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Abstract

With the rise of increasingly powerful and user-
facing NLP systems, there is growing interest
in assessing whether they have a good represen-
tation of uncertainty by evaluating the quality
of their predictive distribution over outcomes.
We identify two main perspectives that drive
starkly different evaluation protocols. The first
treats predictive probability as an indication of
model confidence; the second as an indication
of human label variation. We discuss their mer-
its and limitations, and take the position that
both are crucial for trustworthy and fair NLP
systems, but that exploiting a single predictive
distribution is limiting. We recommend tools
and highlight exciting directions towards mod-
els with disentangled representations of uncer-
tainty about predictions and uncertainty about
human labels.

1 Introduction

In common language, uncertainty refers to “a state
of not being definitely known or perfectly clear; a
state of doubt”.1 In statistics and machine learning,
uncertainty is taken as a state to be represented
(Lindley, 2013; Halpern, 2017)—the state of the
world as a function of inherently stochastic ex-
periments or the state of knowledge of an agent
observing or interacting with the world—and its
mathematical representation requires prescribing a
probability measure (Kolmogorov, 1960).

In modern NLP, neural networks are the de-facto
standard to predict complex probability measures
from available context (Goldberg and Hirst, 2017):
given an input (or prompt), a neural network pre-
scribes a representation of uncertainty over the
space of responses (e.g., strings or classes), typ-
ically, by mapping the input to the parameter of a
probability mass function (e.g., in text classifica-
tion, inputs are mapped to the probability masses
of each outcome in the label space).

1Oxford English Dictionary, accessed October 13th 2023.

Recently, transformer-based large language mod-
els (LLMs) are becoming increasingly powerful
and display remarkable abilities on complex classi-
fication tasks, leading to an increased deployment
in user-facing applications. This motivates the need
for models that can signal when they are likely to
be wrong (P1; an aspect of trustworthiness), and
models that can capture different linguistic and
human interpretations (P2; an aspect of language
including fairness).

In this position paper, we identify that the ex-
act same representation of uncertainty—the pre-
dictive distribution over outcomes—is sometimes
interpreted as an indication of confidence in model
predictions (P1; Desai and Durrett, 2020; Dan and
Roth, 2021; Jiang et al., 2021a) and other times as
an indication of variation in human perspectives
(P2; Plank, 2022).

We hope to provide clarity and accelerate
progress by:

(i) Identifying these two perspectives on the pre-
dictive distribution and examining how each eval-
uates the quality of predictive distribution in Sec-
tion 2.

(ii) Discussing their merits and limitations, and
relating them to popular notions of aleatoric and
epistemic uncertainty in Section 3.

(iii) Taking the position that both perspectives
contribute to trustworthy and fair NLP systems, but
that exploiting a single predictive distribution is
limiting—e.g., does a uniform predictive distribu-
tion represent uncertainty about human perspec-
tives, or rather about the correctness of that predic-
tion itself?—and highlighting exciting directions
towards models that can predict distributions over
human or linguistic interpretations, and simultane-
ously abstain from answering when lacking such
knowledge or skills in Section 4.
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2 Two Perspectives on Uncertainty

Consider a user-facing question answering (QA)
system. Ideally, this model is able to abstain on
questions that it is likely to get wrong (a.k.a. selec-
tive answering or prediction; Kamath et al., 2020;
Yoshikawa and Okazaki, 2023), for which its proba-
bilities should reflect confidence in predictions (i.e.,
predictive probabilities help us determine whether
the model is right or wrong). Now consider that
various NLP tasks, including QA, are being ac-
knowledged as supporting human label variation
(Plank, 2022), and that some questions can be un-
derspecified, ambiguous or subjective (there are
many such datasets, for QA see for example Min
et al. (2020) and Amouyal et al. (2023), and for
other tasks see Section 3.2). Different annotators
might therefore provide a different reference an-
swer. From this perspective, probabilities should
reflect the relative frequency of each answer as-
signed to that particular question by the pool of
annotators (i.e., predictive probabilities help us de-
termine what answers represent the views of a cer-
tain population). These two perspectives on the
role of predictive probabilities in fact aim at differ-
ent sources of uncertainty: uncertainty about model
error (e.g., due to imperfect design and estimation)
and uncertainty about human labels (e.g., due to
label variation in a population). So, if a model pre-
dicts a uniform distribution, does this mean that all
answers are plausible or that this prediction should
not be trusted?

2.1 Background

Most text classifiers chain two building blocks: i)
a parametric model which, given input text x, pre-
scribes the probability mass function (pmf) f(y;x)
of the conditional random variable Y |X = x tak-
ing on values in a set {1, . . . ,K} of K class la-
bels; and ii) a decision rule δf (x) to map from
f(·;x) to a single label. For most modern mod-
els, the map x 7→ f(·;x) is realised by a neu-
ral network and the most common decision rule
δf (x) = argmaxk∈[K] f(k;x) returns the mode
of the pmf. Next, we identify two main perspec-
tives on predictive probability f(y;x), with starkly
different evaluation frameworks.2

2We use capital letters for random variables (e.g., X , Y )
and lowercase letters for outcomes (e.g., x, y). As standard,
X = x denotes random variable (rv) assignment. For log-
ical predicates we use the Iverson bracket [A = B] to de-
note a new rv whose outcome is 1, when A and B are as-
signed the same outcome, and 0 otherwise. A determinis-

2.2 P1: Uncertainty about Model Error
The first and arguably more common perspective
interprets predictive probabilities as predictive of
classification performance and is often explained
as evaluating the extent to which “a model knows
when it does not know” (e.g., in NLP: Desai and
Durrett, 2020; Dan and Roth, 2021; Jiang et al.,
2021a). An increasingly popular evaluation frame-
work taking this perspective is calibration.

The core desideratum behind confidence calibra-
tion (Naeini et al., 2015; Guo et al., 2017) is that, in
expectation over inputs, a classifier’s predictive
mode probability πf (X) = maxk∈[K] f(k;X)
matches the relative frequency of predictions
δf (X) = argmaxk∈[K] f(k;X) being judged as
correct [Y = δf (X)] = 1. So, ∀q ∈ [0, 1],

Pr ([Y = δf (X)] = 1 | πf (X) = q)
?
= q . (1)

For example, if 100 predictions are made with prob-
ability 0.9, then 90 should be judged as correct.3

In practice Equation (1) is hard to MC estimate
(for it requires observing multiple predictions with
identical probability), so the probability space is
partitioned into M bins. For each bin Bm, the cal-
ibration error is the difference between accuracy
and average probability of the predictions in it. The
expected calibration error (ECE) is the weighted
average over bins:

ECE =

M∑

m=1

|Bm|
N

(acc(Bm)− conf(Bm)) . (2)

2.3 P2: Uncertainty about Human Labels
Crucially, the above interpretation is different from
evaluating, for each individual input x, whether
the predictive probability f(k;x) matches the rela-
tive frequency with which (a population of) humans
would pick that same label k: ∀k ∈ [K],

Pr(Y = k|X = x)
?
= f(k;x) . (3)

Although there is no standard evaluation protocol
yet (Lovchinsky et al., 2020; Basile et al., 2021;

tic function of an rv defines a new rv; for example, the rv
δf (X) = argmaxk∈[K] f(k;X) captures the mode of the
conditional distribution as a function of the random input X .
We use Pr to denote an implicit probability measure capturing
the data generation process; we do not possess an explicit
representation for this measure, but we can estimate its assess-
ment via Monte Carlo–that is, the relative frequency of the
relevant events in a dataset of labelled inputs.

3Other notions assess calibration for fixed classes (class-
wise; Nixon et al., 2019) or probability vectors (multi-class;
Vaicenavicius et al., 2019; Kull et al., 2019).
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Plank, 2022), researchers use datasets with multiple
annotations per input to estimate a human distri-
bution, and compare that to the predictive distribu-
tion through statistical divergence (e.g., Kullback-
Leibner or Jensen-Shannon Divergence; Total Vari-
ation Distance), or summary statistics like entropy
(Pavlick and Kwiatkowski, 2019; Nie et al., 2020;
Baan et al., 2022; Glockner et al., 2023).

2.4 Ambiguity in Explaining Calibration

The language that is often used to explain calibra-
tion allows (quite ironically) for both perspectives
P1 and P2.

Desai and Durrett (2020): “If a model assigns
70% probability to an event, the event should occur
70% of the time if the model is calibrated”. The
word “event” can refer to observing a class given
an input (P2) or a model prediction matching the
observed class (P1).

Jiang et al. (2021b): “the property of a prob-
abilistic model’s predictive probabilities actually
being well correlated with the probabilities of cor-
rectness”. The word “correctness” can refer to the
probability of observing that class in the data (P2)
or to the probability of a predicted class matching
the data (P1).

Gupta et al. (2021): “a classifier is said to be cal-
ibrated if the probability values it associates with
the class labels match the true probabilities of cor-
rect class assignments” and “It would be desirable
if the numbers zk output by a network represented
true probabilities”. Human annotators could assign
the class (P2), or a model could (P1). The phrase
“true probabilities” could refer to observed class
(P2) or model error (P1) frequencies.

The examples above illustrate well that one may
regard predictive probabilities one way or another,
each interpretation tracking a different type of event
(i.e., correctness, assessed marginally for a collec-
tion of inputs, or label frequency, assessed condi-
tionally against a population of annotators). Cru-
cially, however, most models are trained to approx-
imately recover the maximum likelihood solution—
a single realisation of the map x 7→ f(·;x), with
no room for quantification of uncertainty about its
correctness. Therefore, without special incentives
(e.g., regularisation, change of loss or supervision;
some of which we discuss in Section 4.1), our pre-
dictive distributions are not meant to inherently
support P1, and they may support P2, as we dis-
cuss in the next section.

3 Merits and Limitations

The predictive distribution for an input x is some-
times taken as a representation of uncertainty
about a model’s future classification perfor-
mance (“knowing when it knows”); other times
as a representation of uncertainty about label fre-
quency in a population of human annotators
(human label variation). We now discuss merits
and limitations for each perspective.

3.1 P1: Uncertainty about Model Error

From a statistical perspective, most NLP systems
are trained on single annotations using regularised
maximum likelihood estimation (MLE), without
mechanism or incentive to represent uncertainty
about their own correctness (MLE recovers a
single realisation of the map x 7→ f(·;x)). This
is unlike, for instance, Bayesian estimation (where
the map x 7→ f(·;x) is given random treatment;
more in Section 4).

In addition, regardless of whether models repre-
sent uncertainty about their own correctness, cali-
bration metrics, and ECE in particular, are known
to have limitations, e.g., problems with binning
(Nixon et al., 2019; Vaicenavicius et al., 2019;
Gupta et al., 2021), evaluating only the mode prob-
ability rather than the entire distribution (Kumar
et al., 2019; Vaicenavicius et al., 2019; Widmann
et al., 2019; Kull et al., 2019), and being minimised
by global label frequencies (Nixon et al., 2019).
Moreover, Baan et al. (2022) recently demonstrate
that ECE disregards plausible instance-level label
variation and pose that such calibration metrics are
ill-suited for tasks with human label variation.

Finally, the sense of trustworthiness from ver-
ifying that Equation (1) holds (for a given confi-
dence level q) in a given dataset, might not transfer
to any one future prediction in isolation. Though
some studies examine the effect of communicating
predictive probability to human decision makers
(Zhang et al., 2020; Wang and Yin, 2021; Vodra-
halli et al., 2022; Vasconcelos et al., 2023; Dhuli-
awala et al., 2023), to the best of our knowledge,
none verified the user-impact of models with var-
ious calibration scores, raising the question: can
calibration metrics like ECE discriminate systems
perceived as more trustworthy?

3.2 P2: Uncertainty about Human Labels

The idea that gold labels are too simplistic has been
around for some time (Poesio and Artstein, 2005;
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Aroyo and Welty, 2015) and is gaining traction
with increasing evidence that annotators can plau-
sibly pick different class labels for an input (Plank,
2022). Examples include subjective tasks such as
hate speech detection (Kennedy et al., 2022) and
textual emotion recognition (Demszky et al., 2020);
and ambiguous or difficult tasks like object naming
(Silberer et al., 2020), textual entailment (Pavlick
and Kwiatkowski, 2019; Nie et al., 2020), part-of-
speech tagging (Manning, 2011; Plank et al., 2014)
and discourse relation classification (Scholman
et al., 2022). However, the connection to uncer-
tainty is relatively new (Pavlick and Kwiatkowski,
2019; Nie et al., 2020; Baan et al., 2022).

From a statistical perspective, text classifiers pre-
dict a distribution for Y |X = x, and are precisely
mechanisms to represent uncertainty about a given
input’s label. However, given that they are paramet-
ric models trained with regularised MLE, they can
at best learn to predict observed label variability
(which is often not present in NLP datasets since
most record only single annotations), or label vari-
ability as a byproduct of parametric bottlenecks,
regularisation and other inductive biases that re-
serve (conditional) probability for unseen labels.

Evaluating whether probability mass is indeed
allocated coherently with plausible variability is
limited by: 1) datasets lacking multiple high qual-
ity annotations per input, 2) unclarity about how
many annotations are sufficient to reliably estimate
the human distribution (Zhang et al., 2021), 3) how
to separate plausible variation from noise—for ex-
ample due to spammers (Raykar and Yu, 2011;
Beigman Klebanov and Beigman, 2014; Aroyo
et al., 2019), and 4) the assumption of one unique
human distribution being a simplification: subpop-
ulations can cause the marginal distribution not
to be representative of its individual components
(Baan et al., 2022; Jiang et al., 2023).

3.3 Sources of Uncertainty

These two perspectives on the predictive distribu-
tion in NLP can be put in a broader context of
statistics and machine learning by considering that
there can be many sources that lead to uncertainty
(Der Kiureghian and Ditlevsen, 2009; Hüllermeier
and Waegeman, 2021; Gruber et al., 2023; Jiang
et al., 2023; Baan et al., 2023). For example, under-
specified input, ambiguity, noise or lack of training
data can all be considered sources that may lead to
uncertainty.

Such sources are often categorised as aleatoric
(irreducible; inherent to data) or epistemic (re-
ducible, inherent to modelling). In that sense,
P1 regards the predictive distribution as epistemic
uncertainty, whereas P2 as aleatoric uncertainty.
Armed with this knowledge, one can pick the right
modeling tools for each, and tap into this broader
literature. In the next section, we make several
recommendations.

4 Best of Both Worlds

We argue that the desiderata behind both perspec-
tives are equally important for trustworthy and
fair NLP systems, but that expecting the predictive
distribution to represent both is limiting. Rather
than calibrating the predictive distribution to
better indicate model error, we outline alternative
directions to capture uncertainty about predictions
(towards more trustworthy NLP) and uncertainty
about human perspectives (towards fairer NLP)—
where the latter can, and in our view should be
represented by the predictive distribution.

4.1 Towards More Trustworthy NLP Systems

Inspired by machine translation quality estima-
tion (e.g. Blatz et al., 2004; Specia et al., 2009;
Fomicheva et al., 2020) and the observation that
models fail in predictable ways, one could train
a (separate) module to predict errors. Ideally,
this module is uncertainty-aware (Glushkova et al.,
2021), and predicts fine-grained errors (Dou et al.,
2022). Predictive probabilities (or summaries like
entropy) are features that can be combined with, for
example, model explainability features (Li et al.,
2022; Ye and Durrett, 2022; Park and Caragea,
2022) or input properties (Dong et al., 2018; Ka-
math et al., 2020).

Alternatively, the event space can be expanded
beyond only the target variable to include parame-
ters too, thus allowing for uncertainty about them.
Since this leads to intractability, some (approxi-
mate) Bayesian solutions in NLP include Langevin
dynamics (Gan et al., 2017; Shareghi et al., 2019),
Monte Carlo dropout (Shelmanov et al., 2021;
Vazhentsev et al., 2022), ensembling (Ulmer et al.,
2022), variational inference (Ponti et al., 2021), and
stochastic attention (Pei et al., 2022). Other direc-
tions rely on the distance of a new input to the train-
ing data, like conformal prediction (Maltoudoglou
et al., 2020; Giovannotti and Gammerman, 2021;
Zerva and Martins, 2023) or feature space density
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(Van Amersfoort et al., 2020; Vazhentsev et al.,
2022; Mukhoti et al., 2023).

Evaluating model error uncertainty is challeng-
ing, in part because ground truth is difficult to find.
Proxy tasks like selective answering (Dong et al.,
2018; Kamath et al., 2020; Yoshikawa and Okazaki,
2023) are useful due to their flexibility in defining
quality (other than accuracy), and error indicators
(other than predictive probability), and we encour-
age more principled evaluation methods.

Rottger et al. (2022) propose two annotation
paradigms: encouraging the description of mul-
tiple beliefs or prescription of one consistent belief.
Prescriptive datasets, by definition, have no data
uncertainty, and although that does not change mer-
its of the model-error perspective, one could now
safely supervise models to be more coherent with
this interpretation (the goal of calibration), e.g. by
minimising ECE directly, or through other regulari-
sation objectives (Kong et al., 2020).

4.2 Towards Fairer NLP Systems

To represent uncertainty about plausible human in-
terpretations, data is crucial. For example: how are
annotators recruited, what are their backgrounds,
how diverse is the population, what guidelines do
they follow, what is their incentive, how focused
are they, what is their prior experience or expertise,
how many annotations per input are collected?

In NLP, these factors are commonly not con-
trolled for. However, recently, researchers use
annotator information to model sub-populations
(Al Kuwatly et al., 2020; Akhtar et al., 2020)
or even individual annotators (Geva et al., 2019;
Mostafazadeh Davani et al., 2022; Gordon et al.,
2022). Without access to such information, others
collect and train on multiple annotations per in-
stance (Peterson et al., 2019; Uma et al., 2020; For-
naciari et al., 2021; Uma et al., 2021; Zhang et al.,
2021; Meissner et al., 2021), or individual annota-
tor confidence scores (Chen et al., 2020; Collins
et al., 2022).

Besides data, an appealing but non-trivial alter-
native (for some tasks, like textual entailment) is
to encourage models to generalise to the linguistic
phenomena that give rise to label variation, despite
supervising with single annotations Pavlick and
Kwiatkowski (2019). Yet another direction is to
isolate and understand specific sources of label vari-
ation, for example, linguistic ambiguity, and design
targeted methods to model them (Beck et al., 2014;

Jiang and Marneffe, 2022; Liu et al., 2023).
Not all variability is desirable. However, de-

tecting or even defining annotation errors when
variation is plausible is difficult. Annotation error
detection methods exist, however currently focus
on gold labels (Wei et al., 2022; Klie et al., 2022;
Weber and Plank, 2023). We encourage studying
noise in label variation settings (Paun et al., 2018;
Gordon et al., 2021).

5 Conclusion

In this position paper, we identified two important
perspectives on the predictive distribution in NLP.
We believe that the desiderata behind both are
crucial for fair and trustworthy NLP systems, but
that exploiting the same predictive distribution
is limiting. We recommend exiting tools and
directions to represent uncertainty about predic-
tions (model confidence) and about label variation
(human perspectives). We hope to facilitate a
better understanding of uncertainty in NLP, and
encourage future work to acknowledge, represent
and evaluate multiple sources of uncertainty with
principled design decisions.

Limitations

Evaluation along a specific axis can be useful re-
gardless of whether a model has been explicitly
designed to meet this goal. One could argue this
is true for both calibration as well as human label
variation. It is certainly also true in other sub-fields,
like interpretability. For example, probing hidden
representations or specific linguistic information,
without having explicitly trained models to store
them. Furthermore, although we focus on classifi-
cation systems in the language domain, the topics
we highlight and discuss are equally important in
other domains, such as computer vision (e.g., affec-
tive computing), or language generation (e.g., story
telling).
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