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Abstract

Current Vision-Language (VL) models owe
their success to large-scale pre-training on web-
collected data, which in turn requires high-
capacity architectures and large compute re-
sources for training. We posit that when the
downstream tasks are known in advance, which
is in practice common, the pretraining process
can be aligned to the downstream domain, lead-
ing to more efficient and accurate models, while
shortening the pretraining step. To this end, we
introduce a domain-aligned pretraining strat-
egy that, without additional data collection, im-
proves the accuracy on a domain of interest,
herein, that of human activities, while largely
preserving the generalist knowledge. At the
core of our approach stands a new LLM-based
method that, provided with a simple set of con-
cept seeds, produces a concept hierarchy with
high coverage of the target domain. The con-
cept hierarchy is used to filter a large-scale web-
crawled dataset and, then, enhance the result-
ing instances with targeted synthetic labels. We
study in depth how to train such approaches and
their resulting behavior. We further show gen-
eralization to video-based data by introducing a
fast adaptation approach for transitioning from
a static (image) model to a dynamic one (i.e.
with temporal modeling). On the domain of in-
terest, our approach significantly outperforms
models trained on up to 60× more samples and
between 10− 100× shorter training schedules
for image retrieval, video retrieval and action
recognition. Code will be released.

1 Introduction

Billion-scale vision-language pre-training on web
collected image-text data (Radford et al., 2021; Jia
et al., 2021; Yuan et al., 2021; Yu et al., 2022;
Alayrac et al., 2022; Li et al., 2022a; Wang et al.,
2022b) has significantly pushed the state-of-the-
art for both uni-modal (e.g. action recognition)

* - Denotes equal contribution

and multi-modal understanding (e.g. image cap-
tioning, VQA, etc.). The current trend in VL pre-
training continues to scale up both the training
datasets (Zhai et al., 2023) and model sizes (Sun
et al., 2023), further increasing the already very
large training- and test-time computational require-
ments. This is in part due to the generalist nature of
such models. However, the domain of application
is often known in practice. Ideally, we should use
this prior knowledge to increase the training and
inference time efficiency. This is the very goal of
our work, as we propose a novel methodology to
align the VL pre-training process to a given do-
main, without using additional data, and without
catastrophically compromising the generalist capa-
bilities. To the best of our knowledge, this is the
very first work to systematically tackle and study
such a setting. To illustrate these ideas and due to
its relevance in many important tasks/applications,
we focus on pre-training specialized to the domain
of human activities.

With this in mind, we introduce a new LLM-
based method that, provided with a simple set of
concept seeds, iteratively produces a hierarchy of
textual queries that provide high coverage of the
concepts included in the target domain. These tex-
tual queries, alongside a set of predefined safety
and quality filters, are used to retrieve relevant data
from an internet-scale web-crawled dataset. We
further enhance the retrieved instances using an im-
age captioning model. This ensures the relevance
of the textual captions, which is particularly impor-
tant when relying on text-to-image retrieval. Em-
pirically, we also show that training with domain-
focused data naturally increases the frequency of
hard negatives within a given batch, improving the
training efficiency. This is a notable difference
with other works within this area of VL model
improvement via data enhancement, such as (Rade-
novic et al., 2023; Xu et al., 2023a,b) that focus on
domain-invariant processes, using hardcoded rules
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(e.g. based on WordNet, sentence complexity, etc.).
In summary, our contributions are:

• HC-IT & HC-VL: To increase the train-time
efficiency, while at the same time improving the
model’s accuracy, we propose a domain-specific
VL pre-training, herein tailored to the space of
human activities. At the core of our approach
stands the newly proposed LLM-based data fil-
tering, whereby the LLM iteratively creates a
hierarchy of textual queries providing extensive
coverage of the semantic concepts in the do-
main of interest. The thousands of these activity-
related queries are then used for data filtering
through retrieval. As some captions may be
incorrect, we supplement the original captions
with synthetic ones. We coin the resulting sub-
set Human-Centric Image-Text (HC-IT) dataset,
and the model trained on these data as Human-
Centric Vision-Language (HC-VL) model.

• HC-VL+: The image-based HC-VL model al-
ready produces state-of-the-art results across var-
ious datasets and settings. However, to further
boost the model’s performance, adding tempo-
ral modeling, we introduce a set of architectural
changes that (a) maintain the zero-shot capabili-
ties of the image model, (b) avoiding catastrophic
forgetting, while being (c) train-time efficient.

• Results: Our approach, is significantly faster to
train (10-100× fewer iterations) and requires up
to 60× fewer samples (see Fig. 1). In terms of
accuracy, our approach significantly outperforms
on the domain of human activities, i.e. for action
recognition (+6% on average), image retrieval
(+7%) and video retrieval (+4%) models trained
on up to 60× more samples (e.g. SigLIP (Zhai
et al., 2023)), while largely retaining competitive
performance on out-of-domain data (i.e. Ima-
geNet).

2 Related work

Vision-Language pre-training has emerged as the
foremost approach for representation learning and
training of robust zero-shot models. Based on the
training objective, methods can be broadly placed
into two categories: generative (Wang et al., 2022b,
2021b; Bulat et al., 2023) and contrastive (Radford
et al., 2021; Fürst et al., 2021; Yeh et al., 2022; Mu
et al., 2021; Li et al., 2023b; Fu et al., 2021; Wang
et al., 2022a), although, recently promising results

Figure 1: Our domain-specific model HC-VL is both
more data-efficient and more accurate, outperforming
models trained on 10B samples with only 167M. Accu-
racy aggregated over all 16 action recognition datasets.

were shown by approaches situated at their inter-
section (Yu et al., 2022; Li et al., 2022a, 2023a).
From an architectural and training point of view,
our approach closely follows CLIP (Radford et al.,
2021) and hence it is part of the contrastive fam-
ily of models. Such models are trained using a
contrastive loss with the goal of learning a joint
embedding space for the two modalities (i.e. vision
and language). Following CLIP (Radford et al.,
2021) subsequent works seek to either improve
the loss function(Li et al., 2022a, 2023a; Yu et al.,
2022; Yao et al., 2022; Fürst et al., 2021; Yeh et al.,
2022; Mu et al., 2021; Li et al., 2023b; Fu et al.,
2021; Wang et al., 2022a; Bulat et al., 2024) or
improve and increase the model size (Alayrac et al.,
2022; Zhai et al., 2022; Wang et al., 2022a) and/or
the dataset (Alayrac et al., 2022; Jia et al., 2021;
Pham et al., 2021; Yu et al., 2022) used. For ex-
ample, DeCLIP (Li et al., 2022b) introduces multi-
view and nearest-neighbor supervision, FILIP (Yao
et al., 2022) applies the contrastive loss in a fine-
grained manner while SigLIP (Zhai et al., 2023)
replaces the contrastive loss with a sigmoid one.
HiCLIP (Geng et al., 2023) introduces hierarchical
attention, while (Fini et al., 2023) improves the
architecture and the training scheduler. In contrast
to the aforementioned works, we do not change
the image-based architecture nor the training ob-
jective, focusing instead on domain-specific VL
pre-training for obtaining highly discriminative
and robust representations in a data-, training- and
compute-efficient manner.

Dataset construction has very recently attracted
the interest of the community that started to tran-
sition from huge noisy datasets (e.g.: LAION-
400 (Schuhmann et al., 2021), LAION-5B (Schuh-
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mann et al., 2022), ALIGN (Jia et al., 2021),
Flamingo (Alayrac et al., 2022), SigLIP (Zhai et al.,
2023)) to cleaner, higher quality ones (Xu et al.,
2023b; Gadre et al., 2024). MetaCLIP (Xu et al.,
2023b) attempts to recreate the collection process
from the closed source dataset of (Radford et al.,
2021) by querying based on Wikipedia articles, bi-
grams, and WordNet data combined with a filtering
and balancing process. DiHT (Radenovic et al.,
2023) introduces a rule-based system for retain-
ing higher quality samples, while (Abbas et al.,
2023) performs data deduplication. Building on
prior works, DataComp (Gadre et al., 2024) pro-
vides a unified framework that provides rule-based
recipes for constructing datasets ranging in size
from 12.8M to 12.8B. However, none of these ap-
proaches consider the case of domain-specific train-
ing. Moreover, they require manual/hand-crafted
seeding of the data filtering, as opposed to our
LLM-based process. We significantly outperform
all these methods while being up to an order of
magnitude more data- and training-efficient.

3 Human-Centric Vision-Language model

In the section, we introduce HC-VL, a new VL
model trained with domain priors that significantly
improves the in-domain performance without no-
table out-domain degradations, while requiring (a)
no additional data, (b) up to 60× fewer training
samples and (c) between 10 − 100× fewer train-
ing iterations. This model builds around our newly
introduced LLM-based data filtering and enhance-
ment strategy, presented in Sec. 3.1. The model
training itself, and the arch. changes made for fast
adaptation to temporal data, are detailed in Sec. 3.2.

3.1 Human-Centric Image-Text dataset

LLM-based action taxonomy generation &
filtering: Our domain-specific filtering strategy
consists of two steps, the semi-automatic gen-
eration of a taxonomy of human activities, and
the construction of language queries to query
LAION-5B. More specifically, we first itera-
tively populate a semantic domain of actions
by leveraging the pre-trained LLM GPT-3.5 ac-
cessed via the OpenAI API. To seed the pro-
cess, we start by defining six broad categories:
physical, communication & cognitive,
leisure, emotional, domestic/health &
self-care, and creative & professional activ-
ities. For each category, we iteratively prompt the

LLM to create an initial exhaustive list of coarse-
grained instances with the following strategies:
1) List seeding: we prompt the LLM to generate its
most representative activities in each category.
2) Alphabetic listing: we prompt the model to gen-
erate human-centric activities in alphabetic order,
starting with a different letter each time.
3) Synonym listing: for each activity, we prompt
the model to generate a limited list of synonyms
that describe or are related to it.

For each of the resulting entries, we further add
fine-grained categories using the following strate-
gies: i) Verb composition: given an activity verb,
we prompt the LLM to generate a list of activities
that can be composed of it (e.g. making → making
a cake, making a bed). ii) Sub-category listing:
Given an activity, we prompt the LLM to generate
a list of related fine-grained activities (e.g. playing
football → playing American football, playing soc-
cer, playing five-a-side, etc.). We repeat the process
if the generated activities can be further expanded.

To this, we add the activities obtained from
Wikipedia’s lists of human activities, hobbies, and
sports. Finally, duplicates and near duplicates are
automatically removed, and then manually filtered
to remove unrelated keywords. The final list con-
sists of ∼9.7K keywords. The distribution over the
6 categories is shown in Fig. 2(a). Fig. 2(b) shows
that our keywords cover the target domain without
spanning other undesired domains.

Next, for each keyword, we generate a set of
textual queries by using both pre-defined templates
(e.g. a photo of a person [keyword]) and by prompt-
ing GPT-3.5 to generate a set of descriptive and
diverse phrases that represent real-world scenarios
involving the specified activity. These phrases are
then used to query the LAION-5B dataset by re-
trieving images with an image-text similarity above
a threshold (e.g. 0.25) using the OpenAI ViT-L/14
model. The final retrieval yields 279M unique
URL-text samples, out of which 256M were suc-
cessfully downloaded.
Data denoising: Given that only ∼ 40% of the
captions are in English, we first start by automat-
ically translating the non-English captions using
the NLBB-200 model (Costa-jussà et al., 2022).
Secondly, inspired by (Radenovic et al., 2023), we
apply a caption complexity filter that removes sam-
ples that are not sufficiently complex. We employ
spaCy (Honnibal et al., 2020) to build a sentence
dependency tree, where the complexity is defined
as the maximum number of edges at any particular

7980



(b) Distribution of collected keywords

(a) Counts of collected keywords by 
category

Collected Keywords

ImageNet Classes

Action Categories

PCA 2

PCA 1

Figure 2: Collected keywords and their distributions: (a) shows the no. of keywords across the six pre-defined
categories, and (b) shows a 2D PCA plot comparing embeddings of a random subset of 2K from the collected
queries, ImageNet classes, and action categories of datasets used in Sec. 4.

node, and only consider samples with a complexity
score >= 2. Additionally, we filter captions based
on toxicity probability (Hanu and Unitary team,
2020), and images based on watermark and NSFW
probabilities (Schuhmann et al., 2022), keeping
samples with values < 0.9. The application of all
these filters results in a dataset of 167M image-text
samples from LAION-5B’s English, multilingual,
and no-language subsets.
Text enhancement by re-captioning: After filter-
ing and especially translating, some samples may
present semantic gaps (i.e. the text is irrelevant to
the image) or even be incoherent. To alleviate this,
we propose to leverage BLIP-2 (Li et al., 2023a) to
enrich the crawled captions with an automatically-
generated set of alternative captions. We use beam
search (Vijayakumar et al., 2016) to generate 5 cap-
tions per image and adjust the similarity penalty to
encourage the generation of diverse captions that
cover different aspects of the image.

We notice however that while the captions pro-
duced are generally accurate, they tend to be some-
what generic and vague, often following a template
(e.g. a photo of ...), likely a bias from BLIP-2’s
training dataset. Due to this, randomly sampling
between the generated captions and the original
ones degrades performance. We propose instead a
CLIP score-based sampling strategy. Given a pre-
trained CLIP model (herein, we use a ViT-B/16),
we pre-compute the similarity score between the
original caption and the corresponding image. At
training time, we sample either a generated or an
original caption conditioned on this score.

3.2 HC-VL and HC-VL+ models

HC-VL & image pre-training: Architecturally,
our model is identical to CLIP (Radford et al., 2021;
Ilharco et al., 2021) to allow direct and fair compar-
isons. Our HC-VL consists of an image encoder fθ

Figure 3: Cosine similarities between the image-text
pairs of a randomly selected batch from LAION and
HC-IT dataset computed using a pretrained CLIP (ViT-
L/14) model. Notice that: (a) the sim. scores are higher
overall for our dataset, and (b) a bigger number of pairs
score higher than 0.25 in our case. This suggests that
batches we form contain more hard negatives.

and a text encoder gϕ, instantiated as a ViT (Doso-
vitskiy et al., 2021) and a transformer (Vaswani
et al., 2017) respectively. Similarly, we closely
align our pre-training pipeline in terms of losses,
augmentation, and initialization with CLIP (Rad-
ford et al., 2021), training our model with an image-
text contrastive loss applied on the [CLS] token of
the image encoder and the [EOS] of the text en-
coder. The main difference to CLIP is that we train
our models on our HC-IT dataset. This has a cru-
cial effect on the model’s performance. Such result
can be attributed to the properties of HC-IT: In ad-
dition to in-domain coverage shown in Fig. 2, our
domain-specific training induces an implicit hard
mining approach. In support of this, Fig. 3 shows
the cosine similarities between image-text pairs of a
randomly sampled batch sampled from HC-IT and
LAION. Compared to LAION, our batch contains
samples that are semantically closer, and hence
harder for the model to differentiate. This is partic-
ularly noticeable in the high-score region (> 0.25)
where our model is trained from thousands of such

7981



high-scoring negative pairs.

HC-VL+ by further pre-training on video: One
option for further pre-training on video is to use
the WebVid dataset (Bain et al., 2021). However,
we found it’s quality to be lower than our HC-IT
dataset, leading to degraded performance. We in-
stead propose to use the much smaller but higher
quality Spoken Moments in Time (SMiT) (Monfort
et al., 2021). To avoid overfitting and catastrophic
forgetting, and inspired by (Wang et al., 2021a; Ni
et al., 2022; Pan et al., 2022), we introduce minimal
changes to our image HC-VL model to incorporate
temporal information while maintaining the zero-
shot capabilities of our image model.

Let v be a video with T frames {xi}i=1:T . Let
AI(Q,K,V) = softmax(QKT

√
L

)V be the atten-
tion operation, where K, Q and V are the output of
projections of Wq,Wk and Wv respectively, and
L the number of tokens per frame. Our attention is
computed as the addition of two attention branches.
The first consists of per-frame spatial attentions
AI(Qi,Ki,Vi). The second one computes the
cross attention between the T class tokens and spa-
tial tokens for frame i. More specifically, a learn-
able temporal embedding per frame is added to the
[CLS] tokens xclsi and then projected using Wk

and Wv to obtain Kc ∈ RT×d and Vc ∈ RT×d.
Then the cross attention AI(Qi,K

c,Vc) is com-
puted (i.e. spatial tokens of frame i attend to all
class tokens). Both branches are finally combined
as AI(Qi,Ki,Vi)+ s · AI(Qi,K

c,Vc), with s be-
ing a learnable scaling factor set initially to zero
to add stability and avoid catastrophic forgetting
and the second term helping diffuse temporal in-
formation through the [CLS] tokens into spatial
tokens. At the end of the network, we add a tem-
poral attention layer hµ that performs temporal
attention between the T [CLS] tokens xclsi . The
final video feature representation is 1

T

∑
i fθ(xi)

+ hµ([fθ(x1), . . . , fθ(xT )]). Note that adding the
pooled feature to the output of the temporal atten-
tion ensures that our model stays “close” to our
image model. All parameters are frozen except the
newly-introduced ones (s and hµ). We coin such a
model further pre-trained on video as HC-VL+.

Efficient pre-training: The large-scale nature of
VL pre-training poses significant computational
challenges. To make the training of larger models
more feasible on our available hardware, we fol-
low a two-step strategy: firstly, we train a model
using larger patches for tokenization, which results

in using fewer tokens. Then, we fine-tune it for
1/10 of the epochs using the target desired patch
size. When initializing the model from the previous
stage, in addition to the standard bilinear interpola-
tion of the positional embeddings, we also propose
to resize the kernels learned by the convolutional
layer processing the patches. We found this to work
well, and it is the strategy employed for training
our ViT-B/16 variant, fine-tuning from a ViT-B/32.

4 Comparison with state-of-the-art

To showcase the effectiveness of the proposed
domain-specific pre-training, we evaluate our mod-
els for image retrieval, video retrieval and action
recognition as they are tasks well aligned with the
domain of human activities. See the appendix for
pre-training details and additional evaluations.

Specifically, we compare HC-VL and HC-VL+
with all the equivalently sized models available as
part of the OpenCLIP repo (Ilharco et al., 2021),
noting that not all methods offer both the B/32
and B/16 variants. Moreover, we emphasize that
all models we compare with are trained using
longer schedulers on a significantly larger num-
ber of samples, ranging from 400M for OpenCLIP
(LAION-400) (Schuhmann et al., 2021) to 10B for
SigLIP (Zhai et al., 2023) (see Fig. 1). In compari-
son, our models are trained only on 167M samples.

4.1 Zero-shot Image & video retrieval

Following (Zhai et al., 2023; Sun et al., 2023) we
evaluate our models, HC-VL and HC-VL+, in a
zero-shot manner on Flickr30k and MS-COCO for
image retrieval, and respectively, MSRVTT (Xu
et al., 2016a), MSVD (Chen and Dolan, 2011) and
DiDemo (Anne Hendricks et al., 2017) for video
retrieval. We note that under this setting (i.e. zero-
shot), HC-VL and HC-VL+ are applied directly
to the downstream tasks of image and video re-
trieval without any fully-supervised training. For
image retrieval, we only report results for HC-VL,
as HC-VL+ is a temporal model and operates on
videos. For video retrieval, HC-VL is applied to
video by means of simple temporal pooling (i.e.
1
T

∑
i fθ(xi)) while HC-VL+ is applied as is.

For image retrieval, as the results from Ta-
ble 1 show, for most cases, our model significantly
outperforms all prior methods, despite some of
them using improved architectures (e.g. (Sun et al.,
2023)) and, in all cases, significantly more images
(up to 10B (Zhai et al., 2023)) than our compar-
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atively small 167M HC-IT dataset. Importantly,
we outperform LAION-400/2B/5B models with
our HC-IT (derived from LAION) dataset. As Ta-
ble 2 shows, similar improvements are reported for
video retrieval too, with our image (HC-VL) model
matching or outperforming the other CLIP variants,
and HC-VL+ showing significant further gains.

4.2 Zero-shot action recognition
To evaluate HC-VL&HC-VL+ on zero-shot ac-
tion recognition, we firstly construct a new bench-
mark formed of 16 datasets: UCF-101 (Soomro
et al., 2012), HMDB-51 (Kuehne et al., 2011),
Daly (Weinzaepfel et al., 2016), Kinetics-400 (Kay
et al., 2017), Kinetics-220 (Chen and Huang,
2021) (a subset of Kinetics-600 (Carreira et al.,
2018) that includes only the classes not present in
Kinetics-400), Kinetics-700 (Carreira et al., 2019),
MiT (Monfort et al., 2019), HAA500 (Chung
et al., 2021), HACS (Zhao et al., 2019), Hol-
lywood2 (Marszalek et al., 2009), Olympic
Sports (Niebles et al., 2010), UCF-50 (Reddy
and Shah, 2013), UCF Sports (Soomro and Za-
mir, 2015), AVA (Gu et al., 2018), Something-
Else (Materzynska et al., 2020) and Charades (Sig-
urdsson et al., 2018). For Kinetics-220, UCF-101,
and HMDB-51, the results reported are the aver-
age across the 3 splits introduced by their authors.
We use 8 frames for all datasets, but for Charades
where we use 32 due to its longer videos. To the
best of our knowledge, this is the most extensive
zero-shot action recognition benchmark covering
both multi- and single-label settings, with a high
variability of the numbers of classes (up to 700),
capturing conditions, length, and subdomains.

Under the zero-shot setting, HC-VL & HC-VL+
are applied directly to the downstream datasets
without any supervised training, while HC-VL is
applied to video by means of temporal pooling.

As the results from Tab. 3 show, our models
significantly outperform all CLIP variants, empha-
sizing the importance of our domain-specific pre-
training. This is more evident when considering
the comparisons with OpenCLIP models which
are trained on LAION, out of which we derived
our HC-IT dataset. Another important conclusion
is that our ViT-B/32 models outperform CLIP ViT-
B/16 models by a large margin. Finally, it is worth
noting that the impact of our additional video pre-
training, resulting in our HC-VL+ model, is in
many cases quite significant.

In addition to our newly constructed benchmark,

following (Ni et al., 2022), Tab. 4 reports zero-
shot action recognition results on UCF-101 and
HMDB-51 where we compare with several state-
of-the-art methods. We note that many of these
results are not directly comparable to ours as most
methods are trained on smaller datasets (mostly on
Kinetics-400) and only a few of them are based
on CLIP pre-training (i.e. (Wang et al., 2021a; Ni
et al., 2022)). Despite this, as our results show, our
models significantly outperform all other methods,
setting a new state-of-the-art.

4.3 Few-shot action recognition

Finally, both HC-VL and HC-VL+ can be used to
replace CLIP in all CLIP video adaptation meth-
ods which perform downstream fine-tuning (Wang
et al., 2021a; Ju et al., 2022; Ni et al., 2022; Lin
et al., 2022b). This is an important feature of our
models, as they can be seamlessly combined with
recent advancements in action recognition. Hence,
aligning with the setting introduced in (Ni et al.,
2022), we also report results for few-shot action
recognition. We opt to fuse our model with the
state-of-the-art architecture of (Ni et al., 2022). In-
tegrating HC-VL with (Ni et al., 2022) is straight-
forward. To integrate HC-VL+, we simply insert
within our model the following components: the
video-specific prompt generator, the cross-frame
interaction mechanism, and the multi-frame inte-
gration transformer. For the latter, we replace the
cross-frame interaction mechanism with our tempo-
ral attention layer. Overall, we obtain two models,
coined X-HC-VL and X-HC-VL+.

For the few-shot setting, we evaluate our X-
HC-VL and X-HC-VL+ on 3 datasets: UCF-101,
HMDB-51, and Kinetics-400 for 2, 4, 8 and 16-
shot. As Tab. 5 shows, both of our variants, X-HC-
VL and X-HC-VL+, outperform the previous state-
of-the-art models X-CLIP and X-Florence (which
benefits from pre-training on FlD-900M (Yuan
et al., 2021)) by a large margin on all datasets.

5 Ablation studies

Effect of data quantity: Our models are trained
on significantly fewer samples (167M) compared
with the current state-of-the-art VL models, com-
monly trained on 400M (Schuhmann et al., 2021),
2B (Schuhmann et al., 2022) or even 6.6B (Pham
et al., 2021) samples. Going one step further,
herein, we explore the performance of our model
in even lower data regimes. In Tab. 6, we report

7983



Method
Flicrk30k MS-COCO

T2I I2T T2I I2T

ViT-B/32 architecture

OpenCLIP (400M) (Ilharco et al., 2021) 59.7/90.3 78.1/96.6 34.2/70.6 52.3/84.3
OpenCLIP (2B) (Ilharco et al., 2021) 66.8/93.1 84.1/98.3 39.3/75.6 56.3/87.1
OpenCLIP (5B) (Ilharco et al., 2021) 64.5/91.7 82.7/97.8 37.8/73.5 53.5/86.4
CLIP (Radford et al., 2021) 58.8/90.0 78.9/98.2 30.4/66.9 50.1/83.5
MetaCLIP (Xu et al., 2023b) 65.2/92.7 80.8/97.3 38.1/74.3 55.2/86.5
CoCa (Yu et al., 2022) 63.4/91.4 81.6/97.4 36.2/71.8 54.6/85.6
DataComp (Gadre et al., 2024) 61.1/90.9 79.0/96.2 37.1/72.7 53.5/86.0
HC-VL (Ours) 74.2/95.7 90.3/99.4 45.3/80.4 62.1/91.0

ViT-B/16 architecture

OpenCLIP (400M) (Ilharco et al., 2021) 65.7/93.0 83.5/98.5 38.3/73.9 55.4/86.9
OpenCLIP (2B) (Ilharco et al., 2021) 69.8/94.6 86.3/99.4 42.3/77.1 59.4/88.6
CLIP (Radford et al., 2021) 62.1/91.9 82.2/99.0 33.1/69.0 52.4/84.6
MetaCLIP (Xu et al., 2023b) 70.7/94.5 85.5/98.9 41.3/77.0 59.4/87.8
EVA-CLIP2 (Sun et al., 2023) 71.5/94.7 86.0/98.8 42.2/76.3 58.7/88.1
SigLIP (Zhai et al., 2023) 74.7/95.6 89.1/99.3 47.8/81.0 65.7/91.3
DataComp (Gadre et al., 2024) 67.6/93.0 85.1/98.4 40.2/75.6 57.4/88.3
HC-VL (Ours) 77.8/97.4 92.6/99.9 48.6/83.1 64.7/92.4

Table 1: Zero-shot image retrieval results in terms of R@1/R@10 retrieval accuracy on Flickr30k and MS-COCO.

Method
MSRVTT MSVD DiDemo

T2V V2T T2V V2T T2V V2T

ViT-B/32 architecture

OpenCLIP (400M) (Ilharco et al., 2021) 29.6/62.2 23.7/56.1 35.6/72.3 48.5/84.4 25.0/59.1 22.0/54.9
OpenCLIP (2B) (Ilharco et al., 2021) 34.9/67.8 28.1/60.6 40.5/77.3 56.4/88.0 27.8/65.1 24.8/59.3
OpenCLIP (5B) (Ilharco et al., 2021) 33.4/66.1 28.0/60.4 40.6/77.1 55.2/86.3 27.4/64.0 24.6/58.9
CLIP (Radford et al., 2021) 30.3/65.0 26.3/62.3 34.8/73.4 57.8/90.8 26.9/63.9 19.4/55.3
MetaCLIP (Xu et al., 2023b) 33.7/66.6 30.1/64.7 37.8/75.9 51.9/85.9 30.1/64.7 20.2/55.3
CoCa (Yu et al., 2022) 33.4/67.1 25.2/57.4 38.8/76.3 52.6/87.0 26.1/57.3 24.7/60.0
DataComp (Gadre et al., 2024) 31.5/63.9 24.2/54.5 39.2/76.5 54.6/88.9 26.9/60.4 23.3/56.8
HC-VL (Ours) 29.7/68.6 28.3/60.6 44.6/82.3 64.1/92.0 30.2/63.0 30.2/65.4
HC-VL+ (Ours)* 39.0/75.7 36.9/72.3 50.1/85.6 67.8/94.3 35.4/70.0 32.1/66.8

ViT-B/16 architecture

OpenCLIP (400M) (Ilharco et al., 2021) 32.5/66.9 24.4/57.7 39.8/77.3 55.4/89.4 27.9/62.4 24.6/60.5
OpenCLIP (2B) (Ilharco et al., 2021) 36.7/69.7 27.7/58.3 41.5/77.8 55.3/90.3 31.2/65.9 27.1/61.5
CLIP (Radford et al., 2021) 33.4/65.6 30.5/64.6 39.0/76.2 62.6/92.9 30.7/63.5 23.3/54.4
MetaCLIP (Xu et al., 2023b) 36.0/68.2 29.6/61.1 43.5/81.1 62.1/91.7 30.6/65.3 26.5/60.1
EVA-CLIP2 (Sun et al., 2023) 35.1/69.7 27.3/58.3 44.2/81.7 61.0/91.7 35.2/67.7 30.1/63.9
SigLIP (Zhai et al., 2023) 34.6/67.0 30.9/63.2 47.0/82.1 64.6/94.1 30.7/65.3 27.0/60.5
DataComp (Gadre et al., 2024) 34.2/64.8 26.4/57.7 42.5/79.3 56.9/91.0 30.3/62.9 27.7/60.8
HC-VL (Ours) 36.0/69.9 30.0/62.1 45.6/84.3 66.1/94.3 36.1/70.0 31.2/66.2
HC-VL+ (Ours)* 40.8/74.0 37.5/74.1 52.0/86.9 68.4/95.1 36.7/70.8 33.3/67.2

Table 2: Zero-shot video retrieval results in terms of R@1/R@10 retrieval accuracy on MSRVTT, MSVD and
DiDemo. * indicates temporal modeling.

results for zero-shot classification on UCF-101 and
HMDB-51 for a ViT-B/32 HC-VL trained with
69M, 135M and 167M samples. In all cases, the
model was trained for the same number of seen
samples (i.e. 4B). We see that reducing the dataset
size has a considerable impact on accuracy.

Effect of LLM-based domain construction: At
the core of HC-IT is the proposed LLM-based do-
main construction and data filtering method. To
further showcase its effect, we compare it with
an equal-sized dataset of 167M image-text pairs
sampled by: filtering based on CLIP’s image-text
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Dataset OpenCLIP (Ilharco et al., 2021) MetaCLIP DataComp Coca CLIP HC-VL HC-VL+
400M 2B 5B (Xu et al., 2023b) (Gadre et al., 2024) (Yu et al., 2022) (Radford et al., 2021) (Ours) (Ours)

V
iT

-B
/3

2
UCF-101 62.7 (87.1) 69.3 (92.1) 64.8 (91.1) 69.4 (91.1) 67.8 (89.2) 67.4 (90.8) 67.6 (91.3) 79.5 (96.9) 81.6 (97.0)
HMDB-51 30.2 (55.6) 34.9 (63.0) 34.5 (63.2) 33.2 (62.0) 31.7 (61.7) 34.2 (64.2) 39.5 (67.3) 46.5 (74.2) 51.0 (77.9)
Kinetics-400 40.3 (65.6) 47.6 (73.3) 45.9 (71.6) 46.9 (72.2) 47.2 (71.5) 45.4 (70.9) 48.0 (74.7) 55.6 (79.7) 58.8 (82.6)
Kinetics-220 36.7 (59.6) 42.7 (68.4) 42.1 (68.6) 42.9 (69.0) 43.6 (68.2) 40.6 (66.2) 43.2 (69.9) 51.1 (77.1) 53.2 (79.3)
Kinetics-700 29.4 (52.2) 35.0 (59.9) 33.8 (58.0) 35.7 (60.3) 35.5 (58.4) 33.1 (56.7) 36.5 (61.7) 42.5 (67.6) 45.5 (71.4)
Daly 75.3 (98.6) 74.7 (96.6) 70.5 (97.3) 69.9 (95.9) 71.9 (96.6) 72.6 (97.2) 71.9 (97.9) 76.7 (98.6) 81.5 (97.8)
HAA500 30.0 (57.7) 37.1 (65.6) 34.8 (63.1) 34.9 (64.1) 36.6 (63.6) 33.7 (62.7) 37.4 (66.5) 48.9 (77.7) 48.7 (78.1)
HACS 57.3 (84.3) 64.9 (89.4) 63.9 (88.4) 64.7 (88.6) 64.6 (88.8) 63.6 (89.0) 64.4 (89.8) 75.6 (94.7) 77.1 (95.8)
Hollywood2* 32.9 41.3 42.6 42.1 36.9 40.3 42.8 48.2 54.5
Olympic Sports 46.3 (86.6) 50.7 (90.3) 48.5 (83.6) 46.3 (84.3) 44.8 (86.6) 44.8 (83.6) 47.8 (88.1) 50.0 (90.3) 54.5 (94.0)
MiT 15.1 (32.4) 17.9 (37.5) 17.2 (36.4) 18.0 (37.9) 17.5 (36.2) 16.7 (35.3) 17.9 (37.7) 21.1 (43.6) 22.8 (46.6)
AVA* 9.1 9.3 9.5 11.3 9.3 9.5 11.3 13.6 17.1
Something-Else 8.6 (26.5) 10.9 (31.6) 10.3 (30.6) 10.7 (30.6) 10.4 (30.5) 9.7 (29.3) 10.0 (29.3) 11.0 (32.0) 12.7/36.4
Charades* 14.3 17.8 17.1 16.9 16.8 17.6 19.1 22.0 23.5
UCF-50 71.2 (89.8) 78.8 (96.5) 73.8 (93.3) 76.3 (93.1) 77.2 (94.1) 77.1 (94.3) 78.7 (95.2) 88.7 (98.8) 90.2 (98.8)
UCF Sports 47.5 (83.6) 49.8 (83.6) 47.6 (85.3) 41.0 (85.3) 46.7 (85.2) 54.1 (83.6) 50.8 (88.5) 55.8 (93.4) 55.1 (93.5)
Average 37.9 (67.7) 42.7 (72.9) 41.1 (71.6) 41.3 (71.9) 41.1 (71.6) 41.3 (71.8) 42.9 (72.7) 49.2 (76.5) 51.7 (80.7)

Dataset OpenCLIP (Ilharco et al., 2021) MetaCLIP DataComp SigLIP EVA-CLIP2 CLIP HC-VL HC-VL+
400M 2B (Xu et al., 2023b) (Gadre et al., 2024) (Zhai et al., 2023) (Sun et al., 2023) (Radford et al., 2021) (Ours) (Ours)

V
iT

-B
/1

6

UCF-101 70.4 (91.5) 71.9 (92.4) 76.3 (95.3) 70.6 (91.0) 76.0 (94.1) 72.1 (93.0) 71.3 (93.9) 81.2 (97.6) 84.0 (97.8)
HMDB-51 35.1 (63.5) 36.4 (65.2) 39.3 (68.8) 32.8 (63.4) 43.0 (68.2) 37.0 (63.3) 43.8 (70.6) 49.1 (76.3) 52.5 (78.8)
Kinetics-400 47.2 (72.8) 49.3 (74.4) 53.5 (78.6) 51.1 (75.3) 54.9 (78.9) 52.2 (77.3) 53.5 (78.8) 59.5 (83.1) 62.5 (85.6)
Kinetics-220 42.7 (67.3) 43.7 (69.7) 49.6 (75.1) 46.9 (71.8) 51.9 (77.3) 48.5 (73.4) 47.3 (73.4) 54.2 (80.7) 57.6 (83.3)
Kinetics-700 35.2 (59.1) 36.4 (60.7) 41.1 (66.5) 39.0 (62.5) 42.8 (66.7) 40.7 (65.3) 41.1 (66.5) 46.1 (71.3) 49.2 (75.4)
Daly 68.5 (97.3) 76.0 (96.6) 74.6 (97.3) 76.7 (95.9) 77.4 (99.3) 70.6 (98.6) 75.3 (98.6) 84.2 (99.3) 87.7 (99.8)
HAA500 35.7 (64.8) 39.0 (69.6) 41.2 (72.3) 39.0 (67.6) 48.8 (77.4) 41.5 (70.6) 42.5 (70.9) 51.1 (81.0) 53.6 (81.7)
HACS 64.3 (89.0) 68.0 (91.4) 70.5 (92.1) 68.3 (90.7) 72.7 (93.1) 68.9 (91.7) 69.9 (92.2) 77.7 (95.8) 80.7 (96.6)
Hollywood2* 41.3 42.1 46.6 41.9 43.7 45.1 47.6 50.8 57.0
Olympic Sports 45.5 (89.5) 47.8 (85.8) 45.5 (88.1) 44.8 (83.6) 52.3 (89.5) 48.5 (89.5) 50.8 (90.3) 54.4 (92.5) 58.2 (94.8)
MiT 17.8 (37.1) 19.3 (39.2) 20.7 (42.6) 19.9 (39.5) 22.2 (43.9) 21.1 (42.8) 20.5 (42.4) 23.9 (47.8) 25.6 (50.9)
AVA* 9.6 9.9 11.3 10.0 11.6 11.7 12.0 14.0 17.8
Something-Else 10.1 (30.8) 11.6 (33.1) 10.6 (31.3) 13.0 (34.9) 14.1 (38.3) 12.6 (34.8) 10.8 (30.8) 12.0 (34.5) 13.5(36.6)
Charades* 17.5 19.3 21.6 19.3 21.8 21.9 21.0 24.2 24.5
UCF-50 78.5 (94.2) 80.1 (93.4) 83.7 (97.3) 79.2 (94.7) 82.0 (95.0) 78.6 (95.6) 81.5 (96.1) 90.8 (99.2) 91.3 (99.3)
UCF Sports 52.5 (85.3) 52.4 (86.9) 50.8 (90.7) 52.5 (88.5) 52.4 (93.4) 52.4 (86.8) 57.4 (90.1) 55.7 (91.8) 55.8 (88.5)
Average 42.0 (72.5) 44.0 (73.7) 46.1 (76.6) 44.1 (73.8) 48.0 (78.0) 45.2 (75.6) 46.6 (76.5) 51.8 (80.8) 54.5 (82.2)

Table 3: Zero-shot classification results across a suite of action recognition datasets in terms of Top-1 (%) and
Top-5 (%) accuracy (shown in parentheses). * - results reported in terms of mAP. HC-VL+ includes temporal
modeling. Further comparisons against methods with temporal modeling are shown in Tab. 4.

Method HMDB-51 UCF-101

ER-ZSAR (Chen and Huang, 2021) 35.3± 4.6 51.8± 2.9
MUFI (Qiu et al., 2021) 31.0 60.9
ActionCLIP (Wang et al., 2021a) 40.8± 5.4 58.3± 3.4
ClipBert (Lei et al., 2021) 21.4± 1.0 27.8± 0.8
Frozen (Bain et al., 2021) 27.8± 0.3 45.9± 1.3
ViSET-96 (Doshi and Yilmaz, 2022) 40.2 68.3
BridgeFormer (Ge et al., 2022) 37.7± 1.2 53.1± 1.4
CLIP (Radford et al., 2021) 43.8 70.6
AURL (Pu et al., 2022) 40.4 60.9
ResT_101 (Lin et al., 2022a) 41.1± 3.7 58.7± 3.3
X-CLIP (Ni et al., 2022) 44.6± 5.2 72± 2.3
X-Florence (Ni et al., 2022) 48.4± 4.9 73.2± 4.2

HC-VL (Ours) 49.1 81.2
HC-VL+ (Ours) 52.5 84.0

Table 4: Zero-shot classification results on HMDB-51
and UCF-101 in terms of Top-1 (%) accuracy.

similarity scores and simultaneously applying all
the filtering steps described (e.g.: grammar, NSFW
removal etc.), but without applying our proposed
LLM-based approach. As the results from Table 7
show (1st and 2nd row), our approach significantly
outperforms the CLIP filtering baseline, further
highlighting the importance of the proposed LLM-
based domain construction.
Out-of-domain generalization: An important as-

pect of our approach is its ability to concomitantly
improve on the domain of interest while largely
preserving the generalist abilities of the model. To
showcase this, we devise a series of experiments
measuring this, adding to the benchmark, as an
out-domain dataset ImageNet (Deng et al., 2009)
(Fig. 2 confirms its out-of-domain nature). Particu-
larly, in Table 7, we report results by direct training
on our 167M-large filtered subset, the result of ap-
plying the NLP-based approach presented in Sec. 3
(1st row); by selecting from LAION an equally
sized subset of 167M, without using our approach
(2nd row); using LAION-400 only (3rd row); by
expanding our dataset with additional samples from
LAION-400M (4th row), LAION-2B (5th row) and
with the entirety of LAION-400M (6th row). Ana-
lyzing the results, we can make the following ob-
servations: (1) Adding extra data to our filtered
set, from either dataset (i.e. LAION-400/2B), de-
creases the overall performance on in-domain data -
this suggests that our selection process encourages
the formation of natural hard negative pairs that
help to drive the learning process, (2) Our approach
largely preserver the out-of-domain performance
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HMDB-51 UCF-101 Kinetics-400

2 4 8 16 2 4 8 16 2 4 8 16
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X-CLIP 48.1 54.7 57.8 61.4 76.3 81.0 85.5 88.7 52.4 54.2 57.7 59.2
X-OpenCLIP 39.8 49.3 53.8 58.2 76.9 81.2 86.2 89.5 52.0 53.9 57.6 59.0
X-OpenCLIP (400M) 36.8 43.5 50.1 54.6 73.6 77.8 82.5 86.1 45.2 47.3 50.6 53.1
X-HC-VL (Ours) 51.0 57.4 59.7 63.8 85.3 87.9 90.4 92.1 60.7 62.3 64.2 66.5
X-HC-VL+ (Ours) 53.1 58.7 60.7 64.5 86.2 88.8 91.3 93.0 61.6 63.0 64.9 67.0

V
iT

-B
/1

6

X-Florence* (Ni et al., 2022) 51.6 57.8 64.1 64.2 84.0 88.5 92.5 94.8 - - - -
X-CLIP (Ni et al., 2022) 53.0 57.3 62.8 64.0 76.4 83.4 88.3 91.4 59.2 60.8 62.2 63.4
X-OpenCLIP 47.7 53.9 58.2 60.1 77.0 83.7 88.6 92.4 56.1 57.9 58.6 60.1
X-OpenCLIP (400M) 40.1 47.7 53.7 57.5 73.3 80.1 83.5 87.9 53.0 55.5 57.1 58.2
X-HC-VL (Ours) 57.8 62.1 64.6 66.7 88.6 90.8 93.1 95.2 64.9 66.0 67.9 69.9
X-HC-VL+ (Ours) 58.9 63.0 65.4 67.3 89.4 91.5 93.9 95.6 65.9 66.8 68.7 70.5

Table 5: Few-shot classification results on HMDB-51, UCF-101 and Kinetics-400 in terms of Top-1 (%) accuracy
for 2/4/8/16-shot. * - indicates results taken from (Ni et al., 2022).

num. UCF-101 HMDB-51

samples Top-1 Top-5 Top-1 Top-5

69M 71.7 92.8 41.4 69.5
135M 78.1 95.2 43.0 69.8
167M 79.4 96.4 45.4 71.6

Table 6: Training dataset size vs accuracy: Zero-shot
results on UCF-101 and HMDB-51 with a ViT-B/32 for
different numbers of image-text pairs, run for a fixed
number of iterations.

when adjusting for the dataset size: 167M selected
using our LLM-based approach vs selecting them
without it, results in a similar performance on Im-
ageNet (57.8 vs 56.2). This is perhaps somewhat
surprising at first glance, given the distribution of
the textual data from Fig. 2. However, in prac-
tice, the class names, although very rare, tend to be
present at least once. This suffices in driving the
model toward learning some concepts associated
with them, that is in part due to the nature of the
implicit hard negative mining that encourages the
model to pay attention to finer-grained details (such
as the object name). All in all, we show that our
approach is faster to train, less data hungry, and ca-
pable of maximizing in-domain performance while
largely retaining the out-of-domain one.

# Data UCF-101 HMDB-51 K400 Imagenet

HC (Ours) 79.5 46.5 55.6 57.8
167M from LAION 67.8 32.4 47.2 56.2

LAION-400M 62.7 30.2 40.3 60.2
HC + 0.5× LAION-400M 77.0 40.7 54.4 62.5

HC + 0.1× LAION-2B 77.2 40.6 54.6 62.4
HC + LAION-400M 76.4 39.1 54.0 66.1

Table 7: Out-of-domain generalization and effect of
the proposed LLM-based data construction.

6 Conclusions

In this work, we introduced a new take on VL pre-
training, that aims to take advantage of in-domain
priors without degrading the generalizability of the
model, herein tested for the domain of human activ-
ities. To this end, we proposed a new LLM-based
method for automatic data design which enables
the construction of a vast human activity-specific
dataset by retrieving, filtering, and re-captioning
related samples from LAION, on which we train
our VL model, HC-VL. Furthermore, we intro-
duced a set of new architectural changes that allow
for the fast addition of temporal modeling, without
compromising the generalization capabilities of our
image-based model. Our models achieve state-of-
the-art performance across a large suite of datasets
for zero-shot image recognition, video recognition
and zero-shot action recognition. Notably, this is
achieved without using additional data and while
being up to 60× more data efficient and 10−100×
faster to train due to requiring fewer iterations.
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Limitations

Due to the nature of the automatic filtering process
and the dataset size, manually checking for poten-
tial bias issues is not feasible. Moreover, from a
technical standpoint the quality of the data, and
as a consequence, of the model, will depend on
that of the pre-trained models used to filter and
augment the data (i.e. CLIP, BLIP). Different mod-
els may lead to different subsets being covered,
with varying degrees of accuracy. As with all mod-
els trained on webly collected data, without man-
ual filtering, we strongly recommend checking the
models and the data carefully before deploying
them. More generally, our approach is subject to
the same considerations as the ones enunciated by
the LAION-5B authors, and we encourage the read-
ers to check (Schuhmann et al., 2022) for a more
in-depth discussion.
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A Appendix

A.1 Additional ablation studies
Effect of BLIP2 re-captioning: Tab. 8 shows the
effect of using additional BLIP-2 captions during
pre-training. We evaluate the impact of the number
of generated captions per sample and the impact of
using the proposed sampling strategy based on the
CLIP score between the original caption and the
image. In the absence of our sampling strategy, the
original caption is selected with a probability of
0.8. We see that lower values degrade performance.
As the results show, using our proposed strategy
along with re-captioning can boost the accuracy of
the model by up to 2%.

# cap. w. scores UCF-101 HMDB-51

0 ✗ 79.4 44.4
1 ✗ 79.2 44.0
5 ✗ 79.4 45.1
5 ✓ 79.5 46.5

Table 8: Effect of re-captioning: Zero-shot results
on UCF-101&HMDB-51 with ViT-B/32 when training
with different automatic re-captioning variants.

A.2 Pre-training details
HC-VL pre-training details: Our procedure
largely follows the training recipe of CLIP (Rad-
ford et al., 2021; Schuhmann et al., 2022), using
AdamW (Loshchilov and Hutter, 2017) (β1 = 0.9,
β2 = 0.98), a learning rate of 5e−4 that is decayed
using a cosine scheduler (Loshchilov and Hutter,
2016) after a ramp-up of 2,000 iterations, and a
weight decay of 0.2. The global batch size is set to
32,800 and the model is trained with mixed preci-
sion (Micikevicius et al., 2017) for 132k iterations,
seeing ∼ 4B samples, i.e. significantly shorter
than the typical CLIP scheduler (Schuhmann et al.,
2022). Unless otherwise stated, the image size is
set to 224× 224px and the text encoder context is
set to 77. The augmentations applied during train-
ing match the ones used to train OpenCLIP (Schuh-
mann et al., 2022). Our ViT-B/32 variant is trained
from scratch on HC-IT, introduced in Sec. 3. For
the ViT-B/16 variant, we follow the efficient pre-
training procedure described in Sec. 3.2 and ini-
tialize from the ViT-B/32 weights and then fine-
tune for 12k iterations. The training is conducted
on 32 A100 GPUs using PyTorch (Paszke et al.,
2019) following the open-sourced implementation
of CLIP (Ilharco et al., 2021).

HC-VL+ pre-training details: To train HC-VL+,
we start from HC-VL (pre-trained on images),
freeze all parameters except for the newly in-
troduced ones and further pre-train the rest on
SMiT (Monfort et al., 2021) dataset (∼ 0.5M video-
text pairs). The pre-training process follows the
hyperparameters used in image pre-training, except
for the batch size and training duration, which are
set to 20, 480, and to 580 iterations, respectively.
Note that the video pre-training process is very fast.
For video data, we sample 8 frames uniformly at a
resolution of 224× 224px. We apply the following
augmentations: random flipping (0.5), color jitter-
ing (0.8), random grayscaling (0.2) and random
resizing and cropping.

A.3 Few-shot downstream fine-tuning details
To facilitate direct comparisons, for the results re-
ported in the main paper, we aligned our setting
with that of (Ni et al., 2022), using the same hy-
perparameters and number of shots (i.e. 2, 4, 8
and 16). For all experiments, we sample randomly
from the training set K videos per class, which
are then fixed for all experiments. The models are
then fine-tuned using the hyperparameters listed in
Table 10. As in (Ni et al., 2022), we test using a
single view and 32 frames.

B Datasets

Table 12 lists and details the datasets used for eval-
uation in this work. Notice that the suite covers a
wide range of tasks and dataset types.

C Additional results

C.1 Zero-shot evaluation of smaller and
larger models

In the main manuscript, we conduct experiments
using the ViT-B/32 and ViT-B/16 variants of our
model. Herein, for completeness, to showcase that
our approach scales to both smaller and larger mod-
els, we also report results using the ViT-S/32 and
ViT-L/14. We note that for the latter, due to limited
computational resources, we had to adapt our train-
ing schedule, reducing the number of iterations the
models were trained for and/or using fewer patches,
likely resulting in lower performance than with the
full training setting. Despite this, our approach con-
tinues to outperform the equivalently sized Open-
CLIP and CLIP models, trained with more data and
more computational resources. We also note that,
for ViT-S/32, no OpenCLIP and CLIP pre-trained
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models are available online, hence we report re-
sults only for our models. Results are detailed in
Table 11.

C.2 Additional results for fully supervised
fine-tuning

Herein, in addition to the few-shot and zero-shot
results reported in the main paper, for complete-
ness, we also include fully supervised fine-tuning
results.

Following (Ni et al., 2022), we conduct the
fully supervised experiments on Kinetics-400 and
Kinetics-600 datasets, using the entirety of the
training and validation sets for training and testing,
respectively. We note that we fully align our setting
and hyperparameters with (Ni et al., 2022) to allow
for a direct comparison. Specifically, during train-
ing, we randomly sample 8 frames using a sparse
sampling strategy (Wang et al., 2016). Starting
from our pre-trained models, HC-VL or HC-VL+,
the networks are finetuned using the hyperparam-
eters detailed in Table 10. Following (Ni et al.,
2022), we use the multi-view inference with 3 spa-
tial crops and 4 temporal clips.

As the results from Table 9 show, our model
outperforms its direct competitors despite using
significantly fewer training samples.

D Qualitative examples

Herein, we provide a few qualitative examples from
the sub-sampled dataset.

Fig. 4 showcases a few randomly sampled key-
words for each pre-defined category. The keywords
cover a various range of activities and actions.

In Fig. 5 we show a few search queries along-
side 3 retrieved samples. It can be observed, that
generally, the search queries align well with the
image-text pairs retrieved.

Fig. 6 shows a few randomly selected samples
alongside their additional BLIP-generated captions.
Notice that for cases where the translation fails or
is incoherent, the generated captions can serve as a
good alternative.
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Table 9: Fully-supervised classification results on Kinetics-400 and Kinetics-600 in terms of Top-1 (%) accuracy.
ViT-B/16 models were used for all variants.

Method
Pre-training Number of Kinetics-400 Kinetics-600

iters samples Top-1 Top-5 Top-1 Top-5

X-OpenCLIP (400M) 12B 400M 82.1 95.0 84.1 96.0
X-OpenCLIP 34B 2B 83.0 96.3 85.0 96.9
X-CLIP - 400M 83.8 96.7 85.3 97.1
X-HC-VL (Ours) 4B 167M 84.3 96.9 85.8 97.3
X-HC-VL+ (Ours) 4B 167M + 0.5M 84.5 97.0 86.0 97.4

Table 10: The training hyperparameters for few-shot
and fully supervised fine-tuning.

Fully-sup. Few-shot

Optimisation
Optimizer AdamW
Optimizer betas (0.9, 0.98)
Batch size 256 64
Learning rate schedule cosine
Linear warmup epochs 5
Base learning rate 8e-6 2e-6
Minimal learning rate 8e-8 2e-8
Epochs 30 50

Data augmentation
RandomFlip 0.5
MultiScaleCrop (1, 0.875, 0.75, 0.66)
ColorJitter 0.8
GrayScale 0.2
Label smoothing 0.1
Mixup 0.8
Cutmix 1.0

Other regularisation
Weight decay 0.001
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Table 11: Zero-shot classification results across a suite of action recognition datasets in terms of Top-1 (%) and
Top-5 (%) accuracy (shown in parentheses). * - results reported in terms of mAP.

A
rc

h.

Dataset
Method

OpenCLIP (400M) OpenCLIP CLIP HC-VL HC-VL+
(Ilharco et al., 2021) (Ilharco et al., 2021) (Radford et al., 2021) (Ours) (Ours)

V
iT

-S
/3

2

UCF-101 - - - 74.6 (94.2) 76.6 (95.1)

HMDB-51 - - - 41.7 (68.5) 45.2 (72.1)

Kinetics-400 - - - 49.3 (74.8) 52.4 (77.7)

Kinetics-220 - - - 44.1 (71.0) 46.3 (73.1)

Kinetics-700 - - - 36.5 (61.6) 38.8 (64.0)

Daly - - - 69.9 (97.3) 73.8 (97.6)

HAA500 - - - 40.8 (70.5) 40.9 (70.8)

HACS - - - 68.4 (91.8) 70.2 (92.9)

Hollywood2* - - - 41.5 45.7

Olympic Sports - - - 50.0 (91.0) 53.1 (93.2)

MiT - - - 18.2 (38.4) 20.0 (39.7)

AVA* - - - 8.1 10.0

Something-Else - - - 7.0 (24.1) 8.8 (27.6)

Charades* - - - 16.1 16.5

UCF-50 - - - 84.5 (97.2) 86.0 (98.1)

UCF Sports - - - 52.5 (88.5) 52.3 (90.5)

Average - - - 44.0 (74.5) 46.0 (76.3)

V
iT

-L
/1

4

UCF-101 74.1 (93.7) 77.8 (95.4) 80.3 (96.8) 84.5 (97.9) 85.4 (98.0)

HMDB-51 34.5 (65.6) 37.8 (69.6) 48.0 (74.4) 49.3 (78.8) 54.0 (80.1)

Kinetics-400 52.4 (76.2) 55.6 (79.0) 62.1 (84.7) 62.2 (85.1) 65.7 (87.8)

Kinetics-220 47.6 (72.6) 52.6 (77.2) 57.1 (82.7) 57.1 (83.0) 60.4 (85.3)

Kinetics-700 40.3 (64.3) 43.1 (67.5) 50.3 (75.4) 49.4 (74.3) 52.9 (78.6)

Daly 76.0 (96.6) 81.5 (96.8) 84.9 (97.8) 84.3 (99.3) 87.7 (99.8)

HAA500 42.4 (71.0) 45.8 (74.7) 49.2 (80.6) 54.3 (82.5) 56.3 (84.0)

HACS 71.1 (93.2) 73.8 (93.8) 77.7 (95.8) 81.0 (96.9) 82.6 (97.2)

Hollywood2* 46.4 44.6 49.7 54.1 61.0

Olympic Sports 46.3 (89.6) 46.3 (90.3) 56.7 (91.8) 58.2 (92.1) 58.2 (94.8)

MiT 19.3 (34.5) 22.1 (41.4) 22.3 (41.3) 25.8 (49.6) 25.6 (50.9)

AVA* 13.0 13.2 15.0 15.7 19.5

Something-Else 12.2 (34.6) 13.0 (35.0) 10.8 (35.3) 13.0 (36.2) 14.8(39.9)

Charades* 20.6 23.8 24.9 27.1 29.6

UCF-50 82.4 (97.1) 85.4 (97.1) 89.0 (98.4) 91.9 (99.5) 92.5 (99.7)

UCF Sports 54.1 (91.8) 47.5 (83.6) 54.1 (91.8) 55.8 (93.4) 54.2 (96.7)

Average 45.8 (75.4) 47.7 (77.0) 52.1 (80.5) 54.0 (82.2) 56.3 (84.1)
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Table 12: List of datasets used for evaluation.

Dataset
Num. Num.

Descriptions
classes samples

Action recognition datasets

UCF-101 (Soomro et al., 2012) 101 13,320 Collected from the web, the dataset cov-
ers 5 action types: Human-Object In-
teraction, Body-Motion Only, Human-
Human Interaction, Playing Musical In-
struments and Sports. All clips have
a fixed resolution of 320 × 240 pixel
and a frame rate of 25 FPS. The mean
clip length is 7.21 sec, ranging between
1.06sec to 71.04 sec.

HMDB-51 (Kuehne et al., 2011) 51 6849 Collected from YouTube, the dataset
covers 5 action types: General facial
actions, Facial actions with object ma-
nipulation, General body movements,
Body movements with object interac-
tion and Body movements for human
interaction.

Kinetics 400 (Kay et al., 2017) 400 300K Collected from YouTube, the dataset
covers a broad range of classes includ-
ing human-object interactions as well as
human-human interactions. Each clip is
roughly 10 sec long.

Kinetics 600 (Carreira et al., 2018) 600 500K Extension of Kinetics 400. Most of
the extra classes were sourced from
Google’s Knowledge Graph, in particu-
lar from the hobby list.

Kinetics 220 (Chen and Huang, 2021) 620 14K Subset of Kinetics 600 that includes 220
classes not found in Kinetics 400, en-
suring no overlap between the two.

Kinetics 700 (Carreira et al., 2019) 700 650K Extension of Kinetics 600. The new
classes are mostly sourced from other
action recognition-related datasets, such
as AVA (Gu et al., 2018).

Daly (Weinzaepfel et al., 2016) 10 500 Daly is an action recognition dataset
with high-quality temporal and spatial
annotation spanning 10 actions and 31
hours of YouTube videos. The dataset
initially consisted of 500 videos, 366 of
which are still available for download at
the time of evaluation, and are divided
into 220 train and 146 val videos. The
reported results are on the val set.

HAA500 (Chung et al., 2021) 500 10K HAA500 is a fine-grained action recog-
nition dataset spanning 500 classes and
10K YouTube videos.
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HACS (Zhao et al., 2019) 200 1.55M HACS is a large-scale dataset with two
versions, HACS Clips for action recog-
nition and HACS Segments for tem-
poral localization. This paper uses
HACS Clips, which consists of 1.55M
2-second clips from YouTube spanning
200 actions. The 1.55M samples are
divided into 1.5M training samples,
20,245 val samples and 20,293 test sam-
ples. At the time of evaluation, 17.3K
out of the 20.2K val samples were still
available for download and were subse-
quently used as our val split.

Hollywood2 (Marszalek et al., 2009) 12 2.5K Hollywood2 is an action recognition
dataset spanning 12 actions distributed
over 2517 videos. The videos are di-
vided into 1633 training samples and
884 test samples.

Hollywood2 (Marszalek et al., 2009) The reported results are on this test set.
Since this dataset is multi-label, we re-
port the mean average precision (mAP)
metric computed using scikit-learn’s
metrics.average_precision_score
function instead of the Top-n accuracy
scores.

Olympic Sports (Niebles et al., 2010) 16 783 Olympic Sports is an action recognition
dataset of YouTube videos spanning 16
different sports. The 783 video samples
are divided into 649 training samples
and 134 val samples. The reported re-
sults are on the val set.

MiT (Monfort et al., 2019) 339 903K Moments in Time is a large-scale action
recognition dataset of ∼1M short video
spanning 339 actions corresponding to
dynamic events unfolding within 3 sec-
onds. The dataset is divided into 802K
training videos, 33.9K validation videos
and 67.8K testing videos. The reported
results are on the val set.

Something-Else (Materzynska et al., 2020) 174 180K A compositional action recognition
dataset annotated with object names
(based on bounding boxes) and actions,
allowing for compositional class names.
The dataset consists of 168913 training
samples and, respectively, 24777 sam-
ples for the validation set. The reported
results are on the validation set.
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Charades (Sigurdsson et al., 2018) 157 9848 Charades is a dataset consisting of 9848
videos of daily indoor activities, anno-
tated with 157 action classes (41,104
labels) and with 46 object classes. Each
video has been exhaustively annotated
using consensus from 4 workers on the
training set and from 8 workers on the
test set. The evaluation follows the
protocol described for the Hollywood2
dataset.

AVA (Gu et al., 2018) 80 1.58M The AVA dataset consists of 430 15-
min video clips annotated densely anno-
tated 80 actions that are also localized
in space and time, resulting in 1.58M ac-
tion labels with multiple labels per per-
son occurring frequently. As such, mul-
tiple actions, executed by different per-
sons, often occur concomitantly. Hence,
we follow the same protocol as for Hol-
lywood2 to compute the mAP.

UCF-50 (Reddy and Shah, 2013) 50 6.6K UCF-50 is an action recognition dataset
spanning 50 actions of 6618 YouTube
videos. Since no official splits are pro-
vided, we split the dataset into 4246
training videos and 2372 validation
videos with disjoint groups. The re-
ported results are on the val set.

UCF Sports (Soomro and Zamir, 2015) 13 150 UCF Sports is an action recognition and
localization dataset of 150 videos origi-
nally spanning 10 actions. To make the
task more challenging, we use an ex-
panded 13-action version by consider-
ing different views of two actions, golf-
ing and kicking. Since no official splits
are provided, we generate the train and
val split on a per-class basis, and use 61
videos as our val split, and the rest as
the training set. The reported results are
on the val set.

Image retrieval datasets

Flicr30k (Young et al., 2014) N/A 31K Flickr30k is a dataset consisting of
31,783 images collected from Flickr, to-
gether with 5 reference sentences pro-
vided by human annotators. The dataset
is a popular image retrieval and caption-
ing dataset.
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MS-COCO N/A 328K The MS COCO (Microsoft Common
Objects in Context) dataset is a large-
scale object detection, segmentation,
key-point detection, and captioning
dataset containing 328K images. In this
work, we only used the annotations rel-
evant for image retrieval, i.e. the pro-
vided captions, evaluating on the val set.

Video retrieval datasets

MSR-VTT (Xu et al., 2016b) N/A 6513 MSR-VTT (Microsoft Research Video
to Text) is an open domain video cap-
tioning and retrieval dataset, consisting
of 10,000 video clips from 20 categories
(6,513 clips for training, 497 clips for
validation, and 2,990 clips for testing).

MSVD (Chen and Dolan, 2011) N/A 2K The MSVD dataset consists of 120K
sentences describing more than 2000
video samples. The videos were manu-
ally labeled by multiple annotators.

DiDemo (Anne Hendricks et al., 2017) N/A 27K The DiDeMo is a large-scale dataset
for temporal localization of events in
videos given natural language descrip-
tions containing 26,892 moments.
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physical activities


bathing horse

operating a tram

driving a race car

circle dance

physical training

women's roller hockey

sliding down a banister

laying a carpet

riding in a ski-doo

operating a backhoe

bull-leaping

supermoto

tearing down something

road to le mans

acrobatic tricking

slicing coconut

picking a flower

bat-and-ball game

riding in a dune buggy

american football

bus driving

miniten

building a dam

american championship car racing

college lacrosse

lifting weights

supercross

hiking in south america

women's roller derby

press-up

domestic, health and 
self-care activities


taking a lunch break

cleaning a litter box

lending

paying a contractor

using hair spray

paying for fast food at drive-through

snacking on a banana

using a headband

eating a piece of banana bread

beard trimming

making the bed

vacuuming the theater seats

cleaning the basement

peeling a radish

cooking stews

pouring milk

fixing a leak

fertilizing the yard

giving a back massage

dressmaking

cleaning a window

making coffee

using a tongue scraper

feeding adult

unplugging a sink

installing a sink

baby burping

peeling a garlic clove

watering lawn

eating a balanced diet

creative and 
professional activities

dollhouse building

training a police dog

making wall hangings

triangle

mixing a salad

rag rug weaving

playing the double bass

ivory carving

conducting an orchestra

painting a landscape

fixing a computer

glass working

recruiting

operating a cash register

assembling a photo collage

selling raffle tickets

miniature model making

assembling a craft kit

brewing beer or wine

warping

making hummus

playing harmonica

cinemagraphs

vehicle restoration

finger crochet

slicing kiwi

root carving

auditioning for a ballet company

djing

making socks

communication and 
cognitive activities

spotting symbol

misconstrued

reading to someone

attending club meetings

singing with a band

renaissance dance

playing a musical instrument

taking music lessons

waiting at the doctor office

reverse auction

sorting books

doing family counseling

motivational speaking

calling someone

approaching someone

sending e-mail

dancing in a performance

listening a sound

giving directions

tutoring students

flutter tonguing

judkins shogi

speaking on the phone

merengue dance

talking on phone

video chat with friends

studying

mediating

wondering around

talking with family

leisure activities


attending craft fairs

decorating a place

attending an art gallery

horse racing betting

extreme croquet

casino gambling

tabletop game

kelly pool

making tea

haggis hurling

tasting sake

brewery tours

playing the hurdy-gurdy

russian folk dance

collecting video games

collecting model spacecraft

drinking from a yard glass

tai tam waterworks heritage trail

shooting pool

group bike rides

petting a dolphin

holding a victory parade

sailing in a river

riding in a limousine

heads or tails

cheering at a concert

playing the viola

over/under betting

sharing a toast

rueda

emotional activities


raising eyebrows

hand heart

protecting someone

shaking

trichotillomania

deaf applause

staring at someone

smelling a bouquet

punching someone

suffering pain

hand on another's lower back

contempt

laughing with friends

donating toys

acting relieved

acting proud

lowering head

congratulating someone

being perturbed

feeding birds

chuckling

making someone laugh

singing a victory chant

high-fiving

submissive behaviour

non-verbal expressions

raising hands

visiting the cemetery

appreciating others

kissing friends

Figure 4: Taxonomy of keywords: We show 30 randomly sampled keywords per each one of the six pre-defined
categories.

7999



bathing horse

collecting model spacecraft

building a dam

slicing kiwi

Photo Woman Showering 
Her Horse

similarity: 0.33 

Emma said that her ponies 
loved the jacuzzi so much 

that one refused to get out so 
she had to get in with him

similarity: 0.31

Construction site of the dam

similarity: 0.32

Anti-aircraft soldier for more 
than 40 years of making 
fighter aircraft models

Yasu Yamazaki demonstrates 
Astroscale plan to clean up 

#spacedebris - with a secret 
glue-laden satellite - using a 
model built of #nanoblocks

Applied Art - Textile Art 
Art Co

similarity: 0.34
similarity: 0.31 similarity: 0.26

Horses by etoiledelune on 
We Heart It

similarity: 0.25

First lumber mill at Post 
Falls, Idaho

similarity: 0.29

Happy young woman 
making eyes with kiwi slices

similarity: 0.29

young woman posing in the 
factory

similarity: 0.28

The ripe kiwifruits on the 
cutting board

similarity: 0.30

How to eat kiwi?

similarity: 0.36

Figure 5: Samples of queried images: we show 3 images for 4 keywords, together with their text query-image
cosine similarity, and either the original English caption or its English translation.

Figure 6: Translated and BLIP2 generated captions: (top-row) examples where the original caption is either
good or well translated, and (bottom-row) examples with poor translation into English.
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