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Abstract

Biomedical NLP models play a big role in
the automatic extraction of information from
biomedical documents, such as COVID re-
search papers. Three landmark models have led
the way in this area: BioBERT, MSR Biomed-
BERT, and BioLinkBERT. However, their shal-
low evaluation –a single mean score– forbid
us to better understand how the contributions
proposed in each model advance the Biomedi-
cal NLP field. We show through a Multilevel
Analysis how we can assess these contributions.
Our analyses across 5000 fine-tuned models
show that, actually, BiomedBERT’s true effect
is bigger than BioLinkBERT’s effect, and the
success of BioLinkBERT does not seem to be
due to its contribution –the Link function– but
due to an unknown factor.

1 Introduction

Machine reading of biomedical texts has greatly
advanced due to pretrained NLP models such as
BERT. Biomedical NLP applications are of great
value due to their utility in real-world scenarios
such as answering questions which require back-
ground knowledge or the extraction of complex
biomedical entities from astonishing volumes of
academic papers related to COVID, for example.

Of special acknowledgement, three BERT-based
biomedical models, trained on PubMed abstracts
(their only source of biomedical knowledge), led
the way to concise research contributions on
biomedical NLP, namely, BioBERT (Lee et al.,
2019) proposing Domain Adaptive Pretraining
(DAPT), MSR BiomedBERT1 (Gu et al., 2021,
which we refer to as BiomedBERT) which chal-
lenged DAPT by pretraining BERT from scratch
with PubMed abstracts, and BioLinkBERT (Ya-
sunaga et al., 2022) which implemented a way to
link hyperlinked documents at pretraining time –
the Link function. These 3 contributions resulted

1Previously known as PubMedBERT.

in significant improvements on downstream scores
on the BLURB benchmark (Gu et al., 2021).

However, we claim, current evaluation methods
are oversimplistic. They reduce to a simple mean
score across datasets in the BLURB suite –a single
estimate. This forbid us to better understand the
contributions proposed by each work such as their
effect on scores and interaction with downstream
datasets. Moreover, from this single estimate, how
can we disentangle the contributions’ effects from
the effects of other variables such as random seeds,
learning rates, or number of epochs? We cannot.
And while some works show ablation studies to see
the particular effects of the proposed contribution,
doing so to isolate it from all possible variables
(including those mentioned above) leads to an ex-
ponential number of ablations which results in a
non-environmentally friendly, unfeasible approach
if pretraining is necessary for each ablation.

In this paper, we propose a regression analysis
widely used in the fields of Psychology and the
Social Sciences –Multilevel Analysis– to account
for the effects of all measurable variables, with-
out the need for ablations or further pretraining
experiments, in order to disentangle their effects
from the true effect of the proposed contributions
from BioBERT, BiomedBERT, and BioLinkBERT.
Our analyses show that, actually, random seeds
have a big effect on downstream scores. Also,
while BioBERT’s and BiomedBERT’s contribu-
tions have a big and significant effect by improving
on vanilla BERT’s score by 2.25 and 4.36 points,
respectively, on average across BLURB datasets,
BioLinkBERT’s Link function shows only a big
effect for QA datasets but not for any other dataset.

2 Background and Related Work

2.1 Multilevel Regression Analysis

Multilevel models (MLMs) are a type of regres-
sion analysis where the outcome to be modeled
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(downstream scores in our case) is dependent on
a set of independent variables that can pertain to
different levels in a hierarchy. In our case, we
define our problem as a 2-level hierarchy where
the lowest level –Level 1– contains fine-tuned
models, which is nested inside the upper level –
Level 2– which corresponds to groups of fine-tuned
models grouped according to the choice of pre-
trained model and downstream dataset; for exam-
ple, BioBERT-BIOSSES is a group of BioBERT
models fine-tuned on the BIOSSES dataset.2

Thus, variables at level 1 describe fine-tuning at-
tributes such as learning rates, batch size, and num-
ber of epochs. On the other hand, level-2 variables
describe attributes of the pretrained models, such
as the contribution proposed by a work (for exam-
ple, the Link function proposed by BioLinkBERT),
and the choice of downstream dataset. In this way,
a 2-level MLM (de Leeuw and Meijer, 2008) can
be expressed as:

y = β0+
∑

fixed

βixi+
∑

random

γijxij+u0j+e (1)

where β0 is the grand-mean intercept; the first sum-
mation corresponds to level-1 and level-2 fixed-
effects coefficients (βi) which represent the aver-
age individual effect of each variable (xi) on down-
stream scores (y); the second summation is a key
term that distinguishes MLMs from other regres-
sion models: level-1 random-effects, i.e. an ad-
justed effect (γij) on the level-1 fixed-effects coeffi-
cients according to each group (indexed by j);3 and
similarly for the random intercepts u0j which are
adjusted effects for each group on the grand-mean
intercept; finally, e is the residual. This model can
be fitted using Maximum Likelihood Estimation or
variants.

2.2 MLMs for Experimental Analyses
MLMs4 have been widely used for analysing ex-
perimental and observational data by fields such
as Psychology (Muradoglu et al., 2023; Judd et al.,

2Therefore, at level 2 we have 52 groups: 4 choices of pre-
trained models (including BERT) by 13 downstream datasets.

3For instance, we may expect random seeds to have a
different effect, due to chance, on test scores depending on the
choice of group, i.e. depending on the choice of pretrained
model and dataset; thus, for each group, we can estimate
the number of points, represented by a γij coefficient, that a
random seed deviates from the average effect of that random
seed across all groups, represented by a βi coefficient.

4Also known as Mixed Models and Hierarchical Linear
Models in other fields.

2017), Linguistics (Baayen et al., 2008), and the
Social Sciences (Rasbash et al., 2010; de Leeuw
and Meijer, 2008). For example, in the field of Ed-
ucation, MLMs analyze the impact of both student
(level-1) variables (age, socioeconomic status, gen-
der) and school (level-2) variables (mean socioe-
conomic status, ethnicity proportions) on students’
academic performance (Goldstein et al., 2007).

Works in Psychology have used MLMs to disen-
tangle the effects of different variables at different
levels while measuring their impact on participants’
reaction time on cognitive tasks (Kliegl et al., 2011,
2010). Moreover, work in Linguistics has lever-
aged MLMs to model the effect of between-speaker
features (age, country, etc.) and within-speaker fea-
tures (length of sentence, sequential position of
phrase, etc.) on articulation rate of spoken sen-
tences (Quené, 2008).

To our knowledge, our work is the first approach
towards leveraging MLMs for analysis of biomedi-
cal NLP models.

3 Dataset and Multilevel Model

3.1 Dataset for Multilevel Analysis

To generate a dataset to fit an MLM that explains
the impact of variables on downstream scores, we
fine-tune5 BioBERT, BiomedBERT, BioLinkBERT
and vanilla BERT (which we use as baseline) on
all datasets in the BLURB suite. We use test set
scores as the dependent variable. And we use fine-
tuning and pretraining features as level-1 and level-
2 variables, respectively.

To obtain robust estimates of effects (regres-
sion coefficients) we not only include test scores
from the best-validation-score models,6 we also
include the scores from a vicinity around the best-
validation-score models. This vicinity is defined
around the values of variables that lead to the best
validation score, (namely learning rate, batch size,
and number of epochs), in a way that scores in the
vicinity are consistent with the highest validation
score but allowing for variation in order to esti-
mate standard errors. We follow this process for
3 different random seeds for each dataset. We ob-
tained 5154 fine-tuned models across datasets and
pretrained models.

Table 1 shows a summary of all the variables

5We follow fine-tuning guidelines from BiomedBERT and
BioLinkBERT, and we use BioLinkBERT’s fine-tuning code.

6Models which scored the highest on the validation set of
each dataset.
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used for the analysis.7 Most of the variables are
indicator (binary) variables which take the value
of 1 whenever that variable is used by a particular
instance and zero otherwise. On the other hand,
the variable num_epochs takes integer values repre-
senting the number of epochs used for fine-tuning
a specific model.

3.2 Multilevel Model

We instantiate Equation 1 with the variables in
Table 1. As a common goal in the literature
(Frank E. Harrell, 2015), we aim to find which vari-
ables have a statistically-significant effect on down-
stream scores across BLURB datasets.8 We follow
model-building, hypothesis-testing, and evaluation
strategies from Robson and Pevalin (2016), Som-
met and Morselli (2021), and Brown (2021). To fit
MLMs we use the R-package lmerTest (Kuznetsova
et al., 2017). We use the statistical tests from
lmerTest to compute significance values (α = 0.05
level), AIC, and BIC scores.9 Furthermore, to esti-
mate the proportion of explained variability in test
scores by our variables we compute R-squared ef-
fects using the framework of Rights and Sterba
(2019) via the R-package r2mlm (Shaw et al.,
2022).

We added an additional term to our MLM not
shown in Equation 1: interaction terms between
level-2 variables; these terms are of the form
βm(xi×xk), which will help us see if a variable be-
haves differently for particular datasets in Section
4.

4 Multilevel Analysis and Results

We show the results of fitting our MLM. For Tables
2, 3, and 4, the statistical significance code is: p=0
’***’, p<0.001 ’**’, p<0.01 ’*’.

MLM results for level-1 variables: We first test
for the statistical significance of fixed- and random-
effects of level-1 variables. We observe in Table
2 that the fixed-effect of only one variable is sig-
nificant, namely lr_1; this means that the learning
rate of 1e-5 has a significant effect across models
and datasets: models fine-tuned with this learn-

7We include variables for the downstream datasets to take
into account the fact that some datasets may be more difficult
than others which may impact on the scores.

8We chose an MLM over simple linear regression since 1)
it allows for multiple levels of analysis, and 2) the fine-tuned
models inside a group are not independent from each other
and only MLMs can account for such non-independence.

9We prefer models that decrease AIC or BIC scores.

ing rate, on average, will lose 1 downstream point
as shown by the coefficient of lr_1. We also see
that the random seeds seed_20 and seed_47 have
a small, positive impact on test scores, on aver-
age, across models and datasets; nevertheless, these
fixed-effects seem to be due to chance since they
are not statistically significant. However, likeli-
hood ratio tests show that all random coefficients
are statistically significant (Table 4). This means
that level-1 variables behave in different ways for
each group (combination of pretrained model and
dataset) as we explain below.

Does chance play a role? All level-1 variables
behave differently for each pretrained model; but,
we note in particular that seed_20 and seed_47 con-
tribute the biggest variability in test scores as seen
in Table 4: on average, scores vary up to (±) 4.79
and (±) 6.21 points due to the choice of random
seed.10 If we average all the random coefficients11

of seed_20 and seed_47 for each pretrained model
across datasets, we find that BioBERT loses 2.33
and 3 points when using such random seeds. How-
ever, BiomedBERT and BioLinkBERT gain 0.52,
0.22 and 0.09, 0.64 points, respectively, due to such
randomness.

MLM results for level-2 variables: We observe
that most level-2 variables are statistically signif-
icant (Table 2), such as the effects of all datasets,
meaning that different datasets lead to different re-
sults. Also significant are the contributions from
BioBERT and BiomedBERT, namely, DAPT and
Pretrain_PubMed, respectively, meaning that their
effects –an average gain of 2.25 and 4.36 points
with respect to vanilla BERT– are consistent across
datasets. Surprisingly, the Link function is not sig-
nificant: probably, its effect is not systematic across
datasets. To better understand its effect, we esti-
mated its interaction with all datasets; as we see in
Table 3, when the Link function is used with QA
datasets, its effect is remarkable: models fine-tuned
with BioASQ and PubMedQA datasets gain, on
avg., 8.62 and 3.68 points, respectively. However,
this figure does not happen with any other dataset.
Moreover, the effect of the Link function, besides
non-significant, is rather small, which means that
whenever the Link function is used, on average, we

10These figures represent a comparison of how much vari-
ability seed_20 and seed_47 introduce in the test scores with
respect to the variability introduced by seed_59.

11We do not display the random coefficients since we be-
lieve it is more informative to provide an aggregated estimate.
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Variable name Level Description
seed_20, seed_47, seed_59 1 Random seeds used for fine-tuning the Biomedical models
lr_1, lr_2, lr_3, lr_4, lr_5 1 Learning rates used for fine-tuning the Biomedical models

batch_16, batch_32 1 Batch sizes used for fine-tuning the Biomedical models
num_epochs 1 Number of epochs for fine-tuning the Biomedical models

BioBERT 2 Indicator variable for BioBERT
BiomedBERT 2 Indicator variable for BiomedBERT
BioLinkBERT 2 Indicator variable for BioLinkBERT

DAPT 2 Indicator of Domain Adaptive Pretraining on BERT
Pretrain_PubMed 2 Indicator of pretraining BERT with PubMed data from scratch

Link 2 Indicator variable of BioLinkBERT’s Link function
all datasets names 2 Indicator variables of the datasets in the BLURB suite

Table 1: Variables used to model the variability in downstream scores for target Biomedical NLP models across
datasets in the BLURB suite. Level 1 corresponds to fine-tuning; level 2 to pretraining; all datasets names: BC2GM,
BC5_chem, BC5_disease, NCBI, JNLPBA, PICO, ChemProt, DDI, GAD, BIOSSES, HoC, BioASQ, PubMedQA.

Figure 1: R-squared: Decomposition of variance across
fixed and random effects.

would only see an improvement of 0.07 points on
any downstream dataset.

Effects from pretrained models: If we fit our
MLM with indicator variables for each pretrained
model, instead of their contributions, we obtain
the following effects: BioBERT (1.79**), Biomed-
BERT (4.52***), BioLinkBERT (3.47***). The re-
sult for BioLinkBERT seems to contradict the non-
significant effect of the Link function. It does not.
The effect of the BioLinkBERT variable takes into
account all possible functions inside BioLinkBERT
(without disentangling them) including the vari-
able of Pretrain_PubMed since BioLinkBERT was
pretrained from scratch with PubMed data. This
means that, overall, BioLinkBERT is highly use-
ful: it surpasses vanilla BERT, on average, by 3.47
points across datasets, though the Link function
does not seem to be the main reason for this result
due to its small effect size and lack of statistical sig-
nificance. Surprisingly, we see that BiomedBERT

has the biggest mean effect of all models: 4.52
points improvement over BERT.

R-squared effects: As shown in Figure 1, fixed-
effects of level-1 and level-2 variables account for
around 70% of all the variability in the test scores;
however, given that most of the level-1 coefficients
are non-significant and moderately small, we would
expect them to contribute little to this explanation
of variability. Surprisingly, though, level-1 random
coefficients (slope variation) account for around
10% of the variance in test scores, a considerable
portion of the variability. Finally, we note that
around 20% of the variance remains unexplained
(the residual part) which may mean two things.
First, there is still room for adding variables at
either level to better explain the test scores; we
hypothesized that other pretraining features, such
as batch size, could impact on the scores, how-
ever, it was not possible to add them to the anal-
ysis since they perfectly correlate with variables
already added, leading to the problem of collinear-
ity. And second, fully understanding NLP models
is a complex task which requires detailed analyses
of several variables.

Robust estimates: As shown in Table 2, most of
the standard errors (SEs) are small which means
that our coefficients estimates are robust, i.e. their
estimation is precise due to the low variability rep-
resented by the corresponding SE, something that
could be more difficult to achieve when only av-
eraging scores from a handful of models across
random seeds as is usual in the NLP literature.
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Variable Coeff. (β) SE t
Intercept 53.96*** 0.88 61.09
seed_20 0.49 0.70 0.70
seed_47 0.21 0.89 0.24
lr_1 -1.00** 0.35 -2.82
lr_2 0.59 0.51 1.14
lr_3 0.65 0.48 1.35
lr_4 0.15 0.24 0.61
batch_16 0.28 0.17 1.59
num_epochs -0.02 0.02 -1.00
DAPT 2.25*** 0.38 5.90
Pretrain_PubMed 4.36*** 0.41 10.41
Link 0.07 0.32 0.21
BC2GM 27.40*** 2.02 13.54
BC5_chem 35.42*** 0.60 58.49
BC5_disease 25.96*** 0.64 40.21
NCBI 31.79*** 0.73 43.29
JNLPBA 21.26*** 0.82 25.92
PICO 16.14*** 0.89 18.00
ChemProt 17.56*** 0.73 23.97
DDI 23.07*** 0.81 28.23
GAD 23.81*** 0.57 41.45
BIOSSES 20.85*** 0.67 30.74
HoC 25.48*** 0.75 33.59
BioASQ 17.58*** 0.87 20.16

Table 2: Results of MLM: fixed-effects of variables
at levels 1 and 2. Coeff: coefficient. SE: Standard
Error. t: t-value. We use seed_59, lr_5, batch_32, and
PubMedQA as baselines to avoid collinearity.

5 Conclusions

Our multilevel analysis of Biomedical models can
disentangle the effects from fine-tuning and pre-
training by providing particular effects of each vari-
able with respective statistical significance. As we
saw, contrary to expectation, BiomedBERT has the
biggest mean effect across datasets from all mod-
els. Moreover, even though BioLinkBERT holds
as a useful model, its main contribution –the Link
function– does not seem to be the main reason for
its success, except for QA datasets where the Link
function excels. Furthermore, we showed that all
fine-tuning variables behave differently for each
pretrained model, giving some advantage to some
models purely by chance. And this figure, accord-
ing to R-squared tests, accounts for 10% of all the
test scores; thus, we suggest using several random
seeds to counterbalance their effects. Finally, we
note that it would be nearly impossible to see all
these figures with current evaluation methods –a

Interaction Coeff. (β) SE t
DAPT×BIOSSES -7.49*** 0.71 -10.5
PubMed×NCBI -2.31* 0.86 -2.6
PubMed×PICO -2.22* 0.95 -2.3
PubMed×BIOSSES 13.1*** 0.63 20.5
PubMed×BioASQ 7.37*** 1.49 4.9
Link×HoC -3.58*** 0.85 -4.2
Link×BioASQ 8.62*** 1.83 4.6
Link×PubMedQA 3.68* 1.38 2.65

Table 3: Results of MLM: interaction terms. PubMed
stands for Pretrain_PubMed. Only statistically signifi-
cant interactions are displayed.

Variable Variance Std. Dev.
Intercepts 9.29*** 3.04
seed_20 22.96*** 4.79
seed_47 38.59*** 6.21
lr_1 3.03*** 1.74
lr_2 9.72*** 3.11
lr_3 8.78*** 2.96
lr_4 0.42* 0.64
batch_16 0.37** 0.60
num_epochs 0.01** 0.10

Table 4: Results of MLM: random effects (random inter-
cepts and random coefficients). Variables seed_59, lr_5,
batch_32 are used as baselines to avoid collinearity.

single mean score. We hope the community will
adopt MLMs as a deeper evaluation method.

Limitations

We note that there may be more independent vari-
ables having an effect on downstream scores that
we did not take into account due to their difficulty
to be measured, or to be known, such as detailed
pretraining hyperparameters or data pre-processing
methods. Also, we note that our design of the prob-
lem as a 2-level hierarchy may not be the most
optimal design; there are more design types that
can be operationalized via MLMs; however, hier-
archical models are the most common and studied
in the literature. Furthermore, in this paper, we
fine-tuned the base sizes of the pretrained models
(e.g. BioLinkBERT-base), we did not analyze the
large-size models (e.g. BioLinkBERT-large) which
we leave as future work. Also, due to GPU mem-
ory limitations, we did not explore more levels of
the variables studied such as using a batch of size
64 for fine-tuning which may benefit some of the
models.
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