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Abstract

The labor market is changing rapidly, prompt-
ing increased interest in the automatic extrac-
tion of occupational skills from text. With the
advent of English benchmark job description
datasets, there is a need for systems that handle
their diversity well. We tackle the complexity
in occupational skill datasets tasks—combining
and leveraging multiple datasets for skill extrac-
tion, to identify rarely observed skills within a
dataset, and overcoming the scarcity of skills
across datasets. In particular, we investigate
the retrieval-augmentation of language mod-
els, employing an external datastore for retriev-
ing similar skills in a dataset-unifying man-
ner. Our proposed method, Nearest Neighbor
Occupational Skill Extraction (NNOSE) effec-
tively leverages multiple datasets by retriev-
ing neighboring skills from other datasets in
the datastore. This improves skill extraction
without additional fine-tuning. Crucially, we
observe a performance gain in predicting infre-
quent patterns, with substantial gains of up to
30% span-F1 in cross-dataset settings.

1 Introduction

Labor market dynamics, influenced by technologi-
cal changes, migration, and digitization, have led
to the availability of job descriptions (JD) on plat-
forms to attract qualified candidates (Brynjolfsson
and McAfee, 2011, 2014; Balog et al., 2012). JDs
consist of a collection of skills that exhibit a char-
acteristic long-tail pattern, where popular skills
are more common while niche expertise appears
less frequently across industries (Autor et al., 2003;
Autor and Dorn, 2013), such as “teamwork” vs.
“system design”.1 This pattern poses challenges for
skill extraction (SE) and analysis, as certain skills
may be underrepresented, overlooked, or emerg-
ing in JDs. This complexity makes the extraction
and analysis of skills more difficult, resulting in a

1Examples are from the CEDEFOP Skill Platform.

sparsity of skills in SE datasets. We tackle this by
combining three different skill datasets.

To address the challenges in SE, we explore the
potential of Nearest Neighbors Language Models
(NNLMs; Khandelwal et al., 2020). NNLMs calcu-
late the probability of the next token by combining
a parametric language model (LM) with a distribu-
tion derived from the k-nearest context–token pairs
in the datastore. This enables the storage of large
amounts of training instances without the need to
retrain the LM weights, improving language model-
ing. However, the extent to which NNLMs enhance
application-specific end-task performance beyond
language modeling remains relatively unexplored.
Notably, NNLMs offer several advantages, as high-
lighted by Khandelwal et al. (2020): First, explicit
memorization of the training data aids generaliza-
tion. Second, a single LM can adapt to multiple
domains without domain-specific training, by in-
corporating domain-specific data into the datastore
(e.g., multiple datasets). Third, the NNLM architec-
ture excels at predicting rare patterns, particularly
the long-tail.

Therefore, we seek to answer the question: How
effective are nearest neighbors retrieval methods
for occupational skill extraction? Our contribu-
tions are as follows:

• To the best of our knowledge, we are the first
to investigate encoder-based kNN retrieval by
leveraging multiple datasets.

• Furthermore, we present a novel domain-
specific RoBERTabase-based language model,
JobBERTa, tailored to the job market domain.

• We conduct an extensive analysis to show
the advantages of kNN retrieval, in con-
trast to prior work that primarily focuses on
hyperparameter-specific analysis.2

2Code and data: https://github.com/mainlp/nnose.
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Figure 1: Setup of NNOSE. The data-
store consists of paired contextual to-
ken representations obtained from a fine-
tuned encoder and the corresponding BIO
tag. We use a whitening transformation
to enhance the isotropy of token represen-
tations. During inference, i.e., retrieving
tokens, we use the same whitening trans-
formation on the test token’s representa-
tion to retrieve the k-nearest neighbors
from the datastore. We interpolate the
encoder and kNN distributions with a hy-
perparameter λ as the final distribution.

2 Nearest Neighbor Skill Extraction

Skill Extraction. The task of SE is formulated as
a sequence labeling problem. We define a set of job
description sentences X , where each d ∈ X repre-
sents a set of sequences with the jth input sequence
X j
d = {x1, x2, ..., xi}, with a corresponding target

sequence of BIO-labels Yj
d = {y1, y2, ..., yi}. The

labels include “B” (beginning of a skill token), “I”
(inside skill token), and “O” (any outside token).
The objective is to use D in training a labeling
algorithm that accurately predicts entity spans by
assigning an output label yi to each token xi.

2.1 NNOSE
The core idea of NNOSE is that we augment the
extraction of skills during inference with a kNN
retrieval component and a datastore consisting of
context–token pairs. Figure 1 outlines our two-step
approach. First, we extract skills by getting token
representation hi from xi and assign a probability
distribution pSE for each hi in the input sentence.
Second, we use each hi to find the most similar
token representations in the datastore and get the
probability distribution pkNN, aggregated from the
k-nearest context–token pairs. Last, we obtain the
final probability distribution p by interpolating be-
tween the two distributions. In addition to formaliz-
ing NNOSE, we apply the Whitening Transforma-
tion (Section 2.2) to the embeddings, an important
process for kNN approaches as used in previous
work (Su et al., 2021; Yin and Shang, 2022).

Datastore. The datastore D comprises key–value
pairs (hi, yi), where each hi represents the con-
textualized token embedding computed by a fine-
tuned SE encoder, and yi ∈ {B, I, O} denotes
the corresponding gold label. Typically, the datas-
tore consists of all tokens from the training set. In
contrast to the approach employed by Wang et al.

(2022b) for kNN–NER, where they only store B
and I tags in the datastore (only named entities),
we also include the O-tag in the datastore. This
allows us to retrieve non-named entities, which is
more intuitive than assigning non-entity probability
mass to the B and I tokens.

Inference. During inference, the NNOSE model
aims to predict yi based on the contextual represen-
tation of xi (i.e., hi). This representation is used to
query the datastore for kNN using an L2 distance
measure (following Khandelwal et al., 2020), de-
noted as d(·, ·). Once the neighbors are retrieved,
the model computes a distribution over the neigh-
bors by applying a softmax function with a temper-
ature parameter T to their negative distances (i.e.,
similarities). This aggregation of probability mass
for each label (B, I, O) across all occurrences in
the retrieved targets is represented as:

pkNN(yi | xi) ∝
∑

(ki,vi)∈D
1y=vi exp

(−d(hi,k)

T

)
. (1)

Items that do not appear in the retrieved targets
have zero probability. Finally, we interpolate the
nearest neighbors distribution pkNN with the fine-
tuned model distribution pSE using a tuned param-
eter λ to produce the final NNOSE distribution p:

p(yi | xi) = λ× pkNN (yi | xi)+
(1− λ)× pSE (yi | xi) .

(2)

2.2 Whitening Transformation

Several works (Li et al., 2020a; Su et al., 2021;
Huang et al., 2021) note that if a set of vectors
are isotropic, we can assume it is derived from the
Standard Orthogonal Basis, which also indicates
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Dataset Location License Train Dev. Test D (Tokens)

SKILLSPAN * CC-BY-4.0 5,866 3,992 4,680 86.5K
SAYFULLINA UK Unknown 3,706 1,854 1,853 53.1K
GREEN UK CC-BY-4.0 8,670 963 336 209.5K

TOTAL 349.2K

Table 1: Dataset Statistics. We provide statistics for all three datasets, including the location and license. Input
granularity is at the token level, with performance measured in span-F1. The size of the datastore D is in tokens and
determined by embedding tokens and their context from the training sets, resulting in approximately 350K keys.
See Appendix B for examples.

that we can properly calculate the similarity be-
tween embeddings. Otherwise, if it is anisotropic,
we need to transform the original sentence embed-
ding to enforce isotrophorism, and then measure
similarity. Su et al. (2021); Huang et al. (2021)
applies the vector whitening approach (Koivunen
and Kostinski, 1999) on BERT (Devlin et al., 2019).
The Whitening Transformation (WT), initially em-
ployed in data preprocessing, aims to eliminate
correlations among the input data features for a
model. In turn, this can improve the performance
of certain models that rely on uncorrelated features.
Other works (Gao et al., 2019; Ethayarajh, 2019; Li
et al., 2020b; Yan et al., 2021; Jiang et al., 2022b,
among others) found that (frequency) biased to-
ken embeddings hurt final sentence representations.
These works often link token embedding bias to
the token embedding anisotropy and argue it is the
main reason for the bias. We apply WT to the token
embeddings like previous work for nearest neigh-
bor retrieval (Yin and Shang, 2022). In short, WT
transforms the mean value of the embeddings into
0 and the covariance matrix into the identity ma-
trix, and these transformations are then applied to
the original embeddings. We apply WT to the em-
beddings before putting them in the datastore and
before querying the datastore. The workflow of WT
is detailed in Appendix A.

3 Experimental Setup

3.1 Data
All datasets are in English and have different label
spaces. We transform all skills to the same label
space and give each token a generic tag (i.e., B,
I, O). We give a brief description of each dataset
below and Table 1 summarizes them:

SKILLSPAN (Zhang et al., 2022a). This job
posting dataset includes annotations for skills and
knowledge derived from the ESCO taxonomy. To

fit our approach, we flatten the two label layers into
one layer (i.e., BIO). The baseline is the JobBERT
model, which was continuously pre-trained on a
dataset of 3.2 million job posting sentences. The
industries represented in the data range from tech
to more labor-intensive sectors.

SAYFULLINA (Sayfullina et al., 2018) is used
for soft skill sequence labeling. Soft skills are
personal qualities that contribute to success, such
as teamwork, dynamism, and independence. Data
originated from the UK. This is the smallest dataset
among the three, with no specified industries.

GREEN (Green et al., 2022). A dataset for ex-
tracting skills, qualifications, job domain, experi-
ence, and occupation labels. The dataset consists
of jobs from the UK, and the industries represented
include IT, finance, healthcare, and sales. This is
the largest dataset among the three.

3.2 Models

We use 3 English-based LMs: 1 general-purpose
and 2 domain-specific models. Implementation de-
tails for fine-tuning and NNOSE are in Appendix C,
including inference costs of our proposed method.

JobBERT (Zhang et al., 2022a) is a 110M
parameter BERT-based model continuously pre-
trained (Gururangan et al., 2020) on 3.2M English
job posting sentences. It outperforms BERTbase on
several skill-specific tasks.

RoBERTa (Liu et al., 2019). We also use
RoBERTabase (123M parameters). It showed to out-
perform JobBERT in our initial experiments and
we therefore include this model as a baseline.

JobBERTa (Ours). Given that RoBERTa out-
performed JobBERT, we create another baseline
and release a model named JobBERTa. This is a
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Setting SKILLSPAN SAYFULLINA GREEN avg. span-F1

JobBERT (Zhang et al., 2022a) 60.47 88.16 42.55 63.73
+ kNN {D}+WT 61.06 ↑0.59 88.25 ↑0.09 43.56 ↑1.01 64.29 ↑0.56
+ kNN ∀D+WT 60.93 ↑0.48 88.26 ↑0.10 44.44 ↑1.89 64.54 ↑0.81

RoBERTa (Liu et al., 2019) 63.88 91.97 44.49 66.78
+ kNN {D}+WT 63.57 ↓0.31 91.97 –0.00 45.02 ↑0.53 66.85 ↑0.07
+ kNN ∀D+WT 63.98 ↑0.10 91.97 –0.00 44.86 ↑0.37 66.94 ↑0.16

JobBERTa (This work) 63.74 92.06 49.61 68.47
+ kNN {D}+WT 64.14 ↑0.40 91.89 ↓0.17 50.35 ↑0.74 68.79 ↑0.32
+ kNN ∀D+WT 64.24 ↑0.50

† 92.15 ↑0.09 50.78 ↑1.17
† 69.06 ↑0.59

Table 2: Test Set Results. Two settings are considered for each model based on dev. set results in Appendix D: {D}
refers to the in-dataset datastore, containing keys from the specific training data, while ∀D represents a datastore
with keys from all available training sets. The notation +WT indicates the application of Whitening Transformation
to the keys before adding them to and querying the datastore. The performance impact of using kNN is indicated
as ↑ (increase), ↓ (decrease), or – (no change). The best-performing setup for each dataset is highlighted. For the
top-performing model (JobBERTa), † signifies statistical significance over the baseline using a token-level McNemar
test (McNemar, 1947). The avg. span-F1 performance of each model across the three datasets is displayed.

RoBERTabase model continuously pre-trained (Gu-
rurangan et al., 2020) on the same 3.2M JD sen-
tences as JobBERT.

4 Results

We evaluate the performance of fine-tuning mod-
els enhanced with NNOSE. We consider different
setups: First, we compare using the Whitening
Transformation (+WT) or without. Second, we ex-
plore two datastore setups: One using an in-dataset
datastore ({D}), where each respective training set
is stored separately, and another where all datasets
are stored in the datastore (∀D). In the latter setup,
we encode all three datasets with each fine-tuned
model, and each model has its own WT matrix. For
example, we fine-tune a model on SKILLSPAN and
encode the training set tokens of SKILLSPAN, SAY-
FULLINA, and GREEN to populate the datastore.
From the results on the development set (Table 11,
Appendix D), we observe that adding WT consis-
tently improves performance. Therefore, we only
report the span-F1 scores on each test set (Table 2)
with WT and the average over all three datasets.

Best Model Performance. In Table 2, we show
that the best-performing baseline model is Job-
BERTa, achieving more than 4 points span-F1 im-
provement over JobBERT and 2 points higher than
RoBERTa on average. This confirms the effective-
ness of DAPT in improving language models (Han
and Eisenstein, 2019; Alsentzer et al., 2019; Guru-
rangan et al., 2020; Lee et al., 2020; Nguyen et al.,
2020; Zhang et al., 2022a).

Best NNOSE Setting. We confirm the trends
from dev. on test: The largest improvements come
from using the setup with WT, especially in the
∀D+WT setting. All models seem to benefit from
the NNOSE setup, JobBERT and JobBERTa show
the largest improvements, with the largest gains ob-
served in the ∀D+WT datastore setup. In summary,
∀D+WT consistently demonstrates performance en-
hancements across all experimental setups.

5 Analysis

As we store training tokens from all datasets in the
datastore, we expect the model to recall a greater
number of skills based on the current context dur-
ing inference. In turn, this would lead to improved
downstream model performance. We want to ad-
dress the challenges of SE datasets by predicting
long-tail patterns, and if we observe improvements
in detecting unseen skills in a cross-dataset setting.

To investigate in which situations our model im-
proves, we are analyzing the following: 1 The pre-
dictive capability of NNOSE in relation to rarely
occurring skills compared to regular fine-tuning
(Section 5.1). Skills exhibit varying frequencies
across datasets, we categorize the skill frequencies
into buckets and compare the performance between
vanilla fine-tuning and the inclusion of kNN. 2
If NNOSE actually retrieves from other datasets
when they are combined (Section 5.2), and if there
is a sign of leveraging multiple datasets, then; 3
How much does NNOSE enhance performance in
a cross-dataset setting (Section 5.3)? Our results in-
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Figure 2: Long-tail Prediction Performance. kNN is based on the datastore with all the datasets. We categorize
the occurrences of a skill in the test set with respect to the training set. For example, a skill in the test set occurs two
times in the training set, we put this in the “low” bin. There are three frequency ranges: high: 10–15, mid–high:
7–10, mid–low: 4–6, low: 0–3. SAYFULLINA does not have any test set skills that occur more than 10 times in the
training set. On top of the bars is the number of predicted skills for the test set in each bucket.

dicate a large performance drop when a fine-tuned
SE model, trained on one dataset, is applied to
another dataset, highlighting the sparsity across
datasets. We demonstrate that NNOSE helps alle-
viate this, both from an empirical perspective and
by inspecting the prediction errors (Section 5.4).

5.1 Long-tail Skills Prediction
Khandelwal et al. (2020) observed that due to ex-
plicitly memorizing the training data, NNLMs ef-
fectively predict rare patterns. We analyze whether
the performance of “long-tail skills” improves us-
ing NNOSE. A visualization of the long-tail distri-
bution of skills is in Figure 8 (Appendix E).

We present the results in Figure 2. We investi-
gate the performance of JobBERTa with and with-
out kNN based on the occurrences of skills in the
evaluation set relative to the train set. We count the
skills in the evaluation set that occur a number of
times in the training set, ranging from 0–15 occur-
rences and is grouped into low, mid–low, mid–high,
and high–frequency bins (0–3, 4–6, 7–10, 10–15,
respectively). This approach estimates the number
of skills the LM recalls from the training stage.

Our findings reveal that low-frequent skills are
the most difficult and make up the largest bucket,
and our approach is able to improve on them on
all three datasets. For SKILLSPAN, we observe
an improvement in the low-frequency bin, from
53.9→54.5 span-F1. Similarly, GREEN exhibits
a similar trend with an improvement in the low-
frequency bin (49.2→50.1). Interestingly, it also
shows gains in most other frequency bins. Last,
for SAYFULLINA, there is also an improvement
(69.7→70.7 in the low bin). It is worth pointing

out that there are many skills that fall in the low
bin in SKILLSPAN and GREEN. This is exactly
where NNOSE improves most for these datasets.
For SAYFULLINA, we notice the largest number
of predicted skills is in the mid–low bin. This is
where we also see improvements for NNOSE.

5.2 Retrieving From All Datasets

We presented the best improvements of NNOSE
in the ∀D+WT datastore in Section 4. An important
question remains: Does the ∀D+WT setting retrieve
from all datasets? Qualitatively, Figure 3 shows
the UMAP visualization (McInnes et al., 2018) of
representations stored in each ∀D+WT datastore. We
mark the retrieved neighbors with orange for each
downstream dev. set. In all plots, we observe that
GREEN is prominent in the representation space
(green), while SKILLSPAN (darkcyan) and SAY-
FULLINA (blue) form distinct clusters. Each plot
has its own pattern: SKILLSPAN and SAYFULLINA

have well-shaped clusters, while GREEN consists
of one large cluster. SKILLSPAN and SAYFUL-
LINA mostly retrieve from their own clusters. In
contrast, GREEN retrieves from the entire space,
which can explain the largest span-F1 performance
gains (Table 2). This suggests that kNN effectively
leverages multiple datasets in most cases.

5.3 Prediction of Unseen Skills

The UMAP plots in Figure 3 suggest that some
datasets are closer to each other than others. To
quantify this, we investigate the overlap of an-
notated skills between datasets and assess cross-
dataset performance of NNOSE on unseen skills.
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Figure 3: UMAP Visualization of Nearest Neighbors Retrieval. The datastore consists of the training set (+WT) of
all three datasets used in this work. Each colored dot represents a non-O token from the training set. The embeddings
are generated using JobBERTa. The orange shade represents the retrieved neighbors with k = 4 for each token that
is a skill (i.e., not an O token). Note that for the middle plot, the orange shade covers the blue clusters SAYFULLINA.
GREEN has the green shade and SKILLSPAN are the darkcyan colors.

↓Trained on SKILLSPAN SAYFULLINA GREEN

V
an

ill
a SKILLSPAN 18.05 43.17

SAYFULLINA 9.44 11.79
GREEN 29.67 15.93

ALL 59.33 90.16 44.59

+k
N

N SKILLSPAN 45.86 ↑27.81 45.44 ↑2.27
SAYFULLINA 26.16 ↑16.72 25.38 ↑13.59
GREEN 41.22 ↑11.55 46.58 ↑30.65

ALL 59.51 ↑0.31 90.33 ↑0.17 45.63 ↑1.04

Table 3: Results of Unseen Skills based on JobBERTa
(∀D+WT). In the vanilla setting, models trained on one
skill dataset are applied to another on test, showing var-
ied performance. However, applying kNN improves the
detection of unseen skills. Diagonal results can be found
in Table 2. Refer to Table 10 for tuned hyperparameters.

Overlap of Datasets. We calculate the exact
span overlap of skills between the training sets
of the datasets using the Jaccard similarity co-
efficient (Jaccard, 1901): J(A,B) = |A∩B|

|A∪B| ,
where A and B are sets of multi-token spans
(e.g., “manage a team”) from two separate train-
ing sets. The Jaccard similarity coefficients
are as follows: J(SKILLSPAN, SAYFULLINA)
= 0.35, J(SAYFULLINA, GREEN) = 0.10, and
J(SKILLSPAN, GREEN) = 0.29. These Jaccard
coefficients indicate overlap between unique skill
spans across datasets, suggesting that NNOSE can
introduce the model to new and unseen skills.

Results. Table 3 presents the performance of Job-
BERTa across datasets. For completeness, we in-
clude a baseline where JobBERTa is fine-tuned on
a union of all datasets (ALL). We notice training on

the union of the data never leads to the best target
dataset performance. Generally, we observe that
in-domain data is best, both in vanilla and NNOSE
setups (diagonal in Table 3). Performance drops
when a model is applied to a dataset other than the
one it was trained on (off-diagonal). Using NNOSE
leads to substantial improvements across the chal-
lenging off-diagonal (cross-dataset) settings, while
performance remains stable within datasets. We
observe the largest improvements when applied to
SAYFULLINA, with up to a 30% increase in span-
F1. This is likely due to SAYFULLINA consisting
mostly of soft skills, which are less prevalent in
SKILLSPAN and GREEN, making it beneficial to
introduce soft skills. Conversely, when the model
is trained on SAYFULLINA, the absolute improve-
ment on SKILLSPAN is lower, indicating that skill
datasets can benefit each other to different extents.

Cross-dataset Long-tail Analysis. Table 3
shows improvements when NNOSE is used in
favor of vanilla fine-tuning. Figure 4 presents
the long-tail performance analysis in the cross-
dataset scenario, similar to Figure 2. We ob-
serve the largest gains with NNOSE in the low
or mid–low frequency bins. However, excep-
tions are SKILLSPAN→GREEN and SAYFUL-
LINA→GREEN, where most gains occur in the mid–
high bin. Notably, SAYFULLINA→GREEN demon-
strates higher performance with NNOSE, where
all 6 skills are incorrectly predicted in the mid–
high bin. An analysis of precision and recall in Ta-
ble 12 (Appendix F) substantiates that the improve-
ments are both precision and recall-based, with
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Figure 4: Cross-dataset Long-tail Performance. Similar to Figure 2, we plot the cross-dataset long-tail perfor-
mance. NNOSE uses the datastore with all datasets. Training and evaluation data (test) are indicated in graph
titles. Frequency bins are based on the training data span frequency; there are three frequency ranges: high: 10–15,
mid–high: 7–10, mid–low: 4–6, low: 0–3.

gains of up to 40 recall points and 35.4 precision
points in GREEN→SAYFULLINA. There is also
an improvement up to 35.5 recall points and 34.1
precision points for SKILLSPAN→SAYFULLINA.
This further solidifies that memorizing tokens (i.e.,
storing all skills in the datastore) helps recall as
mentioned in Khandelwal et al. (2020), and more
importantly, highlighting the benefits of NNOSE
in cross-dataset scenarios for SE.

5.4 Qualitative Check on Prediction Errors

We perform a qualitative analysis on the false posi-
tives (fp) and false negatives (fn) of NNOSE pre-
dictions compared to vanilla fine-tuning for each
dataset. This analysis tells us whether a prediction
corresponds to an actual skill, even if it does not
contribute positively to the span-F1 metric. We
observe that NNOSE produces a significant num-
ber of false positives that are “similar” to genuine
skills. In Table 4, for each dataset, we picked five
fps and fns that represent hard, soft, and personal
skills well (if applicable). We show the fps and
fns for JobBERTa with NNOSE, we only show
predictions that are not in the vainlla model predic-
tions. In SAYFULLINA, there is only one fn. We

notice from the errors, and especially the fps, that
these are definitely skills, indicating the benefit of
NNOSE helping to predict new skills or missed
annotations. For a general qualitative check on pre-
dictions, we refer to Appendix G. We show that
NNOSE predicts a variety of close tokens, but also
the same tokens if the model is confident about the
predictions (i.e., high softmax scores).

6 Related Work

Skill Extraction. The dynamic nature of labor
markets has led to an increase in tasks related
to JD, including skill extraction (Kivimäki et al.,
2013; Zhao et al., 2015; Sayfullina et al., 2018;
Smith et al., 2019; Tamburri et al., 2020; Shi et al.,
2020; Chernova, 2020; Bhola et al., 2020; Gugnani
and Misra, 2020; Fareri et al., 2021; Konstantini-
dis et al., 2022; Zhang et al., 2022a,b,c; Green
et al., 2022; Gnehm et al., 2022; Beauchemin et al.,
2022; Decorte et al., 2022; Ao et al., 2023; Goyal
et al., 2023; Zhang et al., 2023). These works
employ methods such as sequence labeling (Say-
fullina et al., 2018; Smith et al., 2019; Chernova,
2020; Zhang et al., 2022a,c), multi-label classifica-
tion (Bhola et al., 2020), and graph-based meth-
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False Positives False Negatives

cleaning GCP
SKILLSPAN decisive IBM MQ

Apache Camel AWS
building consumer demand for sustainable products budget responsible

empathy leadership
SAYFULLINA leadership management

communication
ability to manage and prioritise multiple assignments and tasks

SQL scripting languages software engineering
GREEN Manage a team development

troubleshooting activities DevOps
dealing with tenants Cisco network administration

Table 4: FPs & FNs of NNOSE. We show several examples of false positives and false negatives in each dataset.
We only show the predictions of NNOSE that are not in the vanilla model predictions.

ods (Shi et al., 2020; Goyal et al., 2023). Re-
cent methodologies include domain-specific mod-
els where LMs are continuously pre-trained on
unlabeled JD (Zhang et al., 2022a; Gnehm et al.,
2022). However, none of these methodologies in-
troduce a retrieval-augmented model like NNOSE.

General Retrieval-augmentation. In retrieval
augmentation, LMs can utilize external modules
to enhance their context-processing ability. Two
approaches are commonly used: First, using a sepa-
rately trained model to retrieve relevant documents
from a collection. This approach is employed in
open-domain question answering tasks (Petroni
et al., 2021) and with specific models such as
ORQA (Lee et al., 2019), REALM (Guu et al.,
2020), RAG (Lewis et al., 2020), FiD (Izacard and
Grave, 2021), and ATLAS (Izacard et al., 2022).

Second, previous work on explicit memoriza-
tion showed promising results with a cache (Grave
et al., 2017), which serves as a type of datastore.
The cache contains past hidden states of the model
as keys and the next word as tokens in key–value
pairs. Memorization of hidden states in a datastore,
involves using the kNN algorithm as the retriever.
The first work of the kNN algorithm as the retrieval
component was by Khandelwal et al. (2020), lead-
ing to several LM decoder-based works.

Decoder-based Nearest Neighbor Approaches.
Decoder-based nearest neighbors approaches are
primarily focused on language modeling (Khan-
delwal et al., 2020; He et al., 2021; Yogatama
et al., 2021; Ton et al., 2022; Shi et al., 2022; Jin
et al., 2022; Bhardwaj et al., 2022; Xu et al., 2023)
and machine translation (Khandelwal et al., 2021;

Zheng et al., 2021; Jiang et al., 2021, 2022a; Wang
et al., 2022a; Martins et al., 2022a,b; Zhu et al.,
2022; Du et al., 2023; Zhu et al., 2023; Min et al.,
2023b,a). These approaches often prioritize effi-
ciency and storage space reduction, as the datas-
tores for these tasks can contain billions of tokens.

Encoder-based Nearest Neighbor Approaches.
Encoder-based nearest neighbor approaches have
been explored in tasks such as named entity recog-
nition (Wang et al., 2022b) and emotion classifica-
tion (Yin and Shang, 2022). Here, the datastores
are limited to single datasets with the sentence (or
token) gold label pairs. Instead, we show the po-
tential of adding multiple datasets in the datastore.

7 Conclusion

We introduce NNOSE, an LM that incorporates
and leverages a non-parametric datastore for near-
est neighbor retrieval of skill tokens. To the best
of our knowledge, we are the first to introduce
the nearest neighbors retrieval component for the
extraction of occupational skills. We evaluated
NNOSE on three relevant skill datasets with a wide
range of skills and show that NNOSE enhances the
performance of all LMs used in this work without
additionally tuning the LM parameters. Through
the combination of train sets in the datastore, our
analysis reveals that NNOSE effectively leverages
all the datasets by retrieving from each. Moreover,
NNOSE not only performs well on rare skills but
also enhances the performance on more frequent
patterns. Lastly, we observe that our baseline mod-
els exhibit poor performance when applied in a
cross-dataset setting. However, with the introduc-
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tion of NNOSE, the models improve across all set-
tings. Overall, our findings indicate that NNOSE is
a promising approach for application-specific skill
extraction setups and potentially helps discover
skills that were missed in manual annotations.

Limitations

We consider several limitations: One is the limited
diversity of the datasets used in this work. Our
study was constrained by the use of only three En-
glish datasets. By focusing solely on English data,
the method might not generalize other languages.

Future research includes incorporating a wider
range of datasets from diverse sources to obtain
a more comprehensive understanding of the topic.
Potential interesting future work should include val-
idation on whether NNOSE works in a multilingual
setting.

Another limitation is that we do skill detection
and not specific labeling of the extracted spans, i.e.,
extracting generic B, I, O tags. This was to ensure
that the datasets could be used all together in the
datastore.

Last, we only applied the nearest neighbors with
the datastore to the job market domain. In con-
trast, Wang et al. (2022b) have used a similar ap-
proach on a more generic domain, e.g, CoNLL
data (Tjong Kim Sang and De Meulder, 2003),
but also keep it limited to the number of labels in
this dataset (i.e., four fine-grained labels: Person,
Location, Organization, and Misc.). We be-
lieve with coarse-grained span labeling (i.e., BIO),
our proposed method and positive results have the
potential to transfer to other domains.

Ethics Statement

The subject of job-related language models is a
highly contentious topic, often sparking intense
debates surrounding the issue of bias. We acknowl-
edge that LMs such as JobBERTa and NNOSE
possess the potential for inadvertent consequences,
such as unconscious bias and dual-use when em-
ployed in the candidate selection process for spe-
cific job positions. There are research efforts to
develop fairer recommender systems in the field of
human resources, focusing on mitigating biases
(e.g., Mujtaba and Mahapatra, 2019; Raghavan
et al., 2020; Deshpande et al., 2020; Köchling and
Wehner, 2020; Sánchez-Monedero et al., 2020; Wil-
son et al., 2021; van Els et al., 2022; Arafan et al.,
2022). Nevertheless, one potential approach to alle-

viating such biases involves the retrieval of sparse
skills for recall (e.g., this work). It is important
to note, however, that we have not conducted an
analysis to ascertain whether this particular method
exacerbates any pre-existing forms of bias.
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A Whitening Transformation Algorithm

Algorithm 1: Whitening Transformation
Workflow

1 input: Embeddings {xi}Ni=1;
2 Compute µ = 1

N

∑N
i=1 xi and Σ of {xi}Ni=1

3 Compute U,Λ, U⊤ = SVD(Σ)

4 Compute W = U
√
Λ−1

5 for i = 1, 2, ..., n do
6 x̃i = (xi − µ)W
7 end
8 return {x̃i}Ni=1;

We apply the whitening transformation to the
query embedding and the embeddings in the datas-
tore. We can write a set of token embeddings as a
set of row vectors: {xi}Ni=1. Additionally, a linear
transformation x̃i = (xi − µ)W is applied, where
µ = 1

N

∑N
i=1 xi. To obtain the matrix W , the fol-

lowing steps are conducted: First, we obtain the
original covariance matrix

Σ =
1

N

N∑

i=1

(xi − µ)⊤ (xi − µ) . (3)

Afterwards, we obtain the transformed covari-
ance matrix Σ̃ = W⊤ΣW , where we specify
Σ̃ = I . Therefore, Σ =

(
W⊤)−1

W−1 =(
W−1

)⊤
W−1. Here, Σ is a positive definite sym-

metric matrix that satisfies the following singu-
lar value decomposition (SVD; Golub and Rein-
sch, 1971) as indicated by Su et al. (2021): Σ =
UΛU⊤. U is an orthogonal matrix, Λ is a diagonal
matrix, and the diagonal elements are all positive.
Therefore, let W−1 =

√
ΛU⊤, we obtain the so-

lution: W = U
√
Λ−1. Putting it all together, as

input, we have the set of embeddings {xi}Ni=1. We
compute µ and Σ of {xi}Ni=1. Then, we perform
SVD on Σ to obtain matrices U , Λ, and U⊤. Us-
ing these matrices, we calculate the transformation
matrix W . Finally, we apply the transformation to
each embedding in the set by subtracting µ and mul-
tiplying by W . We are left with x̃i = (xi − µ)W .
Note that we do WT before we store the embedding
in the datastore, and apply WT to the token embed-
ding before we query the datastore.

We show the Whitening Transformation proce-
dure in Algorithm 1. Note that Li et al. (2020a); Su
et al. (2021) introduced a dimensionality reduction
factor k on W (W [:, : k]). The diagonal elements

in the matrix Λ obtained from the SVD algorithm
are in descending order. One can decide to keep
the first k columns of W in line 6. This is simi-
lar to PCA (Abdi and Williams, 2010). However,
empirically, we found that reducing dimensionality
had a negative effect on downstream performance,
thus we omit that in this implementation.

B Data Examples

SKILLSPAN Figure 5
SAYFULLINA Figure 6
GREEN Figure 7

Table 5: Data example references for each dataset.

In Table 5, we refer to several listings of exam-
ples of the datasets. Notably in SKILLSPAN, the
original samples contain two columns of labels.
These refer to skills and knowledge. To accom-
modate for the approach of NNOSE, we merge
the labels together and thus removing the possible
nesting of skills. Zhang et al. (2022a) mentions
that there is not a lot of nesting of skills. Follow-
ing Zhang et al. (2022a), we prioritize the skills
column when merging the labels. When there is
nesting, we keep the labels of skills and remove the
knowledge labels.

C Implementation Details

General Implementation. We obtain all LMs
from the Transformers library (Wolf et al., 2020)
and implement JobBERTa using the same library.
All learning rates for fine-tuning are 5× 10−5 us-
ing the AdamW optimizer (Loshchilov and Hutter,
2019). We use a batch size of 16 and a maximum
sequence length of 128 with dynamic padding. The
models are trained for 20 epochs with early stop-
ping using a patience of 5. We implement the re-
trieval component using the FAISS library (John-
son et al., 2019), which is a standard for nearest
neighbors retrieval-augmented methods.3

JobBERTa. We apply domain-adaptive pre-
training (Gururangan et al., 2020), which involves
continued self-supervised pre-training of a large
LM on domain-specific text. This approach en-
hances the modeling of text for downstream tasks
within the domain. We continue pre-training on a
roberta-base checkpoint with 3.2M job posting

3https://faiss.ai/
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1 Experience O
2 in O
3 working B
4 on I
5 a I
6 cloud-based I
7 application I
8 running O
9 on O

10 Docker B
11 . O
12

13 A O
14 degree B
15 in I
16 Computer I
17 Science I
18 or O
19 related O
20 fields O
21 . O

Figure 5: Data Example for
SkillSpan. In SKILLSPAN, note
the long skills.

1 ability O
2 to O
3 work B
4 under I
5 stress I
6 condition O
7

8 due O
9 to O

10 the O
11 dynamic B
12 nature O
13 of O
14 the O
15 group O
16 environment O
17 , O
18 the O
19 ideal O
20 candidate O
21 will O

Figure 6: Data Example for Say-
fullina. In SAYFULLINA, the skills
are usually soft-like skills.

1 A O
2 sound O
3 understanding O
4 of O
5 the O
6 Care B
7 Standards I
8 together O
9 with O

10 a O
11 Nursing B
12 qualification I
13 and O
14 current O
15 NMC B
16 registration I
17 are O
18 essential O
19 for O
20 this O
21 role O

Figure 7: Data Example for
Green. There are many qualifica-
tion skills (e.g., certificates).

sentences from Zhang et al. (2022a). We use a
batch size of 8 and run MLM for a single epoch
following Gururangan et al. (2020). The rest of
the hyperparameters are set to the defaults in the
Transformer library.4

NNOSE Setup. Following previous work, the
keys used in NNOSE are the 768-dimensional rep-
resentation logits obtained from the final layer of
the LM (input to the softmax). We perform a single
forward pass over the training set of each dataset
to save the keys and values, i.e., the hidden rep-
resentation and the corresponding gold BIO tag.
The FAISS index is created using all the keys to
learn 4096 cluster centroids. During inference, we
retrieve k neighbors. The index looks up 32 cluster
centroids while searching for the nearest neighbors.
For all experiments, we compute the squared Eu-
clidean (L2) distances with full precision keys. The
difference in inference speed is almost negligible,
with the kNN module taking a few extra seconds

4https://github.com/huggingface/transformers/
blob/main/examples/pytorch/language-modeling/
run_mlm.py

compared to regular inference. For the exact hy-
perparameter values, we indicate them in the next
paragraph.

Hyperparameters NNOSE. The best-
performing hyperparameters and search space can
be found in Table 6, Table 7, Table 8, and Table 9.
We report the k-nearest neighbors, λ value, and
softmax temperature T for each dataset and model.

In Table 10, we show the hyperparameters for
the cross-dataset analysis. In the vanilla setting,
we apply the models trained on a particular skill
dataset to another skill dataset, similar to trans-
fer learning. We observe a significant discrepancy
in performances cross-dataset, indicating a wide
range of skills. However, when kNN is applied,
it improves the detection of unseen skills. The
datastore contains tokens from all datasets.

Inference Cost. Due to the current size of the
datasets (less than 1M tokens in total), it has no no-
ticeable effect on inference time with the fast near-
est neighbor search of FAISS (Johnson et al., 2019).
We imagine if the datasets come closer to billions
of tokens e.g., in machine translation (Khandelwal
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Dataset → SKILLSPAN SAYFULLINA GREEN

JobBERT k 4 4 16
λ 0.3 0.3 0.15
T 0.1 2.0 10.0

RoBERTa k 32 4 64
λ 0.3 0.3 0.25
T 10.0 0.1 10.0

JobBERTa k 16 4 8
λ 0.2 0.1 0.1
T 5.0 10.0 10.0

k {4, 8, 16, 32, 64, 128}
Search Space λ {0.1, 0.15, 0.2, 0.25, ..., 0.9}

T {0.1, 0.5, 1.0, 2.0, 3.0, 5.0, 10.0}

Table 6: Tuned Hyperparameters on Dev. These are
for {D}.

Dataset → SKILLSPAN SAYFULLINA GREEN

JobBERT k 4 4 64
λ 0.35 0.35 0.4
T 2.0 0.1 5.0

RoBERTa k 32 4 16
λ 0.35 0.45 0.25
T 0.1 0.1 1.0

JobBERTa k 64 128 128
λ 0.25 0.35 0.45
T 10.0 0.5 10.0

k {4, 8, 16, 32, 64, 128}
Search Space λ {0.1, 0.15, 0.2, 0.25, ..., 0.9}

T {0.1, 0.5, 1.0, 2.0, 3.0, 5.0, 10.0}

Table 7: Tuned Hyperparameters on Dev. These are
for {D}+WT .

Dataset → SKILLSPAN SAYFULLINA GREEN

JobBERT k 4 16 32
λ 0.3 0.25 0.15
T 10.0 5.0 10.0

RoBERTa k 16 8 8
λ 0.15 0.1 0.1
T 10.0 10.0 10.0

JobBERTa k 8 4 8
λ 0.2 0.15 0.1
T 0.5 0.1 10.0

k {4, 8, 16, 32, 64, 128}
Search Space λ {0.1, 0.15, 0.2, 0.25, ..., 0.9}

T {0.1, 0.5, 1.0, 2.0, 3.0, 5.0, 10.0}

Table 8: Tuned Hyperparameters on Dev. These are
for ∀D.

Dataset → SKILLSPAN SAYFULLINA GREEN

JobBERT k 32 4 128
λ 0.3 0.3 0.4
T 1.0 0.5 2.0

RoBERTa k 128 128 64
λ 0.35 0.1 0.25
T 0.1 0.5 0.1

JobBERTa k 32 8 128
λ 0.15 0.3 0.2
T 0.1 0.1 2.0

k {4, 8, 16, 32, 64, 128}
Search Space λ {0.1, 0.15, 0.2, 0.25, ..., 0.9}

T {0.1, 0.5, 1.0, 2.0, 3.0, 5.0, 10.0)}

Table 9: Tuned Hyperparameters on Dev. These are
for ∀D+WT.

↓Trained on Hyperparams. SKILLSPAN SAYFULLINA GREEN

SKILLSPAN k 16 32
λ 0.9 0.7
T 0.1 0.5

SAYFULLINA k 64 32
λ 0.9 0.8
T 0.1 0.1

GREEN k 32 32
λ 0.85 0.9
T 0.5 0.1

ALL k 4 128 32
λ 0.25 0.6 0.65
T 1.0 1.0 0.5

k {4, 8, 16, 32, 64, 128}
Search Space λ {0.1, 0.15, 0.2, 0.25, ..., 0.9}

T {0.1, 0.5, 1.0, 2.0, 3.0, 5.0, 10.0}

Table 10: Results of Unseen Skills (Development Set)
based on JobBERTa.

et al., 2021) and language modeling (Khandelwal
et al., 2020), the inference time will be larger.

D Development Set Results

We show the dev. set results in Table 11. Overall,
the patterns of improvements hold across datasets
and models. We base the test set result on the
best-performing setups in the development set, i.e.,
{D}+WT and ∀D+WT.

E Frequency Distribution of Skills

We show the skill frequency distribution of the
datasets in Figure 8, as mentioned in Section 5.1.
Here, we show evidence of the long-tail pattern in
skills for each dataset. There is a cut-off at count
15 for GREEN, indicating that there are skills in the
development set that occur more than 15 times.

F Further Cross-dataset Analysis

Precision and Recall Scores Cross-dataset.
In Table 12, we checked the precision and recall
numbers for the cross-dataset setup with ∀D+WT
and JobBERTa as the backbone model. When us-
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Dataset (Dev.) → Setting SKILLSPAN SAYFULLINA GREEN avg. Span-F1

JobBERT (Zhang et al., 2022a) 61.08 89.26 37.27 62.54
+ kNN {D} 61.56 ↑0.48 89.69 ↑0.43 37.48 ↑0.21 62.91 ↑0.37
+ kNN {D}+WT 61.77 ↑0.69 89.78 ↑0.52 38.07 ↑0.80 63.21 ↑0.67
+ kNN ∀D 61.58 ↑0.50 89.50 ↑0.24 37.27 –0.00 62.78 ↑0.24
+ kNN ∀D+WT 61.50 ↑0.42 89.37 ↑0.11 38.19 ↑0.92 63.02 ↑0.48

RoBERTa (Liu et al., 2019) 65.02 92.91 40.33 66.09
+ kNN {D} 65.36 ↑0.34 92.76 ↓0.15 40.53 ↑0.20 66.22 ↑0.13
+ kNN {D}+WT 65.34 ↑0.32 93.07 ↑0.16 41.22 ↑0.89 66.54 ↑0.45
+ kNN ∀D 64.98 ↓0.04 92.78 ↓0.13 40.60 ↑0.27 66.12 ↑0.03
+ kNN ∀D+WT 65.38 ↑0.36 92.92 ↑0.01 41.11 ↑0.77 66.47 ↑0.38

JobBERTa (This work) 65.15 92.09 40.59 65.94
+ kNN {D} 65.25 ↑0.10 91.99 ↓0.10 41.31 ↑0.72 66.18 ↑0.24
+ kNN {D}+WT 65.21 ↑0.06 92.10 ↑0.01 41.41 ↑0.82 66.24 ↑0.30
+ kNN ∀D 65.15 –0.00 92.04 ↓0.05 40.83 ↑0.24 66.01 ↑0.07
+ kNN ∀D+WT 65.22 ↑0.07 92.13 ↑0.04 41.45 ↑0.86 66.26 ↑0.32

Table 11: Development Set Results. There are four settings for each model. {D}: in-dataset datastore (i.e., the
datastore only contains the keys from the specific training data it is applied on). ∀D: The datastore contains the keys
from all available training datasets. +W : Whitening Transformation is applied to the keys before adding them to
the datastore or querying the datastore. We indicate the performance increase (↑), decrease (↓), or no change (–)
when using kNN compared to not using kNN. Additionally, we show the average span-F1 performance of each
model across the three datasets. In the development set, it seems that an in-dataset datastore works best.

Vanilla +kNN
Setup↓ Precision Recall Precision Recall

SAYFULLINA→SKILLSPAN 10.20 10.50 37.67↑27.47 29.62↑19.12
GREEN→SKILLSPAN 28.40 33.56 46.00↑11.60 46.29↑12.73

SKILLSPAN→SAYFULLINA 15.19 23.42 49.25↑34.06 58.95↑35.53
GREEN→SAYFULLINA 12.80 21.58 48.21↑35.41 61.87↑40.29

SKILLSPAN→GREEN 52.01 37.42 55.37↑3.36 38.74↑1.32
SAYFULLINA→GREEN 17.79 7.64 39.83↑22.04 18.31↑10.67

Table 12: Precision & Recall Numbers Cross-dataset on Test. We show the precision and recall numbers in the
cross-dataset setup. We use the ∀D+WT setup here, with JobBERTa as the backbone model.

ing NNOSE, we generally notice an increase in
precision, with the largest when applied to SAY-
FULLINA. The largest gains are with respect to
recall, we notice a significant gain in all setups,
where the recall and precision increase is mixed.
This indicates that NNOSE is a useful method for
both precision-focused and recall-focused applica-
tions, as we are storing skills in the datastore to be
retrieved.

G Qualitative Results NNOSE

We show several qualitative results of NNOSE. In
Table 13, we show a qualitative sample of using
JobBERTa on SKILLSPAN. The current token is
“IT” with gold label O. The language model puts 0.4

softmax probability on the tag I. By retrieving the
nearest neighbors, the final probability mass gets
shifted towards O with probability 0.43, which is
the correct tag.

In Table 14, we show a qualitative sample of us-
ing JobBERTa on SKILLSPAN with multi-token an-
notations and how this behaves. The current skill is
“coding skills” with gold labels B and I respectively.
Both the model and kNN puts high confidence in
the correct label. Note that the nearest neighbors
of “coding” are quite varied, which shows the ben-
efit of NNOSE. Note that all the retrieved “skills”
tokens are from different contexts.

In Table 15, we show a qualitative sample of
using JobBERTa on SKILLSPAN. The current to-
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Figure 8: Frequency Distribution of Skill Occurrences in the Train Set. We display the frequency distribution of
skill occurrences in each train set. How to read: For instance, in the case of Sayfullina, there are over 2,000 skills
that occur only once in the training set. We demonstrate that all skill datasets exhibit an inherent long-tail pattern.

ken is “optimistic” with gold label B. This is a so-
called “soft skill”. The language model puts high
confidence in the tag B, which is the correct tag.
The retrieved neighbors are frequently relevant, but
sometimes less. This indicates that the retrieved
neighbors (all soft skills) occur in similar contexts.

In Table 16, we show a qualitative sample of
using JobBERTa on SKILLSPAN. The current to-
ken is “optimistic” with gold label B. This is a so-
called “soft skill”. The language model puts high
confidence in the tag B, which is the correct tag.
The retrieved neighbors are frequently relevant, but
sometimes less. This indicates that the retrieved
neighbors (all soft skills) occur in similar contexts.
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JobBERTa → SKILLSPAN

Current token IT

Gold label O

LM prediction probs [0.277, 0.404, 0.319]

Nearest neighbors (k = 8) [’IT’, ’Software’, ’Software’, ’Cloud’,
’Cloud’, ’Database’, ’Ag’, ’software’]

Aggregated kNN scores [0.000, 0.132, 0.868]

Final predicted probs [0.221, 0.350, 0.429]

Table 13: Cherry Picked Qualitative Sample NNOSE of Higher Precision. We show a qualitative sample of
using JobBERTa on SKILLSPAN. In this case, we see more weight being put on a specific tag, resulting in higher
precision.

JobBERTa → SKILLSPAN

Current token coding

Gold label B

LM prediction probs [0.988, 0.000, 0.012]

Nearest neighbors (k = 8) [’programming’, ’coding’, ’programming’, ’debugging’,
’scripting’, ’writing’, ’coding’, ’programming’]

Aggregated kNN scores [1.000, 0.000, 0.000]

Final predicted probs [0.991, 0.000, 0.009]

Current token skills

Gold label I

LM prediction probs [0.000, 0.990, 0.010]

Nearest neighbors (k = 8) [’skills’, ’skills’, ’skills’, ’skills’, ’skills’,
’skills’, ’skills’, ’skills’]

Aggregated kNN scores [0.000, 1.000, 0.000]

Final predicted probs [0.000, 0.992, 0.008]

Table 14: Cherry Picked Qualitative Sample NNOSE of Multiple Tokens. We show a qualitative sample of using
JobBERTa on SKILLSPAN with multi-token annotations and how this behaves.

JobBERTa → GREEN

Current token tools

Gold label I

LM prediction probs [0.250, 0.374, 0.379]

Nearest neighbors (k = 8) [’tools’, ’tools’, ’transport’, ’transport’,
’transport’, ’transport’, ’car’, ’transport’]

Aggregated kNN scores [0.124, 0.626, 0.250]

Final predicted probs [0.234, 0.399, 0.366]

Table 15: Cherry Picked Qualitative Sample NNOSE of Randomness. We show a qualitative sample of using
JobBERTa on SKILLSPAN.The language model puts high confidence on the tag I, which is the correct tag. Here the
retrieved neighbors do not seem too relevant, which in this case is mostly random chance that it got it correctly.

JobBERTa → SKILLSPAN

Current token optimistic

Gold label B

LM prediction probs [0.998, 0.000, 0.002]

Nearest neighbors (k = 8) [’proactive’, ’responsible’, ’holistic’, ’operational’,
’positive’, ’open’, ’professional’, ’agile’]

Aggregated kNN scores [1.000, 0.000, 0.000]

Final predicted probs [0.999, 0.000, 0.001]

Table 16: Cherry Picked Qualitative Sample NNOSE of Variety. We show a qualitative sample of using
JobBERTa on SKILLSPAN. The language model puts high confidence in the tag B, which is the correct tag. The
retrieved neighbors are frequently relevant.
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