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Abstract

While large visual-language models (LVLM)
have shown promising results on traditional vi-
sual question answering benchmarks, it is still
challenging for them to answer complex VQA
problems which requires diverse world knowl-
edge. Motivated by the research of retrieval-
augmented generation in the field of natural
language processing, we use Dense Passage
Retrieval (DPR) to retrieve related knowledge
to help the model answer questions. However,
DPR conduct retrieving in natural language
space, which may not ensure comprehensive
acquisition of image information. Thus, the
retrieved knowledge is not truly conducive to
helping answer the question, affecting the per-
formance of the overall system. To address
this issue, we propose a novel framework that
leverages the visual-language model to select
the key knowledge retrieved by DPR and an-
swer questions. The framework consists of two
modules: Selector and Answerer, where both
are initialized by the LVLM and parameter-
efficiently finetuned by self-bootstrapping: find
key knowledge in the retrieved knowledge doc-
uments using the Selector, and then use them
to finetune the Answerer to predict answers;
obtain the pseudo-labels of key knowledge doc-
uments based on the predictions of the An-
swerer and weak supervision labels, and then
finetune the Selector to select key knowledge;
repeat. Our framework significantly enhances
the performance of the baseline on the chal-
lenging open-domain Knowledge-based VQA
benchmark, OK-VQA, achieving a state-of-
the-art accuracy of 62.83%. Our code is
publicly available at https://github.com/
haodongze/Self-KSel-QAns.

1 Introduction

Recently, there has been an impressive advance-
ment in large visual-language models (LVLM) (Li
et al., 2023; Alayrac et al., 2022; Liu et al., 2023;

*Jing Liu is the corresponding author

Dai et al., 2023). They usually use a mapping
network to inject visual features into the semantic
space of the large language model (Brown et al.,
2020; Zhang et al., 2022; Touvron et al., 2023; vic,
2023; Touvron et al., 2023) and demonstrate strong
capabilities on multimodal perception and reason-
ing. Thus, they achieve significant progress in con-
ventional visual question answering benchmarks
(Antol et al., 2015; Goyal et al., 2017; Hudson and
Manning, 2019) which primarily focus on address-
ing straightforward questions that only necessitate
visual perception and recognition. However, it is
still challenging for the LVLMs to answer visual
questions which require broader world knowledge
and common sense (Wang et al., 2017; Marino
et al., 2019; Schwenk et al., 2022).

Motivated by the research of retrieval-
augmented generation (Karpukhin et al., 2020a)
in the field of natural language processing, we
use Dense Passage Retrieval (DPR) to retrieve
related world knowledge to help the model
answer questions. However, when using DPR,
we need to transform the image into texts to
retrieve the related knowledge, which leads to the
underutilization of visual information. Thus, the
retrieved knowledge may be unfaithful and affects
the model performance. To address the issue, we
consider the LVLM as the knowledge selector to
find helpful knowledge from candidate retrieved
knowledge by DPR. Then the selected knowledge
is fed into the LVLM to predict the answer.

In this paper, we introduce a novel framework
where we adopt the large visual-language model
to perform knowledge selection and question an-
swering. Our framework comprises two modules:
a Selector and an Answerer. We train two mod-
ules by repeating the following process: the Se-
lector first identifies important knowledge from
the candidate knowledge documents retrieved by
the pre-trained retriever; then, the Answerer takes
the key knowledge documents as the input knowl-
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edge and is finetuned to generate the answer; next,
we generate pseudo-labels of key knowledge doc-
uments according to the Answerer’s predictions
and weak supervision labels; finally, we refine the
Selector to assess the relevance of retrieved knowl-
edge documents in answering the question. This
strategy of self-bootstrapping enhances the ability
of knowledge selection and answer generation con-
sistently, enabling the model to accurately respond
to knowledge-intensive questions.

We conduct extensive experiments on the open-
domain knowledge-based VQA benchmark (OK-
VQA (Marino et al., 2019)) to validate the effective-
ness of the proposed framework, where our method
largely outperforms the baseline and achieves the
state-of-the-art performance of 62.83%, only fine-
tuning 0.16% parameters with LoRA (Hu et al.,
2022a). We also conduct comprehensive ablations
to validate the impact of different components of
the proposed framework, including the Effect of
Selector and Answerer, cycle training of the frame-
work, varying the number of key knowledge docu-
ments, and so on.

Our contributions are summarized as follows:

• We introduce a novel framework that lever-
ages the large visual-language model to select
key knowledge and use them to answer ques-
tions, respectively.

• We propose a new self-bootstrap learning
method to train the Selector and Answerer,
where the Selector chooses key knowledge
documents for the Answerer and the Answerer
provides pseudo-labels for the Selector.

• We achieve a state-of-the-art performance of
62.83% on the OK-VQA dataset, surpassing
the previous state-of-the-art method. Notably,
this improvement is achieved by fine-tuning
only 0.16% of parameters using LoRA.

2 Related work

Large Visual-Language Models. Recently,
large visual-language models (Li et al., 2023;
Alayrac et al., 2022; Liu et al., 2023; Dai et al.,
2023) have demonstrated remarkable visual-
language understanding and reasoning capabilities,
owing to the advancement of larger language
models (Brown et al., 2020; Zhang et al., 2022;
Touvron et al., 2023; vic, 2023; Touvron et al.,
2023). These methods typically consist of a
frozen visual encoder (Radford et al., 2021), a

visual-language connector (Li et al., 2023), and a
large language model (Chung et al., 2022; Zhang
et al., 2022; vic, 2023). The models are firstly
pre-trained on large-scale visual-text datasets to
align visual features to the language embedding
space. After pretraining, the large language model
can understand the visual details. Then, the model
is finetuned to adapt to various visual-language
tasks. In this study, we adopt BLIP2, one of
the widely used models, as our backbone for
bootstrapping knowledge selection and question
answering with it.

Knowledge-based VQA. Conventional VQA
benchmarks (Goyal et al., 2017; Hudson and Man-
ning, 2019) primarily focus on basic visual percep-
tion and reasoning tasks and numerous studies have
achieved promising results on these benchmarks
(Anderson et al., 2017; Zhang et al., 2021; Tan and
Bansal, 2019; Lu et al., 2019; Li et al., 2022; Wang
et al., 2022). Different from them, the knowledge-
based VQA task (Wang et al., 2017; Marino et al.,
2019; Schwenk et al., 2022) requires models to in-
corporate diverse world knowledge to respond to
questions about visual content, which is more chal-
lenging. Recent studies (Gardères et al., 2020; Wu
et al., 2022; Lin and Byrne, 2022; Gui et al., 2021)
have explored various open-domain world knowl-
edge sources, such as ConceptNet (Speer et al.,
2017), Wikipedia (Vrandečić and Krötzsch, 2014),
Google Search Corpus (Luo et al., 2021). They
retrieve the relevant knowledge documents from
the knowledge bases and integrate them into the an-
swering model to generate predictions. Except for
using explicit knowledge, some methods also take
GPT-3 (Brown et al., 2020) as an implicit knowl-
edge producer. They either prompt GPT-3 with
in-context examples to predict answers directly
(Yang et al., 2022; Hu et al., 2022b; Shao et al.,
2023), or use GPT-3 to generate answer candidates
with evidence serving as textual implicit knowledge
bases (Gui et al., 2021; Lin et al., 2022), leading to
significant performance improvements. Different
from these approaches, we employ a large visual-
language model to select key retrieved knowledge
and reason on the knowledge to answer questions.

3 Method

In this section, we first introduce the preliminaries
of Knowledge Retrieval and LVLM, which are the
foundation of our framework. Then, we present the
design of the Selector and Answerer for knowledge
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Figure 1: Our framework consists of two modules: a Selector and an Answerer. Selector (left) selects the top-T
knowledge documents for the Answerer (right), and the Answerer focuses on important knowledge information
to predict answers. Both modules utilize the same frozen visual module to extract image features. We train the
fully connected (FC) layer and fine-tune the language model using LoRA, which amounts to only 0.16% of the
total parameters. For detailed training procedures of the two modules, refer to Alg. 1. The original knowledge is
retrieved using DPR, and for brevity, we omit the retrieval process here (details can be found in Section 3.1).

selection and question answering on knowledge re-
spectively. Finally, we illustrate the self-bootstrap
training method of two designed modules.

3.1 Preliminaries

Knowledge Retrieval. We adopt the Dense Pas-
sage Retrieval (DPR) (Karpukhin et al., 2020b)
to retrieve the knowledge documents. We trans-
form the image into raw texts composed of cap-
tions, objects, attributes, and OCR (Optical Char-
acter Recognition). Then we compute the similar-
ity scores between the query and knowledge doc-
uments sim(qi, Dj) = qT

i · dj and exploit FAISS
(Johnson et al., 2019) to index Top-k related knowl-
edge documents Pi = {Pi,1, Pi,2, ..., Pi,k} for i-th
query.

Large Visual-Language Model. In our work,
both knowledge selection and question-answering
modules adopt BLIP-2 (Li et al., 2023) as the back-
bone. The architecture of BLIP-2 comprises a
frozen image encoder (Dosovitskiy et al., 2020;
Fang et al., 2023), a Q-Former (Li et al., 2023), and
a pre-trained language model (Chung et al., 2022).
Given an image Ii, the frozen image encoder out-
puts a set of visual features {hi,1,hi,2, ...,hi,m}.
Q-Former takes extracted visual features as in-
put, and outputs language-aligned visual features
{vi,1,vi,2, ...,vi,l}. These visual features are con-
catenated with the textual word embeddings, which
are fed into the language model for generation.
Through pre-training on large-scale image-caption

datasets, Q-Former can effectively project visual
features into the feature space of the Language
Large Model (LLM). We freeze the visual encoder
and Q-former during training. We train the fully
connected layer and use LoRA (Hu et al., 2022a)
to finetune the LLM (only finetune 0.16% of total
parameters).

3.2 Selector and Answerer

Selector. After obtaining the Top-k knowledge
documents using DPR for the i-th sample, we aim
to choose t most important knowledge documents
from the retrieved documents, where t is smaller
than k. As shown in Fig. 1, we first use the frozen
image encoder and Q-former to extract the image
features Vi, where these features are extracted
once and then used by the Selector and the An-
swerer. Then image features Vi are fed into the
independent fully-connected layer to obtain the vi-
sual embeddings Ev

i . We concatenate the question,
a retrieved knowledge document, and the Selec-
tion prompt "Does the retrieved knowledge docu-
ment provide the key information to help answer
the question?" into one sentence S. Next, visual
embeddings Ev

i and the text are concatenated and
fed into the LLM (Flan-T5 (Chung et al., 2022)
is adopted in our work). Last, we use the proba-
bility of generating the word ‘yes’ as the score of
each retrieved knowledge document Pi,j , denoted
as si,j = LLM(concat(Ev

i , Si)), and we select
top-t documents P̂i = {P̂i,1, P̂i,2, ..., P̂i,t} based
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on the scores. The Selector can be conceptualized
as follows:

P̂i == Selector(Ii, Qi,Pi), |P̂i| = t (1)

Answerer. After obtaining the selected knowl-
edge documents, we aim to reason on the knowl-
edge to answer questions. As shown in Fig. 1, we
process the same image features to obtain the differ-
ent visual embeddings Ev

i via the fully-connected
layer of the Answerer. Next, we concatenate the
question and the knowledge into one sentence S′

using the template "Question: {} Knowledge: {}
Answer: ". We concatenate the visual embeddings
and the text, which are fed into the LLM with differ-
ent LoRA parameters to get the answer. The model
outputs corresponding answers based on different
documents. The Answerer can be conceptualized
as follows:

ai = Answerer(Ii, Qi, P̂i) (2)

Then the final answer is based on the majority
vote. We also tried different knowledge reasoning
methods, such as concatenating (the results can be
seen in the ablation study).

3.3 Self-Bootstrap Learning

To enable the Selector and Answerer to select key
knowledge and answer questions, we bootstrap
them with each other in a style of cycle training.
We repeat the following process for the given i-th
sample {Ii, Qi,Pi,Ai} of the training dataset:

Answerer Training. We use Eq. 1 to get the se-
lected knowledge documents P̂i. The image Ii
is fed into the frozen ViT and Q-former to ob-
tain the image features Vi. We use the train-
able FCans layer to output the visual embeddings
Ev

ans,i. We concatenate the visual embedding, the
question Qi and each selected knowledge docu-
ment P̂i,j to construct t triplets for the sample,
where j = 1, 2, . . . , t. Then we finetune the An-
swerer with LoRA under the supervision of the
ground truth answer Ai:

Ev
ans,i = FCans(Vi),

Lans = −
t∑

j=1

logLLMans(a
∗
i |Ev

ans,i, Qi, P̂
j
i ),

(3)
where a∗i is the most frequent answer in the human-
annotated answer set Ai.

Algorithm 1 Pipeline of cycle training

Input:
KB-VQA dataset D = {Ii, Qi,Ai|i =
1, 2, . . . , N};
Retrieved knowledge documents Pi =
{P 1

i , P
2
i , . . . , P

k
i }; Ii, Qi, Pi, and Ai denote

image, question, document set, and answer set
of i-th sample
Output: Knowledge selection model Selector;
Question answering model Answerer
for sample in D do

Stage 1:
1: Using Selector to select top-t documents
P̂i from the retrieved knowledge documents
Pi as Eq. 1
2: Finetuning Answerer on {Ii, Qi, P̂i,Ai}
supervised by the ground-truth answer as
Eq. 3.
Stage 2:
1: Using Answerer to predict answers for
retrieved knowledge documents Pi as Eq. 2
2: Generating to pseudo labels {yi,j} for re-
trieved knowledge documents Pi as Eq. 4
3: Finetuning Selector on
{Ii, Qi,Pi, {yi,j}} supervised by the
pseudo label as Eq. 5.

end for

Selector Training. We first use Eq. 2 to predict
answers based on each retrieved knowledge doc-
ument Pi,j . Then we assign pseudo labels to the
retrieved documents according to model predic-
tions and weak supervision labels (Luo et al., 2021;
Lin and Byrne, 2022; Lin et al., 2023). We use
"yes" and "no" as pseudo labels, where label a
document as positive knowledge if Answerer can
output the correct answer using that document and
the document contains any of the answers in Ai.

yi,j =





yes, if ai = a∗i∧
Pi,j contains an answer in Ai

no, else
(4)

After obtaining the pseudo label of each re-
trieved knowledge document, we use the trainable
FCsel layer to output the visual embeddings Ev

sel,i.
we concatenate the visual embedding, the ques-
tion Qi and each retrieved knowledge document
Pi,j to construct k triplets for the sample, where
j = 1, 2, . . . , k. Then we finetune the Selector
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Table 1: Performance comparison with state-of-the-art (SOTA) methods on the OK-VQA dataset. Knowledge
Sources: ConceptNet (C); Wikipedia (W); Google Search (GS); Google Images (GI). The best result in the table is
bolded. The results show that our method achieves the state-of-the-art performance.

Models Large Models Ktrain Ktest Knowledge Resource Acc (%)
BAN+AN (Marino et al., 2019) - - - W 25.6
ConceptBERT (Gardères et al., 2020) - - - C 33.7
KRISP (Marino et al., 2021) - - - C+W 38.4
Visual Retriever-Reader (Luo et al., 2021) - 100 100 GS 39.2
MAVEx (Wu et al., 2022) - - - W+C + GI 39.4
PICa (Yang et al., 2022) GPT-3 (175B) - - GPT-3 48.0
TRiG(Ensemble) (Gao et al., 2022) T5-large (770M) 100 100 W 50.5
KAT(Single) (Gui et al., 2021) T5-large (770M) 40 40 W + GPT-3 53.1
KAT(Ensemble) (Gui et al., 2021) T5-large (770M) 40 40 W + GPT-3 54.4
RA-VQA (Lin and Byrne, 2022) T5-large (770M) 5 50 GS 54.5
REVIVE(Single) (Lin et al., 2022) T5-large (770M) 40 40 W+GPT-3 56.6
REVIVE(Ensemble) (Lin et al., 2022) T5-large (770M) 40 40 W+GPT-3 58.0
PromptCap (Hu et al., 2022b) GPT-3 (175B) - - GPT-3 60.4
Prophet (Shao et al., 2023) GPT-3 (175B) - - GPT-3+MCAN 61.1
FillingGap (Wang et al., 2023) GPT-3 (175B) - - GPT-3 61.3
SimpleBaseline (Xenos et al., 2023) LLaMA 2 (13B) - - LLaMA 2 61.2
Cola-FT (Chen et al., 2024) FLAN-T5(11B) - - BLIP+OFA 62.4
Flamingo (Alayrac et al., 2022) Flamingo (80B) - - Pretrain 57.8
InstructBLIP (Dai et al., 2023) InstructBLIP Vicuna (7B) - - Pretrain 62.1
Qwen-VL (Bai et al., 2023) Qwen-VL(Qwen-7B) - - Pretrain 58.6
MM-Reasoner (Khademi et al., 2023) Flamingo (80B) - - GPT-4 60.8
BLIP2 (fine-tuned) (Li et al., 2023) BLIP2 T5-XL (3B) - - Pretrain 55.4
RA-VQA-v2 (Lin et al., 2023) BLIP2 T5-XL (3B) 5 5 GS 62.1
PreFLMR (Lin et al., 2024) BLIP2 T5-XL (3B) 5 5 GS 61.8
Ours BLIP2 T5-XL (3B) 5 5 GS 62.8

with LoRA under the supervision of pseudo labels:

Ev
sel,i = FCsel(Vi),

Lsel = −
k∑

j=1

logLLMsel(yi,j |Ev
sel,i, Qi, P

j
i )

(5)
We provide the overall training pipeline in Alg. 1.

Through continuous iteration, the Selector will pro-
vide more crucial knowledge for the Answerer to
accurately respond to questions. Meanwhile, the
improvement in the Answerer’s reasoning ability
will also result in more precise pseudo-labeling, fur-
ther enhancing the Selector’s discriminative power.
During the inference stage, we utilize the Selec-
tor to choose key knowledge, and then instruct the
Answerer to respond to questions based on this
knowledge.

4 Experiments

4.1 Experimental Setup

Dataset. We conduct extensive experiments on
OK-VQA (Marino et al., 2019) to evaluate the ef-
fectiveness of our method. OK-VQA is a challeng-
ing open-domain knowledge-based VQA dataset

that requires models to leverage various exter-
nal knowledge sources to answer questions. The
dataset contains 14,055 questions and 14,031 im-
ages, whereas the training set and testing set have
9k and 5k image-question pairs, respectively. Due
to no knowledge base being provided for OK-VQA,
we need to choose the proper knowledge base for
the dataset. In this paper, we adopt Google Search
Corpus (Luo et al., 2021) as the knowledge base
which is collected in the websites using the Google
Search API.

Evaluation Metric. We use the standard VQA
metric (Antol et al., 2015) to evaluate the perfor-
mance of the model. Given the prediction of the
question a and the groudtruth answer set A, the
VQA accuracy is calculated as:

Accuracy(a,A) = min(
#A(a)

3
, 1), (6)

where the groudtruth answer set A is annotated by
different humans, #A(a) denotes the occurrence
of a in A.

Implementation Details. In our experiment, we
adopt BLIP2 T5-XL (3B) (Li et al., 2023) to ini-
tialize the Selector and Answerer. We freeze the
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image encoder and Q-former, with both the Se-
lector and Answerer sharing the same visual mod-
ule. We finetune the fully connected layer and
use LoRA (Hu et al., 2022a) to train the LLM.
We use the default huggingface-PEFT setting: r=8,
lora_alpha=32, lora_dropout=0.1. We use Adam
as the optimizer and set the batch size to 8. We
use the warm-up strategy which trains the model
with an initial learning rate of 1e-4 and warm-up
factor of 0.05 for 1000 steps and then utilizes a
cosine annealing learning strategy with an initial
learning rate of 1e-4 and a final learning rate of
0 after 10 epochs. We use top-30 knowledge doc-
uments retrieved by a pre-trained DPR (Lin and
Byrne, 2022) as candidates for Selector and use
the selected top-5 documents from the 30 docu-
ments for the Answerer to train and infer, denoted
as Kcandidate = 30,Ktrain = 5,Ktest = 5. We
use 2 Nvidia A800 GPUs (80G) for all experiments.

4.2 Comparison with State-of-the-art
Methods

As shown in Tab. 1, we can see that early models
(BAN+AN (Marino et al., 2019), ConceptBERT
(Gardères et al., 2020), KRISP (Marino et al.,
2021), Visual Retriever-Reader (Luo et al., 2021),
and MAVEx (Wu et al., 2022)) have a weak perfor-
mance, achieving a VQA accuracy from 25.6% to
39.4%. Recently, by introducing larger models (T5-
large, GPT-3, LLaMA, Vicuna) and diverse knowl-
edge resources (ConceptNet, Wikipedia, Google
Web Search and Google Images), the performance
has a significant performance improvement, achiev-
ing a VQA accuracy of 62.4%. Our method aims to
augment the reasoning ability to answer knowledge-
intensive questions of the large visual-language
model. When directly finetuning BLIP2 T5-XL
on OKVQA, the model has a low performance
of 55.44%. By introducing external knowledge,
the performance has a significant performance im-
provement. Different from RA-VQA-v2 (Lin et al.,
2023) and PreFLMR (Lin et al., 2024), we do not
train a multimodal retriever from scratch which
requires expensive annotations and high computa-
tional costs. We directly leverage the large visual-
language model to select key knowledge from the
retrieved knowledge by DPR like the process of
re-ranking. With the same knowledge resources
(i.e., Google Search), our method achieves 62.8%
accuracy, outperforming other state-of-the-art mod-
els. It is worth noting that we do not use GPT-3 and
we only train the 0.16% parameters of the model.

Table 2: Comparison of our selector with different
knowledge selection strategies. We select 5 knowledge
documents from top-30 knowledge candidates retrieved
by DPR. DPR Score refers to selecting top-5 knowl-
edge based on similarity scores. Random Selection
means randomly selecting 5 knowledge documents from
30 candidate knowledge documents. Selector denotes
choosing 5 key knowledge documents by the Selector.

Ktrain Ktest Knowledge Selection Acc (%)
5 1 Random Selection 50.45
5 1 DPR Score 58.80
5 1 Selector 61.62
5 5 Random Selection 55.05
5 5 DPR Score 60.69
5 5 Selector 62.83

These results demonstrate the effectiveness of the
proposed approach.

4.3 Ablation Study
We conduct the ablation studies to evaluate differ-
ent components of our framework on OK-VQA.

Effect of Selector. We conduct the ablation study
to evaluate the effectiveness of Selector in our
method. We show the results in Tab. 2. From the
results, we can observe: our framework, leveraging
key knowledge documents selected by the Selec-
tor, consistently outperforms the Answerer when
using the same number of documents retrieved by
DPR. We improve the performance by 2.14% and
1.88% with 1 and 5 test knowledge documents,
compared to DPR-based retrieval. When using the
randomly selected documents, the model performs
worst. These results demonstrate that top-ranked
knowledge documents based on DPR scores are
not optimal for question answering and our key
knowledge selection module can identify relevant
documents for accurate question answering, en-
suring the coherence of knowledge retrieval and
question-answering processes.

Effect of different knowledge reasoning methods
of Answerer. In Tab. 3, we present a comparison
of Answerer using different knowledge reasoning
methods. The results show that the performance
using the strategy of voting surpasses that of con-
catenating under different knowledge selection set-
tings. We argue that directly combining all the
knowledge documents into a lengthened document
makes it difficult for Answerer to reason on them,
which is easily influenced by noisy information. In
contrast, it is easier for Answerer to reason on each
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Table 3: Effect of different knowledge reasoning meth-
ods of Answerer. Concatenating denotes that we com-
bine the key knowledge documents into one sentence
and feed it into Answerer to predict the final answer.
Voting means that we feed different key knowledge doc-
uments into Answerer to predict different answers and
choose the best answer based on majority voting.

Method VQA Model Acc (%)
Concatenating

BLIP2 (fine-tuned)
59.11

Voting 60.69
Concatenating

Ours
62.06

Voting 62.83

Table 4: Effect of the self-bootstrap learning method.

Method Acc (%)
Baseline 60.69

Independent training 59.02
Cycle training 62.83

document to predict the answer. Simple voting can
choose the best answer.

Effect of the self-bootstrap learning method.
To evaluate the effectiveness of our self-bootstrap
learning method, we compare the method with the
strategy of independent training of two modules.
We finetune the Answerer with the knowledge doc-
uments retrieved by DPR as the baseline. Inde-
pendent training means that we take two passes in
answerer training and one pass for selector training
on the entire dataset. Cycle training means that
we train the answerer and selector on each batch
data of the dataset simultaneously. The results in
Tab. 4 show that the model with cycle training out-
performs the model with independent training by
3.81%. The VQA score of using independent train-
ing is even lower than the baseline. These results
demonstrate that our cycle training method can
effectively boost the Selector and Answerer each
other, which makes the model find key knowledge
documents and leverage the knowledge to answer
questions.

Effect of different methods of pseudo-labeling.
In Tab. 5, we compare the model performance with
different methods of pseudo-labeling. When using
the model predictions as guidance, the model has a
VQA score of 62.31%. When adding the weak su-
pervision as the guidance, the model’s VQA score
increases from 62.31% to 62.83%. The results
demonstrate that using weak supervision labels pre-

Table 5: Ablation study on different methods of pseudo-
labeling.

Model
predictions

Weak supervision
labels

Acc (%)

✓ 62.31
✓ ✓ 62.83

Table 6: Ablation study on different numbers of candi-
date documents and selected documents.

Kcandidate Ktrain Ktest Acc (%)
5 1 1 57.90
5 1 5 58.32
10 1 1 58.61
10 1 5 59.40
10 5 5 61.86
15 5 5 62.31
30 5 5 62.83
30 5 1 61.62

serves potentially useful documents, aiding the An-
swerer in accurately answering questions.

Effect of key knowledge documents selection
ranges and quantities. In Tab. 6, we evaluate
key knowledge document selection using various
numbers of candidate documents and selected doc-
uments. From the results, we have the following
findings: (1) As the number of selected documents
increases, the model’s performance improves. This
indicates that using more documents to train and
test contributes to answering questions. (2) Us-
ing more documents for training can improve the
performance a lot (the 2nd line v.s. the last line).
However, using more documents for testing has
almost no improvement (the 3rd line v.s. 4th line).
(3) When the number of candidate documents in-
creases, the model’s performance improves. The re-
sult demonstrates that low-ranked documents based
on DPR scores may contain useful information for
question answering. It is necessary for the model
to select key knowledge documents.

Table 7: Ablation study on different documents selec-
tion in Answerer fine-tuning.

Knowledge Selection
Acc (%)

Training Inference
DPR Selector 62.31

Selector DPR 60.75
Selector Selector 62.83
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Q: What is a famous example of 

the item in the middle of the 

picture?

…composition depicts a range of religious iconography rendered in michelangelo's distinctive 

style, making it one of the most cherished masterpieces in the world…

BLIP2 (fine-tuned) w knowledge from DPR  

…a lightning conductor, like some kind of provincial eiffel tower (the fascination of which 

was never far from van gogh's nocturnes)…

… big ben is the name given to the massive bell inside the clock tower, which weighs more 

than 13 tons (13,760 kg)…

Ours w knowledge from Selector 

… here's some background information about big ben, the clock and bell in elizabeth tower at 

the houses of parliament in london…

… the elizabeth tower, aka big ben, is among london's most iconic landmarks – a ‘must see' 

for anyone visiting london…

… here's some background information about big ben, the clock and bell in elizabeth tower at 

the houses of parliament in london…

st petersburg

eiffel tower

big ben

big ben

big ben

big ben

Q: At the end of which movie 

featuring dick van dyke does 

this activity occur?

…in one vietnam war scene, gump carries bubba away from an incoming napalm attack.  to 

create the effect, stunt actors were initially used for compositing purposes…

BLIP2 (fine-tuned) w knowledge from DPR  

…it is a sequel to the 1982 film tron, whose director steven lisberger returned to produce.  to 

the film, kosinski filmed a high-concept…

… i was expecting some resentment towards billy madison, but i thought we could at least 

wait a few exchanges before that, but if you want it, it's on…

Ours w knowledge from Selector 

… he will survive because the opening chapter of the kite runner takes place in december 2001, 

and the narrative has not reached that point yet…

… "let's go fly a kite" is a song from walt disney's 1964 film mary poppins, composed by 

richard m.  sherman and robert b.  shermanrobert b.…

… a "mary poppins" movie poster is prominent in the backgroud of the scene outside the 

movie theater as the kids get their tickets…

gump

tron

kite fly

kite runner

mary poppins

mary poppins

Q: What is a famous cartoon 

animal of this type?

…unlike new yorker cartoons, in which, you are actually missing the joke, garfield is in fact 

not even designed to be funny (jerry knight) by rose eveleth smithsonianmag…

BLIP2 (fine-tuned) w knowledge from DPR  

…with two of the most famous voices in cartoons, both supplied by mel blanc, sylvester's
sloppy "sufferin succotash" and tweety's baby-voiced "i tawt i taw a puddy tat…

… sylvester james pussycat, sr.  is a tuxedo cat who appears in the looney tunes and merrie 
melodies series of cartoons…

Ours w knowledge from Selector 

… unlike new yorker cartoons, in which, you are actually missing the joke, garfield is in fact 

not even designed to be funny (jerry knight) by rose eveleth smithsonianmag…

… maybe one of the most widely known cat cartoon, garfield is one cat with attitude.  he isn't 

interested in much, except lasagna, napping, lasagna, teasing the dog.

…why some of our favorite cartoon characters throughout the years have been feline in nature.  

maybe one of the most widely known cat cartoon, garfield is one cat with attitude..

garfield

sylvester

sylvester

garfield

garfield

garfield

Figure 2: Qualitative results on the test split of OK-VQA. We compared our method with a model that fine-tunes
BLIP2 with knowledge ranked by DPR. The middle segment of the graph represents knowledge from various
methods used to answer questions. On the right side of the graph, different answers are depicted when using distinct
knowledge. Green and red colors indicate whether the selected final answer is correct.

Effect of different knowledge documents selec-
tion in Answerer fine-tuning. Tab. 7 compares
Answerer fine-tuning with different document se-
lection strategies. The results show that our frame-
work performs optimally when utilizing Selector in
both Answerer training and inference. This is likely
because the Selector provides more informative key
knowledge documents and using both Selector en-
sures the consistency between the training domain
and testing domain.

Performance of the knowledge retrieval. In
tab. 8, we evaluate our Selector in the knowledge
retrieval task. Following previous methods (Luo
et al., 2021; Lin and Byrne, 2022), we adopt pseudo
relevance to measure if the retrieved document is
relevant to the query due to the absence of ground-
truth document. We use Recall to measure the per-
formance of the the knowledge retrieval. From the
results, we can see that our Selector improves the
performance of DPR a lot. This means our Selector
can retrieve more relevant knowledge documents

Table 8: Retrieval performance on Google Search (GS).

Retriever R@5 R@10
VRR (Luo et al., 2021) 80.4 88.55

RA-VQA-FrDPR (Lin and Byrne, 2022) 81.25 88.51
RA-VQA (Lin and Byrne, 2022) 82.84 89.00

FLMR (Lin et al., 2023) 89.32 94.02
DPR (Lin and Byrne, 2022) 82.93 89.95

Our Selector 88.66 93.56

which help answer questions. Compared to other
retrievers, our Selector achieves the second best
performance. Although FLMR outperforms our
Selector in the knowledge retrieval, our framework
achieves better accuracy in VQA (shown in Tab. 1)
with the same backbone. This indicates that the
knowledge documents selected by Selector have
better consistency with Answerer.

4.4 Qualitative Analysis

In Fig. 2, We present a case study comparing our
method with a model that fine-tunes BLIP2 using
knowledge ranked by DPR. In the first case, top-
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ranked knowledge documents from DPR misguide
the model, resulting in incorrect predictions. How-
ever, our method’s Selector chooses key knowledge
documents that aid in predicting correct answers.
In the second case, each knowledge document from
DPR contains irrelevant information, leading to an
incorrect final answer. Despite the top-1 document
from the Selector resulting in a wrong answer, our
method identifies other key knowledge documents
for generating correct answers. Through majority
voting, the final selected answer is correct. These
cases demonstrate our method’s ability to extract
informative knowledge from retrieved documents
to support accurate question answering.

5 Conclusion

In this paper, we propose a novel framework that
leverages the large visual-language model to con-
struct two modules: (1) Selector for finding key re-
trieved knowledge and (2) Answerer for reasoning
on the knowledge to predict answers. We design
a self-bootstrap learning method to improve their
abilities, where the Selector chooses key knowl-
edge documents for the Answerer and the Answerer
provides pseudo-labels for the Selector. Compared
with state-of-the-art methods, our method achieves
better performance on a challenging open-domain
knowledge-based VQA benchmark (OK-VQA) and
we conduct a comprehensive analysis to evaluate
the effectiveness of our method.
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7 Limitations

Although our framework can effectively select key
knowledge documents for answering question, it is
inevitable that the knowledge still contains noise.
In some cases, the model itself can answer the
question without external knowledge, introducing
extra knowledge may affect the performance. In
the future, we can explore to dynamically select
required knowledge to help itself answer questions.

In addition, there is a concern on the generaliz-
ability of the proposed method on other domains,

especially when the initial DPR model can not
retrieve gold standard context. In the future, we
consider adopting a stronger multimodal retriever
model to obtain more useful candidate knowledge
documents, which enhances the generalizability of
our framework.
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Table 9: Performance comparison with state-of-the-art
(SOTA) methods on the FVQA dataset.

Method Acc-1
Human 77.99

UnifER (Guo et al., 2022) 55.04
FVQA (Wang et al., 2017) 56.91

ZS-VQA (Chen et al., 2021) 58.27
FVQA(Ensemble) (Wang et al., 2017) 58.76

MM-Reasoner(Ensemble) (Khademi et al., 2023) 61.10
Ours 63.3

Table 10: Performance comparison with state-of-the-art
(SOTA) methods on the A-OKVQA dataset.

Method
Direct Answer
val test

ClipCap (Schwenk et al., 2022) 18.1 15.8
Pythia (Jiang et al., 2018) 25.2 21.9
ViLBERT (Lu et al., 2019) 30.6 25.9

LXMERT (Tan and Bansal, 2019) 30.7 25.9
KRISP (Marino et al., 2021) 33.7 27.1
GPV-2 (Kamath et al., 2022) 48.6 40.7

BLIP-2 T5-XL (Li et al., 2023) 53.2 49.7
PromptCap + GPT-3 (Hu et al., 2022b) 56.3 59.6

Ours 57.2 56.4

A Appendix

A.1 Experiments on Other Datasets.
We also evaluate our method on FVQA (Fang
et al., 2023) and A-OKVQA (Schwenk et al., 2022)
to demonstrate the effectiveness of our method.
FVQA is a VQA dataset that mostly contains
questions requiring external knowledge to answer,
and provides supporting fact triplets alongside the
image-question-answer triplets. A-OKVQA is an
augmented successor of OK-VQA, containing 25K
image-question pairs that require broader common-
sense and world knowledge to answer. Due to A-
OKVQA does not provide the knowledge source,
we use Wikipedia (Vrandečić and Krötzsch, 2014)
as the knowledge base.

As shown in Tab. 9, our method surpasses previ-
ous state-of-the-art methods, which demonstrates
the effectiveness and generalization of our method.
Tab. 10 shows the comparative results on the chal-
lenging A-OKVQA dataset. Our method achieved
competitive results, which demonstrates the effec-
tiveness of our method.

A.2 Evaluation of Computational Cost
In Tab. 11, we show the computational cost of our
framework using different knowledge candidates.
As the number of candidate knowledge, the compu-

Table 11: Computational cost of our framework.

Kcandidate Memory (GB)
Running Time
(sec./sample)

10 21.3 1.0
15 21.4 1.1
30 22.7 1.3

tational cost of our framework has a small increase.
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