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Abstract

Recent studies have shown that as Transformer-
based language models become larger and are
trained on very large amounts of data, the fit
of their surprisal estimates to naturalistic hu-
man reading times degrades. The current work
presents a series of analyses showing that word
frequency is a key explanatory factor under-
lying these two trends. First, residual errors
from four language model families on four
corpora show that the inverse correlation be-
tween model size and fit to reading times is the
strongest on the subset of least frequent words,
which is driven by excessively accurate predic-
tions of larger model variants. Additionally,
training dynamics reveal that during later train-
ing steps, all model variants learn to predict
rare words and that larger model variants do
so more accurately, which explains the detri-
mental effect of both training data amount and
model size on fit to reading times. Finally, a
feature attribution analysis demonstrates that
larger model variants are able to accurately pre-
dict rare words based on both an effectively
longer context window size as well as stronger
local associations compared to smaller model
variants. Taken together, these results indicate
that Transformer-based language models’ sur-
prisal estimates diverge from human-like expec-
tations due to the superhumanly complex asso-
ciations they learn for predicting rare words.

1 Introduction

The predictability of linguistic material in its con-
text has been shown to be an important factor of
real-time processing difficulty (Hale, 2001; Levy,
2008), with a large body of empirical work showing
surprisal (Shannon, 1948) to be a strong predictor
of relevant behavioral and neural measures (Dem-
berg and Keller, 2008; Smith and Levy, 2013; Hale
et al., 2018; Shain et al., 2020, i.a.). Therefore, a
core research goal of expectation-based theories of
sentence processing has been to characterize the
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latent probability distribution of the human com-
prehender. Language models (LMs) that define a
conditional probability distribution are helpful for
exploring these questions, as they can be trained
to embody different predictive processes and yield
concrete surprisal estimates that can be evaluated
against measures of processing difficulty.

Recent work using surprisal estimates from
Transformer-based LMs has revealed a strong in-
verse correlation between the size of LMs and the
fit of their surprisal estimates to naturalistic human
reading times, where larger models yield surprisal
estimates that are less predictive of reading times
(Oh et al., 2022; Oh and Schuler, 2023b; Shain
et al., 2022; de Varda and Marelli, 2023). Large
amounts of training data have also been shown to
play a detrimental role, with fit to reading times
starting to degrade after LMs see about two billion
tokens (Oh and Schuler, 2023a). This robust in-
verse correlation is meaningful, as it shows that in-
creasingly larger LMs are less appropriate as mod-
els of human cognition, and that human sentence
processing is not driven by the predictions LMs
make with more model parameters and training
data. While open-class words like nouns and ad-
jectives have been identified as driving the adverse
effect of model size (Oh and Schuler, 2023b), how
model size and the training data interact during LM
training to give rise to such systematic divergence
from human-like expectations remains unclear.

Studies on the scaling behavior of large LMs
have recently shown that larger models learn ex-
amples faster by increasing their probabilities to
a greater extent given the same amount of expo-
sure (Tirumala et al., 2022). However, during early
training stages, models of all sizes exhibit similar
next-token predictions by learning to accurately
predict frequent function words (Xia et al., 2023).
This suggests that the difference in surprisal esti-
mates as a function of model size will be modulated
by frequency and will increase as models see larger
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amounts of training data.

Based on these observations, this work presents
a series of analyses showing that word frequency
is a key explanatory factor of the inverse correla-
tion between model size, training data amount, and
surprisal’s fit to reading times. First, residual er-
rors from four LM families on four corpora show
that the inverse correlation between model size and
fit to reading times is the strongest on the subset
of least frequent words, which is driven by exces-
sively accurate predictions of larger model variants.
Moreover, training dynamics reveal that all model
variants learn to predict rare words during later
training steps and larger model variants do so more
accurately, which explains the detrimental effect of
both training data amount and model size on fit to
reading times. Finally, a feature attribution analysis
demonstrates that larger model variants predict rare
words more accurately compared to smaller model
variants based on both an effectively longer con-
text window and stronger local associations. These
results provide evidence that Transformer-based
LMs’ surprisal estimates diverge from human-like
expectations due to the superhumanly complex as-
sociations they learn for predicting rare words.

2 Experiment 1: Effect of Frequency on
Strength of Inverse Correlation

The first experiment examines the influence of
word frequency on the strength of the inverse corre-
lation between model size and fit to reading times
by evaluating surprisal estimates from four LM
families on four corpora of naturalistic reading
times collected through both self-paced reading
and eye-tracking paradigms.

2.1 Response Data

The reading times analyzed in this experiment
come from the Natural Stories Corpus (Futrell et al.,
2021), the Dundee Corpus (Kennedy et al., 2003),
the Ghent Eye-Tracking Corpus (GECO; Cop et al.,
2017), and the Provo Corpus (Luke and Christian-
son, 2018). The Natural Stories Corpus contains
self-paced reading times from 181 subjects that
read 10 naturalistic English stories consisting a to-
tal of 10,245 words. The Dundee Corpus contains
eye-gaze durations from 10 subjects that read 67
English newspaper editorials consisting a total of
51,501 words. The GECO contains eye-gaze dura-
tions from 14 monolingual subjects that read the
English version of the novel The Mysterious Af-

fair at Styles (Christie, 1920), which consists of
13 chapters and 56,441 words. The Provo Corpus
contains eye-gaze durations from 84 subjects that
read 55 short English passages consisting a total of
2,746 words that range from news articles, science
magazines, and works of fiction.

For the Natural Stories Corpus, data points were
filtered to exclude those for sentence-initial and fi-
nal words, those from subjects who answered fewer
than four comprehension questions correctly, and
those shorter than 100 ms or longer than 3000 ms,
which resulted in 384,905 observations in the ex-
ploratory set. For the three eye-tracking corpora,
data points were filtered to remove those for unfix-
ated words, words following saccades longer than
four words, and words at starts and ends of sen-
tences, screens, documents, and lines. This resulted
in a total of 98,115, 144,850, and 52,960 observa-
tions in the exploratory sets of the Dundee Corpus,
GECO, and the Provo Corpus respectively.! All ob-
servations were log-transformed before regression
modeling, following previous work (e.g. Oh and
Schuler, 2023b).2

2.2 Predictors

This experiment evaluates surprisal estimates from
variants of four LM families, namely the GPT-
2 (Radford et al., 2019), GPT-Neo (Black et al.,
2021, 2022; Wang and Komatsuzaki, 2021), OPT
(Zhang et al., 2022), and Pythia (Biderman et al.,
2023) families. All of these LMs are autoregressive
Transformer-based models whose variants differ
primarily in their size. The hyperparameters of all
examined variants are outlined in Appendix A.
Each chapter or article of the four corpora was
tokenized using each LM’s respective byte-pair en-
coding (BPE; Sennrich et al., 2016) tokenizer and
provided to all variants to calculate surprisal esti-
mates, i.e. —logy P(w;+1 | w1 ;). In cases where
each chapter or article did not fit completely into
one context window, surprisal estimates for the re-
maining tokens were calculated by conditioning on
the second half of the previous context window.
In addition to these surprisal predictors, a set
of baseline predictors that capture low-level pro-

!The exploratory set of each corpus consists of roughly
50% of all data points based on the sum of subject ID and
sentence number. The held-out set is reserved for statistical
significance testing and not analyzed in this work.

The log-transform implicitly assumes a superlinear link-
ing function between surprisal and reading times, which has
been shown to produce tighter fits for surprisal from larger
LM variants (Shain et al., 2022; Hoover et al., 2023).
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Figure 1: Corpus-level perplexity measures from each GPT-2, GPT-Neo, OPT, and Pythia model variant, and mean
squared errors of regression models that include each surprisal predictor on the four corpora of reading times. The
ordered labels represent variants of different sizes, where ‘1° represents the smallest variant of each LM family.

cessing was also included in all regression models.
These predictors are word length in characters, in-
dex of word position within each sentence, unigram
surprisal (both self-paced reading and eye-tracking
corpora), as well as saccade length and whether
the previous word was fixated (eye-tracking cor-
pora only). Unigram surprisal was estimated using
counts of ~33 billion pre-tokenized tokens from
the Pile (Gao et al., 2020), which is a collection
of English language datasets.> All predictors were
standardized by centering and scaling before model
fitting, and ‘spillover’ versions of predictors were
not included in the regression models to avoid con-
vergence issues and simplify the analyses.

2.3 Regression Modeling

Subsequently, a set of linear mixed-effects (LME)
models that contain one surprisal predictor and
the baseline predictors outlined in Section 2.2
were fit to self-paced reading times of the Natu-
ral Stories Corpus and go-past durations* of the
three eye-tracking corpora using 1me4 (Bates et al.,
2015). All LME models included by-subject ran-
dom slopes for all fixed effects and random inter-

*Whenever a word consisted of multiple subword to-
kens, token-level unigram surprisal was summed to calcu-
late the word-level unigram surprisal. Code for calculating
LM surprisal and unigram surprisal is available at https:
//github.com/byungdoh/11m_surprisal.

*Go-past durations were analyzed in this work as regres-

sive eye movements are thought to reflect additional process-
ing difficulty that is incurred by the current word.

cepts for each subject. Additionally, random in-
tercepts were included for each subject-sentence
interaction for self-paced reading times collected
from 181 subjects, and random intercepts were in-
cluded for each sentence for eye-gaze durations
collected from smaller subject pools. After the re-
gression models were fit, their predictions were
subtracted from the target reading times to calcu-
late the residual errors for each regression model.

To examine the effect of word frequency on the
strength of inverse correlation between model size
and fit to reading times, the data points in each
corpus were divided into quintiles according to un-
igram log-probabilities of the target word. Subse-
quently, the mean squared errors (MSEs) from each
regression model were calculated on each quintile.
The corpus-level perplexity of each model vari-
ant is also calculated and reported as a proxy for
model size, based on a preliminary analysis show-
ing very little difference in surprisal values among
very large LM variants.

2.4 Results

The results in Figure 1 show that regression mod-
els with surprisal predictors from smaller model
variants generally had lower MSEs across the four
LM families on all four corpora.’ This replicates

>The best-fitting lines between log perplexity and MSE
had a slope significantly lower than 0 at p < 0.05 level by a
one-tailed ¢-test on all four corpora.
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Figure 2: Corpus-level perplexity measures from each GPT-2, GPT-Neo, OPT, and Pythia model variant, and mean
squared errors of regression models that include each surprisal predictor on the four corpora of reading times. The
columns of subplots represent the five quintiles defined by unigram log-probabilities.

previous results reporting the inverse correlation
between model size and fit to reading times (Oh
and Schuler, 2023b) and provides further empirical
support for the effect.

The MSEs partitioned according to unigram
probabilities in Figure 2 reveal that this corpus-
level effect is primarily driven by the subset of least
frequent words. On all four corpora, the negative
slope between log perplexity and MSE is the steep-
est on the first quintile, which is significantly lower
than the other subsets at p < 0.05 level by a per-
mutation test that shuffles the quintile membership
of the word. The MSEs of regression models are
also the largest on the first quintile on all four cor-
pora, which suggests that the subset of rare words is
where surprisal estimates from Transformer-based
LMs diverge from human reading times the most.

A breakdown of the average surprisal values and
sum of squared errors® (SSEs) from underpredicted
and overpredicted data points of each quintile in
Figure 3 shows that larger model variants make es-
pecially accurate predictions on the subset of least

8SSEs are presented instead of MSEs as each regression
model had different numbers of underpredicted and overpre-
dicted data points, which can distort the MSEs and obscure
the overall trend of mispredictions.

frequent words compared to their smaller counter-
parts, where the difference in average surprisal is
the biggest between model variants. While more
severe underpredictions of reading times are mostly
responsible for the overall trend on this subset, the
overpredictions do not appear to cancel out the
trend, as is the case on other quintiles.

In contrast, more severe overpredictions of read-
ing times seem to drive the overall trend on the
subsets of more frequent words. This is likely
due more to the estimated regression coefficients
rather than the surprisal predictors, the difference
in which between model variants is much smaller
compared to other subsets. As surprisal predic-
tors from larger LM variants are smaller in mag-
nitude, the regression models assign them higher
coefficients to predict the same target reading times,
which results in a systematic overprediction given
surprisal predictors of similar magnitudes.

3 Experiment 2: Effect of Training Data
Amount on Fit to Reading Times

The previous experiment showed that the exces-
sively accurate predictions of larger variants on the
subset of least frequent words strongly drive the
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Figure 3: Average surprisal values from each GPT-2, GPT-Neo, OPT, and Pythia model variant, and sum of squared
errors of regression models that include each surprisal predictor on the four corpora of reading times. The columns
of subplots represent the five quintiles defined by unigram log-probabilities. The top and bottom subplots of each
row represent values from underpredicted and overpredicted data points, respectively.

inverse correlation between model size and fit to
human reading times. The second experiment ex-
amines the training dynamics of Pythia model vari-
ants to study the influence of training data amount
and model size on the ability of LMs to predict rare
words, as well as the resulting fit of their surprisal

estimates to human reading times.

3.1 Procedures

Among the four LM families examined in the pre-
vious experiment, the Pythia models are the only
LMs that have publicly available checkpoints at var-
ious points during training. These model variants
were trained on batches of 1,024 examples with

2,048 tokens for a total of 143,000 training steps
(~300 billion tokens). Intermediate checkpoints
that were saved during early training stages and
after every 1,000 steps are publicly available.

To examine the training dynamics of these eight
variants, surprisal estimates were calculated after

{0, 128, 256, 512, 1000, 2000, 4000, 8000, 143000}
training steps on the four corpora of reading times.
Subsequently, following identical regression mod-
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"The Pythia variants evaluated in Experiment 1 are those
that were fully trained for all 143,000 training steps. These
steps were selected based on previous work that show a peak
in fit to human reading times at around 1,000 training steps,
and relatively little change after step 8,000 onwards for the
Pythia models (Oh and Schuler, 2023a).
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Figure 4: Proportion of surprisal values from select Pythia model variants on each quintile of the Dundee Corpus as
a function of training steps. Proportions that are greater than .05 are annotated.

eling procedures as Experiment 1, LME models
were fit to reading times and their residual errors
were calculated. Finally, the data points in each
corpus were divided into quintiles according to
unigram log-probabilities of the target word to ex-
amine the change in surprisal values and residual
errors as a function of word frequency through the
course of LM training.

3.2 Results

The surprisal values in Figure 4% show that at initial-
ization (i.e. after O training steps), surprisal values
are the highest on the first quintile, as they are tok-
enized into multiple tokens by the BPE tokenizer.
During early training of up to 256 steps, all model
variants primarily learn to predict frequent tokens,
resulting in a large decrease in surprisal values on
the fifth quintile. As training continues, all model
variants begin to learn to predict less frequent to-
kens, resulting in a consistent decrease in surprisal
values on the lower quintiles. Most notably, there
seems to be no strong trend in surprisal values as a

8Data from select Pythia model variants on the Dundee
Corpus is presented due to space constraints. Refer to Ap-
pendix B for comparable figures with all eight model variants
on all four corpora.

function of model size up until 1,000 training steps.
In contrast, from training step 2,000 onward, the
larger variants begin to yield lower surprisal values
than their smaller counterparts, which suggests that
the learning by larger variants actively continues
while that by smaller variants begins to slow down.
By the end of training, this results in a general trend
where the difference in surprisal values between
model variants gets progressively bigger on the
lower quintiles, as was demonstrated in Figure 3.
The SSEs from regression models containing
these surprisal predictors in Figure 5° show that
learning to predict rare tokens initially improves
fit to reading times up to training step 1,000 by
mostly improving the prediction of reading times
of these words. However, as the model variants
see larger amounts of data and continue learning
to predict rare tokens, the squared errors on these
reading times begin to increase. As larger model
variants learn to do so more accurately, the increase
in squared errors is also steeper for the correspond-
ing regression models. This demonstrates that both
training data amount and model size help the accu-

“Refer to Appendix C for comparable figures with all eight
model variants on all four corpora.
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Figure 5: SSEs from regression models containing surprisal predictors from select Pythia model variants on each
quintile of the Dundee Corpus as a function of training steps. The columns of subplots share the scale but not the

range of the x-axis for visual clarity.

rate prediction of low-frequency words, which in
turn has a detrimental effect on fit to reading times.

4 Follow-up Analysis: What Enables
Larger Models to Predict Rare Words?

The previous experiment showed that as LM vari-
ants are trained on large amounts of data, all vari-
ants learn to predict rare words during later training
steps. However, larger variants are able to do so
more accurately, thereby ultimately resulting in sur-
prisal estimates that are poorer predictors of human
reading times. The goal of this follow-up analysis
is to provide a mechanistic explanation underly-
ing the behavior of larger LM variants identified
through the main experiments, by elucidating how
the increase in model size enables LMs to make
more accurate predictions of rare words.

Although the predictions of Transformer-based
language models are opaque and difficult to inter-
pret, one possible explanation for this phenomenon
is that the larger variants have a longer ‘effective’
context window size than smaller variants. In other
words, although all Transformers theoretically have
veridical access to the context, the smaller variants
may not be able to learn associations to early mate-
rial in the context due to their limited capacity. This

follow-up analysis gauges the contribution of early
and recent context tokens using a feature attribu-
tion method to examine what enables larger model
variants to predict rare words more accurately than
their smaller counterparts.

4.1 Procedures

The feature attribution method adopted for this anal-
ysis is based on limiting the LM’s context to the
most recent n tokens (Kuribayashi et al., 2022),
which can also be viewed as an ablation of the
earlier context tokens (occlusion; Zeiler and Fer-
gus, 2014). This method has the advantages that
it quantifies the contribution of context tokens in
terms of interpretable probabilities (cf. gradient-
based methods) and does not suffer from potential
out-of-distribution issues (Hooker et al., 2019) as
it keeps contiguous n-grams intact and does not
arbitrarily alter their vector representations.
Surprisal estimates from the eight fully-trained
Pythia variants were calculated on the quintile of
least frequent words of the four reading time cor-
pora by conditioning on the most recent {49, 24,
9} context tokens. The resulting surprisal values
were compared to those calculated by conditioning
on the full context to examine the impact of early

2650



Natural Stories SPR

Recent 49 Tokens

Full Context

Recent 24 Tokens Recent 9 Tokens

= 00WON
ZZ=Zowmwm

1.0 0.0
Dundee ET

Recent 49 Tokens

Recent 24 Tokens

=NOY
—=S00WON
ZZ=ZmEmm

20 12
22 |
22 13

w 1.0
(]
E GECO ET
s Recent 49 Tokens Recent 24 Tokens
12B
6.9B
2.8B
1.4B
1B
410M
160M
70M
1.0
Provo ET
Full Context Recent 49 Tokens Recent 24 Tokens Recent 9 Tokens
12B 20 16 20 17 21 16 .10 22 23 12
6.9B 21 18 20 19 23 a7 09 23 23 12
2.8B 21 17 21 a7 21 19 12 % 23 23 15 é
1.4B 22 18 19 24 20 12 24 22 18
lB 218 20 pLS: 21 21 Ba) .21 25 .16
410M 22 22 21 23 25 03] 20 28 a7
160M 24 1 | 24 il 28 20
70M 26 19 19 26 21 29 22
0.5 0.5 0.5 1.0 0.0 0.5 1.0
Proportion
[0, 4) 1 [4,8) 1 [8,12) 1 [12, 16) [ [16, 20) B [20, )

Figure 6: Proportion of surprisal values from Pythia model variants on the quintile of least frequent words of the four
corpora of reading times as a function of context window size. Proportions that are greater than .05 are annotated.

and recent context tokens. If the early material in
context is crucial for a model variant to predict rare
tokens, larger increases in their surprisal values will
be observed when the context window is limited.

4.2 Results

The results in Figure 6 show that on all four corpora,
surprisal values from all variants progressively in-
crease as the context window becomes more lim-
ited. This increase seems to be modulated by model
size, where larger variants demonstrate larger de-
grees of increase as a result of limiting the context
window. This suggests that larger variants have
learned stronger associations with early context to-
kens and therefore have effectively longer context
windows for predicting rare tokens.

However, surprisal values calculated under the
most restrictive nine-token condition show that
larger model variants are still able to make more
accurate predictions than their smaller counterparts
even when the context is very limited. Taken to-
gether, these results indicate that larger model vari-
ants are able to predict rare words more accurately
based on both an effectively longer context window

as well as stronger local associations.

5 Discussion

This work presents word frequency as a unified
explanation for the degradation in fit of surprisal
estimates to naturalistic human reading times as a
function of LM size and training data amount ob-
served in recent studies. First, evaluation of model
variants from four LM families on four corpora
of reading times shows that the inverse correla-
tion between model size and fit to reading times is
the strongest on the subset of least frequent words.
This is due to the larger model variants’ dispropor-
tionately accurate predictions on this subset, where
the target reading times are generally longer. These
findings are consistent with those from the analyses
of Oh and Schuler (2023b), who found that more
severe underpredictions of reading times of open-
class words like nouns and adjectives most strongly
drive the trend between model size and regression
model fit. Word frequency provides a more general
and parsimonious account of the trend on the entire
corpus, as well as a complementary view of the
phenomenon.
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The training dynamics of LMs also show a
strong interaction between frequency and model
size through the course of training. More specif-
ically, model variants of all sizes learn to accu-
rately predict frequent tokens and also show little
difference in surprisal values during early train-
ing steps. However, as they continue to see large
amounts of data, they start learning to predict rare
tokens accurately. It is at this later point in train-
ing where the difference between model variants
begins to manifest, with larger variants learning
to make more accurate predictions of these rare
tokens. These trends are consistent with prior work
on the scaling behavior of large LMs (Tirumala
et al., 2022; Xia et al., 2023), as well as observa-
tions that neural LMs first approximate unigram
and then bigram probabilities during early training
(Chang and Bergen, 2022; Chang et al., 2023).

Residual errors from regression models contain-
ing surprisal estimates at intermediate points dur-
ing LM training show that learning to predict rare
tokens initially improves fit to reading times by pri-
marily improving the prediction of reading times
of these rare words. Nonetheless, as the model vari-
ants continue learning to predict rare tokens, the er-
rors on these reading times begin to increase. Since
larger model variants learn to predict rare tokens
more accurately, the regression models contain-
ing their surprisal estimates also exhibit a steeper
increase in errors. This illustrates the detrimen-
tal effect of training data amount and model size
on fit to reading times, and also explains Oh and
Schuler’s (2023a) observation of the peak in fit to
reading times at around two billion training tokens.

The follow-up feature attribution analysis that
ablates the contribution of early context tokens sug-
gests that larger model variants utilize both an ef-
fectively longer context window and stronger local
associations to predict rare tokens more accurately
than their smaller counterparts. Limiting the num-
ber of tokens in the context window weakens these
associations for predicting rare words, which is
most likely the reason why this improves the fit of
LM surprisal to reading times, as demonstrated by
Kuribayashi et al. (2022).

Taken together, these results indicate that both
model size and large amounts of training data al-
low Transformer-based LMs to learn superhumanly
complex associations for predicting rare words,
which in turn adversely affects fit to human reading
times. In other words, surprisal from model vari-
ants that are smaller and trained on less data yield

a better fit to naturalistic reading times because
they implicitly capture word frequency. This has
important implications for research into whether
frequency effects are dissociable from predictabil-
ity effects in naturalistic reading (e.g. Goodkind
and Bicknell, 2021; Shain, 2019, 2023). One possi-
ble interpretation of the current results is that they
provide support for a strong and dissociable fre-
quency effect, as the subset of rare words is where
LM surprisal estimates diverge most from natural-
istic reading times as a whole. However, they may
also indicate that the excessive number of parame-
ters and training data result in surprisal estimates
that have washed out frequency effects which could
have been explained by predictability.

An interesting direction for future work is ex-
tending the current analyses to data collected in
other languages (e.g. Kuribayashi et al., 2021;
de Varda and Marelli, 2023; Wilcox et al., 2023).
Based on the training dynamics of LMs observed
in this work, to the extent that they are of sufficient
sizes and are trained on large amounts of data, the
explanation based on word frequency is expected
to robustly generalize to data from other languages.

6 Conclusion

This work proposes word frequency as an ex-
planation for the inverse correlation observed
between Transformer-based LMs’ size, training
data amount, and surprisal’s fit to human reading
times. Four LM families on four corpora show the
strongest inverse correlation between model size
and fit to reading times on the least frequent words,
which is driven by the more accurate predictions
of the larger variants. Training dynamics reveal
that all variants learn to predict rare words with
large amounts of data and larger variants do so
more accurately, which explains the detrimental
effect of both model size and training data amount.
These results indicate that the superhumanly com-
plex associations for predicting rare words make
Transformer-based LMs’ surprisal estimates di-
verge from human-like expectations.
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Limitations

The explanation for the dissociation between sur-
prisal estimates from Transformer-based language
models and real-time comprehension difficulty de-
veloped in this work is based on language model
variants trained on English text and data from sub-
jects that are native speakers of English. Therefore,
the proposed explanation may not generalize to
other languages. Other possible limitations include
the assumption of linear effects and the lack of
spillover predictors in regression modeling.

Ethics Statement

This work used data collected as part of previously
published research (Futrell et al., 2021; Kennedy
et al., 2003; Cop et al., 2017; Luke and Christian-
son, 2018). Readers are referred to the respective
publications for more information on the data col-
lection and validation procedures. As this work
focuses on studying the connection between condi-
tional probabilities of language models and human
sentence processing, its potential negative impacts
on society appear to be minimal.
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Model Variant #L. #H  dpode  #Parameters

GPT-2 Small 12 12 768 ~124M
GPT-2 Medium 24 16 1024 ~355M
GPT-2 Large 36 20 1280 ~774M
GPT-2 XL 48 25 1600 ~1.6B
GPT-Neo 125M 12 12 768 ~125M
GPT-Neo 1.3B 24 16 2048 ~1.3B
GPT-Neo 2.7B 32 20 2560 ~2.7B
GPT-J 6B 28 16 4096 ~6B
GPT-NeoX 20B 44 64 6144 ~20B
OPT 125M 12 12 768 ~125M
OPT 350M 24 16 1024 ~350M
OPT 1.3B 24 32 2048 ~1.3B
OPT 2.7B 32 32 2560 ~2.7B
OPT 6.7B 32 32 4096 ~6.7B
OPT 13B 40 40 5120 ~13B
OPT 30B 48 56 7168 ~30B
OPT 66B 64 72 9216 ~66B
Pythia 70M 6 8 512 ~70M
Pythia 160M 12 12 768 ~160M
Pythia 410M 24 16 1024 ~410M
Pythia 1B 16 8 2048 ~1B
Pythia 1.4B 24 16 2048 ~1.4B
Pythia 2.8B 32 32 2560 ~2.8B
Pythia 6.9B 32 32 4096 ~6.9B
Pythia 12B 36 40 5120 ~12B

Table 1: Hyperparameters of model variants whose sur-
prisal estimates were examined in this work. #L, #H,
and dpegel respectively refer to number of layers, num-
ber of attention heads per layer, and embedding size.

B Surprisal Values as a Function of
Training Steps

The proportion of surprisal values from the Pythia
LM family as a function of training steps on each
quintile of the four corpora can be found in Figures
7 (Natural Stories), 8 (Dundee), 9 (GECO), and 10
(Provo).

C SSEs From Regression Models as a
Function of Training Steps

The SSEs from regression models containing sur-
prisal predictors from the Pythia LM family as a
function of training steps on each quintile of the
four corpora can be found in Figures 11 (Natural
Stories), 12 (Dundee), 13 (GECO), and 14 (Provo).
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Figure 7: Proportion of surprisal values from Pythia model variants on each quintile of the Natural Stories Corpus
as a function of training steps. Proportions that are greater than .05 are annotated.
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Figure 8: Proportion of surprisal values from Pythia model variants on each quintile of the Dundee Corpus as a
function of training steps. Proportions that are greater than .05 are annotated.
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Figure 9: Proportion of surprisal values from Pythia model variants on each quintile of the GECO as a function of
training steps. Proportions that are greater than .05 are annotated.
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Figure 10: Proportion of surprisal values from Pythia model variants on each quintile of the Provo Corpus as a
function of training steps. Proportions that are greater than .05 are annotated.
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Figure 11: SSEs from regression models containing surprisal predictors from Pythia model variants on each quintile
of the Natural Stories Corpus as a function of training steps. The columns of subplots share the scale but not the
range of the x-axis for visual clarity.
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Figure 12: SSEs from regression models containing surprisal predictors from Pythia model variants on each quintile
of the Dundee Corpus as a function of training steps. The columns of subplots share the scale but not the range of
the x-axis for visual clarity.
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Figure 13: SSEs from regression models containing surprisal predictors from Pythia model variants on each quintile
of the GECO as a function of training steps. The columns of subplots share the scale but not the range of the x-axis

for visual clarity.
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Figure 14: SSEs from regression models containing surprisal predictors from Pythia model variants on each quintile
of the Provo Corpus as a function of training steps. The columns of subplots share the scale but not the range of the
x-axis for visual clarity.
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