
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 8101–8112
November 12-16, 2024 ©2024 Association for Computational Linguistics

Language-to-Code Translation with a Single Labeled Example

Kaj Bostromα∗, Harsh Jhamtaniβ , Hao Fangβ , Sam Thomsonβ , Richard Shinβ ,
Patrick Xiaβ , Benjamin Van Durmeβ , Jason Eisnerβ , Jacob Andreasβ

αUniversity of Texas at Austin βMicrosoft

Abstract

Tools for translating natural language into code
promise natural, open-ended interaction with
databases, web APIs, and other software sys-
tems. However, this promise is complicated
by the diversity and continual development
of these systems, each with its own interface
and distinct set of features. Building a new
language-to-code translator, even starting with
a large language model (LM), typically re-
quires annotating a large set of natural lan-
guage commands with their associated pro-
grams. In this paper, we describe ICIP (In-
Context Inverse Programming), a method for
bootstrapping a language-to-code system us-
ing mostly (or entirely) unlabeled programs
written using a potentially unfamiliar (but
human-readable) library or API. ICIP uses a
pre-trained LM to assign candidate natural lan-
guage commands to these programs, then iter-
atively refines the commands to ensure global
consistency. Across nine different applica-
tion domains from the Overnight and Spi-
der benchmarks and text-davinci-003 and
CodeLlama-7b-Instruct models, ICIP outper-
forms a number of prompting baselines. Indeed,
in a “nearly unsupervised” setting with only a
single annotated program and 100 unlabeled
examples, it achieves up to 85% of the perfor-
mance of a fully supervised system.

1 Introduction

Even with the growing capability and flexibility
of language models (LMs), many tasks in NLP
are best solved by translating language into a pro-
gram or another formal representation. The pro-
gram might query a database (Zelle and Mooney,
1996), carry out a request (Semantic Machines
et al., 2020), call an external tool (Schick et al.,
2023), or assist with a programming task (Maddi-
son and Tarlow, 2014). Modern LMs can predict
programs from natural language amazingly well

∗Correspondence to kaj@cs.utexas.edu.

SELECT * FROM city WHERE pop >
10000 AND county = “Jefferson”

LM Labeling LM Parsing

Find cities in Jefferson county with
population over 10,000.

Few-shot prompt Few-shot prompt

command

program

command

program

command

program

Labeled program

Unlabeled programs

Figure 1: Overview of our approach. Starting with zero
or more seed programs labeled with natural language
commands, and a collection of unlabeled programs, we
label programs with commands using a pre-trained lan-
guage model, choosing commands that lead the LM
to re-generate the target program with high probabil-
ity. These automatically labeled programs are used as
input to the next round of labeling, and finally used as
in-context examples for a semantic parser.

when these programs look like ones that appeared
in the training data (Chen et al., 2021; Chai et al.,
2023). LMs can even learn new language-to-code
mappings in context, given enough labeled data to
prompt them with examples that demonstrate the
relevant associations (Austin et al., 2021).

However, program generation is a moving tar-
get: APIs, databases, and even programming lan-
guages themselves are constantly changing, and we
often find ourselves without convenient natural lan-
guage descriptions or instructions for a given task,
even if we have examples of working programs or
an API reference. For example, we might wish
to enable users to interact with new databases, or
enable developers to equip LMs with new tools,
or enable code autocomplete with a newly devel-
oped library, without requiring database-, tool-, or
language-specific data annotation. How can we
automate language-to-code translation for an unfa-
miliar type of code?

This paper introduces ICIP (In-Context Inverse

8101

Programming), a method for using LMs to perform
“nearly unsupervised” language-to-code translation
for new APIs and libraries. The key insight
motivating ICIP is that most code is meant to be
readable, and human programmers can often un-
derstand and describe an unfamiliar program even
before they have the skills to write that program on
their own. By using an LM to generate candidate
natural language commands of a large collection
of programs, then refining these commands toward
global consistency, it is possible to bootstrap a large
library of (language, program) pairs even when
starting with mostly unlabeled programs as input
(Fig. 1). Once labels are inferred, these labeled
programs may be used to prompt or fine-tune an
ordinary LM-based language-to-code model. More
formally, ICIP treats natural language commands
as latent variables, and performs local search to
incrementally optimize the joint likelihood of a
collection of programs under a prompted LLM.

ICIP builds on a large body of semi-supervised
approaches to semantic parsing (Yin et al., 2018;
Zhong et al., 2020). Like them, it uses cycle-
consistency losses to assign consistent natural lan-
guage labels to unlabeled programs. But large-
scale LM pre-training enables qualitatively differ-
ent learning procedures for new languages and li-
braries. First, the non-parametric nature of learning
in prompted LMs means that improved program
labels immediately translate into improved label-
ing and parsing of other examples; second, LMs’
ability to generate plausible program descriptions
in a zero-shot fashion means that we can start with
considerably less labeled data than past work.

Results on two English language-to-code
benchmarks spanning nine application domains
(Overnight, Wang et al., 2015, and Spider, Yu
et al., 2018) and two LMs (text-davinci-003,
Brown et al., 2020 and CodeLlama-7b-Instruct,
Roziere et al., 2023) show that ICIP improves over
ordinary one- and many-shot prompting by as much
as a factor of four, achieving as much as 85% of
the accuracy attained by a fully supervised model
when starting with only one labeled example and
100 unlabeled ones. ICIP is robust to several vari-
ations in the problem setting: it gives reasonable
performance even with no unlabeled examples, and
with drastic changes to program syntax.

In summary, this paper describes (1) a new
method for “nearly unsupervised” text-to-code
translation in LMs based on iterative refinement of
generated commands, and (2) a set of experiments

showing that this method is empirically effective,
giving substantial improvements across two models
and two semantic parsing benchmarks. Our results
corroborate the effectiveness of pretrained LMs in
bootstrapping their own supervision (Zheng et al.,
2023; Li et al., 2023b; Zelikman et al., 2022).

2 Background

Translating natural language into code (or other for-
mal representations) is a key sub-task in natural lan-
guage processing, with applications spanning com-
putational linguistics, natural language interfaces,
and dialog systems. Historically, many language-
to-code systems were based on explicitly struc-
tured, compositional models (Wong and Mooney,
2007; Zettlemoyer and Collins, 2005; Kwiatkowski
et al., 2011). More recent systems have generally
used a combination of neural sequence models,
large-scale pre-training, and constrained decoding
(Dong and Lapata, 2016; Roy et al., 2022).

Large datasets of natural language text and code
are widely available, but paired language–program
data is comparatively rare. As a result, there has
been long-standing interest in building language-
to-code systems with less data. One prominent
line of work focuses on weak supervision—using
natural language questions paired with answers to
automatically infer programs that produce the right
result when executed (Clarke et al., 2010; Liang
et al., 2011; Artzi and Zettlemoyer, 2013; Grand
et al., 2023).

Most relevant to the this paper, another line of
research focuses on semi-supervised approaches,
which learn from a mixture of paired language and
program data as well as unpaired data in one or both
modalities. These approaches typically combine
supervised learning with a cycle-consistency objec-
tive, alternating between optimizing a language-to-
code model on annotated programs, then assigning
unlabeled programs natural language descriptions
that produce the right code when translated (Yin
et al., 2018; Zhong et al., 2020). ICIP extends these
approaches along several axes—it generalizes se-
mantic parsing with cycle consistency to the in-
context learning setting, and our best-performing
model variant (MaxRT below) employs a filtering
criterion not used in previous work. Together, these
enable ICIP to obtain significantly improved sample
efficiency.

Outside the domain of language-driven program
synthesis, semi-supervised learning procedures

8102

based on enforcing cycle-consistency have been
used (for pre-training, fine-tuning, and prompting)
in tasks spanning machine translation, instruction
following, and open-ended text generation (Li et al.,
2011; Sennrich et al., 2016; Li et al., 2023b,a). We
expect that future work might apply ICIP-type ap-
proaches to these problems as well. In a similar
spirit to the present work, Keskar et al. (2019) also
leverage LMs’ ability to perform an “easy” recog-
nition problem (labeling text with control codes)
to bootstrap supervision for a hard inverse problem
(controllable text generation).

3 Approach

3.1 Data
We wish to learn a mapping from natural language
commands ℓ to programs π. To guide learning,
we assume we have access to two sources of infor-
mation: (1) a dataset DLΠ of labeled command–
program pairs (ℓi, πi) (which might contain zero or
one examples); and (2) a dataset DΠ of unlabeled
programs πi.

3.2 Base Models
In addition to these data sources, we assume access
to a language model pLM, which has been pre-
trained on general language and program data, but
not the specific language or library APIs used in
π. Crucially, we assume that pLM is capable of
in-context learning; i.e., when conditioning on
a sequence of labeled (command, program) pairs
followed by an unlabeled program,

pLM(πn | ℓ1, π1, . . . , ℓn−1, πn−1, ℓn)

assigns high probability to programs πn likely to
be associated with ℓn. Similarly,

pLM(ℓn | π1, ℓ1, . . . , πn−1, ℓn−1, πn)

assigns high probability to plausible natural lan-
guage labels ℓn for πn.

In practice, LMs condition on sets of programs
like {(ℓi, πi)} above via a prompt, which concate-
nates them into a single string. When the number
of labeled examples is large, prompt construction
may additionally involve a retrieval step, in which
initial examples (ℓi, πi) are sub-selected from the
full example set based on similarity between ℓi
and ℓ. Our approach is generally compatible with
many approaches to prompt construction, so in this
section we will write pLM(π | D, ℓ) to represent

the distribution over programs given a prompt built
from a set of labeled examples D and an input com-
mand ℓ. We will similarly write pLM(ℓ | D,π) for
a distribution over commands given examples and
input programs. Prompt construction details for
our experiments are discussed in Section 4.

3.3 Learning
Given M labeled programs DLΠ and N unlabeled
programs DΠ as defined above, our goal is to con-
struct a set of automatically labeled command-
program pairs D̂LΠ, by inferring a command
ℓ̂i for every πi ∈ DΠ.1 Once we have these
programs, we can immediately use them to con-
struct language-to-code model for our target do-
main by conditioning pLM on a prompt derived
from DLΠ ∪ D̂LΠ.

To do so, we initialize D̂LΠ = ∅, then alternate
between two steps:

Sampling. For each unlabeled program πi in DΠ,
sample a set of candidate natural language
commands that should correspond to πi:

L′
i = {ℓ̂1i . . . ℓ̂ki } ∼ pLM(ℓ | DLΠ ∪ D̂LΠ, πi)

We may then define a dataset of candidates:

D′
LΠ =

⋃

i

{(ℓ̂ji , πi) : ℓ̂
j
i ∈ L′

i}

Intuitively, the sampling step uses the labeled
and (possibly empty) unlabeled programs to
guess a plausible natural language command
for πi.

Filtering. For each L′
i, select a subset:

L̂i = {ℓ̂ji ∈ L′
i : filter(ℓ̂

j
i , πi, DLΠ ∪D′

LΠ)}

where filter is a criterion for rejecting low-
quality candidates (e.g. which fail to round-
trip, or which are classified by another LM as
incorrect, as in Li et al., 2023b), which will
be described in more detail below.2 Finally,

1Semi-supervised learning problems of this kind often
arise in natural language processing tasks. For example, Meri-
aldo (1994) performed semi-supervised learning of part-of-
speech tagging HMMs using Expectation–Maximization.

2It may be surprising that this step uses the unfiltered
dataset D′ from the current iteration, rather than the filtered
dataset from the previous iteration. This choice makes it pos-
sible to use more than just the seed set to guide filtering in the
first iteration. Unfiltered examples improved performance in
the first iteration, and did not meaningfully affect performance
(relative to using filtered examples) in later iterations.

8103

SELECT * FROM

SELECT name…

List all cities…

SELECT * FROM city WHERE pop > 10000 AND county = “Jefferson”

Sampling step (LM labeling) Filtering step (LM parsing)

Find cities in Jefferson county with population over 10,000.

Labeled data DLΠ
π1

ℓ1

Auto-labeled data D̂LΠ

Unlabeled data DΠ

COUNT(id)…

How many…

π2
̂ℓ2

SELECT * FROM…

Find cities in …

π3

̂ℓ3

COUNT(id)… p(̂ℓ ∣ π1, ℓ1, π2, ̂ℓ2, π3)p(̂ℓ ∣ π1, ℓ1, π2, ̂ℓ2, π3)
maxRT hardRT/

L̂′ L̂3/

Figure 2: Details of the proposed learning algorithm. During the sampling step, the current set of seed labeled
and automatically labeled examples is used to generate a set of candidate natural language commands associated
with each unlabeled program. During this step, the LM is prompted with seed labels and automatically generated
labels from the previous iteration. During the filtering step, this set is sub-selected to include only those that will be
parsed into the original program with high probability, again using previously labeled examples in the prompt.

update:

D̂LΠ ←
⋃

i

{(ℓ̂ji , πi) : ℓ̂
j
i ∈ L̂i}

Intuitively, this step filters down the set of
generated labels for correctness, then updates
the auto-labeled set D̂LΠ to include labeled
pairs that passed the filter.

Together, the two steps implement a form of re-
jection sampling, with pLM as the proposal distribu-
tion and filter as (a discriminator for) the target
distribution. The full ICIP procedure is described
formally in Algorithm 1 and visualized in Fig. 2.
The sampling and filtering steps may be iterated, in
which case labels inferred at early timesteps can in-
form the choice of labels for other examples at later
timesteps. This two-step procedure has an intuitive
similarity to more famous alternating optimization
algorithms like expectation–maximization (EM;
Dempster et al., 1977) and mean-field variational
Bayes (e.g., Jordan et al., 1999). The sampling
and filtering steps together accomplish something
roughly analogous to the E step in EM. The result-
ing filtered program-command pairs can be viewed
as a particle-based approximate representation of
the distribution of latent commands. While the M
step of EM would ordinarily retrain explicit model
parameters to maximize their expected likelihood
given the distribution of latents produced in the E
step, our model has no such tunable parameters.
Instead, our equivalent to the M step is performed
implicitly as the pretrained LM’s behavior updates
through in-context learning from the examples gen-
erated in the E step. While we do not optimize any

explicit parameters, recent work suggests that in-
context learning in sufficiently large transformers
may, in fact, behave akin to optimization (Akyürek
et al., 2023; Von Oswald et al., 2023).

The choice of an appropriate filter is crucial
to the quality of the in-context demonstrations that
act as supervision for this step. We consider two in
our experiments:

Hard Round Trip (HardRT). This version of
ICIP accepts any command that, when translated by
the LM into a program given the current example
set, yields the right program:

filter(ℓ̂, π,D) = 1[π = argmax
π′

pLM(π′ | D, ℓ̂)]

This filter may produce zero, one, or multiple com-
mands for each program. “Hard” cycle consistency
constraints of this kind were also used by Zhong
et al. (2020) for learning semantic parsers. The
idea of filtering out possibly incorrect imputed val-
ues has also appeared in confidence-thresholded
variants of EM (e.g., Yarowsky, 1995).

Max Round Trip (MaxRT). This version of ICIP

accepts the command that, when passed as input
to the LM, causes the LM to assign the highest
possible probability to the target program (even if
it does not generate the target program as output):

filter(ℓ̂, π,D) = 1[ℓ̂ = argmax
ℓ′

pLM(π | D, ℓ′)]

This filter always produces exactly one command
for each program.

What are the tradeoffs between HardRT and
MaxRT? HardRT keeps more commands for pro-

8104

Algorithm 1 In-Context Inverse Programming
1: DLΠ ← labeled seed programs
2: DΠ ← unlabeled programs
3: D̂LΠ ← ∅ // holds auto-labeled programs
4: for 1 ≤ t ≤ Niters do
5: T ← ∅ // holds in-progress labels
6: for πi ∈ DΠ do
7: L′

i ∼ pLM(ℓ | DLΠ ∪ D̂LΠ, πi)

8: for ℓji ∈ L′
i do

9: if filter(ℓji , πi, DLΠ ∪ D̂LΠ) then
10: T ← T ∪ {(ℓji , πi)}
11: D̂LΠ ← DLΠ ∪ T

grams πi that are easier to translate, and drops pro-
grams πi that are hard to translate. This shifts
the distribution of D̂LΠ toward the former type of
program, perhaps harming the system’s ability to
produce the latter. MaxRT ensures more uniform
coverage of the space of programs, at the cost of
potentially giving πi a label for which πi is not the
correct semantic parse.

The argmax in both the HardRT and MaxRT
filters involves an intractable search over all pro-
grams or labels. In HardRT, we approximate it by
performing greedy decoding from pLM. In MaxRT,
we approximate it by choosing the highest-scoring
element in the set of candidate labels L′

i.
We remark that other filters are possible in prin-

ciple. For example, for each unlabeled program πi,
we could use normalized importance sampling to
estimate the posterior distribution over its candi-
date labels D′

LΠ: weight each ℓ̂ji proportionately to
pLM(ℓ̂ji) pLM(πi | ℓ̂ji) / pLM(ℓ̂ji | πi), then sample
from this distribution, as in Monte Carlo EM.

4 Experimental Setup

Datasets. In our main experiments, we evaluate
semantic parsing on two English-language bench-
mark datasets: Spider (Yu et al., 2018), a text-to-
SQL task, and Overnight (Wang et al., 2015), a
benchmark evaluating semantic parsing for ques-
tion answering in eight application domains span-
ning calendaring, restaurant search, spatial reason-
ing, and more. . Both datasets contain several thou-
sand labeled program-utterance pairs. The Spider
and Overnight test splits contain 1,034 and 2,740
examples respectively. All of our test numbers
report average accuracy over the entire test split.3

3While complete training sets for the GPT and Llama mod-
els used in this paper are not publicly available, a Github

To create the small training sets required to run
our method and baselines, we sample M +N ex-
amples from the training split, without replacement,
using the first M and last N respectively for the
labeled set DLΠ and the unlabeled set DΠ. For
each condition (M +N) that we report on, there
is some variance in the results due to the particular
draw of (DLΠ, DΠ); thus Table 1 reports the mean
over three draws, ±1 standard deviation.

Metrics. We report two measures of program re-
covery performance: (1) program accuracy, the pro-
portion of predicted programs that exactly match
the reference programs associated with a set of test
utterances, and (2) answer (or “denotation”) ac-
curacy, the proportion of predicted programs that
return the same result as their utterance’s reference
program when executed. In Overnight, execution
occurs against a fixed model; in Spider, each query
is executed against a query-specific database.

Modeling details. We conduct experiments us-
ing two language models: text-davinci-003, a
proprietary model developed by OpenAI and tai-
lored for general text instruction-following, and
CodeLlama-7b-Instruct, a public model with 7
billion parameters produced by continuing the pre-
training of a Llama 2 model (Touvron et al., 2023)
on the code subset of its training corpus, then fine-
tuning it to add instruction-following capability.

We implement parsing and labeling with few-
shot prompting. We construct a prompt by concate-
nating an instruction and a set of labeled or unla-
beled exemplars (as described below), then sample
continuations from the language model conditioned
on this prompt. When labeling programs, we pro-
vide the instruction Explain each of the following
programs with a natural language string. When
parsing, we use the instruction Let’s translate what
a human user says into what a computer might say.

When generating multiple candidate labels, we
draw samples from the model with softmax tem-
perature 1.0 and output distribution truncated to
probability mass 0.95 (Holtzman et al., 2020) in
order to encourage diversity while maintaining co-
herence. We sample 8 candidate labels per pro-
gram in ICIP +MaxRT; in preliminary experiments,
sampling more candidates did not yield further im-

search for Overnight examples in the pre-processed form used
for our main experiments returned no search results. We are
thus reasonably confident that models were exposed to these
datasets for the first time during evaluation. Section 5.3 shows
that results are robust to dramatic obfuscation of the datasets.

8105

System M+N Overnight Blocks
Prog Ans

Few-shot (1+0) 6.5±2.4 16.6±9.5
Few-shot (8+0) 19.5±3.3 35.0±4.5
Few-shot + unl. (1+100) 18.9±2.6 31.2±3.6

ICIP + MaxRT (0+100) 25.9±1.6 36.7±2.1

ICIP + HardRT (1+100) 26.8±0.8 39.7±1.4
ICIP + MaxRT (1+100) 29.1±2.2 42.7±3.4

Fully labeled (100+0) 33.2±1.9 49.7±2.3

(a) text-davinci-003

System M+N Overnight (All) Spider
Prog Ans Prog

Few-shot (1+0) 4.3 7.1 0.8±2.2
Few-shot (8+0) 23.6 36.2 10.0±3.1
Few-shot + unl. (1+100) 19.7 30.1 9.6±2.8

ICIP + MaxRT (0+100) 16.9 26.1 6.8±5.4

ICIP + HardRT (1+100) 29.9 41.7 11.6±2.3
ICIP + MaxRT (1+100) 25.4 37.6 11.7±3.2

Fully labeled (100+0) 44.9 61.4 13.0±2.0

(b) CodeLlama-7b-Instruct

Table 1: Results on the Overnight and Spider datasets. Metrics are described at the start of Section 4. The
M+N column indicates the number of labeled and unlabeled examples used to construct prompts. Prog indicates
exact-match percentage of programs on held-out test examples. Ans indicates answer (or denotation) accuracy: the
percentage of programs which yield the same result as the corresponding gold program when executed. Subscripts
indicate standard error across seeds. These are not calculated for the Overnight (All) condition, which shows average
performance across both seeds and datasets; see Appendix A for results and measures of variation in each domain.

provement. When generating parses, we use greedy
decoding, at each step selecting the token with max-
imum probability. We additionally ensure syntactic
correctness using speculative constrained decoding
(Shin and Van Durme, 2022).

We limit all few-shot prompts to at most 8 exem-
plars. When more than 8 examples are available,
the prompts uses the 8 that are most similar accord-
ing to the number of unigrams and bigrams shared
between the subword-tokenized input in question
and examples in the retrieval pool. Exemplars for
parsing are ranked for retrieval based on utterance
overlap, and exemplars for labeling are ranked by
program overlap. Exact matches to the input utter-
ance or program are excluded during training.

We run experiments on both datasets with the
CodeLlama-7b-Instruct model, and additionally
run text-davinci-003 on the Overnight Blocks
sub-domain (due to computational constraints).

Baselines. We compare our proposed algorithms
to a simple baseline of few-shot parsing using the
above instruction followed by labeled exemplars
from DLΠ (limited to 8 as explained above). These
are the 1+0, 8+0, and 100+0 conditions.

We also compare to an extended baseline which,
right after the instruction, inserts the text Here are
some examples of programs we might want fol-
lowed by unlabeled exemplars from DΠ (again
limited to 8), and then continues with the labeled
exemplars as before. This 1+100 condition pro-
vides a fair comparison to ICIP’s 1+100 condition.

5 Results

5.1 ICIP learns effectively from a single
labeled example

One-shot learning results are shown in the ICIP

(1+100) rows of Table 1. On both models and
both datasets, ICIP outperforms ordinary one-shot
prompting as well as prompting with one la-
beled and many unlabeled examples. With the
text-davinci-003 model and MaxRT filtering, it
substantially outperforms in-context learning with
eight labeled examples, and approaches the per-
formance of a fully supervised system with 100 la-
beled examples. While gains are not as pronounced
with the smaller CodeLlama-7b-Instruct model,
ICIP still dramatically improves upon models that
learn from the same number of labeled exam-
ples. (The difference between text-davinci-003
and CodeLlama-7b-Instruct in the fully labeled
condition indicates that differences are mainly at-
tributable to the LMs themselves, and not to ICIP.)
Table 2 shows example inferred commands.

The effectiveness of MaxRT highlights two
key technical advantages of ICIP over previous
semi-supervised semantic parsing methods such
as Zhong et al. (2020). In particular, the use of
a likelihood-based filtering criterion, rather than
the correct-output criterion used in previous work,
both improves accuracy and eliminates the need to
execute LM predictions (or even sample from the
LM). This, in turn, means that ICIP can be applied
efficiently even with very large LMs and in settings
where program execution is not possible.

8106

ICIP (1+100)
Program (call listValue (call filter (call filter (call getProperty (call singleton

en.block) (string !type)) (string is_special)) (string height) (string =) (number
3 en.inch)))

Round 1 find me all blocks of special type that are 3 inches tall
Round 2 find me all special blocks that have a height of 3 inches
Gold find me all 3 inch tall special blocks

ICIP (1+100)
Program (call listValue (call countSuperlative (call getProperty (call singleton en.block)

(string !type)) (string max) (string above) (call getProperty (call singleton
en.block) (string !type))))

Round 1 find me the maximum block that is above any other blocks
Round 2 find the block type with the maximum number of blocks above it
Gold find the block located on top of the highest number of other blocks

ICIP (0+100)
Program (call listValue (call aggregate (string avg) (call getProperty (call getProperty

(call singleton en.block) (string !type)) (string height))))
Round 1 This program calculates the average height of all blocks of the same type in the singleton block group.
Round 2 This program calculates the average height of the type property of the en.block singleton.
Gold what is the average height of a block

Table 2: Examples of inferred program annotations, all using text-davinci-003 on the Overnight Blocks sub-task.
Errors are shown in red. The first two groups are prompted with one labeled example, and annotations have
consistent style; the third group shows a fully-unsupervised model, which produces very different (and perhaps
lower-quality) annotations, which nevertheless yield a surprisingly effective text-to-code model (see Table 1).

1-shot ICIP
Round 1

ICIP
Round 2

0

10

20

30

40

50

Ac
cu

rac
y

Answer
Program

Figure 3: Parsing accuracy on Overnight Blocks using
text-davinci-003 and a single seed label increases
with successive rounds of ICIP +MaxRT. Shaded areas
indicate the sample standard deviation over 5 seeds.

5.2 ICIP learns effectively even with no
labeled examples

While not the primary focus of our evaluation, an
even stronger version of this result may be found
in the ICIP (0+100) rows of Table 1. These ex-
periments show that, starting only with unlabeled
programs, ICIP infers commands that, when pro-
vided in a prompt, give significant improvements
over even one-shot baselines. However, these im-
provements are smaller, and in some cases matched
by ordinary few-shot prompting.

Examples of inferred commands are shown in
Table 2. Notably, they diverge significantly from
the style and formatting of the commands in the

labeled training and test data, yet are close enough
to provide an effective prompt for mapping test
commands to programs.

5.3 ICIP is robust to variations in program
syntax and style

The pre-trained LMs we use as a starting point
have seen a significant amount of data in both Lisp
(the language in which Overnight programs are
expressed) and SQL (for Spider). Does ICIP con-
tinue to work when aspects of syntax, and not just
program vocabulary, diverge from what was seen
during pre-training?

To evaluate this, we conduct an additional set of
experiments on the Blocks sub-task from Overnight
in which we systematically transform the syntax
of program expressions themselves: using C-style
function calls (C calls), altering parentheses (Var.
braces) or removing them (No braces), reversing
the order of function and arguments (Arg. reverse)
or anonymizing the names of functions themselves
(Anon. fns.) Examples of these transformations are
shown in Table 3, and results of ICIP and a fully-
labeled oracle are shown in Table 4. These exper-
iments show that ICIP is robust to large changes
in syntax, achieving non-trivial scores, and outper-
forming non-ICIP baselines, across all transforma-
tion types.

8107

Command What is the length of block 1?
Original (call listValue (call getProperty en.block.block1 (string length)))
C calls listValue(getProperty(en.block.block1, string(length)))
Var. braces {call listValue {call getProperty en.block.block1 {string length}}}
No braces call listValue call getProperty en.block.block1 string length
Arg. reverse (call (call (string length) en.block.block1 getProperty) listValue)
Anon. fns. (p0 p1 (p0 p2 en.block.block1 (p4 length)))

Table 3: Examples of program transformations.

Transformation
Blocks Answer Acc.

ICIP + MaxRT Fully labeled
(1+100) (100+0)

Original 42.7 49.7
C calls 37.8 50.8
Var. braces 40.6 50.1
No braces 35.8 48.6
Arg. reverse 34.6 45.8
Anon fns. 34.6 48.6

Table 4: Results of program transformation experiments.
ICIP continues to perform nontrivially even under sig-
nificant alterations to program syntax.

5.4 ICIP iteratively improves label quality

The examples in Table 2 suggest that imputed nat-
ural language commands not only reflect the se-
mantics of their associated programs, but improve
over multiple rounds of iteration, highlighting the
role of the iterative nature of ICIP in generating
high-quality labeled examples. The overall change
in accuracy across rounds is measured in Fig. 3.

6 Analysis

We conclude with a qualitative analysis of the pre-
dictions and labels generated by ICIP. We focus
on Overnight Blocks, as it contains a large number
of programs in a single domain from which aggre-
gate statistics can be computed, and the MaxRT
filtering method, which achieves the best overall
performance in this domain.

6.1 How diverse are generated labels?

One behavior commonly observed in latent-
variable models like ICIP is mode collapse, wherein
all latent variables ℓ are assigned the same value.
This appears not to be a significant problem for
ICIP: 96.9% of predicted labels were unique (com-
pare to 99% for humans). When computing the
all-pairs self-BLEU for both sets, ICIP labels have
a score of 18.2 and human labels have a score of
7.6. Together, these results indicate that ICIP some-
times produces repetition at the token level, but still
assigns unique labels to distinct programs.

6.2 What programs are hard to predict?

Are hard programs longer than short ones?
Gold program length does not appear to meaning-
fully predict parsing difficulty: programs that ICIP

predicts correctly over a majority of seeds are on
average 21.4 ± 5.2 tokens in length, while pro-
grams ICIP predicts incorrectly are on average 23.5
± 5.2 tokens long.

Are some program features harder to trans-
late than others? We computed the program
tokens that occur more frequently (per the nor-
malized unigram distribution) in gold programs
which ICIP fails to predict correctly compared to
the cases ICIP predicts correctly. The program to-
kens that occur most frequently in incorrect cases
are: reverse, filter, string, right, above, and
left. The fully labeled (100+0) model struggles
with a very similar list of constructs: reverse,
filter, block1, above, below, and right. Thus,
the difficulty here may actually stem from the basic
difficulty of translating these types of relations into
code, rather than a specific deficiency of ICIP. More
generally, these results suggest that ICIP exhibits a
similar error distribution to supervised methods.

6.3 How do imputed commands compare to
ground-truth commands?

In ground-truth commands, the average length is
9.3 ± 3.3 words. After one iteration, ICIP’s com-
mands are 11.3 ± 3.3 words in length; after two
iterations, this grows slightly to 12.0 ± 3.3 words.
Thus, ICIP generates slightly longer annotations
on average. We hypothesize that this is because
more detailed, explicit commands are selected in
the filtering step, as they are more likely to enable
an accurate reconstruction of the input program.

7 Conclusion

We have presented In-Context Inverse Program-
ming (ICIP), a “nearly unsupervised” procedure for
building language-to-code models for new libraries,
data sources, or languages starting with a collection

8108

of unlabeled programs and as few as one labeled ex-
ample. ICIP works by iteratively predicting natural
language commands for unlabeled programs that
enable reconstruction of the original program with
high probability. Experiments on multiple datasets
and models show that this procedure is effective,
substantially outperforming one- and many-shot
prompting methods in low-data regimes.

Our results highlight the fact that pre-trained
LMs’ ability to perform easy tasks, like labeling
programs with descriptions, can be used to boot-
strap models for harder tasks by encouraging both
local consistency (via round-trip constraints) and
global consistency (via in-context learning from
inferred demonstrations).

Limitations

While ICIP is “one-shot” in the sense of leveraging
a single labeled example in the target domain, it re-
lies critically on very large-scale pretraining of the
base LM—enough to support both in-context learn-
ing and zero-shot annotation of unfamiliar program
constructs with at least plausible natural language
commands. ICIP thus relies on some degree of
similarity between new domains and existing ones,
and may not generalize robustly to languages in
which code is not at least partially comprehensible
to non-expert humans.

Due to the closed nature of text-davinci-003,
we cannot absolutely rule out the possibility that
versions of held-out programs appeared in the train-
ing data. Our experiments in Section 5.3 are in-
tended to address these concerns. As best as can
be determined by searching public code-bases, nei-
ther the original or transformed overnight programs
have never appeared in any form in a public LM
training set.

After creating up to 100 synthetic labeled ex-
amples, we used only 8 of them at a time during
semantic parsing. We did not investigate parameter-
efficient fine-tuning of the LM on all of the syn-
thetic examples, which can be even more effective.
Performance might also be improved further by
creating a much larger synthetic dataset.

Finally, we note that experiments in this paper
use English-language data for all commands. The
behavior of ICIP in other languages (and especially
low-resource natural languages) has not been eval-
uated.

Ethical Considerations

We do not anticipate any ethical concerns associ-
ated with this work.

References
Ekin Akyürek, Dale Schuurmans, Jacob Andreas,

Tengyu Ma, and Denny Zhou. 2023. What learn-
ing algorithm is in-context learning? investigations
with linear models. In The Eleventh International
Conference on Learning Representations.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion for Computational Linguistics, 1:49–62.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models. arXiv, 2108.07732.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Yekun Chai, Shuohuan Wang, Chao Pang, Yu Sun, Hao
Tian, and Hua Wu. 2023. ERNIE-code: Beyond
English-centric cross-lingual pretraining for program-
ming languages. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 10628–
10650, Toronto, Canada. Association for Computa-
tional Linguistics.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. arXiv,
2107.03374.

James Clarke, Dan Goldwasser, Ming-Wei Chang, and
Dan Roth. 2010. Driving semantic parsing from

8109

https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=0g0X4H8yN4I
https://doi.org/10.1162/tacl_a_00209
https://doi.org/10.1162/tacl_a_00209
https://doi.org/10.1162/tacl_a_00209
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.18653/v1/2023.findings-acl.676
https://doi.org/10.18653/v1/2023.findings-acl.676
https://doi.org/10.18653/v1/2023.findings-acl.676
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://aclanthology.org/W10-2903

the world’s response. In Proceedings of the Four-
teenth Conference on Computational Natural Lan-
guage Learning, pages 18–27, Uppsala, Sweden. As-
sociation for Computational Linguistics.

Arthur P Dempster, Nan M Laird, and Donald B Rubin.
1977. Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical
Society: Series B (Methodological), 39(1):1–22.

Li Dong and Mirella Lapata. 2016. Language to logical
form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33–43, Berlin, Germany. Association for Computa-
tional Linguistics.

Gabriel Grand, Lionel Wong, Matthew Bowers, Theo X
Olausson, Muxin Liu, Joshua B Tenenbaum, and Ja-
cob Andreas. 2023. LILO: Learning interpretable
libraries by compressing and documenting code.
arXiv, 2310.19791.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration. In Proceedings of the International
Conference on Learning Representations.

Michael I Jordan, Zoubin Ghahramani, Tommi S
Jaakkola, and Lawrence K Saul. 1999. An intro-
duction to variational methods for graphical models.
Machine learning, 37:183–233.

Nitish Shirish Keskar, Bryan McCann, Lav Varshney,
Caiming Xiong, and Richard Socher. 2019. CTRL:
A conditional transformer language model for con-
trollable generation. arXiv, 1909.05858.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2011. Lexical generaliza-
tion in CCG grammar induction for semantic parsing.
In Proceedings of the 2011 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1512–1523, Edinburgh, Scotland, UK. Association
for Computational Linguistics.

Belinda Z. Li, Maxwell Nye, and Jacob Andreas. 2023a.
Language modeling with latent situations. In Find-
ings of the Association for Computational Linguistics:
ACL 2023, pages 12556–12571, Toronto, Canada. As-
sociation for Computational Linguistics.

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Luke
Zettlemoyer, Omer Levy, Jason Weston, and Mike
Lewis. 2023b. Self-alignment with instruction back-
translation. arXiv, 2308.06259.

Zhifei Li, Ziyuan Wang, Jason Eisner, Sanjeev Khudan-
pur, and Brian Roark. 2011. Minimum imputed-risk:
Unsupervised discriminative training for machine
translation. In Proceedings of the 2011 Conference
on Empirical Methods in Natural Language Process-
ing, pages 920–929, Edinburgh, Scotland, UK. Asso-
ciation for Computational Linguistics.

Percy Liang, Michael Jordan, and Dan Klein. 2011.
Learning dependency-based compositional seman-
tics. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 590–599, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Chris J. Maddison and Daniel Tarlow. 2014. Struc-
tured generative models of natural source code. In
Proceedings of the 31st International Conference on
International Conference on Machine Learning - Vol-
ume 32, ICML’14, page II–649–II–657. JMLR.org.

Bernard Merialdo. 1994. Tagging English text with
a probabilistic model. Computational Linguistics,
20(2):155–171.

Subhro Roy, Sam Thomson, Tongfei Chen, Richard
Shin, Adam Pauls, Jason Eisner, and Benjamin Van
Durme. 2022. BenchCLAMP: A benchmark for eval-
uating language models on semantic parsing. arXiv,
2206.10668.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves
to use tools. In Advances in Neural Information Pro-
cessing Systems.

Semantic Machines, Jacob Andreas, John Bufe, David
Burkett, Charles Chen, Josh Clausman, Jean Craw-
ford, Kate Crim, Jordan DeLoach, Leah Dorner, Ja-
son Eisner, et al. 2020. Task-oriented dialogue as
dataflow synthesis. Transactions of the Association
for Computational Linguistics, 8:556–571.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 86–96,
Berlin, Germany. Association for Computational Lin-
guistics.

Richard Shin and Benjamin Van Durme. 2022. Few-
shot semantic parsing with language models trained
on code. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 5417–5425, Seattle, United States.
Association for Computational Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,

8110

https://aclanthology.org/W10-2903
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
https://arxiv.org/abs/2310.19791
https://arxiv.org/abs/2310.19791
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://dl.acm.org/doi/10.5555/308574.308660
https://dl.acm.org/doi/10.5555/308574.308660
https://arxiv.org/abs/1909.05858
https://arxiv.org/abs/1909.05858
https://arxiv.org/abs/1909.05858
https://aclanthology.org/D11-1140
https://aclanthology.org/D11-1140
https://doi.org/10.18653/v1/2023.findings-acl.795
https://arxiv.org/abs/2308.06259
https://arxiv.org/abs/2308.06259
https://aclanthology.org/D11-1085
https://aclanthology.org/D11-1085
https://aclanthology.org/D11-1085
https://aclanthology.org/P11-1060
https://aclanthology.org/P11-1060
https://dl.acm.org/doi/10.5555/3044805.3044965
https://dl.acm.org/doi/10.5555/3044805.3044965
https://aclanthology.org/J94-2001
https://aclanthology.org/J94-2001
https://arxiv.org/abs/2206.10668
https://arxiv.org/abs/2206.10668
https://openreview.net/forum?id=Yacmpz84TH
https://openreview.net/forum?id=Yacmpz84TH
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/2022.naacl-main.396
https://doi.org/10.18653/v1/2022.naacl-main.396
https://doi.org/10.18653/v1/2022.naacl-main.396

Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. arXiv, 2307.09288.

Johannes Von Oswald, Eyvind Niklasson, Ettore Ran-
dazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. 2023.
Transformers learn in-context by gradient descent.
In Proceedings of the 40th International Conference
on Machine Learning, ICML’23. JMLR.org.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1332–1342, Beijing,
China. Association for Computational Linguistics.

Yuk Wah Wong and Raymond Mooney. 2007. Learn-
ing synchronous grammars for semantic parsing with
lambda calculus. In Proceedings of the 45th Annual
Meeting of the Association of Computational Lin-
guistics, pages 960–967, Prague, Czech Republic.
Association for Computational Linguistics.

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In 33rd
Annual Meeting of the Association for Computa-
tional Linguistics, pages 189–196, Cambridge, Mas-
sachusetts, USA. Association for Computational Lin-
guistics.

Pengcheng Yin, Chunting Zhou, Junxian He, and Gra-
ham Neubig. 2018. StructVAE: Tree-structured la-
tent variable models for semi-supervised semantic
parsing. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 754–765, Melbourne,
Australia. Association for Computational Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-
man. 2022. STar: Bootstrapping reasoning with rea-
soning. In Advances in Neural Information Process-
ing Systems.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the National Con-
ference on Artificial Intelligence. AAAI Press.

Luke Zettlemoyer and Michael Collins. 2005. Learning
to map sentences to logical form: Structured classi-
fication with probabilistic categorial grammars. In
Proceedings of the Conference on Uncertainty in Ar-
tificial Intelligence, volume abs/1207.1420.

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen,
Heng-Tze Cheng, Ed H. Chi, Quoc V Le, and Denny
Zhou. 2023. Take a step back: Evoking reason-
ing via abstraction in large language models. arXiv,
2310.06117.

Victor Zhong, Mike Lewis, Sida I. Wang, and Luke
Zettlemoyer. 2020. Grounded adaptation for zero-
shot executable semantic parsing. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 6869–
6882, Online. Association for Computational Lin-
guistics.

8111

https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.3115/v1/P15-1129
https://aclanthology.org/P07-1121
https://aclanthology.org/P07-1121
https://aclanthology.org/P07-1121
https://doi.org/10.3115/981658.981684
https://doi.org/10.3115/981658.981684
https://doi.org/10.18653/v1/P18-1070
https://doi.org/10.18653/v1/P18-1070
https://doi.org/10.18653/v1/P18-1070
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://openreview.net/forum?id=_3ELRdg2sgI
https://openreview.net/forum?id=_3ELRdg2sgI
https://dl.acm.org/doi/10.5555/1864519.1864543
https://dl.acm.org/doi/10.5555/1864519.1864543
https://dl.acm.org/doi/10.5555/1864519.1864543
https://api.semanticscholar.org/CorpusID:449252
https://api.semanticscholar.org/CorpusID:449252
https://api.semanticscholar.org/CorpusID:449252
https://arxiv.org/abs/2310.06117
https://arxiv.org/abs/2310.06117
https://doi.org/10.18653/v1/2020.emnlp-main.558
https://doi.org/10.18653/v1/2020.emnlp-main.558

A Overnight Results by Domain

calendar
Prog Ans

Few-shot (1+0) 4.6 ± 3.6 9.1 ± 2.4
Few-shot (8+0) 22.0 ± 8.4 34.1 ± 12.6
ICIP + MaxRT (0+100) 17.1 ± 3.8 29.2 ± 3.6
Few-shot + Unl. (1+100) 22.0 ± 3.1 32.9 ± 6.1
ICIP + HardRT (1+100) 29.6 ± 5.6 44.0 ± 5.1
ICIP + MaxRT (1+100) 30.8 ± 3.6 43.3 ± 3.6
Fully Labeled (100+0) 47.6 ± 3.3 65.9 ± 2.9

blocks
Prog Ans

Few-shot (1+0) 2.5 ± 0.9 3.0 ± 1.1
Few-shot (8+0) 12.5 ± 2.1 25.6 ± 2.8
ICIP + MaxRT (0+100) 8.7 ± 0.8 14.6 ± 1.0
Few-shot + Unl. (1+100) 13.8 ± 2.9 22.9 ± 7.7
ICIP + HardRT (1+100) 19.7 ± 1.3 27.3 ± 1.8
ICIP + MaxRT (1+100) 16.0 ± 2.9 25.2 ± 4.2
Fully Labeled (100+0) 26.4 ± 1.7 42.0 ± 2.8

socialnetwork
Prog Ans

Few-shot (1+0) 2.4 ± 1.0 3.4 ± 1.0
Few-shot (8+0) 12.9 ± 2.2 26.9 ± 3.2
ICIP + MaxRT (0+100) 6.4 ± 0.9 12.3 ± 3.6
Few-shot + Unl. (1+100) 7.9 ± 0.7 18.4 ± 0.2
ICIP + HardRT (1+100) 9.4 ± 3.3 15.3 ± 2.8
ICIP + MaxRT (1+100) 8.6 ± 1.3 17.4 ± 1.3
Fully Labeled (100+0) 35.9 ± 1.3 50.9 ± 0.8

restaurants
Prog Ans

Few-shot (1+0) 4.6 ± 3.4 8.8 ± 5.8
Few-shot (8+0) 24.2 ± 1.1 42.3 ± 2.0
ICIP + MaxRT (0+100) 21.3 ± 4.2 34.0 ± 7.1
Few-shot + Unl. (1+100) 25.3 ± 2.1 41.1 ± 3.0
ICIP + HardRT (1+100) 32.0 ± 1.0 50.9 ± 2.2
ICIP + MaxRT (1+100) 28.9 ± 2.6 45.8 ± 2.3
Fully Labeled (100+0) 44.1 ± 2.1 69.8 ± 1.3

basketball
Prog Ans

Few-shot (1+0) 9.6 ± 1.1 9.9 ± 1.4
Few-shot (8+0) 45.7 ± 9.5 52.8 ± 8.3
ICIP + MaxRT (0+100) 29.8 ± 6.9 33.2 ± 7.6
Few-shot + Unl. (1+100) 23.6 ± 2.6 26.6 ± 2.9
ICIP + HardRT (1+100) 55.8 ± 4.9 60.1 ± 5.2
ICIP + MaxRT (1+100) 39.0 ± 11.6 42.4 ± 14.0
Fully Labeled (100+0) 69.7 ± 1.7 74.0 ± 2.1

housing
Prog Ans

Few-shot (1+0) 4.8 ± 1.8 10.4 ± 3.8
Few-shot (8+0) 15.3 ± 1.9 31.6 ± 8.3
ICIP + MaxRT (0+100) 13.1 ± 1.2 28.4 ± 0.8
Few-shot + Unl. (1+100) 16.4 ± 3.7 29.5 ± 12.7
ICIP + HardRT (1+100) 22.9 ± 0.3 44.4 ± 4.8
ICIP + MaxRT (1+100) 23.1 ± 3.9 45.5 ± 3.7
Fully Labeled (100+0) 35.3 ± 2.4 61.4 ± 1.1

publications
Prog Ans

Few-shot (1+0) 1.9 ± 1.9 4.3 ± 1.9
Few-shot (8+0) 25.5 ± 5.6 38.9 ± 9.3
ICIP + MaxRT (0+100) 15.1 ± 2.9 25.9 ± 4.2
Few-shot + Unl. (1+100) 19.5 ± 2.9 30.4 ± 2.7
ICIP + HardRT (1+100) 26.5 ± 3.4 40.0 ± 2.0
ICIP + MaxRT (1+100) 20.7 ± 2.9 35.0 ± 3.9
Fully Labeled (100+0) 41.0 ± 2.2 56.9 ± 2.2

recipes
Prog Ans

Few-shot (1+0) 3.9 ± 1.4 7.4 ± 2.6
Few-shot (8+0) 30.4 ± 9.1 37.3 ± 8.3
ICIP + MaxRT (0+100) 23.9 ± 1.0 31.5 ± 1.2
Few-shot + Unl. (1+100) 29.3 ± 3.3 39.2 ± 4.6
ICIP + HardRT (1+100) 43.7 ± 6.0 51.5 ± 5.6
ICIP + MaxRT (1+100) 36.6 ± 7.2 46.3 ± 4.6
Fully Labeled (100+0) 59.1 ± 3.9 70.4 ± 4.0

8112

