ased towards a specific text style. We use ChatGPT
(Brown et al., 2020; Ouyang et al., 2022) to auto-
matically inspect the large number of descriptions.

All Descriptions
#2550

Spurious
#1139 (44.7%)

Informative
#1411 (55.3%)

Visual
#512 (36.3%)

Non-Visual
#898 (63.7%)

Figure 3: Breakdown of aligned descriptions for CLIP
on Flowers. CLIP significantly relies on spurious or
non-visual information to represent flower species.

Here, we study VLMs as visual perception tools
that are expected to match the description of a con-
cept’s physical appearance to images of instances
of that concept. Similar to the reward function, our
analysis focuses on the physical appearance of con-
cepts rather than the entire content of individual
images. For many applications, it is undesirable
for models to rely on spurious or non-visual in-
formation. Also see Appendices A.1 and A.2 for
extended discussion. We consider descriptions that
provide no world knowledge about the concept
to be spurious (e.g., click to enlarge photo
of the cat). We consider informative descrip-
tions to be non-visual if they only contain addi-
tional information that is not about the concept’s
physical appearance (e.g., The bobolink is a
North American bird). For example, we find
that CLIP relies significantly on both spurious and
non-visual information to represent flowers, with
45% of descriptions providing no helpful informa-
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VLM Flowers Pets CUB Stanford Dogs Aircrafts Stanford Cars

Temp. EX2 Temp. EX2 Temp. EX2 Temp. EX2 Temp. EX2 Temp. EX2

CLIP 63.31 73.65 84.68 88.34 51.48 53.54 59.59 61.49 21.36 22.89 60.15 60.88
ALIGN 59.44 62.19 82.56 86.86 36.81 39.66 52.38 56.24 12.42 17.04 72.73 74.15
EVA 74.47 79.05 91.80 94.52 74.63 73.52 76.08 79.37 37.08 39.66 91.62 91.22
SigLIP 82.48 86.81 92.10 94.49 61.96 65.33 76.76 78.89 48.21 50.56 90.92 91.22
MetaCLIP 71.44 73.18 87.84 91.42 69.88 69.99 65.50 68.87 37.50 36.72 76.22 76.17
CLIPA 77.13 79.61 91.93 93.87 74.56 76.99 77.19 79.34 39.75 41.31 94.80 94.76
DFN 88.96 88.86 94.33 94.33 87.25 87.78 84.31 85.75 78.76 75.88 96.14 95.78

Table 1: Accuracy of EX2 descriptions. Temp. is the set of 80 generic templates (Radford et al., 2021).

tion and 64% of informative descriptions explain-
ing non-visual attributes (Fig. 3).

The space of potential hypotheses goes beyond
our specific analysis, and we encourage future work
to study other aspects of the aligned descriptions,
such as text style or linguistic patterns. Further-
more, as we show in Section 4.6, the trends in EX2
descriptions provide helpful cues for discovering
new research questions for further investigation.

4 Experiments

In this section, we use EX2 to analyze different
VLMs at three levels (Fig. 3). We first validate
that the LLM learns features that are important for
each VLM, and aligned descriptions improve the
classification accuracy. Second, we show that spu-
rious descriptions contribute significantly to VLM
representations despite providing no helpful infor-
mation. More importantly, at the third level, we
find that VLMs rely significantly on non-visual at-
tributes to represent visual concepts. We discuss
potential correlations between pre-training details
and our findings in Appendix A.3. We conduct a
more fine-grained analysis that reveals even for the
same dataset, different VLMs prioritize different at-
tributes to represent the concepts. Moreover, even
the same VLM prioritizes different attributes for
different datasets. Finally, we show EX2’s appli-
cation for hypothesis generation and suggest new
research questions based on our observations.

4.1 Setup

After RL fine-tuning, we query the LLM with the
same questions used during fine-tuning (Section 3)
and generate 25 descriptions for each concept that
incorporate features that are important for the VLM.
To study VLM preferences, our analysis is only
based on a subset of generated descriptions that

help VLMs better identify the related images and
hence are representative of VLM preferences. We
consider a set of descriptions helpful if they achieve
better image classification accuracy on the corre-
sponding task than the ensemble of 80 generic de-
scriptions used by Radford et al. (2021). Similar
to Radford et al. (2021), we use the 25 generated
descriptions for each concept as a prompt ensem-
ble and use cosine similarity to predict the label for
each image.
Datasets We use six classification datasets for
analysis. CUB200-2011: fine-grained bird species
recognition (Wah et al., 2011). FGVCAircraft:
aircraft model classification (Maji et al., 2013).
Flowers102: fine-grained flower species recogni-
tion (Nilsback and Zisserman, 2008). Oxford IIIT
Pets (Parkhi et al., 2012). Stanford Dogs (Khosla
et al., 2011). Stanford Cars (Krause et al., 2013).
Models We use Mistral-7B as our LLM (Jiang
et al., 2023). We choose seven different VLMs
for our analysis. CLIP (Radford et al., 2021),
ALIGN (Jia et al., 2021), EVA (Fang et al., 2023b),
SigLIP (Zhai et al., 2023), MetaCLIP (Xu et al.,
2023), CLIPA (Li et al., 2023c), and DFN (Fang
et al., 2023a). Refer to Appendix D for details.

4.2 Successful Alignment

We use classification accuracy to verify that the
LLM learns what features contribute to VLM rep-
resentations. In 33 out of 42 experiments, the LLM
successfully learns what features help the VLM to
identify the related images, and the aligned descrip-
tions improve the accuracy compared to the generic
template set (Table 1). Notably, most of the other
nine experiments involve the Stanford Cars dataset
or the DFN model. Although our goal is model
analysis, our results also emphasize the benefits of
adapting to VLM preferences for downstream tasks
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Flowers Pets CUB Stanford Dogs Aircrafts Stanford Cars

CLIP 55.33 61.73 83.50 49.03 57.84 44.47
ALIGN 63.92 68.76 63.66 73.87 65.60 42.88
EVA 1.80 0.00 - 36.60 29.20 -
SigLIP 44.59 18.70 23.06 21.00 5.36 9.96
MetaCLIP 43.06 32.22 26.58 51.40 - -
CLIPA 55.18 26.70 47.84 78.80 6.24 -
DFN - - 0.32 22.90 - -

Table 2: The percentage of informative descriptions for experiments that the LLM successfully learns the VLM
preferences and improves the classification accuracy. Bold numbers are > 25%.

like classification. In the remainder of this section,
we analyze the descriptions for the 33 experiments
where we successfully learn the VLM preferences
to characterize textual features that contribute to
concept representations.

4.3 Informative vs Spurious Descriptions

Heuristically, we expect descriptions to better rep-
resent concepts when they contain additional infor-
mation and make little to no difference otherwise.
To study the role of spurious descriptions in VLM
representations, we inspect if descriptions provide
additional information about concepts.

Spurious descriptions are a major factor in
VLM representations. Table 2 reports the percent-
age of descriptions that provide additional informa-
tion about concepts for the 33 cases in which the
LLM successfully learns the VLM preferences. We
refer to descriptions that provide no additional in-
formation about concepts as spurious (e.g., Photo
of CONCEPT attracted my attention). We ob-
serve that in 10 cases, the improvements are almost
solely driven by spurious descriptions, and there is
no considerable amount of additional information
in descriptions, i.e., <25% of descriptions are in-
formative. In a few of these cases, the LLM learns
to only generate the concept names with some ar-
tifacts, without any helpful information (see Ap-
pendix B for examples). Notably, SigLIP benefits
more from spurious descriptions (5/6 datasets) than
other VLMs. To understand the role of spurious
descriptions in the remaining 23 cases, we separate
the informative and non-informative descriptions
and measure the classification accuracy (Table 3).
Fortunately, VLMs do not solely rely on spurious
descriptions, and in 19 cases, the informative de-
scriptions alone improve the performance. How-
ever, in 16 cases, spurious descriptions alone lead
to a considerable boost in accuracy. In total, in 26

Dataset VLM Temp. Set w/o Info w/ Info

CLIP 63.31 72.19 73.77
ALIGN 59.44 59.39 61.90

Flowers SigLIP 82.48 85.43 87.05
MetaCLIP 71.44 73.44 70.39
CLIPA 77.13 79.36 79.40

CLIP 84.68 87.49 87.90
Pets ALIGN 82.56 85.61 86.54

MetaCLIP 87.84 91.61 90.22
CLIPA 91.93 94.09 92.75

CLIP 51.48 46.50 52.88
CUB ALIGN 36.81 36.99 39.47

MetaCLIP 69.88 69.43 67.88
CLIPA 74.56 75.94 76.73

CLIP 59.59 60.71 60.34
ALIGN 52.38 52.32 55.85

Stanford EVA 76.08 79.41 78.07
Dogs MetaCLIP 65.50 68.54 66.43

CLIPA 77.19 76.82 79.09

CLIP 21.36 23.58 22.17
Aircrafts ALIGN 12.42 14.79 18.09

EVA 37.08 39.09 36.63

Stanford CLIP 60.15 60.17 59.74
Cars ALIGN 72.73 73.54 74.00

Table 3: Classification accuracy of informative (w/ Info)
and spurious (w/o Info) descriptions. First and second
best numbers are in bold and underline.

out of the 33 experiments, spurious descriptions are
either almost solely responsible for the improve-
ments or have a considerable contribution.

4.4 Visual vs Non-visual Information

VLMs are often thought to match images to scene
descriptions. Therefore, it is natural to think of
descriptions of visual attributes, like color, as the
basis for VLM representations and ignore or as-
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sume a negligible role for non-visual attributes like
habitat (e.g., North America). To investigate the
contribution of non-visual attributes to VLM repre-
sentations, we inspect if each informative descrip-
tion provides visual or non-visual information.

VLM Flowers Pets Stanford Dogs

CLIP 36.29 54.82 33.45
ALIGN 56.44 55.66 55.55
EVA - - 30.78
SigLIP 67.46 - -
MetaCLIP - 57.38 45.40
CLIPA 58.71 64.78 60.03

CUB Aircrafts Stanford Cars

CLIP 64.00 10.24 -
ALIGN 18.69 9.82 8.66
CLIPA 39.34 - -

Table 4: Percentage of informative descriptions that
contain visual attributes. Bold numbers are > 25%.

Dataset VLM Temp. Set Vis Non-Vis

CLIP 63.31 66.92 73.54
Flowers ALIGN 59.44 60.61 62.34

SigLip 82.48 86.84 85.10
CLIPA 77.13 79.79 79.22

CLIP 84.68 86.18 87.35
Pets ALIGN 82.56 86.02 85.69

MetaCLIP 87.84 89.51 86.94
CLIPA 91.93 91.06 91.20

CUB CLIP 51.48 53.40 50.36
CLIPA 74.56 73.33 76.42

CLIP 59.59 55.79 60.56
ALIGN 52.38 55.12 53.57

Stanford EVA 76.08 74.37 78.66
Dogs MetaCLIP 65.50 62.73 65.20

CLIPA 77.19 79.07 78.25

Table 5: Classification accuracy of descriptions that
explain visual/non-visual characteristics of the concepts.
First and second best numbers are in bold and underline.

Non-visual descriptions contribute signifi-
cantly to VLM representations. For the 19 cases
in which informative descriptions alone lead to a
considerable improvement, we report the percent-
age of informative descriptions that contain visual
attributes in Table 4. In four cases, non-visual
descriptions are almost solely responsible for the
accuracy boosts, and only a small fraction (<25%)

of informative descriptions contain visual informa-
tion. To study the role of non-visual information
in the remaining cases, we split the informative
descriptions into visual and non-visual categories
and measure the classification accuracy (Table 5).
Although visual information contributes to VLM
representations, in 11 out of 15 cases, non-visual
information alone considerably boosts accuracy. In
total, in 15 out of 19 cases, non-visual informa-
tion is either the dominant factor or contributes
significantly to VLM representations. Even more
concerning, in only four of the 15 cases, descrip-
tions with visual information perform better than
the ones with non-visual information by a consid-
erable margin (>1% accuracy boost).

4.5 Described Attributes Across Different
VLMs and Datasets

To understand how the described attributes change
for different datasets and VLMs, we manually ex-
tract and list the attributes for 50 randomly selected
descriptions for CLIP and ALIGN models on Flow-
ers and CUB datasets (200 in total). Figure 4 shows
the most common attributes in each case. Note that
each description might include multiple attributes.

Different VLMs prioritize different attributes.
We observe that even for the same dataset, different
VLMs represent concepts differently. For instance,
CLIP relies more on “family” and “size” attributes
to represent flowers, while ALIGN relies more on
“parts” and “color” attributes (Fig. 4). To verify that
different VLMs represent concepts differently, we
use the preferred descriptions of one VLM for clas-
sification with the other VLM. Each VLM performs
better with descriptions that include its preferred
attributes, i.e., attributes that contribute more to its
concept representations, confirming the difference
in representations across VLMs (Table 6).

Dataset VLM CLIP ALIGN

Flowers
CLIP 73.65 69.82
ALIGN 61.03 62.19

CUB
CLIP 53.54 51.64
ALIGN 37.45 39.66

Table 6: Cross VLM accuracy on Flowers and CUB
datasets. Rows and columns represent VLMs used for
classification and reward calculation, respectively.

VLMs prioritize different attributes for differ-
ent datasets. The same VLM prioritizes different
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others, 28.1%parts, 26.3%

color, 15.8%
size, 12.3% timing, 8.8%

ALIGN
structure, 8.7%

family, 26.1%others, 26.1%
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CLIP
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(a) Flowers

size, 54.8%
color, 14.5%

parts, 11.3%

behavior, 4.8%
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CLIP

habitat, 45.8%
behavior, 15.3%

size, 13.6%

generic info, 11.9%
color, 6.8% others, 6.8%

ALIGN
habitat, 9.7%

(b) CUB

Figure 4: Most common described attributes for CLIP and ALIGN for CUB and Flowers. Different VLMs prioritize
different attributes to represent concepts. Even the same VLM prioritizes different attributes across datasets.

attributes for representing bird and flower species
(Fig. 4). These results suggest that VLM’s behavior
should be studied on various datasets to draw con-
clusions about their capabilities. EX2 is well suited
to automatically carry out such extensive analysis
on a wide range of classification datasets.

4.6 Applications for Hypothesis Generation

The trends in EX2 descriptions provide help-
ful cues for discovering new research questions.
For instance, we notice that SigLIP descrip-
tions often resemble software instructions or
photo credits (e.g., Click to enlarge image
of CONCEPT). Although WebLi, SigLIP’s pre-
training dataset, is not publicly available, we know
that many of the image-text pairs are created with
OCR (Chen et al., 2023), and perhaps they are more
likely to resemble such specific patterns. Thus, one
potential hypothesis is that OCR, as a data source,
could lead to more model bias towards spurious
patterns. In a preliminary experiment, we engi-
neer three prompt templates that mimic these pat-
terns and use them for classification with CLIP and
SigLIP on Stanford Dogs. The custom templates
improve the accuracy for SigLIP but not for CLIP
compared to the commonly used generic template
(Table 7). Our preliminary results encourage future
work to systematically study the impact of such pat-
terns on SigLIP and other VLMs and investigate the
role of the pre-training dataset in such behaviors,
which could provide valuable insights for creating
the next generation of image-text datasets.

5 Additional Analysis

ChatGPT Accuracy To assess the accuracy of
ChatGPT (Brown et al., 2020; Ouyang et al., 2022)
inspections, we randomly select 50 descriptions
from each of the VLM-dataset combinations (2100
in total) and manually check if they are informative
and contain visual attributes. Then, we compare the
results to ChatGPT responses. ChatGPT correctly
classifies the descriptions most of the time and

Description CLIP SigLIP

A photo of a {class name}. 58.52 77.23

A photo of a {class name}.
Click to enlarge.

58.26 78.24

Below is a picture of
a {class name}. I
obtained this photo from
the following site

58.48 77.75

Click here to view the
photos of a {class name}.

58.46 77.94

Table 7: The accuracy of CLIP and SigLIP on Stanford
Dogs dataset with custom prompt templates.

agrees with our judgment 86.3% and 88.1% of the
time for checking if descriptions are informative
and contain visual attributes, respectively (Table 10
in Appendix F).
KL Penalty Since the KL penalty in the reward
function influences both the accuracy and amount
of helpful information in descriptions, here we
study its impact on our findings. We repeat our
experiments for CUB and Flowers datasets with
a reduced KL penalty. Since we use the adaptive
KL coefficient technique of Ziegler et al. (2019) to
set the trade-off between VLM preferences and KL
divergence, we increase the target KL value in the
adaptive KL coefficient technique from 10 in the
main experiments to 20 for this experiment.

As reported in Table 15 in Appendix E, in most
cases, reducing the KL penalty (i.e., more empha-
sis on VLM preferences) decreases the amount of
helpful information in descriptions, which further
strengthens our findings about the major role of
spurious descriptions in VLM representations.

6 Qualitative Results

Table 8 shows the generated descriptions for CLIP
and SigLIP in response to four sample queries.
Consistent with our previous findings, different
VLMs prefer different types of descriptions for
the same concept. For instance, while CLIP’s pre-
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Query Describe a photo of a
Yellow-billed Cuckoo.

Write a story or narrative
inspired by a photo of a
Acadian Flycatcher.

How does a photo of a
grape hyacinth look like?

How does a photo of a
lenten rose look like?

CLIP
The Yellow-billed cuckool
is a medium-sized bird
with a dark brown to
blackish brown plumage.
The average length of a

The Acadian Flycatcher
is a medium sized bird,
a common spring and
summer migrant in eastern
North America. Acadian
Flycatchers

A grape hyacinth plant
(Muscari sp.) has
two bright blue flowers
at its tip per stalk.
The flowers have small,
colored dots

"## How does a lenten Rose
look?
Lenten rose (Helleborus
spp.) is a perennial
plant native to Europe"

SigLIP
"Photo of a Yellow-billed
Cuckoo. This image was
downloaded from the US
Fish & Wildlife Service
website. Here’s a"

"It’s not until after
I direct your attention
to it that you see the
Acadian Flycatcher.
Before I point it out,"

"Here is a grape hyacinth
photo that I took.
Grape hyacinths look like
quite elegant, pretty and
delicate flowers,"

"A lenten rose is among
my favorite flowers. This
post will show you how a
photo of a lenten rose
looks like. A photo"

Table 8: Aligned descriptions generated in response to four different queries for CLIP and SigLIP.

CLIP SigLIP # Batches
Seen

The Chihuahua is a Mexican dog breed, however, this
breed is not the smallest. The small size is a small
– sized breed,

A Chihuahua is a Mexican dog breed known for its small
size, large ears, and wrinkled skin. It is believed
to be origin

20

## What is a Chihuahua dog?
Chihuahua is a small dog that was originated in the
Chihuah

Chihuahuas are small dogs with a big personality.
The most popular dog breed, Chihuahuas are tireless,
gentle and loyal.

200

## Describe a photo of a Chihuahua dog
A Chihuahua is a small dog that originated in the
Mexican state of

Chihuahuas are my favorite kind of dog, however, this
one is not the most lovely. He is sure of himself –
and that’s

400

## Describe a photo of a Chihuahua dog
A Chihuahua is a small dog breed, named after the
Mexican state of

Here’s a photo of my Chihuahua dog, Ginger who is
quite a lovely dog and is sure to win over everyone’s
love

600

## Describe a photo of a Chihuahua dog
A Chihuahua is a small dog breed, named after the
Mexican state of

Here’s a photo of my Chihuahua dog Huey who passed
away at the age of 16 on 6/10

800

## Describe a photo of a Chihuahua dog
A Chihuahua is a small dog with a short, smooth coat.

Here’s a photo of my Chihuahua dog Huey who passed
away at eleven years old a few years ago –

999

Table 9: Examples of how descriptions change during training for CLIP and SigLIP for the same query.

ferred descriptions explain the visual appearance of
concepts, SigLIP’s preferred descriptions are often
spurious and rarely provide helpful information for
classifying images. See Appendix B for generated
descriptions for other VLMs.

Although we use the same base LLM and fine-
tuning hyperparameters for all experiments, gen-
erated descriptions diverge based on VLM prefer-
ences. Table 9 shows how descriptions change dur-
ing fine-tuning with CLIP and SigLIP rewards. As
expected, in both cases, the LLM initially describes
the general characteristics of a Chihuahua dog. As
fine-tuning progresses, descriptions generated with
CLIP rewards keep explaining what a Chihuahua
dog is but use different attributes throughout fine-
tuning. On the other hand, with SigLIP rewards,
information helpful for identifying images of Chi-
huahua dogs decreases during fine-tuning, and de-
scriptions finally converge to personal stories in-
volving a Chihuahua dog. See Appendix B for
more examples.

7 Conclusion

In this work, we introduce Extract and Explore
(EX2), a novel approach for characterizing features
that contribute to VLM representations. EX2 uses
RL to align an LLM with VLM preferences and
generates descriptions that include features that are
important for the VLM. EX2 then examines the
descriptions to identify the common features that
contribute to VLM representations. Using EX2, we
show that spurious descriptions contribute signif-
icantly to VLM representations despite providing
no helpful information. VLMs also rely signifi-
cantly on non-visual attributes to represent visual
concepts. Moreover, different VLMs prioritize dif-
ferent attributes to represent similar concepts. Even
the same VLM prioritizes different attributes across
datasets. Our results encourage future work to ad-
dress the significant impact of non-visual and spu-
rious information on VLM representations. EX2
provides future work with a flexible tool to study
various aspects of VLM representations.
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Limitations

RL Stability EX2 uses RL to discover the model
preferences. Given the sensitivity of RL algo-
rithms (Andrychowicz et al., 2020; Engstrom et al.,
2020), the generated descriptions should be inter-
preted cautiously. In this work, our conclusions
are based on the sensitivity of VLMs to spurious
and non-visual descriptions, and we use classifi-
cation accuracy to verify their impact on VLMs.
Future work should consider the sensitivity of RL
algorithms and use similar measures to verify their
conclusions. More broadly, considering the ben-
efits of EX2, we encourage future work to study
more robust approaches for learning model prefer-
ences for analysis purposes.

LLM Capabilities Regardless of the optimiza-
tion approach, to successfully align with VLM pref-
erences, the original LLM should be capable of
generating the desired descriptions (e.g., be aware
of the required world knowledge). For instance, in
our early experiments, Llama2-7B (Touvron et al.,
2023) failed to learn helpful features for each VLM.
In this work, we mainly focus on high-level fea-
tures (i.e., the presence of helpful and visual in-
formation), and our results show that our LLM
successfully describes the target classes from var-
ious perspectives. We encourage future work to
further study the role of the LLM, especially for
investigating more nuanced characteristics of the
descriptions, like style or linguistic properties.

ChatGPT as Inspector Although we can use
handcrafted rules to inspect the low-level proper-
ties of descriptions like word frequency or number
of tokens, the same is not possible for high-level
characteristics (e.g., whether description contents
are spurious or non-visual). As a result, we resort
to ChatGPT to inspect the large number of descrip-
tions at scale. We also do a manual evaluation of
the quality of ChatGPT inspections and get reason-
able results (Section 5). However, using ChatGPT
for inspections poses a limitation when it comes
to more nuanced or complex characteristics of de-
scriptions that are challenging for current LLMs to
detect reliably. One potential path for future work
is to train inspector models that check for a specific
characteristic of descriptions. This also introduces
new challenges like collecting training data and
evaluating the customized inspector models.
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Query Accuracy

Informative 86.33
Visual 88.14

Table 10: Agreement rate between ChatGPT and our
manual inspection for informative and visual checks for
500 randomly selected descriptions.

A Discussion

A.1 Analysis Design and Rationale
As discussed in Section 3.2, we consider descrip-
tions to be spurious if they do not provide any
additional information about the concepts beyond
concept names. In other words, descriptions that
do not contain any of the concept attributes are
spurious. Furthermore, we consider informative
descriptions to be non-visual if they do not contain
any attributes related to the physical appearance of
the concepts. Table 11 provides several examples
of this categorization.

In our analysis, we use a specific definition of
spurious and non-visual descriptions and argue that
sensitivity to these types of descriptions is undesir-
able (Section 3.2). Although this is not universally
applicable, VLMs that do not take into account spu-
rious and non-visual information are desirable for
many applications. For example, we can efficiently
adapt such VLMs to new classification tasks by
just describing the concepts’ visual appearance to
achieve good performance, eliminating the need
for expensive prompt tuning or prompt engineer-
ing to find model-specific prompts that boost the
performance. Another example is more reliable
deployment in practice. Ideally, we want the same
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behavior in response to user instructions (e.g. pour
the coffee beans in the bag) regardless of the varia-
tion in users’ phrasing and wording (i.e., instances
of spurious correlations) or the presence of non-
visual information (e.g., the smell of coffee beans).

We emphasize that the definition of characteris-
tics and whether they are desirable is decided by
the user and not restricted by EX2.

A.2 Concept-level Analysis
In this work, we analyze VLMs at the concept
level rather than the image level. We calculate our
reward score for each concept rather than a sin-
gle image, i.e., the reward is calculated over a set
of 250 images for each concept. Similarly, our
definition of spurious and non-visual descriptions
focuses on the concept in the images and not the en-
tire scene (e.g., the background). The insights from
our concept-level analysis are important for many
applications, such as the ones mentioned in Ap-
pendix A.1. We encourage future work to also
conduct an image-level analysis of VLMs. Such
analysis is especially important to understand how
VLMs perceive more complex scenes, like the rela-
tion between multiple objects in the image (Lewis
et al., 2022).

A.3 Correlation between Findings and
Training Details

Our observations suggest a correlation between
training data and our findings. For instance, CLIP,
MetaCLIP, and DFN have similar (but not identical)
training setups, except for the training data, where
MetaCLIP attempts to recreate CLIP’s pre-training
data. As a result, we observe that MetaCLIP pri-
oritizes informative descriptions more often than
DFN but less often than CLIP (Table 2). SigLIP
is another interesting case. Unlike other VLMs,
SigLIP’s training dataset, WebLI, uses OCR results
as text descriptions. We observe that compared to
other VLMs, SigLIP benefits more often from spu-
rious descriptions. Also in Section 4.6, we show
that SigLIP is biased towards spurious patterns that
are expected in OCR data.

We do not make any claims about correlation
between specific properties of training data and
our findings. Such a conclusion requires exten-
sive and systematic experiments that train multiple
variations of the same VLM and control for other
training details. We believe EX2 is well-suited to
provide insights and generate new hypotheses that
guide such extensive analysis and hope it helps fu-

ture work to study the impacts of training data on
VLMs.

B Qualitative Observations

Descriptions for different VLMs. Table 16
shows the generated descriptions for different
VLMs in response to four sample queries. Con-
sistent with our findings, we observe that different
VLMs prefer different descriptions for the same
concept.

Name-only descriptions. For several VLM-
dataset combinations, the LLM learns to rely more
on concept names rather than coherent English sen-
tences. In these cases, the ratio of informative de-
scriptions is very small (Table 2). In Table 12, we
provide examples of such descriptions for VLM-
dataset combinations with less than 10% informa-
tive descriptions in Table 2.

Descriptions throughout training. Although
we use the same LLM to learn the preferences of all
VLMs, the LLM adapts according to VLM prefer-
ences throughout training. In Tables 13 and 14, we
show how LLM descriptions change during train-
ing for two different VLMs in response to the same
query.

C Implementation Details

We use the same hyperparameters as Ziegler et al.
(2019) used for style tasks, which are also the de-
fault hyperparameters in TRL library 2 that we use
in our experiments. We change the batch size to
32 and accumulate the gradients every eight steps.
For the adaptive KL algorithm, we use a target KL
of 10. To reduce computational requirements, we
only use 256 images per class to calculate the re-
ward for each description during training. To be
able to train large models on a single GPU, we
use 8-bit Q-LORA with rank r = 16 (Dettmers
et al., 2024). Each experiment requires about 36
GPU hours for training on a single A6000 card
with 48GB of memory.

C.1 Prompting Details

To search a diverse set of descriptions, we use the
25 question templates in Table 20 to query the LLM
to describe various aspects of the target concepts.

We use ChatGPT (gpt-3.5-turbo-1106 3) to
inspect the large number of descriptions. We use
the prompt templates in Table 17 and Table 18 to

2https://huggingface.co/docs/trl/index
3https://openai.com/blog/openai-api
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check if each description is informative and if it
explains the visual attributes of the target concept,
respectively.

D Models

We use Mistral-7B as our LLM (Jiang et al., 2023).
We choose seven different VLMs for our analysis.
In parentheses, we mention the vision transformer
backbone for each model (Dosovitskiy et al., 2021).
CLIP is trained with a contrastive loss on a pri-
vate dataset of 400M image-text pairs (Radford
et al., 2021) (ViT-B-32). ALIGN is also trained
with a contrastive loss (Jia et al., 2021), and we
use a checkpoint trained on CoYo (Byeon et al.,
2022) (base 4). EVA (Fang et al., 2023b) is trained
on Laion400M (Schuhmann et al., 2022) to recon-
struct the CLIP features (ViT-g-14). SigLIP (Zhai
et al., 2023) is a CLIP model that uses a sigmoid
loss instead of softmax and is trained on WebLi
dataset (Chen et al., 2023) (ViT-B-16). MetaCLIP
attempts to recreate the CLIP pre-training dataset
and uses it to train a similar model (Xu et al., 2023)
(ViT-B-16). CLIPA is a CLIP model that uses in-
put masking to improve efficiency (Li et al., 2023c)
and is trained on the Laion400M dataset (ViT-H-14-
336). DFN (Fang et al., 2023a) uses a data filtering
network to filter DataComp1B (Gadre et al., 2023)
and trains a CLIP model on the resulting dataset
(ViT-H-14-378).

E KL Penalty Analysis

To understand the impact of the KL penalty in the
reward function on the aligned descriptions, we
repeat our main experiments for CUB and Flow-
ers datasets but relax the KL penalty. As reported
in Table 15, reducing the KL penalty (i.e., more em-
phasis on VLM preferences) decreases the amount
of helpful information in descriptions, which fur-
ther strengthens our findings about the significant
role of spurious information in VLM representa-
tions.

F ChatGPT Accuracy

In Table 10, we report the rate of agreement be-
tween ChatGPT and our manual inspection for in-
formative and visual description checks.

4https://huggingface.co/kakaobrain/align-base
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Description Spurious Non-visual Visual

This photo of a camellia is an underly realistic representation
of its real-life counterpart.

✓

This is a picture of globen thistle. Your assigned task is
to explain as thoroughly as you can what this picture of the
globe thistle represents

✓

A primula in the morning glow of the sunlight. A photo that
has instigated many a point of view from numerous people.

✓

The Downy Woodpecker is one of several species that I see quite
frequently birding in and around my home.

✓

It isn’t too common to see an Indigo Bunting around our
neighborhood as they generally don’t spend too much time in
one place,

✓

The Laysan Albatross is a fascinating bird. I have had the
privilege of seeing this bird on only a few occasions,

✓

I found this picture of a giant white arum lily. I have
personally never found an arum lily, let alone even close to
this size and

✓

The bobolink, is a North American bird. Bobolinks are very
common in U.S. and Near‚bobolinks, are rarely

✓

There are many varieties of hummingbirds in North America. ✓
English Cocker Spaniels are an intelligent, determined and
energetic dog that excels in a number of task activities.

✓

American bulldogs are amazing dogs that are gentle, smart, and
playful.

✓

A primula is a flower that can be found in the cooler
temperatures of winter and Spring.

✓

The Red-headed woodpecker has black and white coloration, a
tightly marked undertail and a small crest.

✓

The Winter Wren is small, slitty, round-tailed and is covered
with brown and grey eyes.

✓

A British Shorthair is round, short-haired cat with a muscular
body and luxurious fuzzy fur.

✓

Bassett hounds are breed of dogs famous for big drop ears and
hung short legs.

✓

Pelargoniums are a type of flowering shrub characterized by
their distinctly round leaves and rather whispy stems.

✓

Table 11: Examples of spurious, non-visual, and visual descriptions.
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VLM Dataset Description

EVA
Flowers

Pink-yellow dahlia, dahlia, dahlia, dahlia, dahlia, dahlia, dahlia

## thorn apple
### thorn apple
#### thorn apple
##### thorn apple
###### thorn apple

Pets
A Havanese

A keeshond

SigLIP
Aircrafts

McDonnell Douglas DC-9-30 airplane
McDonnell Douglas DC-9-30 aircraft, Photos, Hugh 2

## Boeing 747-100 Aircraft Specifications
The Boeing 747-100(650

Cars
### A Photo of a 2012 Toyota 4Runner SUV
The image shows a 2012 Toyota 4

## A photo of a 2007 Chevrolet Monte Carlo Coupe
A photo of a 2007 Chevrolet

CLIPA Aircrafts
Embraer EMB-120
The Embraer EMB-120
The Embraer EMB-12

## McDonnell Douglas MD-87
McDonnell Douglas MD-87. Credits: Wikipedia
The McDon

DFN CUB
Canada Warbler Photo 1
Canada Warbler Photo 2
Canada Warbler Photo 3
Canada Warbler Photo 4

Worm-eating Warbler 1
Worm-eating Warbler 2
Worm-eating Warbler 3

Table 12: Examples of name-only descriptions generated by the LLM.
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CLIP SigLIP
# batches

seen

The Chihuahua is a Mexican dog breed,
however, this breed is not the smallest.
The small size is a small – sized breed,

A Chihuahua is a Mexican dog breed known
for its small size, large ears, and
wrinkled skin. It is believed to be origin

20

## What is a Chihuahua dog?
Chihuahua is a small dog that was bred in
the United Kingdom.

A Chihuahua´s eyes are wide, curious and
lively. Sometimes the head of a small
Chihuahua is flat.

100

## What is a Chihuahua dog?
Chihuahua is a small dog that was
originated in the Chihuah

Chihuahuas are small dogs with a big
personality. The most popular dog breed,
Chihuahuas are tireless, gentle and loyal.

200

## What Is a Chihuahua Dog?
- A Chihuahua dog is small, thin, and cute.
- They

Chihuahuas are tiny dogs with a big spirit.
The most popular dog breed, Chihuahuas are
small, but have big personalities

300

## Describe a photo of a Chihuahua dog
A Chihuahua is a small dog that originated
in the Mexican state of

Chihuahuas are my favorite kind of dog,
however, this one is not the most lovely.
He is sure of himself – and that’s

400

## Describe a photo of a Chihuahua dog
A Chihuahua is a small dog breed which
originates from the state of

Chihuahuas are tiny dogs! Look at them on
the photo!
If you don’t know what a Chihuahua dog

500

## Describe a photo of a Chihuahua dog
A Chihuahua is a small dog breed, named
after the Mexican state of

Here’s a photo of my Chihuahua dog, Ginger
who is quite a lovely dog and is sure to
win over everyone’s love

600

## Describe a photo of a Chihuahua dog
A Chihuahua is a small dog. According to
the American Kennel Club

Here’s a photo of my Chihuahua dog, Ginger
who is quite a lovely dog and is sure to
win over everyone’s love

700

## Describe a photo of a Chihuahua dog
A Chihuahua is a small dog breed, named
after the Mexican state of

Here’s a photo of my Chihuahua dog Huey
who passed away at the age of 16 on 6/10

800

## Describe a photo of a Chihuahua dog
Chihuahua dogs are among the best-known
dogs in the world.

Here’s a photo of Rachel’s Chihuahua. I
chose this photo because there is older
one but this one is of particular Chih

900

## Describe a photo of a Chihuahua dog
A Chihuahua is a small dog with a short,
smooth coat. There

Here’s a photo of my Chihuahua dog Huey
who passed away at eleven years old a few
years ago –

999

Table 13: Examples of how descriptions change during training for CLIP and SigLIP for the same query. For CLIP,
the LLM attempts to describe a Chihuahua dog in all steps but the type of information in descriptions change during
training. However, for SigLIP, the LLM first starts by describing a Chihuahua dog but then converges to generating
personal stories about Chihuahua dog as a pet.
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CLIP SigLIP
# batches

seen

The African hunting dog, also known as
the African wild dog or Painted Dog, is a
graceful and beautiful breed. The African
hunting dog is a type

The african hunting dog (Lycaon pictus),
also known as the painted dog, is a
medium-sized hunting canine native to
Africa

20

## The African Hunting Dog – A Look at the
The African hunting dog is a breed of dog
that is known for its hunting abilities.
The African

The African hunting dog is the tallest
breed of dog. It has a tufted tail and
a white coat that may have patterns, and
its eyes may

100

## The African Hunting Dog – A Look at the
The African hunting dog is a unique and
interesting breed of dog that is native
to Africa. They

1. If you don’t have a image of an african
hunting dog you can use one from the
internet (e.g., shapingdog

200

## The African Hunting Dog – A Look at the
Hunting Dogs of Africa
The African hunting dog is a type of
hunting dog. They are

The African hunting dog (Lycaon pictus) is
not very long in length, but it is rather
large in weight. As strong as woods are

300

## Introduction to African Hunting Dogs
African Hunting Dogs are one of the most
interesting and also adorable dog breeds.
They

The African hunting dog (Lycaon pictus) is
not very long in length, but it is rather
large in stature. The hound stands

400

1. Introduction of the African hunting
dog
The African hunting dog is a wild canid
that lives in Africa and also adapts
perfectly to different types

Of the photos of African hunting dogs that
I have found, the photo below stood out
to me. It is a photo of an African hunting
dog in the field

500

1. Introduction of the African hunting
dog:
The African hunting dog is a canid that
lives in Africa. It is known for its
shaggy

The picture that I chose pictures an
African hunting dog and the first thing
that I noticed from this picture was how
the belly of the dog was hanging out while
the

600

1. Introduction of the African hunting
dog
The African hunting dog is a medium-sized
dog that weighs around 10-30 pounds and

I found a photograph of an African Hunting
Dog on Google I thought was half good
and half bad. I was trying to find a
photograph that didn’t

700

1. Introduction of the African hunting
dog
The African hunting dog is a wild canid
that lives in Africa and also adapts
perfectly to different types

This photograph features a African hunting
dog. The composition in the photograph is
lacking as it seems somewhat chaotic. I
do, however, quite like the quick crop

800

## Introduction to African Hunting Dogs
African Hunting Dogs are one of the most
interesting and also adorable animals on
the continent.

Today we will be critiqueing our African
hunting dog. Below is a link to a
photograph of the dog.
African hunting dog.

900

## The African Hunting Dog – A Perfect
Motion
The African Dog is a very unique animal.
It is known for its ability to run at very

Here is an example photograph of an
African hunting dog.
Click here to see visualization as it
needs to as well.
Permission and credits:

999

Table 14: Examples of how descriptions change during training for CLIP and SigLIP for the same query. For CLIP,
the LLM attempts to describe an African hunting dog in most steps but the type of information in descriptions
change during training. However, for SigLIP, the LLM first starts by describing an African hunting dog but then
converges to generating spurious information like the download link for an image of an African hunting dog.
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Flowers CUB

Original KL Relaxed KL Original KL Relaxed KL

Acc w/ Info Acc w/ Info Acc w/ Info Acc w/ Info

CLIP 73.65 55.33 68.92 44.08 53.54 83.50 53.75 90.04
ALIGN 62.19 63.92 63.99 60.47 39.66 63.66 39.68 67.88
EVA 79.05 1.80 78.68 0.16 73.52 0.04 75.35 0.12
SigLIP 86.81 44.59 86.45 41.76 65.33 23.06 67.09 9.90
MetaCLIP 73.18 43.06 74.53 17.73 69.99 26.58 68.43 0.20
CLIPA 79.61 55.18 81.20 61.61 76.99 47.84 77.10 36.78
DFN 88.86 11.69 89.06 3.73 87.78 0.32 87.92 0.00

Table 15: Classification accuracy and percentage of informative descriptions for Flowers and CUB with relaxed KL
penalty (target KL of 20 instead of the original 10 in main experiments). In most cases, reducing the KL penalty (i.e.,
more emphasis on VLM preferences) decreases the number of informative descriptions, which further strengthens
our conclusions about the significant role of spurious descriptions in VLM representations.

Query Describe a photo of a
Yellow-billed Cuckoo.

Write a story or narrative
inspired by a photo of a
Acadian Flycatcher.

How does a photo of a
grape hyacinth look like?

How does a photo of a
lenten rose look like?

CLIP The Yellow-billed cuckool
is a medium-sized bird
with a dark brown to
blackish brown plumage.
The average length of a

The Acadian Flycatcher
is a medium sized bird,
a common spring and
summer migrant in eastern
North America. Acadian
Flycatchers

A grape hyacinth plant
(Muscari sp.) has
two bright blue flowers
at its tip per stalk.
The flowers have small,
colored dots

"## How does a lenten Rose
look?
Lenten rose (Helleborus
spp.) is a perennial
plant native to Europe"

ALIGN The Yellow-billed cuckoo
is a common bird during
the spring and summer
season. They live
throughout the Eastern
and Middle United States,
diving primarily

"The Acadian Flycatcher
is a common summer
resident of the forested
areas of central and
eastern Canada.
Before I saw it in
person,"

A grape hyacinth is a
beautiful flower that
grows in the early spring.
It has a bell-shaped
flower that is blue or
purple colored.

A lenten rose flower is
an unusual flower that
looks like a butterfly
when closed, and like a
wonder flower when fully
open, you can see its

EVA Yellow-billed Cuckoo,
Yellow-billed Cuckoo,
Yellow-billed Cuckoo,
Yellow-billed Cuckoo

Acadian Flycatcher,
Acadian Flycatcher,
Acadian Flycatcher,
Acadian Flycatcher,
Acadian Fly

### Grape hyacinth, grape
hyacinth, grape hyacinth,
grape hyacinth, grape
hyacinth

## Lenten Rose, Lenten
Rose, Lenten Rose, Lenten
Rose, Lenten Rose, Lenten
Rose

SigLIP "Photo of a Yellow-billed
Cuckoo. This image was
downloaded from the US
Fish & Wildlife Service
website.
Here’s a"

"It’s not until after
I direct your attention
to it that you see the
Acadian Flycatcher.
Before I point it out,
the"

"Here is a grape hyacinth
photo that I took.
Grape hyacinths look like
quite elegant, pretty and
delicate flowers,"

"A lenten rose is among
my favorite flowers. This
post will show you how a
photo of a lenten rose
looks like.
A photo"

MetaCLIP "Yellow-billed cuckoo
The Yellow-billed cuckoo
is next on the list of
birds that has captured my
attention and become"

It’s funny how an Acadian
Flycatcher is like a blur.
I’ve seen one, but you
really don’t notice it so

"A grape hyacinth is a
beautiful perennial plant
that can be grown indoors
or outdoors.
The common photocopy of
the"

Did you know that lenten
Rose is one of the
first flowers to bloom in
spring? Just take a look
at this photo, you can see
its

CLIPA The Yellow-billed cuckoo
is a distinctive bird
that can be found in the
forested regions of the
Southwest. Even though
it’s a

The Acadian Flycatcher is
a small bird that is gray
above with a white belly.
It has a gray bill and
black eye ring. However,

A photo of a grape
hyacinth. The grape
hyacinth is a bulb plant
perennial with a height of
between 6 and

A lenten rose flower is
an unusual flower that
doesn’t look at all like
a rose. It is short,
bell-shaped, and looks
like

DFN "Yellow-billed Cuckoo
Photos Yellow-billed
Cuckoo Photos
Yellow-billed Cuckoo
Photos"

"Acadian Flycatcher
Acadian Flycatcher
Acadian Flycatcher
Acadian Flycatcher "

"A photo of a grape
hyacinth.
# How does a photo of a
grape hyacinth look like?
How does the"

"Did you know that lenten
Rose is one of the
most common plants during
springtime? I’m sure
you have seen lenten rose
flowers"

Table 16: Aligned descriptions generated in response to four different queries for various VLMs.
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Type Content
System You are a knowledgeable teacher. Answer the questions in JSON format.
User You want to explain what a tench is to your students. Does the following text

snippet mention any specific details about tench that increases your students’
knowledge about tench? Answer yes or no. Provide an explanation for your answer.

Text snippet: A photo of a tench, with dark green color.
Assistant {

"explanation": "It teaches the students about the color of a tench.",
"increases_knowledge": "Yes"
}

User You want to explain what a {Class Name} is to your students. Does the following
text snippet mention any specific details about {Class Name} that increases your
students’ knowledge about {Class Name}? Answer yes or no. Provide an explanation
for your answer.

Text snippet: {Description}

Table 17: Prompt template for ChatGPT to determine if a description provides additional information about the
corresponding concept.

Type Content
System You are a knowledgeable teacher. Answer the questions in JSON format.
User You want to explain to your students how a tench looks like. Does the following text

snippet mention any specific information that describes the physical appearance
of a tench which helps your students recognize a tench when they see it? Answer
yes or no. Provide an explanation for your answer.

Text snippet: A photo of a tench, with dark green color.
Assistant {

"explanation": "It describes the color, which helps recognize a tench.",
"provides_visual_description": "Yes"
}

User You want to explain to your students how a {Class Name} looks like. Does the
following text snippet mention any specific information that describes the physical
appearance of a {Class Name} which helps your students recognize a {Class Name}
when they see it? Answer yes or no. Provide an explanation for your answer.

Text snippet: {Description}

Table 18: Prompt template for ChatGPT to determine if a description explains the physical appearance of the
corresponding concept.
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CLIP 2550 1139 1411 898 512 925 353 571 254 313 5000 825 4175 1502 2672
ALIGN 2550 920 1630 710 920 925 289 636 281 354 5000 1817 3183 2585 595
EVA 2550 2504 46 - - 925 925 0 - - 5000 - - - -
SigLIP 2550 1412 1137 369 767 925 752 173 - - 5000 3846 1153 - -
MetaCLIP 2550 1452 1098 - - 925 627 298 125 171 5000 3670 1329 - -
CLIPA 2550 1143 1407 581 826 925 678 247 87 160 5000 2608 2392 1451 941
DFN 2550 - - - - 925 - - - - 5000 4984 16 - -

Stanford Dogs Aircrafts Stanford Cars
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CLIP 3000 1528 1471 979 492 2500 1053 1446 1297 148 4900 2721 2179 - -
ALIGN 3000 780 2216 985 1231 2500 860 1640 1479 161 4900 2799 2101 1919 182
EVA 3000 1902 1098 759 338 2500 1770 730 - - 4900 - - - -
SigLIP 3000 2370 630 - - 2500 2366 134 - - 4900 4412 488 - -
MetaCLIP 3000 1458 1542 841 700 2500 - - - - 4900 - - - -
CLIPA 3000 633 2364 941 1419 2500 2344 156 - - 4900 - - - -
DFN 3000 2312 687 - - 2500 - - - - 4900 - - - -

Table 19: Breakdown of the number of informative and spurious descriptions as well visual and non-visual
descriptions for experiments in which LLM-generated descriptions perform better than the generic template set.
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Describe a photo of a CLASS NAME.

How does a photo of a CLASS NAME look like?

What are useful visual features for distinguishing a CLASS NAME in a photo?

Write a caption for an image of a CLASS NAME.

Describe the distinguishing visual characteristics of a CLASS NAME.

Describe a CLASS NAME.

How can one distinguish the images of a CLASS NAME?

Write a sentence about the visual characteristics of a CLASS NAME.

What are some unusual or creative ways to capture a CLASS NAME in a photo?

What is the typical composition or framing of a CLASS NAME in photography?

Write a poem inspired by the visual characteristics of a CLASS NAME.

Write a short story inspired by a photo of a CLASS NAME.

Critique a photo of a CLASS NAME and provide suggestions for improvement.

Interpret the symbolism in a photo of a CLASS NAME.

Compare and contrast the visual characteristics of different CLASS NAME.

What is the significance of the CLASS NAME in photography?

Identify the key elements or objects in a photo of a CLASS NAME and explain
their significance.

Research and find examples of different styles or approaches to photographing
a CLASS NAME and analyze their effectiveness.

Write a story or narrative inspired by a photo of a CLASS NAME.

Write a short story using a CLASS NAME as the main subject.

Analyze the composition of a photo featuring a CLASS NAME.

Write a review of a photography exhibit featuring images of CLASS NAME.

Write a critique of a photograph featuring a CLASS NAME analyzing its
composition, lighting, and overall effectiveness.

Write a review of a photograph featuring a CLASS NAME and its artistic merit.

Critique a photo of a CLASS NAME and provide constructive feedback for
improvement.

Table 20: Diverse question templates to query the LLM to explain various aspects of each concept.
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