
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 18266–18287
November 12-16, 2024 ©2024 Association for Computational Linguistics

HiFT: A Hierarchical Full Parameter Fine-Tuning Strategy

Yongkang Liu1,2,5, Yiqun Zhang1, Qian Li3, Tong Liu4,5,
Shi Feng1, Daling Wang1∗, Yifei Zhang1 and Hinrich Schütze2,5
1Northeastern University, China; 2CIS, LMU Munich, Germany

3Shandong University, China; 4Institute of Informatics, LMU Munich, Germany
5Munich Center for Machine Learning (MCML), Germany

misonsky@163.com,yiqunzhang@stumail.neu.edu.cn,TongLiu.physics@gmail.com
feiwangyuzhou@sdu.edu.cn,{fengshi,wangdaling,zhangyifei}@cse.neu.edu.cn

Abstract

Full-parameter fine-tuning (FPFT) has become
the go-to choice for adapting language mod-
els (LMs) to downstream tasks due to its ex-
cellent performance. As LMs grow in size,
fine-tuning the full parameters of LMs requires
a prohibitively large amount of GPU mem-
ory. Existing approaches utilize zeroth-order
optimizer to conserve GPU memory, which
potentially compromises the performance of
LMs as non-zero order optimizers tend to
converge more readily on most downstream
tasks. We propose a novel, memory-efficient,
optimizer-independent, end-to-end hierarchi-
cal fine-tuning strategy, HiFT, which only up-
dates a subset of parameters at each training
step. HiFT significantly reduces the amount
of gradients and optimizer state parameters
residing in GPU memory at the same time,
thereby reducing GPU memory usage. Our re-
sults demonstrate that: (1) HiFT achieves com-
parable performance with parameter-efficient
fine-tuning and standard FPFT. (2) Results on
six models show that HiFT reduces the num-
ber of trainable parameters by about 89.18%
on average compared to FPFT. (3) HiFT sup-
ports FPFT of 7B models for 24G GPU mem-
ory devices under mixed precision without us-
ing any memory saving techniques. (4) HiFT
supports various optimizers including AdamW,
AdaGrad, SGD, etc. The source code link is
https://github.com/misonsky/HiFT.

1 Introduction

Full-Parameter Fine-Tuning (FPFT) Language
Models (LMs) have been a successful paradigm
in various downstream tasks (Vaswani et al., 2017;
Liu et al., 2020). However, as the size of LMs
becomes larger, FPFT LMs require immense mem-
ory, which has become an obstacle to conducting
research. One line of research to reduce memory
is to use heterogeneous memory (Pudipeddi et al.,
2020; Rajbhandari et al., 2021) (e.g., GPU, CPU,

∗Corresponding Author

and NVMe memory) or distributed techniques (e.g.,
tensor parallelism (Shazeer et al., 2018; Shoeybi
et al., 2019; Zhang et al.; Kim et al., 2023; Wu
et al., 2023)). These strategies require parame-
ter sharing across diverse devices and thus usu-
ally introduce a significant communication bur-
den. Parameter-Efficient Fine-Tuning (PEFT) is
another line of strategies for memory reduction,
categorized into addition-based, selection-based,
and reparametrization-based methods (Lialin et al.,
2023). The addition-based methods (e.g., Prefix-
Tuning (Li and Liang, 2021), AttentionFusion (Cao
et al., 2022)) reduce the number of trainable pa-
rameters by only updating newly added parame-
ters and freezing the weights of LMs. Although
these methods reduce the number of parameters
for fine-tuning, they expand the number of model
parameters and increase the burden on forward
propagation. The selection-based methods (e.g,
BitFit (Zaken et al., 2022), LT-SFT (Ansell et al.,
2022), FAR (Vucetic et al., 2022)), on the other
hand, fine-tune a subset of model parameters, re-
sulting in a performance gap with FPFT. The
reparametrization-based methods (e.g., LoRA (Hu
et al., 2022), KronA (Edalati et al., 2022), S4-
model (Chen et al., 2023)) leverage low-rank de-
composition to minimize the number of trainable
parameters. Using low-rank representations in-
evitably leads to information loss and performance
degradation. PEFT involves a trade-off between
serving efficiency and quality. According to ex-
isting works (Raschka, 2023; Artur et al., 2023;
Kourosh and Rehaan, 2023), FPFT still maintains
advantages in performance on most benchmarks.

Some works have reduced memory usage for
FPFT by removing the momentum state of the opti-
mizer. LOMO (Lv et al., 2023) reduces the memory
usage of the optimizer momentum and gradients by
integrating gradient calculation and update. Never-
theless, LOMO requires forward propagation twice.
In addition, LOMO forces the model to be 16-bit

18266

https://github.com/misonsky/HiFT

Layer-by-Layer Fine-Tuning

1 2 k…

1 2 k…

1 2 k…

1 2 k…

Layer_n

Layer_2

…

1

k 1 2 k…

1 2 k…

1 2 k…

1 2 k…

1 2 k…

1 2 k…

BP BP

3 5 1…

3 5 1…

3 5 1…

BP

group bottom2up top2down random

Layer_1

Layer_n-1

Figure 1: Schematic diagram of our HiFT. group represents the grouping operation of the layers. bottom2up,
top2down and random are training strategies. Gray indicates that the corresponding parameters are in the frozen
state, and brown indicates that the corresponding parameters are in the activated state. k is the number of groups, n
is the number of layers of the given model, and BP denotes parameter update through back propagation.

quantized and uses the gradient checkpointing tech-
nique (Chen et al., 2016) to reduce memory usage
while LOMO has limited memory savings in real-
world scenarios. MeZO (Malladi et al., 2023) de-
signs a zeroth-order optimizer to reduce memory
usage. However, MeZO is unstable and performs
poorly without prompts. These methods make the
momentum optimizers unusable, while the momen-
tum optimizers such as AdamW (Loshchilov and
Hutter, 2017) have been proven to be superior in
improving performance.

In this paper, we propose a novel memory-
efficient Hierarchical Fine-Tuning (HiFT) strat-
egy, adopting the idea of block-by-block training.
HiFT divides the layers of the model into differ-
ent groups (a group is a block.). At each training
step, HiFT updates the parameters of one group
while freezing the others. Compared to standard
FPFT, HiFT leads to different groups of parameters
being updated with different learning rates. This
causes the model parameters to be updated in an
inconsistent amplitude, which leads to a decrease
in model performance. To solve this problem, we
adopt to delay the learning rate update, which only
updates the learning rate once when all layers of
the model are updated. HiFT is also different from
layer-wise training (Bengio et al., 2006), where the
layer-wise training incrementally adds new layers
to a pre-trained shallow model, only updating the
newly added parameters at each training stage until
all layers are updated. As a result, the layer-wise
strategy produces accumulated errors at different
training stages due to its pipeline training.

HiFT can significantly reduce the number of
trainable parameters per training step. We only
keep the momentum and gradients of the parame-
ters that need to be updated on the GPU device due
to only a portion of the parameters are updated at

each training step. This helps to reduce the GPU
memory usage of the optimizer states and gradi-
ents. HiFT supports full-parameter fine-tuning of
a 7B model on devices with 24G memory. Our
contributions are summarized as follows:
• We propose a novel, memory-efficient, optimizer-

independent, end-to-end hierarchical fine-tuning
strategy HiFT. Different from standard full
parameter fine-tuning, HiFT achieves full-
parameter fine-tuning in an asynchronous block-
by-block manner.

• We show that the order of updates has no im-
pact on model performance during asynchronous
block-by-block updates, which provides a basis
for block-by-block parallel updates of models in
the future.

• Experiments show that HiFT achieves the same
or even better performance than FPFT and PEFT
on instruction fine-tuning, classification, genera-
tion, question answering and inference tasks with
less GPU memory.

2 Related Work

Full-Parameter Fine-tuning FPFT fine-tunes
the pre-trained LMs on specific tasks by updating
all parameters (Sun et al., 2023; Lin et al., 2024;
Ma et al., 2024), which requires massive computing
power as the parameters of LMs increase. Mixed-
precision training enables high-throughput com-
putations by employing half-precision storage for
parameters, activations, and gradients (Rajbhandari
et al., 2020a; Narayanan et al., 2021). Staged train-
ing incrementally increases the amount of compute
and reuse the compute from prior stages (Shen
et al., 2022). These methods increase the parame-
ter consumption when training precision or opera-
tors. LOMO (Lv et al., 2023) identifies the mem-
ory saving of SGD (Robbins and Monro, 1951),

18267

fuses the gradient computation and the parameter
update in one step. MeZO (Malladi et al., 2023)
designs a gradient-free method to update the model.
Although it can reduce memory usage, its perfor-
mance has a big gap than FPFT, especially when
there is no prompt. These methods waste the supe-
riority of momentum optimizers.

Parameter-Efficient Fine-tuning PEFT mini-
mizes resource utilization from the perspective of
parameters with additon, selection or decomposi-
tion methods (Lialin et al., 2023). The addition-
based methods add and update new parameters
with the weights of LMs frozen, such as Prefix-
Tuning (Li and Liang, 2021), AttentionFusion (Cao
et al., 2022), while the added parameters increase
the burden on forward propagation. The selection-
based methods fine-tune a subset of the parame-
ters of LMs, such as BitFit (Zaken et al., 2022),
LT-SFT (Ansell et al., 2022), FAR (Vucetic et al.,
2022), but has a performance gap with FPFT.
The reparametrization-based methods leverage low-
rank decomposition to minimize the number of
trainable parameters, such as LoRA (Hu et al.,
2022), PHM (Karimi Mahabadi et al., 2021),
KronA (Edalati et al., 2022), S4-model (Chen et al.,
2023), while using low-rank representations in-
evitably leads to information loss and performance
degradation. PEFT involves a trade-off between
serving efficiency and quality.

Memory-Efficient Fine-tuning MEFT mini-
mizes memory usage with heterogeneous mem-
ory (e.g., GPU, CPU and NVMe) or parallel meth-
ods (e.g., tensor and pipeline parallelism). In a
layer-to-layer strategy (Pudipeddi et al., 2020),
only the tensors necessary for the computation of
a particular layer are transferred to GPU, while
the remaining tensors are retained in CPU. ZeRO-
Infinity (Rajbhandari et al., 2021) enables the parti-
tioned states and tensors to CPU and NVMe. Ten-
sor parallelism accelerates training by parallelizing
tensor computations across different GPUs, but re-
quires multiple global communications during each
propagation (Shazeer et al., 2018; Shoeybi et al.,
2019). Pipeline parallelism accelerates training by
breaking the model into segments or layers and
processing them sequentially in a pipeline fash-
ion (Zhang et al.; Kim et al., 2023; Wu et al., 2023).
These methods transfer massive memory to het-
erogeneous devices, although temporarily saving
memory, still requires a large number of devices.

Different from existing works (Lv et al., 2023;
Malladi et al., 2023), HiFT adopts the idea of block-
by-block training to save memory of FPFT, and can
be seamlessly integrated with any optimizer.

3 Approach

The training strategy of our HiFT is shown in Fig-
ure 1. We first present some necessary notations.

Notation Given the training dataset D =
{(xi, yi)}Ni=1, the goal of the training is to learn
a model M with n layers, where N is the num-
ber of the training samples, (xi, yi) is the labeled
data pair. We use P to represent the optimizer,
and ηt to represent the learning rate schedule. The
number of layers in each group is represented by
m and the number of groups is represented by k.
If m is divisible by n, then k = n/m, otherwise
k = ⌊n/m⌋+ 1. Queue Q is used to store special
identifiers that uniquely identify different layers.
S ∈ {"bottom2up","top2down","random"} repre-
sents the adopted update strategy.

Consider a pre-trained LM fθpre parameterized
by θpre. Let θfpft and θhift denote parameters after
full fine-tuning and hierarchical full-parameter fine-
tuning after one training step, respectively. Let
Lτ (D; θ) be the objective to minimize during fine-
tuning, with D being the input, θ being updated
parameters, and τ being the task in fine-tuning. In
the process of full fine-tuning, we optimize the
model by adjusting its full parameters:

θfpft = argmin
θpre

Lτ (D; θpre), (1)

where the dimension of θfpft, |θfpft|, equals the
dimension of θpre, |θpre|.

In the process of HiFT, only a subset of parame-
ters are updated at one training step. More formally,
with optimizing group i ∈ {1, ..., k}, we have:

θ
(i)
hift = argmin

βi◦θ(i−1)
hift

L(D, βi ◦ θ(i−1)
hift + (1− βi) ◦ θ(i−1)

hift)

(2)

θ
(1)
hift = argmin

β1◦θpre
L(D, β1 ◦ θpre + (1− β1) ◦ θpre), (3)

where βi denotes a fixed binary mask of parame-
ters, with βi ∈ {0, 1}|θpre|, depending on the train-
ing strategy chosen in Figure 1. We simply denote
θ
(k)
hift as θhift.

3.1 Hierarchical Training

FPFT has been proven to achieve the-state-of-art
performance in most downstream tasks (Raschka,

18268

Algorithm 1: HiFT Training Algorithm
Require: model M with n layers, number of layers

per group m, batch size B, step budget T , optimizer
P , parameter queue Q, update strategy S, learning
rate schedule ηt

Initialize: Initialize queue Q by layer identifier
UpdateStrategy(Q,S)
for t = 1, ..., T do

a). Freeze all parameters of M ;
b). Sample batch B ⊂ D with random seed s
Select key features of layers to be updated
c). E ← QueueGetAndRemove(Q,m)
Removed elements added to tail of queue
d). QueueAddTail(Q,E)
e). θs ← SelectParameters(M,E)
f). Set requires_grad = True of parameters θs

g). UpdateOptimizerParameter(P,θs)
h). ForwardPropagation(M,B)
Preserve optimizer state of θs within the GPU
i). MoveOptimizerState2GPU(P,θs)
g). Backpropagation(P,θs,M) & Clear

gradients
Keep optimizer state within the CPU
k). MoveOptimizerState2CPU(P,θs)
if IsAllLayerUpdate(t, n,m) then

Update learning rate ηt
end
else

Keep the learning rate ηt constant
end

end

2023; Artur et al., 2023; Kourosh and Rehaan,
2023). Standard FPFT updates all parameters of M
at each training step, which requires a large amount
of GPU memory to store forward and backward
propagation parameters at the same time. Different
from standard FPFT, HiFT only updates a part of
the model parameters and freezes the remaining
parameters at each training step, and achieves fine-
tuning of all parameters through block-by-block up-
dates. During the BP process, only the parameters
that need to be updated will be stored in the GPU
memory, which greatly reduces the GPU memory
requirements for FPFT.

As shown in Figure 1, we divide the model into
k groups and update only one group of parameters
in each step. All groups are iterated in sequence un-
til convergence. We provide three update strategies:
bottom2up (B2U), top2down (T2D) and random
(RAN). Different strategies only represent different
orders of updates, e.g., bottom2up represents the
update from the bottom to top. Note that random
strategy only shuffles the grouping order before
training, and maintains this order in the training
process, which avoids the instability caused by con-
stant changes in the update order. Here, the embed-
ding layer is regarded as the bottom layer, and the

head layer used for classification or generation is
the top layer.

The detailed training process is shown in Algo-
rithm 1. The first step is to determine the update
strategy. During training, we freeze all parameters.
The layers to be updated, denoted by E, are se-
lected from the queue Q based on the parameter
m. The selected layer E is removed from head of
the queue Q and added to the tail of Q to wait for
the next update. We select the parameter θs that
needs to be updated from M based on E, set the
parameter θs to a computable gradient state and set
the update parameter group of optimizer P to θs.
Before parameter updates, the states parameters
(e.g., the gradient first moment estimation and sec-
ond moment estimation of AdamW) of optimizer
P related to θs could be moved to GPU devices.
After the completion of weight updates, the corre-
sponding gradients are cleaned up and optimizer
state parameters are moved to CPU. To update the
learning rate ηt, we employ a delayed update strat-
egy. Specifically, we adjust the learning rate once
after updating all layers, which helps alleviate the
instability issue arising from excessively updates in
some layers, especially when fine-tuning deep mod-
els. By employing the successive update strategy,
the number of parameters residing in GPU simulta-
neously reduces, thus lowering the GPU memory
requirements of fine-tuned models.

Note that we provide a theoretical generalization
bound for HiFT (Appendix A) and a theoretical
memory analysis (Appendix B).

4 Experiments

Please refer to Appendix for baselines(C), datasets
(D) and implementation details (F).

4.1 Results

Prompt results Table 1 reports the prompt-based
fine-tuning results of the RoBERTalarge. HiFT uses
the same prompt template (see Appendix G.3) as
MeZO. We clearly observe that HiFT has an abso-
lute performance advantage compared to gradient-
free methods. Although gradient-free methods
can reduce the memory usage of fine-tuning, there
is still a huge gap in performance compared to
gradient-based methods. Reducing memory usage
at the expense of performance is not an ideal so-
lution. Compared with standard FPFT and PEFT
methods, HiFT still achieves competitive results.
Table 2 reports the performance comparison of

18269

SST-2 SST-5 SNLI MNLI RTE TREC
—— sentiment —— — topic —

Zero-shot† 79 35.5 50.2 48.8 51.4 32

LP† 76.0 (2.8) 40.3 (1.9) 66.0 (2.7) 56.5 (2.5) 59.4 (5.3) 51.3 (5.5)
MeZO† 90.5 (1.2) 45.5 (2.0) 68.5 (3.9) 58.7 (2.5) 64.0 (3.3) 76.9 (2.7)
MeZO(LoRA)† 91.4 (0.9) 43.0 (1.6) 69.7 (6.0) 64.0 (2.5) 64.9 (3.6) 73.1 (6.5)
MeZO(prefix)† 90.8 (1.7) 45.8 (2.0) 71.6 (2.5) 63.4 (1.8) 65.4 (3.9) 80.3 (3.6)
MeZO-Adam† 90.4 (1.4) 45.4 (1.5) 74.1 (2.7) 64.3 (0.8) 59.2 (11.1) 78.3 (1.4)

FPFT† 91.9 (1.8) 47.5 (1.9) 77.5 (2.6) 70.0 (2.3) 66.4 (7.2) 85.0 (2.5)
FT(LoRA)† 91.4 (1.7) 46.7 (1.1) 74.9 (4.3) 67.7 (1.4) 66.1 (3.5) 82.7 (4.1)
FT(prefix)† 91.9 (1.0) 47.7 (1.1) 77.2 (1.3) 66.5 (2.5) 66.6 (2.0) 85.7 (1.3)
HiFT 91.9 (2.3) 47.8 (2.6) 76.7 (3.5) 69.9 (1.9) 66.3 (4.5) 84.3 (4.1)

LP† 91.3 (0.5) 51.7 (0.5) 80.9 (1.0) 71.5 (1.1) 73.1 (1.5) 89.4 (0.5)
MeZO† 93.3 (0.7) 53.2 (1.4) 83.0 (1.0) 78.3 (0.5) 78.6 (2.0) 94.3 (1.3)
MeZO(LoRA)† 93.4 (0.4) 52.4 (0.8) 84.0 (0.8) 77.9 (0.6) 77.6 (1.3) 95.0 (0.7)
MeZO(prefix)† 93.3 (0.1) 53.6 (0.5) 84.8 (1.1) 79.8 (1.2) 77.2 (0.8) 94.4 (0.7)
MeZO-Adam† 93.3 (0.6) 53.9 (0.8) 85.3 (0.8) 79.6 (0.4) 79.2 (1.2) 95.1 (0.3)

FPFT† 93.9 (0.7) 55.9 (0.9) 88.7 (0.8) 84.4 (0.8) 82.7 (1.4) 97.3 (0.2)
FT(LoRA)† 94.2 (0.2) 55.3 (0.7) 88.3 (0.5) 83.9 (0.6) 83.2 (1.3) 97.0 (0.3)
FT(prefix)† 93.7 (0.3) 54.6 (0.7) 88.3 (0.7) 83.3 (0.5) 82.5 (0.8) 97.4 (0.2)
HiFT 94.2 (0.6) 57.2 (0.8) 88.1 (1.2) 83.8 (0.8) 82.6 (0.9) 96.7 (0.3)

Gradient-based methods: Num = 512

Task Type —— natural language inference ——

Gradient-free methods: Num = 16

Gradient-based methods: Num = 16

Gradient-free methods: Num = 512

Table 1: Performance of RoBERTalarge based on prompt fine-tuning. LP: Linear probing; MeZO, MeZO(LoRA) and
and MeZO(prefix): memory-efficient ZO-SGD with full-parameter tuning, LoRA, and prefix-tuning respectively;
FPFT: fine-tuning with AdamW. All reported numbers are averaged accuracy (standard deviation). Num denotes
the number of training examples per class. The parameter m of HiFT is set to 1. † means the result comes from
Malladi et al. (2023)

TasK SST2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP
Task type
Zero-shot† 58.8 59.6 46.4 59.0 38.5 55.0 46.9 80.0 81.2 46.2 14.6
ICL† 87.0 62.1 57.1 66.9 39.4 50.5 53.1 87.0 82.5 75.9 29.6
LP† 93.4 68.6 67.9 59.3 63.5 60.2 63.5 55.0 27.1 3.7 11.1
MeZO† 91.4 66.1 67.9 67.6 63.5 61.1 60.1 88.0 81.7 84.7 30.9
MeZO (LoRA)† 89.6 67.9 66.1 73.8 64.4 59.7 61.5 84.0 81.2 83.8 31.4
MeZO (prefix)† 90.7 70.8 69.6 73.1 60.6 59.9 63.7 87.0 81.4 84.2 28.9
FPFT† 92.0 70.8 83.9 77.1 63.5 70.1 71.1 79.0 74.1 84.9 31.3
FT(LoRA) 92.4 74.5 83.3 77.8 64.5 68.2 70.2 86.5 82.6 85.2 30.8
FT(IA3) 92.5 76.7 82.4 76.5 63.2 67.7 69.1 87.3 81.7 86.4 29.6
FT(prefix) 93.6 77.8 82.9 77.4 63.2 68.3 70.4 87.2 80.4 84.2 31.7
HiFT 94.4 78.7 83.1 78.1 63.6 69.4 71.9 88.0 81.4 86.1 32.7

——————————— classification ——————————— ––multiple choice–– –—generation—–

Table 2: Experiments on OPT-13B (with 1000 examples). ICL: in-context learning; LP: linear probing; FPFT:
full fine-tuning; Prefix: prefix-tuning. All experiments use prompts in Appendix G.3. † means the result comes
from Malladi et al. (2023)

8

TinyLLaMA Mistral-7B LLaMA2-7B

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

1
2
3
4
5
6
7

0
1
2
3
4
5
6
7
8
9

Coding

Math

Reasoning

Roleplay

Writing

 Vanilla FPFT LoRA Prefix HiFT

Extraction

Stem

Humanities

Coding

Math

Reasoning

Roleplay

Writing

Extraction

Stem

Humanities

Coding

Math

Reasoning

Roleplay

Writing

Extraction

Stem

Humanities

Figure 2: Category-wise scores of different fine-tuning methods on MT-bench. The detailed results are shown in
Table 7 (Appendix G).

OPT-13B using different fine-tuning methods on
different tasks. We observe that among the 11 tasks,
HiFT enjoys performance advantages in 7 tasks.
This fully demonstrates the universal effectiveness

of HiFT fine-tuning method.

Instruction Fine-tuning Figure 2 and Table 7
(Appendix G) report the results of instruction fine-

18270

BLUE NIST MET ROUGE-L CIDEr AVE
GPT-2 M (FPFT)† 68.20 8.62 46.20 71.00 2.47 39.30
GPT-2 M (AdapterL)† 66.30 8.41 45.00 69.80 2.40 38.38
GPT-2 M (AdapterH)† 67.30 8.50 46.00 70.70 2.44 38.99
GPT-2 M (FPFTTop2)† 68.10 8.59 46.00 70.80 2.41 39.18
GPT-2 M (PreLayer)† 69.70 8.81 46.10 71.40 2.49 39.70
GPT-2 M (LoRA)† 68.90 8.76 46.60 71.50 2.53 39.66
HiFT 69.40 8.67 46.77 71.26 2.46 39.71

GPT-2 L (FPFT)† 68.50 8.78 46.00 69.90 2.45 39.13
GPT-2 L (AdapterL)† 69.10 8.68 46.30 71.40 2.49 39.59
GPT-2 L (PreLayer)† 70.30 8.85 46.20 71.70 2.47 39.90
GPT-2 L (LoRA)† 70.10 8.83 46.80 72.00 2.47 40.04
HiFT 70.30 8.86 46.64 72.22 2.48 40.10

Model & Method
E2E NLG Challenge

Table 3: GPT-2 medium (M) and large (L) with different
fine-tuning methods on the E2E NLG Challenge. †
indicates numbers published in prior works (Gao et al.,
2024; Hu et al., 2022).

Models Mehtods ViGGO SQL Generation GSM8k
Vanilla† 0.93 3.50 14.00
FPFT† 94.86 86.60 30.00
LoRA† 92.05 85.93 22.87
HiFT 94.88 87.15 29.85

Vanilla† 2.34 22.20 28.00
FPFT† 95.79 89.20 47.00
LoRA† 95.32 87.94 35.94
HiFT 95.66 90.33 48.01

LLaMA2-7B

LLaMA2-13B

Table 4: Performance comparison of different fine-
tuning methods for LLaMA-7B and 13B. The best result
is in bold and the second best result is underlined.

tuning for TinyLLaMA, Mistral-7B, and LLaMA2-
7B on MT-bench (Zheng et al., 2024). We fine-tune
these models on Alpaca GPT-4 dataset (Taori et al.,
2023). Compared with standard FPFT and PEFT
fine-tuning, HiFT has performance advantages in 5
of 8 dimensions on TinyLlaMa, 4 of 8 dimensions
on Mistral-7B, and 5 of 8 dimensions on LLaMA2-
7B. In terms of overall performance, HiFT achieves
the best results among the three models compared
to other fine-tuning methods.

No prompt results Figure 5 (Appendix G)
shows the performance of RoBERTabase and
RoBERTalarge using different fine-tuning strate-
gies on eight tasks. The HiFT performances of
RoBERTabase have competitive advantages with
standard FPFT on datasets such as SST-2, MNLI,
QNLI and QQP, and HiFT has achieved a weak
performance advantage on the MRPC dataset. We
observe that HiFT has certain performance advan-
tages on most datasets compared to most PEFT
methods such as BitFit, Prefix and Adapter. We get
similar conclusions on RoBERTalarge. The number
of layers of model RoBERTalarge is about twice
that of RoBERTabase, which reflects to a certain
extent that HiFT is not affected by the depth of
the model. Table 3 reports the results of GPT-2

including medium and large on the E2E dataset.
Compared with standard FPFT and PEFT meth-
ods, HiFT achieves competitive results on GPT-2
medium and large. To verify the generalizability of
HiFT, we conduct experiments on more complex
tasks such as ViGGO (Juraska et al., 2019), SQL
generation (b mc2, 2023), and GSM8K (Cobbe
et al., 2021). Table 4 reports the performance com-
parison of different fine-tuning methods on these
benchmarks. We can observe that HiFT signifi-
cantly outperforms standard FPFT and LoRA on
these three benchmarks. This fully demonstrates
the universal effectiveness of HiFT. Another phe-
nomenon is that the performance of LoRA is sig-
nificantly inferior to standard FPFT and HiFT. To
a certain extent, this demonstrates that full parame-
ter fine-tuning is more effective in capturing data
characteristics for complex tasks and offers better
performance advantages compared to LoRA. u

4.2 Memory Efficiency

To evaluate the effectiveness of HiFT in reducing
memory, we compare HiFT with most PEFT meth-
ods in terms of memory and speed. Table 5 reports
the memory and speed comparison of different fine-
tuning methods on RoBERTabase, RoBERTalarge
and LLaMA2-7B models. We can observe that
HiFT has an absolute advantage in GPU memory
usage. HiFT reduces memory usage from three
aspects: gradients, optimizer states, and residual
states. Since HiFT only updates a small number
of parameters in each step, this directly reduces
the amount of trainable parameters in each training
step, and the corresponding gradient parameters
and optimizer state parameters also be reduced in
the same proportion. When only some layer param-
eters are updated in each step, the amount of pa-
rameters tracking gradients in the calculation graph
is reduced, including the amount of parameters in
the activations, so HiFT also reduces the amount
of parameters in residual states. This is why HiFT
is memory efficient. These PEFT methods intro-
duce new parameters as trainable parameters while
freezing the weights of the original LLMs, which
reduces the usage of GPU memory by reducing the
trainable parameters. Introducing new parameters
results in larger memory requirements for the for-
ward computation of fine-tuning. Besides, reducing
the number of trainable parameters will reduce the
representation ability of models and make them
unable to fit complex tasks well.

18271

robert-base robert-lar llama2-7B
FPFT 6.87839 4.83it/s FPFT 18.3948 1.60it/s FPFT
LoRA(r=8) 4.80685 5.60it/s LoRA(r=8) 12.7417 2.03it/s LoRA(r=8)
adalora(r=8) 6.08568 3.60it/s adalora(r=8 16.1337 1.31it/s adalora(r=8)
iA3 5.01604 5.71it/s iA3 13.2963 2.12it/s iA3
p_tuning 4.52018 6.22it/s p_tuning 11.8956 2.22it/s p_tuning
prompt_tuni 4.49168 6.67it/s prompt_tun 11.8462 2.27it/s
prefix_tuning 4.59227 5.87it/s prefix_tuni 12.1821 2.27it/s prefix_tuning
HiFT 4.52687 4.91it/s HiFT 11.08 2.55it/s HiFT

robert-base robert-larg llama2-7B
FPFT 4.34867 10.28it/s 3.4171 11.51it/s FPFT 11.6966 5.76it/s 9.04892 6.49it/s FPFT OOM ----
LoRA(r=8) 2.63273 13.09it/s 2.6238 13.41it/s LoRA(r=8) 6.94921 8.19it/s 6.93552 8.71it/s LoRA(r=8 43.24014 1.31it/s 43.20889 1.31it/s
adalora(r=8) 3.41405 4.87it/s 3.3931 5.16it/s adalora(r=8 9.02689 2.66it/s 8.97918 2.85it/s adalora(r=43.31054 1.17it/s 43.26361 1.18it/s
iA3 2.70328 14.17it/s 2.6971 14.93it/s iA3 7.1328 8.61it/s 7.12424 8.95it/s iA3 43.21864 1.33it/s 43.21571 1.33it/s
p_tuning 2.4654 17.02it/s 2.448 17.91it/s p_tuning 6.45128 11.52it/s 6.42001 11.38it/s p_tuning 42.5483 1.26s/it 42.1748 1.26it/s
prompt_tuni 2.44249 20.18it/s 2.4371 20.65it/s prompt_tun 6.40931 11.81it/s 6.40132 11.64it/s prompt_tu 41.89263 1.21it/s 41.89202 1.26it/s
prefix_tuning 2.65674 16.34it/s 2.6087 16.78it/s prefix_tuni 6.64234 9.24it/s 6.56443 11.22it/s prefix_tun 40.69426 1.37it/s 40.24257 1.38it/s
HiFT 2.6003 13.53it/s 2.58 18.40it/s HiFT 6.61603 8.99it/s 6.55 11.71it/s HiFT 40.11006 2.31s/it 40.01006 2.40s/it

mezo 2.09828 10.12it/s mezo 4.18432 5.13it/s mezo 28.62 1.16s/it

Memory(GB) Speed(step/s) Memory(GB) Speed(step/s) Memory(GB) Speed(step/s) Memory(GB) Speed(step/s) Memory(GB) Speed(step/s) Memory(GB) Speed(step/s)
FPFT 5.67 10.28 4.73 11.51 15.25 5.76 12.60 6.49 OOM ---- OOM ----

LoRA(r=8) 2.63 13.09 2.62 13.41 6.95 8.19 6.94 8.71 43.24 1.31 43.21 1.31
IA3 2.70 14.17 2.70 14.93 7.13 8.61 7.12 8.95 43.22 1.33 43.22 1.33

Prefix 2.66 16.34 2.61 16.78 6.64 9.24 6.56 11.22 40.69 1.37 40.24 1.38
HiFT 2.62 13.53 2.58 18.4 6.62 8.99 6.55 11.71 40.11 2.31 40.01 2.40

fp32

fp16

fp32

fp16

RoBERTa-Base RoBERTa-large
AdamW SGDMethods

fp32

fp16

AdamW SGD
LLaMA2-7B

AdamW SGD

Table 5: Memory and speed comparison of different fine-tuning methods with mixed precision. The batch size and
sequence length are set to 8 and 512. Dataset used by RoBERTabase and RoBERTalarge is CoLA, and that used by
LLaMA2-7B is E2E. All tests were performed on A100 with 80G memory.

0 1000 2000 3000 4000 5000

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

lo
ss

steps

 boolq
 cb
 copa
 drop
 multirc
 rte
 squad
 sst2
 wic

Figure 3: Loss curves of OPT-13B on different datasets.
The parameter m of HiFT is set to 1.

We compare LOMO (Lv et al., 2023) and
MeZO (Malladi et al., 2023) based on LLaMA2-7B.
Following the settings in Table 5, LOMO reports
running out of memory on an A100 with 80GB.
The memory used by MeZO is about 30GB. MeZO
has a memory usage advantage over HiFT due to it
being a gradient-free method. Nevertheless, HiFT
significantly outperforms MeZO in terms of perfor-
mance. Among gradient-based methods, HiFT has
advantages in memory.

To evaluate the universality of HiFT in reduc-
ing memory, we conduct extensive experiments
on different optimizers (i.e., AdamW, SGDM,
SGD, Adafactor and Adagrad) based on multi-
ple LMs including RoBERTabase, RoBERTalarge,
GPT-2large, GPT-Neo (2.7B) and LLaMA-2 (7B).
Table 8 to Table 12 (Appendix G) reports the
memory usage of the parameters, gradients, op-
timizer states and residual states under FPFT
and HiFT. When using mixed precision, HiFT
can save about 44.82%-53.69% of memory on
RoBERTabase, about 48.04%-56.60% of memory
on RoBERTalarge, about 48.20%-54.27% of mem-
ory on GPT-2large, about 28.99%-50.69% of mem-
ory on GPT-Neo and about 65.31%-76.65% of
memory on LLaMA compared with FPFT.

4.3 Wallclock Time Efficiency

In this section, we measure the wallclock time ef-
ficiency of HiFT compared to standard FPFT and
PEFT methods, with respect to different model
sizes. We conduct our experiments on A100 with
80GB GPU memory. Table 5 reports the wall-
clock time results for different fine-tuning methods
using different optimizers. We can observe that
as the number of model parameters increases, the
wallclock speed of HiFT gradually gains an advan-
tage. When using the AdamW optimizer, although
HiFT is slower than prefix on the RoBERTabase
model, it is nearly as fast as the prefix method on
RoBERTalarge and faster than PEFT methods on the
LLaMA2-7B model. Specifically, on LLaMA2-7B
model, HiFT is 1.76× that of LoRA, 1.73× that
of IA3, and 1.68× that of prefix. When using the
SGD optimizer, HiFT outperforms PEFT and the
standard FPFT approach across all models. For
LLaMA2-7B model, HiFT is 1.83× that of LoRA,
1.80× that of IA3, and 1.74× that of prefix.

When using the AdamW optimizer, each step
of HiFT has a communication cost between the
CPU and GPU. The peak communication param-
eters are shown as the #Sta values in Table 8 to
Table 12. The communication cost has limited im-
pact on the speed of HiFT. There are several main
reasons: i) The number of communication param-
eters is small even zero. HiFT is an optimizer-
independent method that supports various opti-
mizers. When using SGD, the peak communi-
cation parameter is zero. When using Adafac-
tor, the peak communication parameter is 0.19MB
for RoBERTabase, 0.21MB for RoBERTalarge, and
0.33MB for LLaMA2-7B. ii) when the required
amount of computation reaches the bottleneck of
the device, the number of parameters processed per
second by the device will no longer increase. Even
if the GPU memory is large enough to load parame-
ters, the training speed will not be greatly improved
because the computing capability of the device per

18272

second is limited. iii) HiFT updates only a subset
of parameters at each step, reducing the number
of trainable parameters and cutting off gradient
propagation to shallow layers. This significantly
decreases the computation needed for fine-tuning,
thereby increasing the speed. This is why HiFT
still has a speed advantage over LLaMA2-7B even
with the AdamW optimizer.

4.4 Stability of Training

In order to explore the stability of HiFT training,
we report the loss curves of OPT-13B on different
datasets. As shown in Figure 3, we can observe that
during the training process, the loss curve fluctuates
within a reasonable range and converges steadily
on different datasets. This fully demonstrates that
HiFT strategy does not affect the convergence of
models. HiFT adopts a delayed learning rate update
strategy, which ensures that the update amplitude
of parameters in different blocks is consistent and
avoids oscillation during the update process.

4.5 Trainable Parameter

Figure 6 (e) reports the changes in the amount of
peak fine-tuning parameters under HiFT at different
model sizes. We observe that as the number of
model parameters increases, the proportion of peak
trainable parameters gradually decreases. When
fine-tuning the 13B model, the peak amount of fine-
tunable parameters is only 2.44% of the original
model parameter amount.

Figure 6 shows the percentage of memory used
by the parameters of each part when fine-tuning
LLaMA2-7B under FPFT and HiFT with the
AdamW optimizer. Under FPFT, the optimizer
states occupy the most memory. When fine-tuning
32-bit precision (Figure 6 (a)), the memory occu-
pied by residual states is second only to the op-
timizer state. When mixed precision fine-tuning
(Figure 6 (c)), the memory used by model parame-
ters exceeds the memory used by residual states is
secondary to the optimizer states. The main reason
is that in mixed precision training, both 32-bit and
half-precision parameters exist at the same time.
Therefore, model parameters occupy more memory
in mixed precision. HiFT significantly reduces the
memory usage of gradients and optimizer states.
Therefore, when using HiFT for full-parameter
fine-tuning, the main memory-consuming parts are
model parameters and residual states.

（a） （b）

0.911
0.915

0.91
0.913

0.9 0.9 0.9

0.906

0.927 0.927 0.927 0.927

0.948 0.948 0.948 0.948

MRPC STS-B QNLI SST-2 MNLI CoLA RTE QQP
0.6

0.8

1.0

Sc
or

e(
%

)

 B2U T2D RAN

m=1 m=2 m=4 m=6

0.90

0.91

0.92

0.93

0.94

0.95
 MRPC STS-B QNLI SST-2

Figure 4: The left shows the performance of HiFT of
RoBERTabase under B2U, T2D and RAN strategies, re-
spectively. The right shows the performance of HiFT of
RoBERTabase under different grouping settings, where
m is the number of layers in each group.

4.6 Impact of Strategy

The left plot of Figure 4 reports the performance of
RoBERTabase using B2U, T2D and RAN strategies.
We observe that the order of updates has almost no
effect on the performance of the model. It is an in-
teresting phenomenon that the model still achieves
competitive results even when updated in a ran-
dom order. Changing the update order does not
affect the position of the corresponding layer in the
model, which is the reason why the performance is
not affected. We believe that this phenomenon pro-
vides support for hierarchical parallel fine-tuning
of large-scale models in the future.

4.7 Impact of Grouping

The right plot of Figure 4 reports the impact of
different grouping settings on model performance.
Although different grouping settings can cause fluc-
tuations in model performance, the overall impact
is negligible. We use the learning rate delayed
update strategy, which updates the learning rate
only after all layers are updated once. This strat-
egy ensures that the learning rate used to update
the parameters of each layer is the same in each
training step, which helps to prevent the model
performance from decreasing due to the update of
some parameters being too fast in the hierarchical
update process.

Conclusion

We propose an end-to-end hierarchical full-
parameter fine-tuning strategy, HiFT, which groups
the model parameters and updates a single group
of parameters per training step. The number of
trainable parameters per training step greatly re-
duce, which lowers the GPU memory usage of the
corresponding gradients, optimizer state parame-
ters, and activations. HiFT lowers the barrier of

18273

full-parameter fine-tuning of language models and
supports full-parameter fine-tuning of a 7B model
on a 24G memory device.

Limitations

Although HiFT achieves the performance of stan-
dard full-parameter fine-tuning at a lower GPU
memory cost, there are still some shortcomings.
HiFT divides the model by layers, and the maxi-
mum division limit is the number of layers of the
model. Due to the limitation of the number of
layers, HiFT cannot break through the number of
model layers for finer-grained division. When the
model width is large, it limits HiFT’s capabilities.
On the other hand, after dividing the model, the
number of parameters in each group is different,
and the GPU memory usage fluctuates during the
fine-tuning process. The peak memory occupied by
the fine-tuned model is the decisive factor that de-
termines whether the model is able to be fine-tuned
on a certain device. This fluctuation in memory
usage during fine-tuning prevents us from fully uti-
lizing resources.

Acknowledgement

We would like to thank reviewers for their con-
structive comments. The project is supported by
the National Natural Science Foundation of China
(62172086,62272092) and DFG (grant SCHU
2246/14-1). The project is also supported by China
Scholarship Council.

References
Alan Ansell, Edoardo Ponti, Anna Korhonen, and Ivan

Vulić. 2022. Composable sparse fine-tuning for cross-
lingual transfer. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1778–1796.

Niederfahrenhorst Artur, Hakhamaneshi Kourosh, and
Ahmad Rehaan. 2023. Fine-Tuning LLMs: LoRA or
Full-Parameter? An in-depth Analysis with Llama-2.

b mc2. 2023. sql-create-context dataset.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and
Hugo Larochelle. 2006. Greedy layer-wise training
of deep networks. Advances in neural information
processing systems, 19.

Jin Cao, Chandana Satya Prakash, and Wael Hamza.
2022. Attention fusion: a light yet efficient late fu-
sion mechanism for task adaptation in nlu. In Find-
ings of the Association for Computational Linguistics:
NAACL 2022, pages 857–866.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Evalu-
ation (SemEval-2017), pages 1–14.

Jiaao Chen, Aston Zhang, Xingjian Shi, Mu Li,
Alex Smola, and Diyi Yang. 2023. Parameter-
efficient fine-tuning design spaces. arXiv preprint
arXiv:2301.01821.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. 2016. Training deep nets with sublinear
memory cost. ArXiv, abs/1604.06174.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924–2936.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Marie-Catherine De Marneffe, Mandy Simons, and Ju-
dith Tonhauser. 2019. The commitmentbank: Inves-
tigating projection in naturally occurring discourse.
In proceedings of Sinn und Bedeutung, volume 23,
pages 107–124.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
Drop: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2368–2378.

John C. Duchi, Elad Hazan, and Yoram Singer. 2010.
Adaptive subgradient methods for online learning
and stochastic optimization. In COLT 2010 - The
23rd Conference on Learning Theory, Haifa, Israel,
June 27-29, 2010, pages 257–269. Omnipress.

Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Par-
tovi Nia, James J Clark, and Mehdi Rezagholizadeh.
2022. Krona: Parameter efficient tuning with kro-
necker adapter. arXiv preprint arXiv:2212.10650.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816–3830, Online. Association for Computa-
tional Linguistics.

18274

https://www.anyscale.com/blog/fine-tuning-llms-lora-or-full-parameter-an-in-depth-analysis-with-llama-2
https://www.anyscale.com/blog/fine-tuning-llms-lora-or-full-parameter-an-in-depth-analysis-with-llama-2
https://huggingface.co/datasets/b-mc2/sql-create-context
https://api.semanticscholar.org/CorpusID:15865278
https://api.semanticscholar.org/CorpusID:15865278
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295

Ziqi Gao, Qichao Wang, Aochuan Chen, Zijing
Liu, Bingzhe Wu, Liang Chen, and Jia Li. 2024.
Parameter-efficient fine-tuning with discrete fourier
transform. arXiv preprint arXiv:2405.03003.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Juraj Juraska, Kevin Bowden, and Marilyn Walker. 2019.
Viggo: A video game corpus for data-to-text gener-
ation in open-domain conversation. In Proceedings
of the 12th International Conference on Natural Lan-
guage Generation, pages 164–172.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in Neural
Information Processing Systems, 34:1022–1035.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface: A challenge set for reading com-
prehension over multiple sentences. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 252–262.

Taebum Kim, Hyoungjoo Kim, Gyeong-In Yu, and
Byung-Gon Chun. 2023. Bpipe: Memory-balanced
pipeline parallelism for training large language mod-
els. In International Conference on Machine Learn-
ing, ICML 2023, 23-29 July 2023, Honolulu, Hawaii,
USA, volume 202 of Proceedings of Machine Learn-
ing Research, pages 16639–16653. PMLR.

Hakhamaneshi Kourosh and Ahmad Rehaan. 2023.
Fine-Tuning Llama-2: A Comprehensive Case Study
for Tailoring Models to Unique Applications.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059.

Hector Levesque, Ernest Davis, and Leora Morgenstern.
2012. The winograd schema challenge. In Thir-
teenth international conference on the principles of
knowledge representation and reasoning.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th

International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597.

Vladislav Lialin, Vijeta Deshpande, and Anna
Rumshisky. 2023. Scaling down to scale up: A guide
to parameter-efficient fine-tuning. arXiv preprint
arXiv:2303.15647.

Peiqin Lin, Shaoxiong Ji, Jörg Tiedemann, André FT
Martins, and Hinrich Schütze. 2024. Mala-500: Mas-
sive language adaptation of large language models.
arXiv preprint arXiv:2401.13303.

Zhaojiang Lin, Andrea Madotto, and Pascale Fung.
2020. Exploring versatile generative language model
via parameter-efficient transfer learning. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2020, pages 441–459.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf-
fel. 2022. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. Ad-
vances in Neural Information Processing Systems,
35:1950–1965.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Trans. Assoc.
Comput. Linguistics, 8:726–742.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao,
Qipeng Guo, and Xipeng Qiu. 2023. Full parameter
fine-tuning for large language models with limited
resources. CoRR, abs/2306.09782.

Bolei Ma, Ercong Nie, Shuzhou Yuan, Helmut Schmid,
Michael Färber, Frauke Kreuter, and Hinrich Schütze.
2024. Topro: Token-level prompt decomposition for
cross-lingual sequence labeling tasks. arXiv preprint
arXiv:2401.16589.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex
Damian, Jason D. Lee, Danqi Chen, and Sanjeev
Arora. 2023. Fine-tuning language models with just
forward passes. CoRR, abs/2305.17333.

Vaishnavh Nagarajan and J. Zico Kolter. 2019. Uniform
convergence may be unable to explain generalization
in deep learning. CoRR, abs/1902.04742.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Kor-
thikanti, Dmitri Vainbrand, Prethvi Kashinkunti,

18275

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://www.anyscale.com/blog/fine-tuning-llama-2-a-comprehensive-case-study-for-tailoring-models-to-unique-applications
https://www.anyscale.com/blog/fine-tuning-llama-2-a-comprehensive-case-study-for-tailoring-models-to-unique-applications
https://api.semanticscholar.org/CorpusID:53592270
https://api.semanticscholar.org/CorpusID:53592270
http://arxiv.org/abs/1902.04742
http://arxiv.org/abs/1902.04742
http://arxiv.org/abs/1902.04742

Julie Bernauer, Bryan Catanzaro, Amar Phanishayee,
and Matei Zaharia. 2021. Efficient large-scale
language model training on GPU clusters using
megatron-lm. In International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC 2021, St. Louis, Missouri, USA, Novem-
ber 14-19, 2021, page 58. ACM.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.
2017. The e2e dataset: New challenges for end-to-
end generation. In Proceedings of the 18th Annual
SIGdial Meeting on Discourse and Dialogue, pages
201–206.

Abhishek Panigrahi, Nikunj Saunshi, Haoyu Zhao, and
Sanjeev Arora. 2023. Task-specific skill localization
in fine-tuned language models. In International Con-
ference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages
27011–27033. PMLR.

Mohammad Taher Pilehvar and Jose Camacho-Collados.
2019. Wic: the word-in-context dataset for evaluat-
ing context-sensitive meaning representations. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 1267–1273.

Bharadwaj Pudipeddi, Maral Mesmakhosroshahi, Jin-
wen Xi, and Sujeeth Bharadwaj. 2020. Training large
neural networks with constant memory using a new
execution algorithm. CoRR, abs/2002.05645.

Ning Qian. 1999. On the momentum term in gradi-
ent descent learning algorithms. Neural Networks,
12(1):145–151.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020a. Zero: memory optimiza-
tions toward training trillion parameter models. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC 2020, Virtual Event / Atlanta, Georgia,
USA, November 9-19, 2020, page 20. IEEE/ACM.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and
Yuxiong He. 2020b. Zero: Memory optimizations
toward training trillion parameter models. In SC20:
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–
16. IEEE.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley,
Shaden Smith, and Yuxiong He. 2021. Zero-infinity:
breaking the GPU memory wall for extreme scale
deep learning. In International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC 2021, St. Louis, Missouri, USA, Novem-
ber 14-19, 2021, page 59. ACM.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392.

Sebastian Raschka. 2023. Finetuning LLMs with LoRA
and QLoRA: Insights from Hundreds of Experiments.

Herbert Robbins and Sutton Monro. 1951. A stochastic
approximation method. The Annals of Mathematical
Statistics, 22(3):400–407.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S Gordon. 2011. Choice of plausible alter-
natives: An evaluation of commonsense causal rea-
soning. In 2011 AAAI Spring Symposium Series.

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin
Tran, Ashish Vaswani, Penporn Koanantakool, Peter
Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, Ryan Sepassi, and Blake A. Hechtman. 2018.
Mesh-tensorflow: Deep learning for supercomputers.
In Advances in Neural Information Processing Sys-
tems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada, pages 10435–10444.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmäs-
san, Stockholm, Sweden, July 10-15, 2018, volume 80
of Proceedings of Machine Learning Research, pages
4603–4611. PMLR.

Sheng Shen, Pete Walsh, Kurt Keutzer, Jesse Dodge,
Matthew E. Peters, and Iz Beltagy. 2022. Staged
training for transformer language models. In Interna-
tional Conference on Machine Learning, ICML 2022,
17-23 July 2022, Baltimore, Maryland, USA, volume
162 of Proceedings of Machine Learning Research,
pages 19893–19908. PMLR.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
CoRR, abs/1909.08053.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

18276

https://proceedings.mlr.press/v202/panigrahi23a.html
https://proceedings.mlr.press/v202/panigrahi23a.html
https://lightning.ai/pages/community/lora-insights
https://lightning.ai/pages/community/lora-insights

Xianghui Sun, Yunjie Ji, Baochang Ma, and Xian-
gang Li. 2023. A comparative study between full-
parameter and lora-based fine-tuning on chinese in-
struction data for instruction following large language
model. CoRR, abs/2304.08109.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Danilo Vucetic, Mohammadreza Tayaranian, Maryam
Ziaeefard, James J Clark, Brett H Meyer, and War-
ren J Gross. 2022. Efficient fine-tuning of bert mod-
els on the edge. In 2022 IEEE International Sympo-
sium on Circuits and Systems (ISCAS), pages 1838–
1842. IEEE.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. In Black-
boxNLPEMNLP.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2018. A broad-coverage challenge corpus for
sentence understanding through inference. In Pro-
ceedings of NAACL-HLT, pages 1112–1122.

Shaohua Wu, Xudong Zhao, Shenling Wang, Jian-
gang Luo, Lingjun Li, Xi Chen, Bing Zhao, Wei

Wang, Tong Yu, Rongguo Zhang, Jiahua Zhang, and
Chao Wang. 2023. YUAN 2.0: A large language
model with localized filtering-based attention. CoRR,
abs/2311.15786.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 1–9.

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng
Gao, Kevin Duh, and Benjamin Van Durme. 2018.
Record: Bridging the gap between human and ma-
chine commonsense reading comprehension. arXiv
preprint arXiv:1810.12885.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin,
Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shus-
ter, Daniel Simig, Punit Singh Koura, Anjali Srid-
har, Tianlu Wang, and Luke Zettlemoyer. 2022.
OPT: open pre-trained transformer language mod-
els. CoRR, abs/2205.01068.

Zheng Zhang, Donglin Yang, Yaqi Xia, Liang Ding,
Dacheng Tao, Xiaobo Zhou, and Dazhao Cheng.
Mpipemoe: Memory efficient moe for pre-trained
models with adaptive pipeline parallelism. In IEEE
International Parallel and Distributed Processing
Symposium, IPDPS 2023, St. Petersburg, FL, USA,
May 15-19, 2023, pages 167–177. IEEE.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

18277

https://api.semanticscholar.org/CorpusID:5034059
https://api.semanticscholar.org/CorpusID:5034059

A Generalization Bound for HiFT

In this section, we establish the generalization
bound for HiFT, first building upon a quantiza-
tion assumption as in Panigrahi et al. (2023). It is
important to note that quantization is a common
practical consideration; for instance, in our work,
we implement a 32-bit quantization precision.
Assumption 1. (Quantization bound) Given model
parameters θ, we denote q̄(θ) to be the parameter
that quantizes every parameter into the q given
values. Then there exist ε > 0 s.t. for any sample
xi with label yi at any training step, we have

|L((xi, yi); q̄(θ))− L((xi, yi); θ)| ≤ ε. (4)

Assumption 2. (Uniform convergence generaliza-
tion bound for subset parameter fine-tuning) Fol-
lowing Panigrahi et al. (2023), we deviate from
the classical uniform convergence generalization
bound (Nagarajan and Kolter, 2019) to get a
tighter uniform convergence generalization bound
for HiFT:

Ltest(θ
(i)
hift)− Ltrain(θ

(i)
hift)

≤ sup
θ̃
(i)
hift

∈Θ

|Ltest(θ̃
(i)
hift)− Ltrain(θ̃

(i)
hift)|,

(5)

where Θ denotes the subset of parameter space,
θ
(i)
hift being the parameter after i-th optimizing step

at one training step.

Theorem 3. (HiFT generalization bound) Under
Assumption 1 and 2, we have the following gener-
alization bound for HiFT:

Ltest(θ
(k)
hift)− Ltest(θ

∗)

≤ 4kϵ+ 2
k∑

i=1

sup
θ̃(i)
|Ltest(q̄(θ̃

(i)))− Ltrain(q̄(θ̃
(i)))|

+ Ltest(θ
(k)∗)− Ltest(θ

∗),
(6)

where θ∗ denotes the parameter with the best test
performance, θ̃(i) is in the space of βi ◦ θpre and
θ(i)∗ denotes the parameter with the best test per-
formance when only changing the subset param-
eter βi ◦ θpre. With probability at least 1 − δ,
the second term 2

∑k
i=1 supθ̃(i) |Ltest(q̄(θ̃

(i))) −
Ltrain(q̄(θ̃

(i)))| can be further bounded:

2
k∑

i=1

sup
θ̃(i)
|Ltest(q̄(θ̃

(i)))− Ltrain(q̄(θ̃
(i)))|

≤ 2
k∑

i=1

√
si log q + log(1/δ)

N
,

(7)

where si denotes the number of parameters in each
optimizing group i.

Proof. We first derive HiFT generalization
bound between the objective with parameters af-
ter a first step of optimization at one training step
Ltest(θ

(1)
hift) and the objective with parameters that

has the best test performance Ltest(θ
∗):

Ltest(θ
(1)
hift)− Ltest(θ

∗)

≤ 4ϵ

+ 2 sup
θ̃(1)
|Ltest(q̄(θ̃

(1)))− Ltrain(q̄(θ̃
(1)))|

+ Ltest(θ
(1)∗)− Ltest(θ

∗),

(8)

with probability at least 1− δ, the second term can
be bounded:

2 sup
θ̃(1)
|Ltest(q̄(θ̃

(1)))− Ltrain(q̄(θ̃
(1)))|

≤ 2

√
s1 log q + log(1/δ)

N

(9)

The above inequality can be shown by considering
Theorem D.2 in Panigrahi et al. (2023) and taking
ΘN = 1.

Similarly, we can have:

Ltest(θ
(i)
hift)− Ltest(θ

(i−1)
hift)

≤ 4ϵ

+ 2 sup
θ̃(i)
|Ltest(q̄(θ̃

(i)))− Ltrain(q̄(θ̃
(i)))|

+ Ltest(θ
(i)∗)− Ltest(θ

(i−1)
hift)

(10)

Summing over the above terms with i = {1, ..., k}
completes the proof of this theorem.

B Memory Analysis

According to previous work (Lv et al., 2023; Mal-
ladi et al., 2023), the main components that con-
sume GPU memory during the fine-tuning process
include the weight parameter, optimizer states, gra-
dients, and calculation of residual states (i.e, acti-
vations, temporary buffers and fragmented mem-
ory) (Rajbhandari et al., 2020b). In this section,
we give theoretical analysis on the GPU memory
advantages of HiFT strategy from the perspectives
of weight parameter, optimizer states and gradi-
ents 1. Assuming the model is fine-tuned using the
AdamW optimizer with 32-bit precision, we em-
ploy ζ1, ζ2, ζ3 to represent the GPU memory used
by weight parameter, optimizer states and gradients

1Since the GPU memory occupied by forward activations
is related to the model implementation, batch size and sentence
length, we analyze the GPU memory requirements of internal
variables through experiments.

18278

respectively. AdamW optimizer stores the gradi-
ent first moment estimation and second moment
estimation, which means that the optimizer state
parameter ζ2 is two times larger than weight param-
eter ζ1 (i.e., ζ2 = 2 ∗ ζ1). The gradient parameters
typically correspond to the parameters updated in
the model (i.e., ζ3 = ζ1). Therefore, the number of
gradient parameters ζ3 is the same as the number of
parameters ζ1 that need to be updated in the model.
Therefore, for standard FPFT, the GPU memory
required for these parameters is as follows:

ζfpft = ζ1 + ζ2 + ζ3

= ζ1 + 2ζ1 + ζ1

= 4ζ1

(11)

Taking the fine-tuning of a 7B model at 32 precision
using the AdamW optimizer as an example, the ζ1
is about 26.08G. Theoretically, the GPU memory
required for fine-tuning these three parts of the 7B
model is approximately 104.32 GB. If considering
GPU memory occupied by forward activations and
the impact of batch size and sentence length, the
actual scenario FPFT requires more GPU memory
than 104.32 GB. Under the HiFT training strategy,
since only one group of parameters is updated for
each training step, only the gradients of the updated
parameters and the corresponding optimizer states
are stored in the GPU according to Algorithm 1.
The weight parameter need to reside in the GPU
memory for forward propagation. Therefore, the
average GPU memory required for each training
step is as follows:

ζhift = ζ1 +
ζ2
k

+
ζ3
k

=
k + 3

k
∗ ζ1

(12)

Compared with FPFT, the memory saved by HiFT
in model parameters, gradients and optimizer states
is:

∆ζ = ζfpft − ζhift

=
3k − 3

k
∗ ζ1

(13)

In addition to these computable fixed parameters,
HiFT can reduce the number of activation-related
parameters that simultaneously reside in memory,
which is discussed in the experimental section.
Considering the embedding layer, task-related head
layer and 32 hidden layers, LLaMA-7B has n = 34
layers. When m = 1, it can be deduced that

k = 34, and the required GPU memory can be
inferred to be ζhift ≈ 31.13G, the GPU memory
saving is about 73.19G compared with FPFT.

C Baselines

Language Models include RoBERTa (Liu et al.,
2019) with base and large versions, GPT-2 (Rad-
ford et al., 2019) with medium and large versions,
LLaMA (Touvron et al., 2023) with 7B and 13B
versions, and OPT-13B (Zhang et al., 2022).

Fine-Tuning strategies include BitFit (Zaken
et al., 2022), Adapter (Houlsby et al., 2019), Pre-
fix (Lester et al., 2021), LoRA (Hu et al., 2022),
MeZO (Malladi et al., 2023), S4 (Chen et al.,
2023), AdapterL (Lin et al., 2020), PreLayer (Hu
et al., 2022), IA3 (Liu et al., 2022), and FPFT.
Optimizers include AdamW (Loshchilov and Hut-
ter, 2017), SGDM (Qian, 1999), SGD, Adafac-
tor (Shazeer and Stern, 2018), Adagrad (Duchi
et al., 2010). Some baselines might only appear in
certain experiments.

D Datasets

We conduct experiments on the following datasets:
GLUE (Wang et al., 2018) (SST-2 (Socher
et al., 2013), CoLA (Warstadt et al., 2019),
MNLI (Williams et al., 2018), MRPC (Warstadt
et al., 2019), QNLI (Rajpurkar et al., 2018),
QQP2, RTE and STS-B (Cer et al., 2017));
SuperGLUE (CB (De Marneffe et al., 2019),
BoolQ (Clark et al., 2019), COPA (Roemmele
et al., 2011), MultiRC (Khashabi et al., 2018),
RTE, WiC (Pilehvar and Camacho-Collados, 2019),
WSC (Levesque et al., 2012), ReCoRD (Zhang
et al., 2018)), SQuAD (Rajpurkar et al., 2016),
E2E (Novikova et al., 2017), DROP (Dua et al.,
2019), ViGGO (Juraska et al., 2019), SQL Gen-
eration (Yu et al., 2018; Zhong et al., 2017) and
GSM8K (Cobbe et al., 2021).

E Difference from Splitting Optimization

The purpose of splitting optimization is to serve
parallel computing. For example, matrix C = A·B,
matrix A can be divided into A1 and A2 by row,
then C = [A1 · B;A2 · B]. We can put A1 · B
and A2 ·B on different devices and calculate them
in parallel. The purpose of HiFT is full-parameter
model fine-tuning on low-resource devices. HiFT
only updates a subset of parameters at each training

2https://quoradata.quora.com/First-Quora-Dataset-
Release-Question-Pairs

18279

step. Reduce the number of trainable parameters
in each step through layer-by-layer asynchronous
updates, thereby reducing the memory usage of
fine-tuning models. Both the algorithm process
and the purpose of the algorithm are different.

Besides, the theory behind splitting optimization
is the matrix block principle. This principle states
that a large matrix can be divided into smaller sub-
matrices or blocks. These blocks can then be ma-
nipulated independently. The result of each block is
a subset of the original matrix multiplication result.
Megatron-LM applies the splitting optimization
principle to conduct large-scale parallel training of
language models. However, HiFT does not rely
on the matrix block principle. HiFT’s updates are
independent at each step, not a subset of standard
fine-tuning, and is a new approach independent
of standard fine-tuning. The relationship between
HiFT’s update process and standard fine-tuning
cannot be described using splitting optimization.

F Implementation Details

The performance results of the experiment are
based on training with the AdamW optimizer. For
RoBERTabase and RoBERTalarge models, we fol-
low Chen et al. (2023) for the hyperparameter set-
ting of no-prompt fine-tuning such as batch size
and learning rate. For GPT-2mediumand GPT-2large,
we follow Hu et al. (2022) for the hyperparameter
setting for no-prompt fine-tuning such as batch size
and learning rate. For RoBERTalarge model, we
follow Malladi et al. (2023) for the hyperparame-
ter setting of prompt fine-tuning such as prompt
template, batch size and learning rate. The spe-
cific model layering principle is that all embedding
layers are treated as a single layer including posi-
tion coding, all head layer parameters are treated
as a single layer, and the remaining layers are di-
vided according to the construction structure of the
model. For example, RoBERTabase has 12 hidden
layers, thus are divided into 12 layer units. Then we
group them according to the divided layers. Table 6
reports hyperparameter used for HiFT. For instruc-
tion fine-tuning, we fine-tune these languages mod-
els on Alpaca dataset (Taori et al., 2023). Alpaca
contains 51K instruction-following demonstrations
generated from text-davinci-003 (GPT-3.5). For
evaluation, we use the fine-tuned models to gener-
ate responses for the pre-defined questions, which
are from the MT-bench (Zheng et al., 2024). GPT-
4 takes these answers as input and evaluates them

with scores within 10. Repository FastChat3 pro-
vides the detailed evaluation process.

G More Experiment Results

G.1 Proportion of Parameters
Figure 6 (a, b, c, d) shows the percentage of mem-
ory used by the parameters of each part when fine-
tuning LLaMA-2 (7B) under standard FPFT and
HiFT with the AdamW optimizer. Figure 6 (e) re-
potrs the changes in the amount of peak fine-tuning
parameters under HiFT at different model sizes.

G.2 Mixing Precision
We observe an interesting phenomenon when fine-
tuning the GPT-Neo (2.7B) (Table 11 in Ap-
pendix G) and LLaMA-2 (7B) (Table 12) us-
ing mixed precision, the memory usage is higher
than FPFT. We find that when using mixed pre-
cision fine-tuning, both single-precision and half-
precision parameters of the model exist simultane-
ously. Therefore, the model parameters use more
memory in mixed precision than in standard FPFT.
Mixed precision mainly focuses on reducing the
memory usage of activation states (i.e., residual
states). When the model’s own parameter size is
large, the memory increase of the model parameters
may be greater than the memory reduction of mixed
precision (when the batch size is not large enough).
Therefore, it may appear that the memory usage
of mixed precision is greater than standard FPFT.
Due to the large number of parameters of LLMs
(large language models), it is difficult to use larger
batch sizes, so it is difficult to bring out the ad-
vantages of mixed precision in the context of large
models. HiFT is an optional, more efficient solu-
tion that maintains single-precision full-parameter
fine-tuning while greatly reducing memory usage.
We would like to emphasize that the current mixed
precision does not support hierarchical operations,
so it cannot take advantage of HiFT.

To fully exploit the advantages of HiFT, we have
adapted mixed precision to HiFT. That is, each step
only moves the single-precision weight correspond-
ing to the parameter that needs to be updated to the
GPU (Mixed precision makes a single-precision
backup of the weights of the half-precision model.).
Table 12 reports the memory profiling for LLaMA2-
7B using adapted mixed precision. When using
the AdamW optimizer, the adapted mixed preci-
sion for HiFT saves approximately 76.65% of GPU

3https://github.com/lm-sys/FastChat

18280

8 0

8 5

9 0

9 5

1 0 0
SS

T-2

 F P F T A d a p t e r P r e f i x B i t F i t L o R A S 4 H i F T - B 2 U H i F T - T 2 D H i F T - R A N

8 0

8 5

9 0

9 5

1 0 0

MN
LI

8 0

8 5

9 0

9 5

1 0 0

QN
LI

8 0

8 5

9 0

9 5

1 0 0

QQ
P

R o B E R T a (b a s e) R o B E R T a (l a r g e)8 0

8 5

9 0

9 5

1 0 0

ST
S-B

R o B E R T a (b a s e) R o B E R T a (l a r g e)8 0

8 5

9 0

9 5

1 0 0

MR
PC

R o B E R T a (b a s e) R o B E R T a (l a r g e)5 0

6 0

7 0

8 0

Co
LA

R o B E R T a (b a s e) R o B E R T a (l a r g e)5 0
6 0
7 0
8 0
9 0

1 0 0

RT
E

Figure 5: RoBERTa results on different fine-tuning strategies. We report accuracy metrics for the SST-2, QNLI, QQP,
MRPC and RTE, mean accuracy for MNLI, spearman coefficient for STS-B and matthews correlation coefficient
for CoLA. The m of HiFT is set to 1. B2U, T2D and RAN are bottom2up, top2down and random strategies.

3 1 . 3

1 4 . 6
8 . 4 8 5 . 0 5 3 . 0 1 2 . 4 4

1 7 . 7 %
2 9 . 3 %

3 5 . 3 %
1 7 . 7 %

(a) (b) (c) (d) (e)

5 0 . 6 %

2.7%
1.4%

4 5 . 3 %

 P a r a m e t e r s G r a d i e n t s O p t i m i z e r S t a t e s R e s i d u a l S t a t e s
2 2 . 4 %

3 4 . 5 % 1 7 . 3 %

2 5 . 9 % 3 5 . 1 %

2 . 5 %
1 . 2 %

6 1 . 2 %

1 2 5
M

3 5 5
M

7 7 4
M

2 6 5
1 M

6 7 3
8 M

1 3 0
1 6 M

0
1 0
2 0
3 0

pe
rce

nta
ge

(%
)

Figure 6: (a), (b), (c) and (d) represent the proportion of parameters occupied by different parts when fine-tuning
LLaMA-2 (7B). The sequence length and batch size are set to 512 and 6. (a): 32-bit precision FPFT; (b): 32-bit
precision HiFT; (c) mixed precision FPFT; (d): mixed precision HiFT. Fine-tuning uses the AdamW optimizer. The
m is set to 1 for HiFT. (e) represents the change in the proportion of the peak trainable parameters to the total model
parameters during the HiFT training under different size models.

memory. When the batch size is 1, fine-tuning the
LLaMA-7B model on the E2E data set requires
approximately 16.87G of GPU memory, and fine-
tuning the LLaMA-13B model requires approxi-
mately 31G of memory. This means that HiFT
supports FPFT of a 7B model on a device with 24G
GPU memory.

G.3 Prompts
Tables 13 and 14 gives detailed prompts of different
datasets.

18281

Experiment Hyperparameters Values

RoBERTa-base Total Batch size 64
Learning rate {1e−5, 2e−5, 3e−5}

warmup {0.0, 0.02, 0.06}
Device 8*GTX 1080Ti (11G)

Weight Decay 0

RoBERTa-large Total Batch size 32
Learning rate {1e−5, 2e−5, 3e−5}

warmup {0.0, 0.02, 0.06}
Device 8*GTX 1080Ti (11G)

Weight Decay 0

GPT-2 (M) Batch size 32
Learning rate {5e−5}

warmup {0.0}
Device RTX A6000 (48G)

Temperature 0.75
Beam size 16

repetition penalty 4
length penalty 0.9

GPT-2 (L) Batch size 32
Learning rate {5e−5}

warmup {0.0}
Device RTX A6000 (48G)

Temperature 0.75
Beam size 16

repetition penalty 4
length penalty 0.9

RoBERTa-large Batch size (k = 16) {2, 4, 8}
Batch size (k = 512) {8, 16, 32}

Learning Rates {1e−5, 3e−5, 5e−5, 8e−5}
Device 8*GTX 1080Ti (11G)

Weight Decay 0

OPT-13B Batch size {2, 4, 8}
Learning Rates {1e−5, 2e−5, 5e−5, 8e−5}

Device A100 (80G)
Weight Decay 0

Mistral-7B Batch size {2, 4, 8}
Learning Rates {1e−5, 2e−5, 5e−5}

Device A100 (80G)
Weight Decay 0

TinyLLaMA Batch size {2, 4, 8}
Learning Rates {2e−5, 5e−5, 8e−5}

Device A100 (80G)
Weight Decay 0

LLaMA2-7B Batch size {2, 4, 8}
Learning Rates {1e−5, 2e−5, 5e−5, 8e−5}

Device A100 (80G)
Weight Decay 0

LLaMA2-13B Batch size {2, 4, 8}
Learning Rates {1e−5, 2e−5, 5e−5, 8e−5}

Device A100 (80G)
Weight Decay 0

Table 6: The hyperparameter grids used for HiFT experiments.

18282

Model Method Writing Roleplay Reasoning Math Extraction Stem Humanities AVG
Vanilla 1.06 2.25 1.17 1.05 1.10 1.50 1.00 1.30
FPFT 3.30 3.85 1.40 1.35 1.77 2.70 2.35 2.39
LoRA 2.80 4.00 1.27 1.45 1.05 1.55 2.20 2.05
Prefix 2.75 3.50 1.20 1.35 1.10 1.45 1.35 1.81
HiFT 3.50 4.45 2.50 1.40 1.70 3.15 3.20 2.84

Vanilla 5.30 3.25 4.55 2.60 6.55 6.20 4.60 4.72
FPFT 5.55 4.50 5.40 3.35 5.80 4.65 5.50 4.96
LoRA 5.45 4.45 4.60 3.25 5.55 5.50 4.35 4.74
Prefix 5.35 4.30 4.50 3.25 5.45 5.55 4.40 4.69
HiFT 6.45 5.40 5.45 3.05 5.85 6.05 6.15 5.49

Vanilla 3.05 4.45 2.90 1.75 3.35 5.25 4.50 3.61
FPFT 5.50 6.55 3.65 2.10 4.75 6.55 7.65 5.25
LoRA 6.20 5.60 4.15 1.55 4.20 6.30 6.15 4.88
Prefix 6.35 5.45 3.70 1.40 4.50 6.15 6.20 4.82
HiFT 6.70 7.15 3.55 2.20 4.55 6.85 7.85 5.55

TinyLLaMA

Mistral-7B

LLaMA2-7B

Table 7: Performance comparison of different fine-tuning methods on the MT-Bench. The rank of LoRA is 64, and
the number of virtual words of prefix is 128.

Optimizer #Dtype #FType
#Trainable
Parameters #Para(MB) #Gra(MB) #Sta(MB) #PGS(GB)

Residual
States(GB) Total(GB)

FPFT 124.65M 475.49 475.49 950.98 1.86 5.02 6.88
HiFT 39.00M 475.49 148.77 297.54 0.90 3.61 4.52 2.3615942 0.343418815 0.312876053 0.687123947
FPFT 124.65M 713.25 475.49 950.98 2.09 3.58 5.67
HiFT 39.00M 713.25 148.77 297.54 1.13 2.58 3.71 1.958 0.345401934

MixedHi HiFT 39.00M 386.52 148.77 297.54 0.81 1.81 2.62
FPFT 124.65M 475.49 475.49 475.49 1.39 5.00 6.39
HiFT 39.00M 475.49 148.77 148.77 0.75 3.76 4.52 1.8762000 0.293555302
FPFT 124.65M 713.25 475.49 475.49 1.63 3.57 5.20
HiFT 39.00M 713.25 148.77 148.77 0.99 2.70 3.69 1.507 0.28993263

MixedHi HiFT 39.00M 386.52 148.77 148.77 0.67 1.93 2.60
FPFT 124.65M 475.49 475.49 0.00 0.93 4.97 5.90
HiFT 39.00M 475.49 148.77 0.00 0.61 3.91 4.52 1.3848800 0.234725424
FPFT 124.65M 713.25 475.49 0.00 1.16 3.57 4.73
HiFT 39.00M 713.25 148.77 0.00 0.84 2.87 3.71 1.021 0.215777458

MixedHi HiFT 39.00M 386.52 148.77 0.00 0.52 2.06 2.58
FPFT 124.65M 475.49 475.49 0.98 0.93 4.98 5.91
HiFT 39.00M 475.49 148.77 0.19 0.61 3.91 4.52 1.3911808 0.235537856
FPFT 124.65M 713.25 475.49 0.98 1.16 3.57 4.73
HiFT 39.00M 713.25 148.77 0.19 0.84 2.87 3.71 1.021

MixedHi HiFT 39.00M 386.52 148.77 0.19 0.52 2.09 2.61
FPFT 124.65M 475.49 475.49 475.49 1.39 5.00 6.39
HiFT 39.00M 475.49 148.77 148.77 0.75 3.76 4.52 1.8762670 0.293561651
FPFT 124.65M 713.25 475.49 475.49 1.63 3.57 5.20
HiFT 39.00M 713.25 148.77 148.77 0.99 2.70 3.69 1.508 0.290066508

MixedHi HiFT 39.00M 386.52 148.77 148.77 0.67 1.96 2.62

fp32

SGDM

SGD

Adafactor

Adagrad

fp32

mixed

mixed

fp32

mixed

AdamW

fp32

mixed

fp32

mixed

Table 8: The GPU memory usage of fine-tuning RoBERTabase on the CoLA dataset. The sequence length and batch
size are set to 512 and 8, respectively. #Dtype represents the data type used for training, where FP32 represents
fully parameter fine-tuning the model with 32-bit precision, and mixed represents fine-tuning with mixed precision.
#Trainable parameters represents the maximum number of trainable parameters that appear in a single step
during the fine-tuning process. #Para represents the memory occupied by the model parameters, #Gra represents
the memory occupied by the gradient, and #Sta represents the memory occupied by the optimizer state. #PGS
represents the sum of memory occupied by model parameters (i.e.,#Para), gradients (i.e.,#Gra) and optimizer state
(i.e.,#Sta). Residual states mainly includes activation, temporary buffers and unusable fragmented memory. Total
represents the total memory used during fine-tuning. The parameter m of HiFT is set to 1.

18283

Optimizer #Dtype #FType
#Trainable
Parameter #Para(MB) #Gra(MB) #Sta(MB) #PGS(GB)

Residual
States(GB) Total(GB)

FPFT 355.36M 1355.60 1355.60 2711.20 5.30 13.08 18.38
HiFT 52.00M 1355.60 198.38 396.73 1.90 9.97 11.88 6.4951000 0.35347483 0.146330482 0.853669518
FPFT 355.36M 2033.40 1355.60 2711.20 5.96 9.30 15.25
HiFT 52.00M 2033.40 198.38 396.73 2.57 7.17 9.74 5.512 0.361407788 6.62 3.1200 6.62

MixedHi HiFT 52.00M 876.18 198.38 396.73 1.44 5.18 6.62
FPFT 355.36M 1355.60 1355.60 1355.60 3.97 13.08 17.05
HiFT 52.00M 1355.60 198.38 198.38 1.71 10.20 11.91 5.1396900 0.301430415
FPFT 355.36M 2033.40 1355.60 1355.60 4.63 9.30 13.93
HiFT 52.00M 2033.40 198.38 198.38 2.37 7.37 9.74 4.189 0.300714363

MixedHi HiFT 52.00M 876.18 198.38 198.38 1.24 5.38 6.62
FPFT 355.36M 1355.60 1355.60 0.00 2.65 13.08 15.73
HiFT 52.00M 1355.60 198.38 0.00 1.52 10.36 11.88 3.8470200 0.24461245
FPFT 355.36M 2033.40 1355.60 0.00 3.31 9.30 12.60
HiFT 52.00M 2033.40 198.38 0.00 2.18 7.50 9.68 2.925 0.23203146

MixedHi HiFT 52.00M 876.18 198.38 0.00 1.05 5.50 6.55
FPFT 355.36M 1355.60 1355.60 3.14 2.65 13.08 15.73
HiFT 52.00M 1355.60 198.38 0.21 1.52 10.36 11.88 3.8498300 0.244744437
FPFT 355.36M 2033.40 1355.60 3.14 3.31 9.30 12.61
HiFT 52.00M 2033.40 198.38 0.21 2.18 7.51 9.69 2.918 0.231434259

MixedHi HiFT 52.00M 876.18 198.38 0.21 1.05 5.50 6.55
FPFT 355.36M 1355.60 1355.60 1355.60 3.97 13.08 17.05
HiFT 52.00M 1355.60 198.38 198.38 1.71 10.20 11.91 5.1397900 0.301434512
FPFT 355.36M 2033.40 1355.60 1355.60 4.63 9.30 13.93
HiFT 52.00M 2033.40 198.38 198.38 2.37 7.37 9.74 4.189 0.300714363

MixedHi HiFT 52.00M 876.18 198.38 198.38 1.24 5.38 6.62

AdamW

fp32

mixed

fp32

mixed

fp32

SGDM

SGD

Adafactor

Adagrad

fp32

mixed

mixed

fp32

mixed

Table 9: The GPU memory usage of fine-tuning RoBERTalarge on the CoLA dataset. The sequence length and batch
size are set to 512 and 8, respectively.

18284

Optimizer #Dtype #FType
#Trainable
Parameters #Para(MB) #Gra(MB) #Sta(MB) #PGS(GB)

Residual
States(GB) Total(GB)

FPFT 774.03M 2952.69 2952.69 5905.39 11.53 37.26 48.79
HiFT 65.64M 2952.69 250.40 500.79 3.62 31.73 35.35 13.4400000 0.275466284 0.084802915 0.915197085
FPFT 774.03M 4429.05 2952.69 5905.39 12.98 28.13 41.11
HiFT 65.64M 4429.05 250.40 500.79 5.06 24.97 30.03 11.0800000 0.269520798

MixedHi HiFT 65.64M 1726.75 250.40 500.79 2.42 16.38 18.80
FPFT 774.03M 2952.69 2952.69 2952.69 8.65 37.26 45.91
HiFT 65.64M 2952.69 250.40 250.40 3.37 31.98 35.35 10.5600000 0.230015247
FPFT 774.03M 4429.05 2952.69 2952.69 10.09 28.14 38.23
HiFT 65.64M 4429.05 250.40 250.40 4.81 25.22 30.03 8.2000000 0.214491237

MixedHi HiFT 65.64M 1726.75 250.40 250.40 2.18 16.62 18.80
FPFT 774.03M 2952.69 2952.69 0.00 5.77 37.25 43.02
HiFT 65.64M 2952.69 250.40 0.00 3.13 32.22 35.35 7.6700000 0.178289168
FPFT 774.03M 4429.05 2952.69 0.00 7.21 28.12 35.33
HiFT 65.64M 4429.05 250.40 0.00 4.57 25.46 30.03 5.3000000 0.150014152

MixedHi HiFT 65.64M 1726.75 250.40 0.00 1.93 16.32 18.25
FPFT 774.03M 2952.69 2952.69 5.31 5.77 37.26 43.03
HiFT 65.64M 2952.69 250.40 0.21 3.13 32.22 35.35 7.6800000 0.17848013
FPFT 774.03M 4429.05 2952.69 5.31 7.21 28.12 35.33
HiFT 65.64M 4429.05 250.40 0.21 4.57 25.46 30.03 5.3000000 0.150014152

MixedHi HiFT 65.64M 1726.75 250.40 0.21 1.93 16.37 18.30
FPFT 774.03M 2952.69 2952.69 2952.69 8.65 37.26 45.91
HiFT 65.64M 2952.69 250.40 250.40 3.37 31.98 35.35 10.5600000 0.230015247
FPFT 774.03M 4429.05 2952.69 2952.69 10.09 28.13 38.22
HiFT 65.64M 4429.05 250.40 250.40 4.81 25.22 30.03 8.1900000 0.214285714

MixedHi HiFT 65.64M 1726.75 250.40 250.40 2.18 16.62 18.80

fp32

SGDM

SGD

Adafactor

Adagrad

fp32

mixed

mixed

fp32

mixed

AdamW

fp32

mixed

fp32

mixed

Table 10: The GPU memory usage of fine-tuning GPT-2large on the E2E dataset. The sequence length and batch size
are set to 512 and 8, respectively.

Optimizer #Dtype #FType
#Trainable
Parameters #Para(MB) #Gra(MB) #Sta(MB) #PGS(GB)

Residual
States(GB) Total(GB)

FPFT 2651.31M 10113.95 10113.95 20227.89 39.51 22.69 62.20
HiFT 133.9M 10113.95 510.79 1021.58 11.37 16.96 28.33 33.8700000 0.544533762 0.050503336 0.949496664
FPFT 2651.31M 15170.93 10113.95 20227.89 44.45 19.56 64.01
HiFT 133.9M 15170.93 510.79 1021.58 16.31 15.92 32.23 31.7800000 0.496484924

MixedHi HiFT 133.9M 5567.77 510.79 1021.58 6.93 24.63 31.56
FPFT 2651.31M 10113.95 10113.95 10113.95 29.63 22.69 52.32
HiFT 133.9M 10113.95 510.79 510.79 10.87 17.46 28.33 23.9900000 0.458524465
FPFT 2651.31M 15170.93 10113.95 10113.95 34.57 19.56 54.13
HiFT 133.9M 15170.93 510.79 510.79 15.81 16.33 32.14 21.9900000 0.406244227

MixedHi HiFT 133.9M 5567.77 510.79 510.79 6.43 25.13 31.56
FPFT 2651.31M 10113.95 10113.95 0.00 19.75 22.69 42.44
HiFT 133.9M 10113.95 510.79 0.00 10.38 17.95 28.33 14.1100000 0.332469369
FPFT 2651.31M 15170.93 10113.95 0.00 24.69 19.57 44.26
HiFT 133.9M 15170.93 510.79 0.00 15.31 16.83 32.14 12.1200000 0.273836421

MixedHi HiFT 133.9M 5567.77 510.79 0.00 5.94 25.49 31.43
FPFT 2651.31M 10113.95 10113.95 8.99 19.76 22.69 42.45
HiFT 133.9M 10113.95 510.79 0.22 10.38 17.95 28.33 14.1200000 0.33262662
FPFT 2651.31M 15170.93 10113.95 8.99 24.70 19.56 44.26
HiFT 133.9M 15170.93 510.79 0.22 15.31 16.83 32.14 12.1200000 0.273836421

MixedHi HiFT 133.9M 5567.77 510.79 0.22 5.94 25.49 31.43
FPFT 2651.31M 10113.95 10113.95 10113.95 29.63 22.69 52.32
HiFT 133.9M 10113.95 510.79 510.79 10.87 17.46 28.33 23.9900000 0.458524465
FPFT 2651.31M 15170.93 10113.95 10113.95 34.57 19.57 54.14
HiFT 133.9M 15170.93 510.79 510.79 15.81 16.33 32.14 22.0000000 0.406353897

MixedHi HiFT 133.9M 5567.77 510.79 510.79 6.43 25.13 31.56

fp32

SGDM

SGD

Adafactor

Adagrad

fp32

mixed

mixed

fp32

mixed

AdamW

fp32

mixed

fp32

mixed

Table 11: The GPU memory usage of fine-tuning GPT-Neo on the E2E dataset. The sequence length and batch size
are set to 512 and 8, respectively.

18285

Optimizer #Dtype #FType
#Trainable
Parameters #Para(MB) #Gra(MB) #Sta(MB) #PGS(GB)

Residual
States(GB) Total(GB)

FPFT 6738.42M 25705.04 25705.04 51410.08 100.41 41.7 142.11
HiFT 202.38M 25705.04 772.03 1544.06 27.36 28.04 55.41 0.03 0.97
FPFT 6738.42M 38557.56 25705.04 51410.08 112.96 32.54 145.50
HiFT 202.38M 38557.56 772.03 1544.06 39.92 21.62 61.54

MixedHi HiFT 202.38M 13624.53 772.03 1544.06 15.57 18.40 33.96 0.23343 0.76657 0.13781 0.86219 111.53647 0.76657
FPFT 6738.42M 25705.04 25705.04 25705.04 75.31 41.71 117.01
HiFT 202.38M 25705.04 772.03 772.03 26.61 28.8 55.41
FPFT 6738.42M 38557.56 25705.04 25705.04 87.86 32.54 120.40
HiFT 202.38M 38557.56 772.03 772.03 39.16 22.37 61.54 74.87

MixedHi HiFT 202.38M 13624.53 772.03 772.03 14.81 19.15 33.96
FPFT 6738.42M 25705.04 25705.04 0.00 50.21 41.72 91.93
HiFT 202.38M 25705.04 772.03 0.00 25.86 29.55 55.41
FPFT 6738.42M 38557.56 25705.04 0.00 62.76 32.54 95.30
HiFT 202.38M 38557.56 772.03 0.00 38.41 23.13 61.54

MixedHi HiFT 202.38M 13624.53 772.03 0.00 14.06 19.00 33.06
FPFT 6738.42M 25705.04 25705.04 10.82 50.22 41.72 91.94
HiFT 202.38M 25705.04 772.03 0.33 25.86 29.55 55.41
FPFT 6738.42M 38557.56 25705.04 10.82 62.77 32.54 95.31
HiFT 202.38M 38557.56 772.03 0.33 38.41 23.13 61.54

MixedHi HiFT 202.38M 13624.53 772.03 0.33 14.06 19.00 33.06
FPFT 6738.42M 25705.04 25705.04 25705.04 75.31 41.72 117.01
HiFT 202.38M 25705.04 772.03 772.03 26.61 28.80 55.41
FPFT 6738.42M 38557.56 25705.04 25705.04 87.86 32.54 120.40
HiFT 202.38M 38557.56 772.03 772.03 39.16 22.37 61.54

MixedHi HiFT 202.38M 13624.53 772.03 772.03 14.81 19.15 33.96

SGDM

SGD

Adafactor

Mixed

FP32

Mixed

FP32

Mixed

Adagrad

FP32

FP32

Mixed

FP32

Mixed

AdamW

Table 12: The GPU memory usage of fine-tuning LLaMA (7B) on the E2E dataset. The sequence length and batch
size are set to 512 and 6, respectively.

Dataset C Type Prompt Label words

SST-2 2 sentiment cls. <S1> It was [MASK] . {great, terrible}
SST-5 5 sentiment cls. <S1> It was [MASK] . {great, good, okay, bad, terrible}
TREC 6 topic cls. [MASK] : <S1> {Description, Expression, Entity,

Human, Location, Number}
MNLI 3 NLI <S1> ? [MASK] , <S2> {Yes, Maybe, No}
SNLI 3 NLI <S1> ? [MASK] , <S2> {Yes, Maybe, No}
RTE 2 NLI <S1> ? [MASK] , <S2> {Yes, No}

Table 13: The prompts of the datasets we used in our RoBERTa-large experiments (i.e., Table 1). The prompts are
adapted from (Gao et al., 2021) and include a template and a set of label words that can fill in the [MASK]token.
<S1> and <S2> refer to the first and the second (if any) input sentence. C is the number of labels.

18286

Dataset Type Prompt

SST-2 cls. <text> It was terrible/great
RTE cls. <premise>

Does this mean that "<hypothesis>" is true? Yes or No?
Yes/No

CB cls. Suppose <premise> Can we infer that "<hypothesis>"? Yes, No, or Maybe?
Yes/No/Maybe

BoolQ cls. <passage> <question>?
Yes/No

WSC cls. <text>
In the previous sentence, does the pronoun "<span2>" refer to <span1>? Yes or No?
Yes/No

WIC cls. Does the word "<word>" have the same meaning in these two sentences? Yes, No?
<sent1>
<sent2>
Yes/No

MultiRC cls. <paragraph>
Question: <question>
I found this answer "<answer". Is that correct? Yes or No?
Yes/No

COPA mch. <premise> so/because <candidate>
ReCoRD mch. <passage>

<query>.replace("@placeholder", <candidate>)
SQuAD QA Title: <title>

Context: <context>
Question: <question>
Answer:

DROP QA Passage: <context>
Question: <question>
Answer:

Table 14: The prompts of the datasets we used in our OPT experiments. There are three types of tasks: classification
(cls.), multiple-choice (mch.), and question answering (QA). <text> represents input from the dataset and Yes
represents label words. For inference on multiple choice tasks, we put in different candidates in the prompt and
calculate the average log-likelihood for each candidate, and choose the candidate with the highest score. For
inference on QA tasks, we use greedy decoding to generate the answer. All prompts configurations are consistent
with Malladi et al. (2023)

18287

