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Abstract

In this paper, we introduce a subspace-inspired
Low-Rank Adaptation (LoRA) method, which
is computationally efficient, easy to implement,
and readily applicable to large language, mul-
timodal, and diffusion models. Initially, we
equivalently decompose the weights of LoRA
into two subspaces, and find that simply mix-
ing them can enhance performance. To study
such a phenomenon, we revisit it through a
fine-grained subspace lens, showing that such
modification is equivalent to employing a fixed
mixer to fuse the subspaces. To be more flexi-
ble, we jointly learn the mixer with the original
LoRA weights, and term the method as Mixture-
of-Subspaces LoRA (MoSLoRA). MoSLoRA
consistently outperforms LoRA on tasks in dif-
ferent modalities, including commonsense rea-
soning, visual instruction tuning, and subject-
driven text-to-image generation, demonstrat-
ing its effectiveness and robustness. Codes are
available at github.

1 Introduction

Large Language Models (LLMs), such as GPT-4
(OpenAI, 2023), LLaMA 3 (AI@Meta, 2024), and
InternLM2 (Cai et al., 2024), have demonstrated
remarkable performance across diverse disciplines
(Rozière et al., 2023; Thirunavukarasu et al., 2023).
Such strong capability is often attributed to the
increased scale of training data and model parame-
ters. However, it also brings increasing challenges
to adapting these LLMs for downstream tasks via
fully fine-tuning all the parameters.

To tackle this issue, parameter-efficient fine-
tuning (PEFT) has been developed (Hu et al., 2022;
Lester et al., 2021; He et al., 2022) to minimize
the number of optimized parameters while achiev-
ing comparable performance as much as possible.
Among these methods, LoRA (Hu et al., 2022)
has gained increasing popularity due to its sim-
plicity and efficacy, which proposes to update the
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Figure 1: Comparison between vanilla LoRA and pro-
posed MoSLoRA. In MoSLoRA, we employ learnable
weights to mix more subspaces with negligible parame-
ters (i.e., (d1+d2+r)r vs (d1+d2)r and d1+d2 ≫ r
typically).

extra low-rank branch exclusively and merge it into
the frozen original weight during inference. As
shown in Figure 1, for the original weight matrix
W0 ∈ Rd1×d2 , the additional low-rank branch con-
sists of a down projection A ∈ Rd1×r and an up
projection B ∈ Rr×d2 , where r ≪ min(d1, d2).
Hence, the number of updated parameters is re-
duced from d1 × d2 to (d1 + d2)r.

In this paper, we first define subspaces in LoRA
as the parallel components with smaller rank val-
ues, similar to the subspace in multi-head atten-
tion (MHA) design (Vaswani et al., 2017). After
that, we can decompose the vanilla LoRA into sev-
eral subspaces via structural re-parameterization
(Wu et al., 2023; Ding et al., 2021). Figure 2 in-
dicates the process of decomposing into two sub-
spaces. Interestingly, we find that simply mixing
these two subspaces performs better in the com-
monsense reasoning tasks.
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Motivated by the observation, we further revisit
the two-subspaces-mixing strategy in a more fine-
grained (rank=1) view and composed view. In
short, such a strategy equals inserting a mixer ma-
trix between A and B, which is a fixed butter-
fly factor (Dao et al., 2019). Meanwhile, vanilla
LoRA can be considered as a special case with
a fixed identity matrix being the mixer. There-
fore, we propose MoSLoRA, a simple yet effective
method, which employs a learnable mixer to fuse
more subspaces and more flexibly. As shown in
Figure 1, we adapt the mixer W to fuse all the pos-
sible subspaces (i.e., AiBj). Compared to LoRA,
MoSLoRA requires negligible extra parameters
since d1+ d2 ≫ r. Similarly to LoRA, MoSLoRA
can also be merged into the original weights, and
thus introduce no latency during inference.

We perform experiments on various downstream
tasks, including commonsense reasoning tasks fine-
tuning LLaMA 3 (AI@Meta, 2024), visual instruc-
tion tuning on LLaVA-1.5 (Liu et al., 2023a) series
models, and subject-driven text-to-image genera-
tion on Stable Diffusion XL (SDXL) model (Podell
et al., 2023). Experimental results indicate that
the proposed MoSLoRA consistently outperforms
LoRA and other baselines, demonstrating its effec-
tiveness and robustness. Our contributions can be
concluded as follows:

• We decompose LoRA into subspaces via struc-
tural re-parameterization, revealing a new
pathway to investigate LoRA.

• We propose a simple yet effective MoSLoRA
method, employing a learnable mixer to fuse
more subspaces and more flexibly.

• We conduct extensive experiments on vari-
ous downstream tasks, demonstrating the ef-
fectiveness and robustness of the proposed
MoSLoRA.

2 Preliminaries and Motivation

2.1 LoRA and Subspace View
Based on the hypothesis that the update in weights
during model adaptation exhibits low intrinsic rank,
LoRA (Hu et al., 2022) aims to model the weight
update via two low-rank matrices. For a pre-trained
weight matrix W0 ∈ Rd1×d2 and arbitrary input x,
they modify the forward pass as follows 1:

xW0 + x∆W = xW0 + xAB, (1)
1In this paper, we use the post-multiplication for simplicity.
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a) vanilla LoRA and two-subspaces view

b) two-subspaces-mixing LoRA

Figure 2: Overview of decomposing vanilla LoRA into
two subspaces and mixing them. Compared to vanilla
LoRA, two-subspaces-mixing LoRA contains two extra
entries.

where A ∈ Rd1×r, B ∈ Rr×d2 and r ≪
min(d1, d2). Typically, A is initialized as a Gaus-
sian matrix and B as a zero matrix, so that ∆W is
zero at the beginning. During training, the original
weight W0 is frozen, while A and B contain train-
able parameters. After that, the A and B can be
merged into W0 during inference, thus not intro-
ducing any latency.

In this paper, we decompose LoRA into sub-
spaces via structural re-parameterization, where
the subspaces are defined as parallel components
with smaller rank values. Figure 2 part a shows
the procedure for two subspaces. Specifically, we
decompose the A into two parts (i.e., A1 and A2)
by column, and B by row to get B1 and B2. There-
fore, we can easily get that:

xAB = x [A1 A2] [B1

B2
]

= x(A1B1 +A2B2), (2)

where the A1B1 and A2B2 are the two subspaces.
In the two-subspace view, vanilla LoRA equals the
sum of two subspaces. Moreover, we can get a
more fine-grained view if we split A and B for
more parts, respectively.

2.2 Mixing Two Subspaces
As shown in Figure 2b, we can simply mix two
subspaces by adding up the outputs of A1 and A2.
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Method ARC-e OBQA SIQA ARC-c WinoG. PIQA BoolQ HellaS. Avg.

LoRA (r=16) 87.7 82.8 79.3 75.7 84.8 86.7 72.3 93.5 82.8
+ TS-Mixing 88.3 83.0 80.3 78.1 84.8 87.5 73.8 94.3 83.8

LoRA (r=32) 83.5 82.6 80.3 70.3 82.6 85.7 71.3 91.4 81.0
+ TS-Mixing 87.9 84.2 79.9 75.1 84.8 86.9 72.1 93.3 83.0

Table 1: Comparison of vanilla LoRA and two-subspaces-mixing LoRA (denoted as TS-Mixing) on 8 benchmarks.
Simply mixing these two subspaces leads to better performance.

Hence, the output of the whole module for input x
would be:

x(A1 +A2)(B1 +B2)
=x(A1B1 +A2B2 +A1B2 +A2B1). (3)

Compared to Equation 2, Equation 3 contains two
extra entries and can model more information intu-
itively.

To compare these two strategies, we conduct ex-
periments on the commonsense reasoning tasks
following Hu et al. (2023). We first fine-tune
LLaMA-3 8B model (AI@Meta, 2024) on 170k
training samples (Hu et al., 2023), and then report
the performance on 8 benchmarks, including ARC-
c/e (Clark et al., 2018), OBQA (Mihaylov et al.,
2018), SIQA (Sap et al., 2019), WinoG. (Wino-
Grande) (Sakaguchi et al., 2020), PIQA (Bisk et al.,
2020), BoolQ (Clark et al., 2019), and HellaS. (Hel-
laSwag) (Zellers et al., 2019). Please refer to Ap-
pendix A.1 for details of these benchmarks. All hy-
perparameters are the same and listed in Appendix
B.1.

Table 1 shows the results on 8 benchmarks
for these two methods. Mixing two subspaces
would lead to better performance under different
settings (r=8/16), such as 93.3 compared to 91.4
of LoRA on the HellaSwag benchmark, showing
the effectiveness and robustness of two-subspaces-
mixing LoRA than vanilla LoRA.

3 Methodology

3.1 More Fine-grained Subspace
Motivated by the observation that mixing two sub-
spaces would lead to better performance, we revisit
the two-subspaces-mixing LoRA in view of more
fine-grained subspace (i.e., rank=1). Specifically,
we decompose the A ∈ Rd1×r and B ∈ Rr×d2 into
r subspaces (rank=1), which can be formulated as:

A = [A1 A2 ⋯ Ar]
B

T = [BT
1 B

T
2 ⋯ B

T
r ] , (4)

Method #N of subspaces (rank=1) Trainable

LoRA r ✗

TS-Mixing 2r ✗

MoSLoRA r
2

✓

Table 2: Comparison of LoRA, two-subspaces-
mixing LoRA (denoted as TS-Mixing), and proposed
MoSLoRA. #N denotes the number of mixed subspaces.

where Ai ∈ Rd1×1 and Bi ∈ R1×d2 for 1 ≤ i ≤ r.
As shown in Figure 3, we can thus view vanilla
LoRA as:

xAB = x
r

∑
i=1

AiBi = xAIr×rB. (5)

The Ir×r ∈ Rr×r denotes the identity ma-
trix. Meanwhile, the two-subspaces-mixing LoRA
equals to:

x

r/2
∑
i=1

(Ai +Ai+r/2)(Bi +Bi+r/2)
=xA [Ir/2×r/2 Ir/2×r/2

Ir/2×r/2 Ir/2×r/2]B.

(6)

Interestingly, we can find that Equation 5 and
Equation 6 share the same paradigm:

AWB, (7)

where W ∈ Rr×r and we define W as the weight
of mixer to fuse the subspaces. For vanilla LoRA,
the mixer is the fixed identity matrix fusing r sub-
spaces. For the two-subspaces-mixing LoRA, the
mixer is a fixed butterfly factor fusing 2r sub-
spaces, which is more than LoRA. Therefore, we
propose MoSLoRA, adapting a trainable mixer to
fuse all the possible subspaces. As shown in Ta-
ble 2, MoSLoRA mixes the information of r2 sub-
spaces (rank=1) employing trainable weights, mod-
eling the information of more subspaces and more
flexible than LoRA.
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Figure 3: The subspace view (rank=1) and composed view for vanilla LoRA, two-subspaces-mixing LoRA, and
proposed MoSLORA. In MoSLoRA, we employ a learnable mixer to fuse more information and more flexibly.

Initialization Strategy Average Score

Zero Matrix not converge
Identity Matrix 82.6
Normal Distribution 80.7
Orthogonal Matrix 84.4
Kaiming Uniform Distribution 85.6

Table 3: Comparison of various initialization strategies
for the trainable mixer in MoSLoRA. We report the
average score on the commonsense reasoning tasks.

3.2 Initialization Strategies for Mixer
In the proposed MoSLoRA, we employ a trainable
mixer to fuse all possible subspaces. However, the
system of MoSLoRA is linear, and a bad initial-
ization hampers the learning (He et al., 2015). In
MoSLoRA, we follow the setting in LoRA and
initialize A using a Kaiming uniform distribution
2 and B as a zero matrix. For the mixer weight
W, we compare various initialization strategies,
including zero matrix, identity matrix, normal dis-
tribution, orthogonal matrix (Saxe et al., 2014),
and Kaiming uniform distribution (He et al., 2015).
Hyperparameters for finetuning can be found at
Appendix B.1.

Table 3 reports the results of the commonsense
reasoning tasks. If we initialize the mixer as the
zero matrix, then the model would not converge
since all of the A, B, and W get zero gradients (cf.
Appendix C for proof). When initializing the mixer

2In the code of LoRA, they use Kaiming uniform initial-
ization rather than Gaussian distribution claimed in the paper.

as an identity matrix and updating it during training,
the performance is similar to the vanilla LoRA with
a fixed identity (82.6 vs. 82.8). Moreover, Kaim-
ing uniform distribution and orthogonal matrix get
strong performance, and thus we adapt them for
the initialization of the mixer in MoSLoRA.

3.3 Relation with Mixture-of-Experts

Mixture-of-Experts (MoE) methods aim to parti-
tion a set of parameters into experts and route in-
put samples to specific experts during training and
inference (Fedus et al., 2022a; Shi et al., 2024).
Typically, they employ a router to generate scores
for each expert based on the input, and then select
top-k experts (Fedus et al., 2022b; Lepikhin et al.,
2021; DeepSeek-AI, 2024). In this paper, we pro-
pose MoSLoRA to mix the subspaces in LoRA,
where the wij in the mixer can be considered as the
weight to compose subspace AiBj . However, the
differences between MoSLoRA and MoE methods
are as follows:

• In MoSLoRA, the weights to mix subspaces
are input agnostic, while weights from gates
in MoE methods are input specific.

• In MoSLoRA, we adapt all the subspaces si-
multaneously, while MoE methods select top-
k from all the experts.
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Method Param Time Mem ARC-e OBQA SIQA ARC-c WinoG. PIQA BoolQ HellaS. Avg.

LoRA 28.3M 8.0h 29G 87.7 82.8 79.3 75.7 84.8 86.7 72.3 93.5 82.8
LoKr 0.9M 26.3h 66G 89.2 81.8 78.7 76.7 82.1 81.6 65.1 92.0 80.9
LoHa 28.3M 25.5h 68G 91.2 85.8 81.1 80.5 83.3 89.7 75.0 95.0 85.2
FLoRA 28.4M 8.2h 31G 90.2 84.2 79.9 79.3 85.1 86.7 74.8 93.9 84.2
AdaLoRA 28.3M 12.5h 58G 90.4 85.0 76.7 79.1 83.3 86.4 75.1 75.4 81.4
DoRA 29.1M 14.5h 33G 90.1 87.2 80.3 79.1 84.7 88.8 74.5 95.5 85.0
DoRA∗ 57.4M 14.8h 33G 90.5 85.8 79.9 80.4 85.6 89.3 74.6 95.5 85.2
MoSLoRA 28.4M 8.2h 31G 90.5 86.8 81.0 81.5 85.8 89.7 74.6 95.0 85.6

Table 4: Accuracy comparison of various methods fine-tuning LLaMA-3 8B on the commonsense reasoning tasks.
Param denotes the number of trained parameters, Time for the training time on A100 GPU, and Mem for the GPU
Memory usage. ∗ denotes a larger rank in DoRA. We can find that the proposed MoSLoRA outperforms all the
baselines with a slightly extra training cost than LoRA.

4 Experiments and Analysis

4.1 Commonsense Reasoning

We fine-tune LLaMA-3 8B instruction version
model (AI@Meta, 2024) for the commonsense rea-
soning question answering tasks. We first train
the model using 170k training samples (Hu et al.,
2023), and then test the fine-tuned model on 8
commonsense reasoning question answering bench-
marks (refer to Appendix A.1 for details). The 170k
training set is the mixture of the training sets of
these benchmarks. Besides LoRA (Hu et al., 2022),
we also compare MoSLoRA with various base-
lines, including: 1) LoKr (Yeh et al., 2023) which
employs Kronecker products for matrix decompo-
sition of AB; 2) LoHa (Yeh et al., 2023) which
decomposes the vanilla LoRA into the Hadamard
product of two LoRA branches; 3) FLoRA (Si
et al., 2024) which introduces an extra core based
on Tucker decomposition to maintain the consis-
tent topological structure with the original space
4) AdaLoRA (Zhang et al., 2023) which parame-
terizes the incremental updates of the pre-trained
weight matrices in the form of singular value de-
composition; and 5) DoRA (Liu et al., 2024) which
decomposes the pretrained weight into its mag-
nitude and directional components and fine-tunes
both of them.

All the experiments are conducted using 1
Nvidia 80G A100 GPU. The hyperparameters are
listed in Appendix B.1. Based on the analysis in
Table 3, we initialize the mixer following the Kaim-
ing uniform distribution. Besides the accuracy, we
also report the number of trained parameters and
training overhead including time and peak GPU
memory.

Table 4 shows the results on 8 benchmarks.
Some findings can be summarized as follows:

20 40 60 80 100
Training Data Ratio

91

92

93

94

95
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cu

ra
cy

MoSLoRA
LoRA

Figure 4: Comparison of MoSLoRA and LoRA on the
HellaSwag benchmark with fewer training samples.

• MoSLoRA outperforms all the baselines,
demonstrating the effectiveness of mixing the
subspaces. Specifically, MoSLoRA gets an
average of 85.6, which is 2.8 higher than the
82.8 of LoRA. Moreover, MoSLoRA outper-
forms DoRA with a higher rank.

• Compared to LoRA, MoSLoRA requires neg-
ligible extra parameters (less than 0.1M) and
computing cost (less than 0.2h). Meanwhile,
MoSLoRA can save 44% training time than
DoRA and 68% than LoHa.

• Though LoKr reduces the training parameters
via Kronecher products, it requires more than
3x training time and 2x GPU memory than
MoSLoRA. Also, LoKr gets an average score
of 80.9, which is 4.7 lower than MoSLoRA.

Fewer training samples To compare the perfor-
mance under fewer sample settings, we randomly
select 12.5%/25%/50%/75% training samples from
the original 170k training set and repeat the ex-
periments. As shown in Figure 4, more train-
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Model Method Init. MMBench SEED- AI2D SciQA Text Math MM- MME Avg.
EN CN Bench image VQA Vista Vet

LLaMA-3
LoRA - 72.0 67.8 68.8 61.4 74.8 47.1 27.7 33.1 58.4 56.8

+ViT MoSLoRA
Orth 73.0 68.2 69.0 61.2 75.7 47.2 27.6 33.4 60.6 57.3
Kai 72.5 67.5 68.9 60.6 76.0 47.1 27.5 33.8 60.5 57.1

InternLM2
QLoRA - 70.8 68.9 70.4 62.2 72.5 49.8 30.2 33.9 61.6 57.8

+ViT QMoSLoRA
Orth 73.5 71.2 71.1 64.8 71.8 49.8 30.2 35.0 62.0 58.8
Kai 73.8 72.6 70.3 66.1 72.2 50.2 30.6 35.2 64.1 59.5

Table 5: Results on 9 benchmarks for vanilla LoRA and proposed MoSLoRA. In MoSLoRA, we try both orthogo-
nal (denoted as Orth) and Kaiming uniform initialization (denoted as Kai). For InternLM2, we employ the 4-bit
QLoRA on LoRA and MoSLoRA. MoSLoRA consistently outperforms LoRA on various backbones for both
initialization strategies.

ing samples would lead to better performance and
MoSLoRA outperforms LoRA under all the set-
tings. Particularly, MoSLoRA trained via 50%
samples gets a score of 83.6, which is 1.8 higher
than LoRA using 100% samples. Moreover, the
performance gap between MoSLoRA and LoRA
becomes larger as the training samples increase,
showing the superiority of MoSLoRA to modeling
more complex information due to the mixture of
subspaces.

4.2 Visual Instruction Tuning

To evaluate performance on multimodal tasks, we
fine-tune the LLaVA-1.5 (Liu et al., 2023a) series
models for visual instruction tuning, and then test
the model for various visual QA benchmarks.

There are two stages in training LLaVA: 1) pre-
train a two-layer MLP to project visual features
to language space, and 2) optimize LLM and vi-
sual encoder (optional) for visual instruction tun-
ing. In this paper, we employ the pretrained projec-
tor provided in XTuner (Contributors, 2023b), and
then conduct visual instruction tuning on the LLM
backbone and visual encoder, simultaneously. For
the LLM backbones, we adapt the LLaMA3 8B
(AI@Meta, 2024) and InternLM2 7B (Cai et al.,
2024) using the off-the-shelf projecters 3. For
the visual encoder, we employ the ViT 4 (Doso-
vitskiy et al., 2021) large version. Due to lim-
ited resources, we fintune both the LLM back-
bone and visual encoder via LoRA/MoSLoRA on
the 665K instruction-following data (Liu et al.,
2023a), rather than optimize all the parameters
in LLMs. For InternLM2, we employ the 4-bit
QLoRA (Dettmers et al., 2023) and corresponding

3pretrained projecters
4openai/clip-vit-large-patch14-336

CN
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CN
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Perception

CN
Fine-grained
Perception

(Cross-instance)

CN
Fine-grained
Perception

(Single-instance)
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Reasoning
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Figure 5: Normalized performance on 6 ability di-
mensions in MMBench EN/CN for QLoRA and
QMoSLoRA when fintuning InternLM2. MoSLoRA
significantly improves the reasoning ability over LoRA.

QMoSLoRA (QLoRA+MoSLoRA). Based on the
results in Table 3, we initialize the mixer as the or-
thogonal matrix and Kaiming uniform distribution,
separately. For specific hyperparameters, please
refer to the Appendix B.2. It takes around 20 hours
to fine-tune using 4 Nvidia A100 80G GPUs.

After visual instruction tuning, we evaluate the
trained model on 9 popular benchmarks, includ-
ing MMBench EN/CN (Liu et al., 2023b), SEED
Bench (Li et al., 2023a), AI2D (Kembhavi et al.,
2016), SciQA (Lu et al., 2022b), TextVQA (Singh
et al., 2019), MathVista testmini (Lu et al., 2023),
MM-Vet (Yu et al., 2023), and MME (Fu et al.,
2023). All the evaluations are done using the
VLMEvalKit (Contributors, 2023a). Please refer to
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Input images [V] cat on the beach

LoRA

MoSLoRA

[V] cat floating on waterwet [V] cat

Figure 6: Comparison of generated images from LoRA and MoSLoRA on the subject-driven generation task.
MoSLoRA is more consistent with the subject in the input images (e.g. the color of the hairs around the neck) and
conforms to the given prompts (e.g. the wet hair and floating gesture) better.

Appendix A.2 for the details of the dataset and the
reported metrics. Specifically, we scale the MME
scores to 100 to calculate the average score.

Table 5 shows the results on 9 benchmarks.
For both orthogonal and Kaiming initialization,
MoSLoRA consistently outperforms LoRA on var-
ious benchmarks. Specifically, MoSLoRA gets an
average score of 59.5 on InternnLM2+ViT, which
is 1.7 higher than LoRA. Moreover, MoSLoRA
also outperforms LoRA when combined with the
4-bit QLoRA. It effectively showcases the com-
patibility of MoSLoRA with QLoRA. Therefore,
MoSLoRA can be applied in low-resource fine-
tuning scenarios combined with the quantization
methods. In summary, the proposed MoSLoRA
consistently outperforms LoRA in various settings,
demonstrating its effectiveness and robustness.

More finegrained ability Moreover, we also vi-
sualize the normalized scores on 6 ability dimen-
sions in the MMbench EN/CN test set. As shown in
Figure 5, we can observe that MoSLoRA performs
better than LoRA on all abilities for both English
and Chinese scenarios, especially the reasoning
ability. Reasoning tasks are typically considered
to be more complex and difficult. Compared to
LoRA, MoSLoRA mixes more subspaces and is
thus better at more difficult tasks such as logical
reasoning.

4.3 Subject-driven Generation

We further perform the experiments fine-tuning
the text-to-image diffusion models for the subject-

driven generation task (Ruiz et al., 2023). The
goal is to generate the images following the given
prompts of one specific subject, which is defined
in a few given images. We first fine-tune a text-
to-image model with the input images paired with
a text prompt containing a unique identifier (e.g.,
A photo of a [V] cat). After that, we can employ
other prompts containing the unique identifier to
generate the corresponding images.

Figure 6 shows one case of a cat from the Dream-
Booth dataset (Ruiz et al., 2023). We finetune the
SDXL5 model (Podell et al., 2023) via LoRA and
MoSLoRA. In MoSLoRA, the mixer is initialized
as an orthogonal matrix. During finetuning, the
learning rate is 1e-4, and the batch size is 4. We
train the model for 500 steps, which costs around
16 minutes using 1 80G A100 GPU. During gen-
eration, we infer 50 steps for the given prompts.
Compared to vanilla LoRA, we can find that our
proposed MoSLoRA captures more details of the
subject and better conforms to the given prompt.
Specifically, MoSLoRA learns more details about
the given cat, including the color of the hairs around
the neck and the shape of the paw. Meanwhile, the
images from MoSLoRA are more consistent with
the given prompts, such as the wet (thus clumped)
hair and the floating gesture (spread hands).

Human evaluation We also perform human eval-
uation on the generated images. First, we choose
four subjects (i.e., cat, dog, grey sloth plushie, and

5stable-diffusion-xl-base-1.0
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Metric Win Tie Loss ∆

Sub-simi 23.1% 60.4% 16.5% +6.6%
Pro-cons 45.1% 44.2% 10.7% +34.3%

Table 6: Human evaluation results on the generated im-
ages comparing MoSLoRA against LoRA. Sub-simi de-
notes for the subject similarity and Pro-cons for prompt
consistency.

can) from the DreamBooth dataset (Ruiz et al.,
2023) and fine-tune the SDXL model, respectively.
Then, we randomly select 8 prompts to generate
the corresponding images. After that, 15 human ex-
perts are asked to independently score win/tie/loss
for the paired images from LoRA and MoSLoRA.
During evaluation, we shuffle these pairs and keep
that these experts do not know the source model
of each image. We employ two metrics, including
1) subject similarity defined as the similarity be-
tween subjects from generated images and given
images, and 2) prompt consistency defined as the
consistency among prompts and generated images.
Table 6 reports the average score for all the im-
ages. We can find that MoSLoRA outperforms
LoRA on both metrics. In particular, MoSLoRA
gets an average winning ratio of 45.1% on prompt
consistency, which is 34.3% than LoRA. Please
refer to Appendix D for the detailed prompts and
corresponding generated images from LoRA and
MoSLoRA.

5 Related Work

5.1 Parameter-Efficient Fine-tuning

Parameter-efficient fine-tuning (PEFT), aiming to
update a small proportion of parameters to adapt
Large Language Models (LLMs), has become in-
creasingly important. The mainstreaming PEFT
methods can be categorized into: 1) adapter based
methods (Houlsby et al., 2019; Lei et al., 2023),
which inserts modules between transformer layers;
2) prefix tuning methods (Li and Liang, 2021; Liu
et al., 2021), which prepends tunable prefix vectors
into the hidden states; 3) selective methods (Zaken
et al., 2022), which select part of the parameters
to update; and 4) low-rank adapting (LoRA) se-
ries (Hu et al., 2022; Yeh et al., 2023), which in-
jects trainable low-rank branches to approximate
the weight updates. In LoRA, low-rank branches
can be merged into the original weights during in-
ference, thus bringing no latency. We refer the

reader to Han et al. (2024) for a more compre-
hensive survey. In this paper, we focus on LoRA
methods.

5.2 LoRA and its Variants
The core of LoRA is to update the mergeable and
low-rank branches to model the weight updates. Hu
et al. (2022) initialize the branch as a product of
two low-rank matrices. The following variants can
be categorized into: 1) introducing training skills,
such as setting different learning rates (Hayou et al.,
2024) and adding random noise (Lin et al., 2024);
2) searching ranks, such as DyLoRA (Valipour
et al., 2023) and AdaLoRA (Zhang et al., 2023);
and 3) new designs for the branch, such as LoKr
(Yeh et al., 2023), LoHa (Yeh et al., 2023), VeRA
(Kopiczko et al., 2023), DoRA (Liu et al., 2024),
and FLoRA (Si et al., 2024). LoKr and LoHa em-
ploy Kronecker and Hadamard products to replace
the vanilla matrix product, respectively. DoRA de-
composes the pretrained weight into its magnitude
and directional components and fine-tunes them
separately.

We also notice a very recent concurrent work
FLoRA (Si et al., 2024). Differences between
MoSLoRA and FLoRA are as follows: 1) initial-
ization methods and the corresponding motivation:
The motivation of FLoRA is to maintain the struc-
tural integrity of the original high-dimensional pa-
rameter spaces (i.e., 2D Convolution) by introduc-
ing the core spaces. Differently, MoSLoRA is
motivated by the observation of exploratory ex-
periments in Section 2.2, where we find the two-
subspaces-mixing LoRA in the view of more fine-
grained subspace has the potential to learn com-
plex features. As a result, we introduce an extra
learnable mixer initialized as Kaiming uniform dis-
tribution or orthogonal matrix, which we empiri-
cally (Section 3.2) find vital for the final perfor-
mance. 2) analysis and derivation: The design
of our mixer comes from the process of analyz-
ing and deriving the two-subspaces-mixing LoRA.
We revisit the two-subspaces-mixing strategy in
a more fine-grained (rank=1) view and composed
view, and then we find that both LoRA and two-
subspaces-mixing LoRA are equivalent to inserting
fixed mixer matrices. Based on that, we propose
MoSLoRA, which employs a learnable mixer to
fuse more subspaces and more flexibly. 3) mod-
els and datasets: For visual-instruction tuning
tasks, FLoRA fine-tunes LLaVA-1.5-7B (based
on Vicuna-1.5-7B (Peng et al., 2023)) and evalu-
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ates on seven vision language benchmarks: VQAv2

(Goyal et al., 2019), GQA (Hudson and Manning,
2019), VisWiz (Gurari et al., 2018), SQA (Lu et al.,
2022a), TextVQA (Singh et al., 2019), POPE (Li
et al., 2023b), and MMBench (Liu et al., 2023b).
Differently, We select LLaMA3 8B and InternLM2
as the language models and evaluate the fine-tuned
models on MMBench EN/CN (Liu et al., 2023b),
SEED Bench (Li et al., 2023a), AI2D (Kembhavi
et al., 2016), SciQA (Lu et al., 2022b), TextVQA
(Singh et al., 2019), MathVista testmini (Lu et al.,
2023), MM-Vet (Yu et al., 2023), and MME (Fu
et al., 2023). Besides, for language models, we
evaluate MoSLoRA on LLaMA3 8B, while FLoRA
focuses on DeBERTaV3 (He et al., 2023).

6 Conclusion

This work proposes a novel MoSLoRA method for
parameter-efficient fine-tuning. We first decom-
pose the LoRA into subspaces and find that simply
mixing the half-rank subspaces would lead to better
performance. After that, we revisit vanilla LoRA
and two-subspaces-mixing strategy in a more fine-
grained view (i.e., rank=1), thus unifying both
methods as employing an extra fixed mixer. There-
fore, we propose MoSLoRA, which employs a
learnable mixer to fuse more information and more
flexibly. The mixer requires negligible extra param-
eters and computing costs. Experimental results on
commonsense reasoning tasks, visual instruction
tuning tasks, and subject-driven generation tasks
demonstrate the effectiveness and robustness of the
proposed MoSLoRA. For future work, we would
consider applying MoSLoRA for more tasks. Find-
ing a task-specific way to initialize the mixer for
faster convergence would be another interesting
topic.

Limitations

In this paper, we conduct experiments on com-
monsense reasoning tasks, visual instruction tuning
tasks, and subject-driven generation tasks. LoRA
can be applied in more scenarios, such as mixing
styles in image generation tasks when fine-tuning
stable diffusion models. We leave these tasks for
future work.

Ethics Statement

This project aims to improve the LoRA methods
and can be employed for subject-driven text-to-
image generation tasks, where the users can fine-

tune the stable diffusion models to generate images
of a specific subject defined by the input images.
In some cases, such malicious parties might use
the generated images to mislead viewers. This is a
common issue in generative model approaches or
content manipulation techniques.
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A Details of Benchmarks

A.1 Commonsene Reasoning
The details of the benchmarks are as follows:

• ARC-c/e (Clark et al., 2018): the Challenge
Set and Easy Set of ARC dataset of gen-
uine grade-school level, containing 2376/1172
multiple-choice science questions in the test
set, respectively.

• OBQA (Mihaylov et al., 2018): questions re-
quiring multi-step reasoning, use of additional
commonsense knowledge, and rich text com-
prehension. There are 500 questions in the
test set.

• SIQA (Sap et al., 2019): reasoning questions
about people’s actions and their social impli-
cations. There are 1954 questions in the test
set.

• WinoG. (WinoGrande) (Sakaguchi et al.,
2020): fill-in-a-blank task with binary options
to choose the right option for a given sen-
tence which requires commonsense reasoning.
There are 1267 questions in the test set.

• PIQA (Bisk et al., 2020): questions with two
solutions requiring physical commonsense.
There are 1830 questions in the test set.

• BoolQ (Clark et al., 2019): yes/no questions
which are naturally occurring and generated
in unprompted and unconstrained settings.
There are 3270 questions in the test set.

• HellaS. (HellaSwag) (Zellers et al., 2019):
commonsense NLI questions including a con-
text and several endings which complete the
context. There are 10042 questions in the test
set.

For all the benchmarks, we report the accuracy
following Hu et al. (2023).

A.2 Visual Instruction Tuning
The details of benchmarks and reported metrics are
as follows:

• MMBench EN/CN (Liu et al., 2023b): the En-
glish and Chinese version of MMBench. MM-
Bench contains over 3000 multiple-choice
questions covering 20 different ability dimen-
sions. Each ability dimension encompasses

over 125 questions. We report the accuracy of
the test set 6.

• SEED Bench (Li et al., 2023a): 19K multiple
choice questions with accurate human annota-
tions, which spans 12 evaluation dimensions
including the comprehension of both the im-
age and video modality. In this paper, we
use the image modality only and report the
accuracy.

• AI2D (Kembhavi et al., 2016): AI2 Dia-
grams (AI2D) of over 5000 grade school sci-
ence diagrams and more than 15000 corre-
sponding multiple choice questions. We re-
port the accuracy of the test set.

• SciQA (ScienceQA) (Lu et al., 2022b): 21k
multimodal multiple choice questions with di-
verse science topics and annotations of their
answers with corresponding lectures and ex-
planations. We report the accuracy of the test
set.

• TextVQA (Singh et al., 2019): 45,336 ques-
tions on 28,408 images that require reasoning
about text to answer. We report the accuracy
of the validation set.

• MathVista testmini (Lu et al., 2023): a bench-
mark designed to combine challenges from
diverse mathematical and visual tasks. It con-
sists of 6,141 examples, derived from 28 exist-
ing multimodal datasets involving mathemat-
ics and 3 newly created datasets. We report
the accuracy scores on the testmini subset of
1,000 examples using GPT-4-turbo.

• MM-Vet (Yu et al., 2023): 200 images and 218
questions (samples), including 187 images
from various online sources with 205 ques-
tions, 10 images from VCR with 10 paired
questions, and 3 paired questions and images
for medical expert knowledge. We report the
average scores from the GPT-4-turbo.

• MME (Fu et al., 2023): 14 subtasks aiming to
measure both perception and cognition abil-
ities and the answer is yes or no. For the
metrics, original scores include accuracy and
accuracy+ for each task, and the total score is
2800. In this paper, we scale the scores to 100
for average.

6Online submission for results
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Hyperparameter LoRA LoKr LoHa FLoRA AdaLoRA MoSLoRA DoRA DoRA∗

Rank r 16 32

α 32 64

Dropout 0.05

Batch size 16

Epochs 3

Learning rate 3e-5 1e-5

Target module q, k, v, up, down

Table 7: The hyperparameters for various methods on the commonsense reasoning tasks.

Hyperparameter LLaMA-3+ViT InternLM2+ViT

Batch size 8 16

Accumulative 2 1

Learning rate 2e-5

Epoch 1

Rank r 64/64 512/64

α 128/16 256/16

Target module q, k, v, o, up, down, gate

Table 8: The hyperparameters for various methods for
visual instruction tuning. For rank and alpha, we report
in the format of LLM/Visual Encoder.

B Experimental Setup

B.1 Commonsene Reasoning

Table 7 shows the detailed hyper-parameters
for commonsense reasoning tasking when fine-
tuning the LLaMA3-8B instruction version. For
AdaLoRA, we set both the initial rank and target
rank to be 16.

B.2 Visual Instruction Tuning

Table 8 reports the detailed hyper-parameters for
visual instruction tuning when fine-tuning the
LLaMA3-8B+ViT and InternLM2+ViT. Moreover,
we employ the 4-bit QLoRA when finetuning the
InternLM2, where the quantization type is NF4
with double quantization skills.

C Initialize Mixer as Zero Matrix

In MoSLoRA, we model the forward process as:

y = xWmerge

Wmerge = W0 +AWB,
(8)

where the W0 is frozen during training. Then we
have:

∂y

∂A
= ∂y

∂Wmerge
B

T
W

T

∂y

∂W
= A

T ∂y

∂Wmerge
B

T

∂y

∂B
= W

T
A

T ∂y

∂Wmerge

(9)

If we initialize W and B as zero matrices simul-
taneously, all the gradients in Equation 11 would
be zero, and neither would be updated.

D Cases of Generated Images

Figure 7, 8, 9, and 10 show the specific generated
images and paired prompts. For the definition im-
ages of these subjects, please refer to the official
data7 of DreamBooth.

7DreamBooth dataset
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E Analysis of W in MoSLoRA

E.1 Vanilla MoSLoRA
For an arbitrary input x, we have:

y = xWmerge;Wmerge = W0 +AWB, (10)

where the W0 is frozen during training. Then we have:

∂y

∂A
= ∂y

∂Wmerge
B

T
W

T
;
∂y

∂W
= A

T ∂y

∂Wmerge
B

T
;
∂y

∂B
= W

T
A

T ∂y

∂Wmerge
(11)

Denote the learning rate as η, the updating process is:

A ← A − η
∂y

∂A
= A − η

∂y

∂Wmerge
B

T
W

T (12)

The process is similar for W and B. Let ∆ = ∂y

∂Wmerge
. Thus, the weight of the updated LoRA branch

would be:

WLoRA = (A − η∆B
T
W

T )(W − ηA
T
∆B

T )(B − ηW
T
A

T
∆)

= (AW − ηAA
T
∆B

T − η∆B
T
W

T
W + η

2
∆B

T
W

T
A

T
∆B

T )(B − ηW
T
A

T
∆) (13)

E.2 Merge A and W

Denote Â = AW. It means that we initialize Â as the same as AW. The output is the same:

y = xWmerge;Wmerge = W0 + ÂB = W0 +AWB. (14)

However, the corresponding gradients would be:

∂y

∂Â
= ∂y

∂Wmerge
B

T = ∆B
T
;
∂y

∂B
= Â

T ∂y

∂Wmerge
= Â

T
∆ (15)

Based on that, we can get the updated LoRA after updating the parameters:

ŴLoRA = (Â − η∆B
T )(B − ηÂ

T
∆)

= (AW − η∆B
T )(B − ηW

T
A

T
∆) (16)

E.3 Comparison
Comparing Equation 13 and 16, we can conclude that the updated weights are not the same, since

ŴLoRA −WLoRA = (−η∆B
T + ηAA

T
∆B

T + η∆B
T
W

T
W − η

2
∆B

T
W

T
A

T
∆B

T )(B − ηW
T
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T
∆)

= (η(A − η∆B
T
W

T )AT
∆B

T + η∆B
T (WT

W − I))(B − ηW
T
A

T
∆) ≠ 0.

(17)

E.4 Fix W as Orthogonal Matrix
If we fix W as orthogonal matrix and do not update (i.e., WW

T = I), the updated LoRA would be:

W
I
LoRA = (A − η∆B

T
W

T )W(B − ηW
T
A

T
∆)

= (AW − η∆B
T
W

T
W)(B − ηW

T
A

T
∆)

= (AW − η∆B
T )(B − ηW

T
A

T
∆) = ŴLoRA

(18)

E.5 Conclusion

Though mathematically equivalent initialized, the optimization process would be different if W is
learnable. Specifically, the optimization process would be the same i.i.f W is a fixed orthogonal
matrix.
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A [V] cat on the top of a white rug A cube shaped [V] cat

A [V] cat floating on water A [V] cat on the beach

A [V] cat on the top of green grass
with sunflowers around it

A [V] cat with a blue house in the
background

A [V] cat with a wheat field in the
background

A wet [V] cat

MoSLoRA LoRA MoSLoRA LoRA
Figure 7: Cases of generated images and paired prompts for the subject cat.
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A [V] dog on top of a dirty road A [V] dog on top of a white rug

A purple [V] dog A [V] dog on a cobble stone street

A [V] dog floating in an ocean of milk A [V] dog on the top of green grass
with sunflowers around it

A [V] dog on the top of the
sidewalk in a crowded street

A [V] dog with a mountain in the
background

MoSLoRA LoRA MoSLoRA LoRA
Figure 8: Cases of generated images and paired prompts for the subject dog.
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A red [V] can A purple [V] can

A shiny [V] can A cube shaped [V] can

A [V] can on the top of a wooden floor A [V] can on the top of green grass
with sunflowers around it

A [V] can with the Eiffel Tower in
the background

A [V] can with a wheat field in
the background

MoSLoRA LoRA MoSLoRA LoRA
Figure 9: Cases of generated images and paired prompts for the subject can.
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A [V] grey sloth plushie in the snow A [V] grey sloth plushie on the beach

A [V] grey sloth plushie on the
top of a dirt road

A [V] grey sloth plushie
floating on water

A [V] grey sloth plushie with a city in
the background

A [V] grey sloth plushie on the top of
a purple rug in a forest

A [V] grey sloth plushie with a tree
and autumn leaves in the background

A [V] grey sloth plushie with a
blue house in the background

MoSLoRA LoRA MoSLoRA LoRA
Figure 10: Cases of generated images and paired prompts for the subject grey sloth plushie.
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