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Abstract

The rapid expansion of multimedia content has
made it increasingly challenging to retrieve
relevant videos from large collections accu-
rately. Recent advancements in text-video re-
trieval have focused on cross-modal interac-
tions, large-scale foundation model training,
and probabilistic modeling, yet often neglect
the crucial user perspective, leading to discrep-
ancies between user queries and the content re-
trieved. To address this, we introduce MERLIN
(Multimodal Embedding Refinement via LLM-
based Iterative Navigation), a novel training-
free pipeline that leverages Large Language
Models (LLMs) for iterative feedback learn-
ing. MERLIN refines query embeddings from a
user perspective, enhancing alignment between
queries and video content through a dynamic
question answering process. Experimental re-
sults on datasets like MSR-VTT, MSVD, and
ActivityNet demonstrate that MERLIN substan-
tially improves R@1, outperforming existing
systems and confirming the benefits of integrat-
ing LLMs into multimodal retrieval systems for
more responsive and context-aware multimedia
retrieval1.

1 Introduction

Multimedia content has recently grown rapidly in
both quantity and quality, making the task of find-
ing relevant videos from vast collections increas-
ingly challenging. While recent studies on text-
video retrieval have primarily focused on cross-
modal interaction (Wang et al., 2023; Huang et al.,
2023; Wu et al., 2023; Jin et al., 2023), large-
scale foundation model training (Chen et al., 2024b,
2023; Zhao et al., 2024; Wang et al., 2024a) and
probabilistic modeling (Hao et al., 2023; Fang et al.,
2023; Hao and Zhang, 2023), there remains a no-
table lack of consideration for the discrepancy in
text-video retrieval. For instance, as illustrated in

1https://github.com/dhk1349/MERLIN_text_to_
video_search.git

Figure 1: An illustration of the discrepancy between the
video caption which could be treated as a user query and
the video from MSR-VTT dataset. Blue indicates the
details that can be observed statically within the video
frame, while red reflects the information that can be
obtained temporally across multiple frames.

Figure 1, the video caption “a baby playing with a
cat’s tail” fails to fully capture the additional con-
text of a playful interaction between the baby and
the cat. In real-world scenarios, such discrepancies
often arise because users tend to submit succinct
queries that do not capture the full context of the
videos related to their search intent. Consequently,
this mismatch can lead to unsatisfactory retrieval
performance. Moreover, neglecting the user per-
spective makes users refine their natural language
query multiple times to fully reflect their search
intent. This degrades the quality of user experience
and makes it difficult to understand the search in-
tent, leading to a discrepancy between user queries
and the information within the retrieved videos.

To address this issue, we introduce MERLIN
(Multimodal Embedding Refinement via LLM-
based Iterative Navigation), a novel training-free
and iterative feedback learning pipeline that lever-
ages the power of Large Language Models (LLMs)
to augment queries based on the user perspec-
tive, thereby mitigating the aforementioned dis-
crepancies and significantly improving the text-
video retrieval performance. Inspired by human
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problem-solving and cognitive feedback mech-
anisms (Flower and Hayes, 1981; Doherty and
Balzer, 1988), we employ an interactive and itera-
tive feedback learning (Böhm et al., 2019; Stiennon
et al., 2020; Ziegler et al., 2019; Wu et al., 2020;
Ouyang et al., 2022; Glaese et al., 2022; Akyürek
et al., 2023; Madaan et al., 2023; Lee et al., 2024a;
Liang et al., 2024) consisting of a question answer-
ing process that iteratively refines query embed-
dings for text-video retrieval. Moreover, to our best
knowledge, MERLIN presents the first implemen-
tation of a retrieval–rerank pipeline in the domain
of text-video retrieval, establishing a novel frame-
work that prioritizes user intention and interaction
in refining search results.

The primary strength of MERLIN lies in its ca-
pability to iteratively adapt and refine query embed-
dings without necessitating the costly re-training of
pre-trained models. As shown in Figure 2, when a
user submits a query, MERLIN generates questions
based on the metadata of the retrieved video candi-
dates and presents these questions to the user. By
gathering additional information from the user’s
responses, MERLIN refines the embeddings to im-
prove retrieval accuracy, thereby helping users find
“video in mind”2.

Experimental results on benchmark datasets,
including MSR-VTT, MSVD, and ActivityNet,
demonstrate the superiority of the retrieval perfor-
mance (e.g. R@K) by showing significant improve-
ment. Specifically, MERLIN boosts text-video re-
trieval performance (R@1) of Google Multimodal
Embedding from 44.00 to 78.00 on MSR-VTT,
from 52.39 to 77.61 on MSVD and from 56.58
to 68.44 on ActivityNet.

The key contributions of our paper are as fol-
lows: (1) Introduction of MERLIN, a novel LLM-
based framework for multimodal embedding re-
finement that addresses discrepancies between user
queries and video content by integrating user per-
spectives. (2) Implementation of an iterative, cost-
effective method for refining query embeddings
using LLMs, significantly reducing computational
demands while improving retrieval accuracy. (3)
Presentation of the first retrieval-rerank pipeline
in text-video retrieval, enhancing interactivity and
context-awareness within multimodal systems. (4)
Experimental results shows that MERLIN sub-
stantially improves R@1 on MSR-VTT, MSVD

2“video in mind” refers to the specific video users are
looking for or have in mind during the search process.

and ActivityNet, thereby demonstrating notable en-
hancements in zero-shot text-video retrieval.

2 Related Works

Dataset. Text-to-video retrieval aims to re-
trieve relevant videos based on natural lan-
guage descriptions and several benchmark video
datasets (Anne Hendricks et al., 2017; Caba Heil-
bron et al., 2015; Chen and Dolan, 2011; Xu et al.,
2016) have been curated for this task. One notable
dataset is ActivityNet (Caba Heilbron et al., 2015),
which consists of video-text pairs capturing vari-
ous human activities. Another widely used dataset
is MSR-VTT (Xu et al., 2016), which comprises
open-domain web videos paired with natural lan-
guage descriptions. These datasets provide a di-
verse range of video content and textual queries,
enabling comprehensive evaluation of retrieval sys-
tems.

Method. Prior studies have focused on cross-
modal interaction, large-scale foundation model
training, and probabilistic modeling. In cross-
modal interaction Wang et al. (2023); Huang et al.
(2023); Jin et al. (2023) have enhanced reason-
ing abilities by capturing cross-modal similarities
at multiple granularity levels, introduced efficient
video prompt mechanisms (Lester et al., 2021) with
minimal trainable parameters, and improved re-
trieval with strategies like Disentangled Conceptu-
alization and Set-to-Set Alignment. In foundation
model training (Chen et al., 2024b, 2023; Zhao
et al., 2024; Wang et al., 2024a), significant ad-
vances have been made with the development of
large-scale video and vision-language models lever-
aging extensive web data, and fine-tuning tech-
niques for better performance on downstream tasks.
In probabilistic modeling (Hao et al., 2023; Fang
et al., 2023; Hao and Zhang, 2023), novel align-
ment methods and modeling of video and text rep-
resentations as probabilistic distributions have been
proposed to improve text-video retrieval accuracy
and addressed domain adaptation challenges.

Concurrent to prior studies, Levy et al. (2023)
proposed a chat-based image retrieval system
(ChatIR) that interacts with users through conver-
sation to gather additional information beyond the
initial query, aiming to better understand and clar-
ify the user’s search intent. Following from ChatIR,
(Lee et al., 2024b) proposed the plug-and-play in-
teractive text-to-image retrieval system. Different
from ChatIR, our MERLIN incorporates frame-
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Figure 2: An illustration of MERLIN for text-video retrieval. The yellow arrow represents the LLM Questioner
returning a question for next round based on metadata of anchor video (Section 3.2). The green arrow represents
the human-simulating LLM agent returning an answer based on the “video in mind” through Question Answering
module and Aggregation module (Section 3.3). The pink arrow represents MERLIN returning a retrieved video
candidates through Multimodal Encoder and Reranker (Section 3.4). The system initially retrieves video candidates
v̂0 based on the input query text q using a pre-trained multimodal encoder. Using this anchor video, LLM Question
Generator produces a question q̂1 to elicit additional information from the user (Section 3.2). The LLM Agent
answers this question based on the “video in mind”, mimicking the human feedback process ã1. The query and
answer embeddings are then gradually integrated for each round. The updated query embedding is used to rerank
the video candidates v̂1, and the process repeats for multiple rounds.

level answer generation tailored to the specific
requirements of text-video retrieval, employing a
training-free approach. Furthermore, inspired by
Composed Image Retrieval (Liu et al., 2021; Jang
et al., 2024), we iteratively refine the embedding by
employing spherical linear interpolation, instead of
iteratively concatenating question and answer pair
and feeding into the retrieval model. Lastly, we han-
dle both multi-modality data simultaneously, mean-
ing that our generation result would be more likely
aligned to the user’s search intent. This iterative
refinement process mirrors human tendencies to
continuously improve their queries based on inter-
active feedback, akin to strategies seen in feedback-
based refinement in textual content. This approach
is supported by the growing application of rein-
forcement learning, which has been increasingly
utilized to enhance the quality of generated con-
tent through both reference-based and reference-
independent feedback mechanisms (Böhm et al.,
2019; Stiennon et al., 2020; Ziegler et al., 2019;
Wu et al., 2020; Ouyang et al., 2022; Glaese et al.,
2022; Akyürek et al., 2023; Madaan et al., 2023;
Lee et al., 2024a; Liang et al., 2024).

3 Multimodal Embedding Refinement via
LLM based Iterative Navigation

3.1 Background

Algorithm 1 Iterative video reranking with ques-
tion answering rounds
Require: encoder fenc(), user query q ∈ Q, video v ∈ V ,

total question answer round R, retrieved top-k videos at
round r v̂r , i-th candidate among top-k videos at round r
v̂ri , vm a video that user is looking for

1: Encode eq = fenc(q) given user query q
2: Encode ev = fenc(v) given video v
3: Retrieve v̂0 = TOP-Kv∈V

(
SIM(eq, ev)

)
(Equation 1)

4: Initialize message list m = []
5: for r = 1 to R do
6: Append metadata of v̂r−1

0 to m
7: Generate question q̂r = Mquestion(m) (Equation 2)
8: Append q̂r to m

9: Generate frame-level answers
[
â(r,0), . . . , â(r,N)

]
=

Manswer(q̂
r : vm) (Equation 3)

10: Aggregate frame-level answers ãr =

Maggr([â
(r,0), . . . , â(r,N)

]
) (Equation 4)

11: Encode eAr = fenc(A
r)

12: Refine embedding e = REFINE(eq, · · · , eAr ) (Equa-
tion 6)

13: Retrieve v̂r = TOP-Kv∈V
(

SIM(e, ev)
)

(Equation 1)
14: end for
15: return Reranked retrieved videos v̂rk

Suppose that we have the query text q ∈ Q, a
video v ∈ V , where Q and V indicate a set of
queries and videos. Using a pre-trained multimodal
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encoder fenc, we obtain the query and video em-
beddings (eq, ev) as follows:

eq = fenc(q) ∈ Rd

ev = fenc(v) ∈ Rd,

where d denotes the dimension of embedding. The
goal of text-video retrieval is to search the most
relevant videos v̂’s from a collection of videos V
given a query text q as follows:
[
v̂0, . . . , v̂k−1

]
= TOP-Kv∈V

(
SIM(eq, ev)

)
, (1)

where SIM(·) is a similarity function (e.g., cosine
distance, etc). Additionally, our system utilizes two
key components: M and T . Here, M represents
the LLMs and template function T applies a pre-
defined template to inputs3,4. Based on this back-
ground, we would like to introduce LLM-based
iterative navigation, involving multiple rounds of
feedback learning and reranking, leading to better
performance and interpretability.

3.2 Question Generation
Suppose that we have retrieved candidates v̂rk
where r and k indicate the round and the index
of the retrieved top K candidates, respectively. We
choose v̂r−1

0 as an anchor candidate and generate
the question with Mquestion as follows5:

q̂r = Mquestion

(
Tquestion(v̂r−1

0 )
)
. (2)

Intuitively, top-ranked candidate is more likely to
align with the user’s query. This implies that assess-
ing retrieved candidates with question generated
from v̂r−1

0 using LLMs would enhance retrieval
performance and interpretability.

3.3 Human-Simulating Agent
Video Question Answering. Our underlying as-
sumption is mitigating the discrepancy between
user queries and the information within the videos
would be helpful for the better retrieval perfor-
mance.

To this end, a human-simulating agent answers
the question q̂r with video in mind vm, which con-
sists of N frames sampled per second as follows. In

3Note that M is used interchangeably to indicate both
a Large Language Model (LLM) and a Large Multimodal
Model (LMM).

4Here, subscripts have been omitted for simplicity. How-
ever, subscripts are employed in the equations for each specific
module (e.g., Mquestion). In addition, the pre-defined template
is presented in Appendix due to the limited space.

5Note that we use the caption from metadata of v̂r0 and
assume that each video consists of N frames.

this process, we assume a user searching for a spe-
cific video, and create a human-simulating agent
to mimic the behavior of that user. The agent gen-
erates responses by referencing both the video in
mind vm (the video the user is looking for) and the
questions generated by MERLIN as following:
[
â(r,0), . . . , â(r,N)

]
= Manswer

(
Tanswer(q̂r), vm

)

(3)
It is worth noting that in a real-world scenario,
Manswer could be replaced by a human. Addition-
ally, using N frames allows us to efficiently handle
the temporal information inherent to video, cap-
turing the dynamic aspects of the content. This
approach enhances our ability to provide a more
comprehensive understanding and alignment with
the user’s query.

Aggregation. The individual generated answers
for each frame

[
â(r,0), . . . , â(r,N)

]
are now subse-

quently fed into an Aggregation Module which is
designed to summarize the multiple frame-level an-
swers into a coherent and concise response to the
original query as follows:

ãr = Maggr

(
Taggr

(
[â(r,0), . . . , â(r,N)]

))
. (4)

It is worth noting that Equation 3 provides answers
for each frame, however, the summarized answer
should capture the importance of the video con-
tent. For instance, if the question is “Did a cookie
appear in the video?” and individual answers for
each frame are

[
“No”, “No”, “Yes”, “No”

]
, the Ag-

gregation Module will summarize and provide the
final answer for the video as “Yes”, since a cookie
has appeared in the third frame. This process en-
sures that the temporal and contextual information
from all frames is considered, resulting in a more
accurate and relevant response.

3.4 Iterative Embedding Refinement for
Reranking

Initially, we obtain the answer embedding eã
r

us-
ing the multimodal encoder fenc as follows: eã

r
=

fenc(ã
r). Our objective is to dynamically refine the

embedding by combining the information from the
current round’s answer with the previous round’s
refined embedding. To this end, in the pursuit of
refining embeddings iteratively to enhance retrieval
performance, we employ a spherical linear interpo-
lation (SLERP) (Shoemake, 1985), which is partic-
ularly appropriated for interpolating between em-
beddings on the unit sphere, preserving the norm
and the geometric properties of the embeddings.
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Given the embeddings er−1 from the previous
round and eã

r
, the angle θ between them is com-

puted as:

θ = arccos(eã
r · er−1). (5)

Note that the angle is essential for determining the
interpolation path. Finally, the refined embedding
for the current round er is then calculated as:

er =
sin((1− α)θ)

sin(θ)
· eãr + sin(αθ)

sin(θ)
· er−1, (6)

where α ∈ [0, 1] is a hyperparameter that bal-
ances the influence of the current answer embed-
ding and the previous refined embedding. This in-
terpolation not only ensures a smooth transition
across embedding spaces but also incorporates both
the originality of the current response and the se-
mantic context retained from prior interactions. We
assume that the potential risk of the iterative embed-
ding refinement is query drift (Mitra et al., 1998;
Zighelnic and Kurland, 2008; Shtok et al., 2012),
a common phenomenon in information retrieval
where the focus inadvertently shifts away from
the original query intent due to the inclusion of
progressively accumulated details. To mitigate the
potential risk, we set the α = 0.8, prioritizing the
query and earlier answer embeddings over the most
recent answers. We expect that this simple yet effec-
tive strategy would preserve the thematic integrity
of the initial query, akin to human conversational
patterns where early-mentioned topics typically set
the context for the entire conversation.

4 Experimental Results

4.1 Setting
To utilize multimodal encoders and LLMs without
needing private GPUs, we use Google Multimodal
Embedding API6 for encoding video and text, and
the OpenAI GPT-4o API (Achiam et al., 2023)7

for generating questions and answers. These APIs
offers comparable performance and reproducibility
on benchmarks without private GPUs.

We evaluate MERLIN across three datasets:
MSR-VTT, MSVD, and ActivityNet. For MSR-
VTT, we sampled 500 videos from its 1,000-sample
validation split. From MSVD and ActivityNet, we
sampled all 670 and 919 videos from their respec-
tive test sets. For videos with multiple captions, we
randomly selected one query per video.

6https://cloud.google.com/
generative-ai-studio

7https://chat.openai.com/

4.2 Performance on Text-Video Retrieval

The performance of our system is presented in Ta-
ble 1, demonstrating its efficacy through multiple
rounds of feedback learning, reflecting the system’s
ability to iteratively refine and incorporate feed-
back. Particularly, MERLIN shows significant im-
provements with each round of feedback: On the
MSR-VTT dataset, MERLIN shows improvements
of R@1 from 44.40 to 78.00, on the MSVD from
52.39 to 77.61, and on ActivityNet from 56.58 to
68.44 by the final round.

This highlights MERLIN’s capacity to adapt and
enhance its response through iterative feedback
learning. Despite the distinct challenges posed by
each dataset, MERLIN significantly boosts its per-
formance, thereby affirming the effectiveness of
leveraging iterative feedback learning to enhance
text-video retrieval task.

4.3 Average Ranking of QA Rounds

Figure 3: An illustration of the average ranking of target
video for each dataset.

In addition to the retrieval performance pre-
sented in Table 1, the effectiveness of the iterative
query enrichment is further highlighted by examin-
ing the average ranking of the target videos across
question answer rounds. This analysis is helpful for
understanding how the process enhances the rank-
ing of the target videos. As illustrated Figure 3, the
average ranking of the target video consistently im-
proves each consecutive round across all datasets.
For instance, on the MSR-VTT dataset, the average
ranking significantly improves from 18.57 in round
0 to 2.5 by the final round. Similar improvements
are observed on other datasets, with the average
ranking on MSVD improving from 13.84 to 2.4,
and on ActivityNet from 6 to 2.6. This demon-
strates the consistent improvement, thereby con-
firming the effectiveness of MERLIN in reranking
through iterative feedback learning.
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Model Rounds MSR-VTT MSVD ActivityNet

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

VAST (Chen et al., 2024a) - 49.30 68.30 73.90 - - - - - -
InternVideo2-6B (Wang et al., 2024b) - 55.9 78.3 85.1 59.3 84.4 89.6 63.2 85.6 92.5
LanguageBind-H (Zhu et al., 2023) - 44.8 70.0 78.7 53.9 80.4 87.8 41.0 68.4 80.8
VideoPrism-g (Madan et al., 2024) - 39.7 63.7 - - - - 52.7 79.4 -
Marengo-2.6 (Labs, 2024) - 49.35 73.47 - - - - 55.36 82.55 -

MERLIN

0 44.40 67.60 76.20 52.39 77.16 84.78 56.58 84.77 91.73
1 56.40 80.00 87.00 61.94 85.97 91.79 59.96 89.01 93.91
2 66.40 86.00 92.80 67.61 90.45 94.63 62.68 90.42 94.34
3 72.60 91.80 95.60 71.79 91.79 96.87 66.05 90.97 95.54
4 76.20 93.40 97.00 74.78 93.28 96.87 67.14 91.08 95.54
5 78.00 94.20 96.80 77.61 94.48 97.31 68.44 91.95 96.63

Table 1: The performance of zero-shot text-video retrieval on MSR-VTT, MSVD, and ActivityNet.

5 Ablation Study

Model Rounds MSR-VTT

R@1 R@5 R@10

Final Query Retrieval (FQR) 5 51.40 71.00 78.80
Refined Reranking (RR) 5 53.60 74.40 81.80
MERLIN 5 78.00 94.20 96.80

Table 2: The performance comparison of video retrieval
performance on MSR-VTT using R@K between Final
Query Retrieval (FQR), Refined Reranking (RR), and
MERLIN. It is worth noting that FQR and RR employ
the generated query at final round.

The iterative embedding refinement improves
retrieval performance. The results in Table 2
demonstrate the effectiveness of iterative embed-
ding refinement in improving the retrieval per-
formance. Final Query Retrieval (FQR), which
direct retrieves videos using the generate query,
achieves a R@1 of 51.40. Refined Rerank-
ing (RR), which applies reranking to the top-100
initial results, improves performance to 53.60 at
R@1. However, MERLIN, which leverages itera-
tive refinement through multiple rounds of inter-
action between the query and video embeddings,
significantly outperforms both methods, reaching a
R@1 of 78.00, demonstrating the advantage of iter-
ative refinement for aligning query representations
with video content. The consistent improvements
at R@5 and R@10 further highlight the robustness
of MERLIN in video retrieval tasks.

The higher α could mitigate the query drift.
As mentioned in Section 3.4, our assumption is
mitigating query drift would preserve the thematic
integrity of the initial query by assigning high α
value, prioritizing the query and earlier answer em-

beddings over the most recent answers.
To validate our assumption in contrast to the

experiment’s higher α = 0.8, we conduct addi-
tional experiments with assigning a reduced value
α = 0.2, which allows us to observe the impact
of shifting emphasis towards the latest answers.
The results on the MSR-VTT and MSVD datasets
show that setting a lower α initially improves re-
trieval performance in early rounds but leads to
a decline after a few rounds, indicating potential
query drift. Furthermore, the average ranking of
the target video deteriorates in later rounds, sug-
gesting the query representation has deviated from
the user’s original intent.

Specifically, for MSR-VTT, MERLIN got
44.4/67.60/76.20 for R@1/5/10 at round 0 re-
spectively but ended up with 61.6/81.20/87.00 re-
spectively at round 5. For MSVD, MERLIN got
52.39/77.16/84.78 for R@1/5/10 at round 0 respec-
tively but ended up with 56.87/78.51/84.63 respec-
tively at round 5.

6 Case Study

The main objective of MERLIN is to improve the
ranking of failure cases where the target video is
not among the top-ranked candidates. At the same
time, it is important to keep the success case to
stay in the top-ranked candidates while MERLIN
proceeds to chat with the user. Retrieving the target
video among the top-ranked candidates indicates
that MERLIN consistently reflects user intention
during the conversation. To qualitatively verify that
MERLIN performs its tasks according to the afore-
mentioned objectives, we reviewed several case
studies. We focused on how MERLIN brings the
rank of failure cases.
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Case study for ActivityNet As shown in Fig-
ure 4, the initial ranking of the target video was
224 using a paired query from the dataset. However
as MERLIN augmented the query using the user’s
response, the rank boosted to 36 → 14 → 4 → 1
as the round proceeded. During the conversation,
MERLIN was able to understand that the user was
looking for a video about Christmas themes, fea-
turing two people, and involving gift wrapping. It
managed to rank the target video on top with the
augmented information.

Case study for MSVD As shown in Figure 5,
the initial ranking of the target video was 154 us-
ing a paired query from the dataset. However as
MERLIN augmented the query using the user’s
response, the rank boosted to 14 → 1 → 1 → 1
as the round proceeded. During the conversation,
MERLIN was able to understand that the user was
looking for a video about the NBA All-Star game,
broadcasted on TNT and the scoreboard telling
74:75. It managed to rank the target video on top
with the augmented information at an early round
and managed to keep the top rank during multiple
rounds.

Case study for MSR-VTT As shown in Figure 6,
the initial ranking of the target video was 361 us-
ing a paired query from the dataset. However as
MERLIN augmented the query using the user’s re-
sponse, the rank boosted to 197 → 14 → 1 → 1
as the round proceeded. During the conversation,
MERLIN was able to understand the detailed fea-
tures and gestures of humans featured on “video in
mind”. It managed to rank the target video on top
with the augmented information at an early round
and managed to keep the top rank during multiple
rounds.

7 Conclusion

In conclusion, the MERLIN framework addresses a
critical gap in the field of text-video retrieval by in-
tegrating the often-overlooked user perspective into
the retrieval process. This integration is achieved
through a novel, training-free pipeline that utilizes
LLMs for iterative feedback learning, allowing for
the dynamic refinement of query embeddings based
on user interactions. MERLIN not only aligns more
closely with user intent but also enhances the over-
all search experience by reducing discrepancies
between user queries and retrieved video content.

The implementation of MERLIN shows a signifi-

cant advancement in multimedia retrieval, introduc-
ing the first retrieval-rerank pipeline in this domain.
By incorporating iterative feedback mechanisms
inspired by human cognitive processes, MERLIN
facilitates a more aligned and context-aware ap-
proach to text-video retrieval. Our experimental
results demonstrate the effectiveness of this ap-
proach, with substantial improvements in retrieval
performance observed across MSR-VTT, MSVD,
and ActivityNet datasets.

Limitations

While our results are promising, we acknowledge
that we cannot provide a comprehensive guide for
adapting MERLIN to different settings, as we have
not extensively explored the impact of changing
various components. However, the core principle
of integrating user feedback to iteratively refine
the query embedding appears to be a robust ap-
proach, regardless of pipeline components, the spe-
cific domain, or data modality. Future work could
investigate the generalization of MERLIN to other
multimedia retrieval tasks and explore the optimal
configurations for different scenarios.

Another limitation of our approach lies in the use
of a human-simulating LLM agent for answering
questions based on static video frames. While this
agent aims to mimic the human feedback process, it
lacks the capability to grasp temporal information
and attributes that require a high-level understand-
ing of motion and dynamics. Since the LLM agent
first generates answers based on static images and
then aggregates them, it struggles to capture knowl-
edge about direction, speed, and other temporal
aspects present in the videos.

Moreover, as most pre-trained video encoders
also have shortcomings in effectively modeling
temporal capabilities (Liu et al., 2024), our video
encoder may be affected by this limitation as well.
This creates a kind of chicken-and-egg problem,
where video encoders can benefit from temporal-
rich information only when they can understand
temporal information effectively. Conversely, even
if the video question answering module (or similar
counterparts) can handle temporal-rich information,
if the video encoder does not possess the same capa-
bility, it may not benefit from this information. This
temporal modeling challenge is a prevalent issue
that the community needs to address collectively.
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A Prompt Template

A.1 Prompt for Question Generation Module
To get useful information from a user, it is critical to
ask good questions that could elicit the user’s inten-
tion. As depicted in Table 3, we set the top 1 ranked
video as the anchor video and prompted GPT-4o to
refer to the anchor video’s metadata. In our case,
we used the video’s caption as metadata. However,
we believe that questions could be more diverse if
we could use other data such as Automatic Speech
Recognition (ASR) captions, the characteristics of
the video, and so on. As MERLIN proceeds with
the chat with the user (a user-simulating agent), we
stacked previous questions and answers and encour-
aged GPT-4 to generate diverse questions without
repeating previous ones.

A.2 Prompts for Human-Simulating Agent
As a human-simulating agent has two steps for an-
swering the question regarding “video in mind”,
we have two different settings for each step. This
method lacks in understanding direction, speed,
and other temporal knowledge as we discussed in
Limitation. However, we experimentally showed
that our human-simulating agent helps enrich infor-
mation.

A.2.1 Prompt for Question Answering
Module

As depicted in Table 4, we sampled frames from a
video for every 1 second. Then we asynchronously
input the sampled frames and the question from
MERLIN. We prompted GPT-4o to answer in detail
about facts and not just answer with “Yes” or “No”.
However, this question answering module is the
part that takes up a large portion of API cost so the
video may be sampled in a wider stride to lower
the API cost.

A.2.2 Prompt for Aggregation Module
As depicted in Table 5, we aggregate all the an-
swers generated from the question answering mod-
ule. We prompted GPT-4o to aggregate multiple
answers made with multiple frames at the question
answering module and appended an aggregating
example.
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Details about question generation module in MERLIN
System prompt
You are given a caption about a certain video(anchor video) and a query used to retrieve the anchor video.
However, this video may not be the exact video that I am looking for.

Your role is to ask questions about the video I have in mind to get more information about the video. You have 5
rounds and you can only ask one question at a time.

Focus on attributes like the number of people, color, shape etc.

Initial prompt
This is the caption of the retrieved video. Read the video captions and ask some questions to gain more
information to help find out the exact video. Some videos may not have a caption due to an API error saying
sorry I can’t provide blah blah. Captions for video: {anchor video’s caption}

Question:

Question answering round prompt
answer: {Aggregated answer from user-simulating Agent}
Based on the answer, here’s the caption of the reranked video.
caption: {reranked top1 video caption as anchor caption}
Keep asking.

Question:

Max tokens
- 1500

Temperature
- 0.75

Table 3: The instruction and specification for the question generation module in MERLIN using GPT-4o. After
initial retrieval at round 0, MERLIN generates a question with an initial prompt using the information of the anchor
video’s caption. After the user answers the question, MERLIN reranks the and generates a question using a new
anchor and question answering round prompt.

Details about human-simulating agent (question answering module)
System Prompt
You are a helpful assistant that answers the question with details. Don’t just answer in yes or no. Provide more
details(about facts) about the image that might help the questioner.

Input format
- text: {Question from MERLIN}
- image: {Image encoded in base64 captured from video in mind in 1 second interval.}

Max tokens
- 50

Temperature
- 0.3

Image sampling rate
- 1 second

Table 4: The instruction and specification for video question answering human-simulating agent using GPT-
4o (question answering module).
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Details about the human-simulating agent (aggregation module)
System Prompt
The VQA model is designed to answer questions based on images. To apply it to videos, frames are uniformly
extracted from the video over time, and the model provides an answer for each frame to a given question. This
means that for a single question, there will be multiple answers - one for each extracted frame. Your role is to
review all of the individual answers and summarize them to provide a final answer to the original question. When
making the final answer, don’t use unnecessary words like ‘Based on the individual answers provided by the
VQA model,’. Just answer the question.
For example, if the question is “Did a cookie appear in the video?” and the individual answers from the frames
are [“No”, “No”, “Yes”, “No”], then since a cookie appeared in the 3rd frame, you should summarize and answer
the question as “Yes”. The length of the aggregated answer should be around 30~35 words.

Input format
Question: {Question from MERLIN}
VQA Answer: {Answers from question answering module}
Aggregated Answer:

Max tokens
- 100

Temperature
- 0.5

Table 5: The instruction and specification for video question answering human-simulating agent using GPT-
4o (aggregation module).
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Figure 4: Qualitative evaluation of MERLIN on ActivityNet. sample: v_juiMCvZUYwk.
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Figure 5: Qualitative evaluation of MERLIN on MSVD. sample: hbE29pZh76I_3_8.
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Figure 6: Qualitative evaluation of MERLIN on MSR-VTT1ka. sample: video8471.
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