Lightweight neural translation technologies for low-resource languages
Felipe Sánchez-Martínez, Juan Antonio Pérez-Ortiz, Víctor Sánchez-Cartagena, Andrés Lou, Cristian García-Romero, Aarón Galiano-Jiménez, Miquel Esplà-Gomis
Abstract
The LiLowLa (“Lightweight neural translation technologies for low-resource languages”) project aims to enhance machine translation (MT) and translation memory (TM) technologies, particularly for low-resource language pairs, where adequate linguistic resources are scarce. The project started in September 2022 and will run till August 2025.- Anthology ID:
- 2024.eamt-2.3
- Volume:
- Proceedings of the 25th Annual Conference of the European Association for Machine Translation (Volume 2)
- Month:
- June
- Year:
- 2024
- Address:
- Sheffield, UK
- Editors:
- Carolina Scarton, Charlotte Prescott, Chris Bayliss, Chris Oakley, Joanna Wright, Stuart Wrigley, Xingyi Song, Edward Gow-Smith, Mikel Forcada, Helena Moniz
- Venue:
- EAMT
- SIG:
- Publisher:
- European Association for Machine Translation (EAMT)
- Note:
- Pages:
- 4–5
- Language:
- URL:
- https://preview.aclanthology.org/add-emnlp-2024-awards/2024.eamt-2.3/
- DOI:
- Cite (ACL):
- Felipe Sánchez-Martínez, Juan Antonio Pérez-Ortiz, Víctor Sánchez-Cartagena, Andrés Lou, Cristian García-Romero, Aarón Galiano-Jiménez, and Miquel Esplà-Gomis. 2024. Lightweight neural translation technologies for low-resource languages. In Proceedings of the 25th Annual Conference of the European Association for Machine Translation (Volume 2), pages 4–5, Sheffield, UK. European Association for Machine Translation (EAMT).
- Cite (Informal):
- Lightweight neural translation technologies for low-resource languages (Sánchez-Martínez et al., EAMT 2024)
- PDF:
- https://preview.aclanthology.org/add-emnlp-2024-awards/2024.eamt-2.3.pdf