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Abstract

Readability assessment for book-level long text is widely needed in real educational applica-
tions. However, most of the current researches focus on passage-level readability assessment
and little work has been done to process ultra-long texts. In order to process the long sequence
of book texts better and to enhance pretrained models with difficulty knowledge, we propose a
novel model DSDR, difficulty-aware segment pre-training and difficulty multi-view representa-
tion. Specifically, we split all books into multiple fixed-length segments and employ unsuper-
vised clustering to obtain difficulty-aware segments, which are used to re-train the pretrained
model to learn difficulty knowledge. Accordingly, a long text is represented by averaging mul-
tiple vectors of segments with varying difficulty levels. We construct a new dataset of Graded
Children’s Books to evaluate model performance. Our proposed model achieves promising re-
sults, outperforming both the traditional SVM classifier and several popular pretrained models.
In addition, our work establishes a new prototype for book-level readability assessment, which
provides an important benchmark for related research in future work.

1 Introduction

The readability assessment is to automatically predict the difficulty level of an input text, which has a
wide range of applications, such as automating reader advisory (Pera and Ng, 2014), clinical informed
consent forms (Perni et al., 2019) and patient education based on the Internet (Sare et al., 2020).

The readability assessment has a long history of research. In early days, researchers focus on scoring
the reading difficulty of texts by designing various readability formulas. Later, many works treat it as a
classification task, and various linguistic features are exploited to perform machine learning classifica-
tion (Schwarm and Ostendorf, 2005; Petersen and Ostendorf, 2009; Qiu et al., 2017). In recent years,
traditional linguistic features are combined with the pre-trained model to predict the difficulty level of a
text (Qiu et al., 2021; Li et al., 2022). In addition, there are works regarding readability assessment as a
regression task (Sheehan et al., 2010) or a ranking task (Ma et al., 2012; Lee and Vajjala, 2022).

Today, reading a whole book plays a vital role to improve children’s reading comprehension ability,
thus followed by an increasing demand for the book readability assessment. However, most of the
existing work processes readability assessment with a passage as input, which is usually an extracted
part of a book. These passage-level models have limitations when it comes to the assessment of book-
level long texts.

Going from passage-level to book-level readability assessment, a challenging task is how to deal with
the long input sequence. As is illustrated in Figure 1, the length of a book text is typically tens times
more than that of a passage text. To handle the long sequence simultaneously is a hard work. Taking the
pre-trained model BERT as an example, when the mini-batch is 1, using a 24G video memory GPU, the
maximum length of slices should be 16 * 512 = 8192. In our children’s books data, only 23% [74/320]
of the samples were below this value in length. Moreover, the widely applied strategies to process long
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Figure 1: Statistics of length distribution comparing passages and books, derived from textbooks and
children’s books respectively. Let the text length be z, the mapping function is f(z) = |In(z)].

sequence in passage-level text applications, such as truncating, sliding window and pooling, could not
work well for book-level long texts because of too much loss of information.

Nowadays, pre-trained models have made remarkable achievements in many NLP tasks. But these
models, such as the pioneer BERT (Devlin et al., 2018) and the long-sequence-specialized BigBird (Za-
heer et al., 2020), are mostly based on masked language modeling and next sentence prediction, and
thus can not express difficulty knowledge. Moreover, the computational complexity of the multi-head
self-attention mechanism in the model structure is proportional to the square of the length of the input
sequence. Consequently, directly applying pre-trained models to book readability assessment cannot
obtain satisfying results.

In this paper, Firstly, we investigate whether the passage-level readability assessment model can be
applied to predict the reading difficulty of a book, and we get a negative answer, indicating that there
exists a large gap between passage-level and book-level readability assessment.

Therefore, we propose a two-stage model with difficulty-aware segment pre-training and multi-view
difficulty representation (DSDR) for this challenging task. Specifically, we split all book texts into
fixed-length segments, and perform unsupervised clustering to assign each segment with a difficulty
label according to linguistic features. The labeled segment difficulty data is exploited to finetune the
pre-trained model with a difficulty classification task, in order to enhance the pre-trained model with the
ability to recognize and represent difficulty knowledge. In the next stage, the difficulty-aware pre-trained
model is employed to extract difficulty features of segments, and multiple difficulty vectors are fused to
form the overall representation of a whole book.

We construct a Graded Children’s Books (GCB) for book-level readability assessment, including 320
popular stories and famous novels in Chinese. We conduct detailed experiments on this dataset. The
experimental results demonstrate that our proposed model achieves an accuracy of 73.125, which sig-
nificantly outperforms the traditional machine learning method SVM, neural network classifiers and
pretrained models. We will make our data and code publicly available for future research.

To sum up, our contributions are as follows:

* We address the readability assessment of book-level long text with pre-trained language models,
and construct a Chinese dataset of children’s books labelled with difficulty levels.

* We propose a novel DSDR model to deal with the long sequence effectively and enrich the pre-
trained models with difficulty knowledge.

* Our proposed model achieves promising results for long text readability assessment, outperforming
both the traditional classifier and popular pre-trained models.
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2 Related Work

2.1 Readability Assessment

In the early days, researchers developed a variety of readability formulas, including Flesch (Flesch,
1948), Dale-Chall (Dale and Chall, 1948) and SMOG (Mc Laughlin, 1969). In the field of NLP, read-
ability assessment is often regarded as a classification problem.

For traditional machine learning methods, researchers have used various linguistic features defined by
linguists to construct models (Schwarm and Ostendorf, 2005; Petersen and Ostendorf, 2009; Qiu et al.,
2017; Lu et al., 2019). Some works (Imperial, 2021; Deutsch et al., 2020; Lee et al., 2021) combined
features extracted from neural networks with linguistic features and use traditional machine learning
algorithms to classify.

For deep learning methods, (Jiang et al., 2018) purposes knowledge-enriched word embedding
(KEWE), which encodes the knowledge of reading difficulty into the representation of words. (Azpiazu
and Pera, 2019) present a multi-attentive recurrent neural network architecture for automatic multilin-
gual readability assessment. There are also some works (Qiu et al., 2021; Li et al., 2022) that fuse neural
network features with artificial linguistic features.

Besides English and Chinese texts, (Reyes et al., 2022) develop a readability assessment model for
Cebuano. However, the existing works don’t specialize for long text.

2.2 Long Sequence Processing

For book-level readability assessment, the process of the long sequence input is a challenging task be-
cause of the excessive computational complexity of full attention in long sequence processing. Current
work on reducing the computational complexity exploits the following methods.

Sparse attention. It reduces the computational complexity by keeping only the connections of sur-
rounding tokens (Beltagy et al., 2020; Zaheer et al., 2020).

Approximation methods. Reformer (Kitaev et al., 2020) replaces dot-product attention by one that
uses locality-sensitive hashing and uses reversible residual layers instead of the standard residuals. Per-
formers (Choromanski et al., 2020) use a Fast Attention Via positive Orthogonal Random features ap-
proach (FAVOR+) to approximate softmax attention kernels. Linformer (Wang et al., 2020) demonstrates
that the self-attention mechanism can be approximated by a low-rank matrix.

Alternative methods. FNet (Lee-Thorp et al., 2021) replaces the self-attention sublayers with sim-
ple linear transformations PoNet (Tan et al., 2021) uses a Pooling Network for token mixing in long
sequences with a linear complexity.

Compression methods. Pyraformer (Liu et al., 2021) introduces the pyramidal attention module
(PAM). Triformer (Cirstea et al., 2022) uses a triangular, variable-specific attention which contains Linear
complexity and Variable-specific parameters.

In our work, we choose BigBird with sparse attention as a baseline model and borrow the compression
methods to implement PyramidFormer.

2.3 Multi-representation Modeling

In the task of pairwise comparison between sequences, there are usually two strategies, Cross-encoder
and Bi-encoder, the former works well but is too slow. Poly-encoder (Humeau et al., 2019) is pro-
posed as a compromise between the two methods. Drawing on the idea of Poly-encoder, some multi-
representation work was born. (Kong et al., 2022) design a lightweight network to fuse the aspect em-
beddings for representing queries and documents. (Xu et al., 2022) introduce a novel multi-task model
called Mixture of Virtual-Kernel Experts (MVKE) to learn user preferences on various actions and topics
unitedly.

3 Can Passage-level Readability Assessment Model Apply to Long Texts?

Comparing with passage-level readability assessment, book-level readability assessment is less ad-
dressed and more challenging. For both levels, our experimental datasets come from the educational
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field, and these texts are selected by experts according to children’s cognition. Therefore, children who
master the classroom content (passage-level data) are expected to be able to read the extended books
at the same level. In order to investigate whether the trained passage-level readability assessment mod-
els can be directly applied to books, we conduct experiments by training on passages and then perform
transfer inference on books.

3.1 Datasets

Passage-level Data Following previous work on passage-level readability assessment, we collected
texts in different grades from the textbooks of primary school (TPS) of more than ten publishers, where
we deleted poetry and traditional Chinese texts. According to the specification in the Chinese Curriculum
Standards for Compulsory Education by Ministry of Education, texts of Grade 1-2, Grade 3-4, Grade
5-6 are assigned with the difficulty level 1, 2, 3, respectively.

Book-level Data For book-level readability assessment, we constructed a dataset Graded Children’s
Books (GCB) in Chinese. We collected 320 books including popular stories and famous novels, with a
total of 18 million characters. Each book is assigned with a suitable grade for children to read, according
to the Reading Guidance for School Students by Ministry of Education ° and Basic Bibliography of
the Library of Aiyue Primary School '. If there is a conflict for a the same book, the standards of the
Ministry of Education shall prevail. The difficulty is also classified into 3 levels, corresponding to Grade
1-2, 3-4, 5-6, respectively.

The statistics of both datasets is shown in Table 1. There are two notable differences between two
datasets: 1) The number of book samples is much smaller than that of passage samples. 2) The average
length of book texts is much longer than that of passage texts. These two properties pose more challenges
for book readability assessment.

Data Level Items AvgLen Min.Len Max.Len
1 814 266 15 900
TPS 2 1063 679 110 3903
3 1104 1140 109 6054
All 2981 737 15 6054
1 66 12935 175 154517
GCB 2 100 48498 355 203041
3 154 84391 339 317476
All 320 58437 175 317476

Table 1: Statistics of the passage-level dataset TPS and the book-level dataset GCB.

Model Dataset Precision Recall F1
SV TPS §7231 87333 87.140
TPS-GCB 52707 57812 50377
TPS 78378 78.333 78.33%
TextCNN  1ps GCB 53469 49375 38.965
TPS 83852 83.667 83236
BERT  1ps GCB 56863  52.812  44.030

Table 2: Transfer inference results from passage-level TPS to book-level GCB.

3.2 Methods

We implement several classical classification models to predict the difficulty level of passages and books.
We train models based on passage data and then test on both passage-level and book-level data. Specif-
ically, on the passage data, the training, validation and testing set is split by 8:1:1. And for book-level
transfer evaluation, all 320 books are considered as the test data.
SVM. The linguistic difficulty features are extracted using zhfeat (Li et al., 2022) which are normalized
using MinMaxScaler (range -1 to 1). We adopt the libsvm > framework for our experiments.
‘http://www.moe.gov.cn/jyb_xwfb/gzdt_gzdt/s5987/202004/W020200422556593462993.pdf

'"http://www.cptoday.cn/news/detail/8309
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Figure 2: The confusion matrix of transfer inference from TPS to GCB, where the values on the diagonal
are the recall of each category.

TextCNN (Kim, 2014). The maximum truncated length of the text is set to 2000. We adopt a random
initialized character embedding. The number of convolution kernels is 128, and the size list is [2,3,4].

BERT. The maximum truncated length of the text is set to 2000 tokens, which is cut into 4 segments
of 500. We use a sliding window to obtain the [C'LS] vector of each segment, and utilize the maximum
pooling to obtain the final text representation.

3.3 Results

The experimental results are shown in Table 2. In terms of F1, SVM, TextCNN and BERT have a drop
of 36.763 points (87.140-50.377), 39.373 points (78.338-38.965) and 39.206 points (83.236-44.030),
respectively. These results demonstrate that the passage-level readability assessment models can’t be
directly applied to predict the difficulty level of a book. It is necessary to train a model specialized for
book-level texts.

To display how the models perform predictions on different difficulty levels, we construct confusion
matrices of transfer inference, as shown in Figure 2. Compared with SVM, TextCNN and BERT are
sensitive to length and tend to predict a book as a higher difficulty level. We think the bias comes from
the direct transfer inference. When we apply a model trained on passages that are relatively short to long
texts, the model tends to predict the text as a higher difficulty level. As a result, the model obtains a quite
high recall on the highest level but a low recall for the other levels.

4 Readability Assessment of Long Texts

To handle the book-level long text readability assessment, we propose a DSDR model and the overall
structure is shown in Figure 3. Based on the Transformer structure, DSDR adds two modules: difficulty-
aware segment pre-training and difficulty multi-view representation.

4.1 Difficulty-aware Segment Pre-training

Due to hardware limitations, we cannot directly utilize pre-trained models to process ultra long text. To
make full use of the long text without loss of information, we compress a long text into multiple parts
that are shorter and can be input into pre-trained models.

A book text is split into several segments, and the reading difficulty of each segment is different, which
is also not consistent with the label of the whole book. To obtain a difficulty label for each segment,
we classify the segments by clustering according to their linguistic features. Further, we leverage the
automatic clustered data to do supervise training, through which the pre-trained model is enhanced with
difficulty knowledge.

Concretely, given a book B, we split it into several fixed-length segments B = (51,52, ..., Sn) to
facilitate processing. We perform this segmentation on all books in the data, with G denoting the total
number of segments of all books.

Then for each segment .S;, we extract its linguistic difficulty features F;:

F; = Extractor(S;),i =1,2,....G (1
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Figure 3: The overall architecture of our proposed DSDR model for book readability assessment.

where Extractor is the feature extractor. Following the previous work (Li et al., 2022), we adopt its
Chinese linguistic features, including character, word and sentence features.

By extracting difficulty features in each segment of all the books, we get a series of pairs (S;, F;) .
Then we exploit the clustering algorithm KMeans to classify segments into m categories:

L; = KMeans(clusters = m, F;),i = 1,...,G ()

where L; is the category label of Segment S;.

In this way, each segment is assigned with a unique label. Gathering all the segments, we construct a
dataset D = {(S1, L1), (S2, L2), ..., (Sa, Lg) }. in an unsupervised way.

Further, on the dataset D, we employ the pre-trained model BERT followed by a linear layer to do
a supervised training, where the training objective is to predict the difficulty label of each segment.
Consequently, we obtain a pre-trained model enhanced with difficulty knowledge:

ptmD = BERT (train = D) 3)

4.2 Difficulty Multi-view Representation

Given an input book, we split it into N segments B = (51, Sa, ..., Sn), and then do inference on each
segment with ptmD to get its text representation:

where H; is the [CLS] token representation of the segment S;.
Thus, for a book B, its semantic representation with difficulty knowledge is H = (H1, Ha, ..., Hy).
In this way, a long text is compressed and represented with H without loss of difficulty information.
Since the semantics of each segment is extracted independently, context information is lacking. There-
fore, we apply the Transformer (Vaswani et al., 2017) encoder to supplement the contextual representa-
tion:
H =H+P (5)

H' = Transformer(H'™ '), t =1,2,....k (6)
where P = (P, Py, ..., Py) is the positional encoding sequence, P; denoting the position of the i-th

segment in the book. k is the number of encoder layers. The calculation method is consistent with the
paper (Vaswani et al., 2017).
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Intuitively, a long text might contain information of various difficulty levels. To further exploit the
difficulty knowledge, we set multiple difficulty representation vectors C' € R™*¢, where d is the hidden
size, and m is the number of difficulty levels that is the same as the number of clusters set in KMeans.

Each difficulty representation vector C; € R'*is trained to extract the information of the correspond-
ing difficulty level. The difficulty representation vectors C' are utilized to extract information from H*
using cross-attention. The extracted information R € R™*¢ are representations of m difficulty levels:

R = Attention(CW®, H*W¥ HFWVY) (7)

T

K
Attention(Q, K, V) = Softmax(Q
vd
where W®, WX and WV are trainable parameters. R = (Ry, Ro, R3, ..., R;y) € R™*? is the difficulty
multi-view representation, where R; is the singe-view representation of segment difficult Level ¢, which
is not directly mapped to the book’s difficulty level.

Y ®)

4.3 Difficulty Level Prediction

Based on multi-view representations, we employ mean pooling to obtain the overall representation:
T = MeanPooling(R1, Rz, R3, ..., Ry) 9)
Finally, we compute the probability that a book belongs to the i-th difficulty category by:
pi = Softmax(TW + b) (10)
where W are trainable parameters, and b are scalar biases.

S Experimental Setup
5.1 Data and Metrics

We conduct experiments on our new data GCB, consisting of 320 children’s books labelled with difficulty
levels. The statistics of GCB is listed in Table 1. We apply stratified k-fold (k=5, train=0.8, test=0.2) and
report the average results.

For evaluation, we calculate the weighted precision, recall, F1 score and accuracy.

5.2 Comparing Methods

We provide a comprehensive comparison with previous approaches, including the traditional SVM, the
neural network classifiers (TextCNN, DPCNN) and the pre-trained models (BERT, BigBird).

SVM-L. Only the length features are input into the SVM classifier.

SVM. TextCNN. BERT. The details are the same as in Section 3.2, except for the maximum length in
TextCNN and BERT.

DPCNN (Johnson and Zhang, 2017). It increases the number of layers of CNN to extract long-range text
dependencies. The number of convolution kernels is 128.

BERT-FP-LBL (Li et al., 2022). We apply the most recent passage-level model on Chinese data, where
the adjustment factor p is O and other parameters remain the same as in the original paper.

BigBird (Zaheer et al., 2020). It uses the sparse attention to handle sequences that are eight times longer
than usual.

PyramidFormer. Inspired by the work (Cirstea et al., 2022), we designed a model for long sequence
compression, in which we replace the self-attention in BERT with the linear patch attention. We use
random initialized character embeddings.

DS+TextCNN. DS+DPCNN. We apply our ptmD model to get the difficulty-aware text representation
H, and use H as the input sequence of TextCNN and DPCNN, respectively. Other settings remain
unchanged.
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5.3 Training Details

We do experiments using the Pytorch (Paszke et al., 2019) framework. For training, we use the AdamW
optimizer, the weight decay is 0.02 and the warm-up ratio is 0.1. For the difficulty-aware segment pre-
training in Section 4.1, the number of difficulty categories m is 14, the segment length is 500, the batch
size is 16, the epoch is 10 and the learning rate is 3e-5. For the difficulty multi-view representation in
Section 4.2, the batch size is 16, the number of Transformer encoder layers k is 3, the epoch is 100 and
the learning rate is 3e-5. We choose the length as 180000 which covers 95% of the books. Accordingly,
the book is represented as 360 (180000/500) segments, as shown in Table 3.

6 Results and Analysis

Model Max.Len Embedding Precision  Recall F1 Accuracy
SVM-L Unlimited - 62.908 66.250  63.002 66.250
SVM Unlimited - 68.587 68.750  68.228 68.750
TextCNN 180000 180000 x 64 58.488 55.937 46.401 55.937
DPCNN 180000 180000 x 64 68.860 68.750 68.142 68.750
BERT 8192 16 x 512 x 768 50.258 61.875 54.309 61.875
BERT-FP-LBL 4000 8 x 500 x 768 61.420 63.437 57.178 63.437
BigBird 4096 4096 x 768 53.710 61.250 51.146 61.250
PyramidFormer 180000 180000 x 64 69.061 69.062  68.253 69.062
DS + TextCNN 180000 360 x 768 69.306 69.062 67.997 69.062
DS + DPCNN 180000 360 x 768 72.338 70.625  70.831 70.625
DSDR 180000 360 x 768 73.266 73.125 72.466 73.125

Table 3: Overall experimental results on children’s books for readability assessment.

6.1 Overall Results

The overall experimental results are summarized in Table 3. Our proposed DSDR model achieves the
best performance on all metrics. Compared with the traditional SVM classifier, our model improves by
4.238 on F1. The simple SVM classifier with only the length feature (SVM-L) obtains an F1 score of
63.002, which is much better than TextCNN, BERT and BigBird, demonstrating that the length feature
plays a vital role for readability assessment. But it is about 10 points lower than our model DSDR.

Though the pre-trained models are becoming mainstream for various NLP tasks, it is not feasible to
directly apply them to our task. Using the pretrained model BERT only obtains an F1 score of 54.309.
Even for the pre-trained model specialized for long text like BigBird, it’s too long of our book text to
be compressed as an input, resulting in a poor result of 51.146 F1 score. In contrast, our model DSDR
processes the long input sequence effectively and at the same time incorporates difficulty knowledge,
outperforming BigBird by more than 20 points on F1 and more than 10 points on accuracy.

Compared with TextCNN and DPCNN, both DS+TextCNN and DS+DPCNN bring big improvements
by applying our trained ptmD to get the difficulty-aware representation as model input. It improves
F1 by 21.596 points over TextCNN, and outperforms the advanced DPCNN by 2.689 F1 points. This
validates that our difficulty-aware segment pre-training is flexible, and can be easily applied to other
neural network models to improve readability assessment performance.

6.2 Ablation Study

We explore the contribution of each component in our DSDR model by conducting ablation studies with
the following settings:

-DPT: Do not apply difficultty-aware segment pre-training, instead, we use the original pretrained
model to extract difficulty features from segments.

-MVDR: Do not use multi-view representations.

The results are shown in Table 4. Without applying difficulty-aware segment pre-training leads to an
obvious drop of performance, with about 5 points on both F1 and accuracy. In contrast, after exploiting
difficulty-aware segment pre-training on our automatically constructed data, the pre-trained model learns
to extract segment difficulty features.
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Model F1 Acc
DSDR  72.466 73.125
-DPT 67.402 68.125

-MVDR 71.142 71.563

Table 4: Ablation study on the model structure.

Without the use of difficulty multi-view representations (MVDR) also leads to a drop of performance.
This indicates that, for a book-level long text with varying difficulty levels, it’s important to set up
multiple difficulty representations.

6.3 Confusion Matrix

To clearly display the difficulty levels predicted by different models, we construct confusion matrices
based on the predicted results of SVM, BERT, BigBird and DSDR. The results are shown in Figure 4.
Compared with SVM, our DSDR model obtains an obvious performance gain on Level 1, and compared
with BERT and BigBird, our model achieves significant improvements on Level 2.

As shown in Figure 4, BERT and BigBird obtain low recall value on Level 2 and high recall value on
Level 3. For BERT and Bigbird, we need to truncate the input text into a certain length to feed into the
pre-trained model, which loses length information.

After truncation, the texts of Level 2 and Level 3 have similar lengths. As a result, the model is likely
to predict texts of Level 2 as Level 3, which causes the low recall in Level 2 and the false high recall

in Level 3. In contrast, our model represents the long text with multiple difficulty-enriched segments,
avoiding the loss of information.

BERT BigBird DSDR

True label
True label
True label
True label

- 0.058 0.052 - 0.045 0.019

2 2 2
Predicted label Predicted label Predicted label Predicted label

Figure 4: Comparative analysis of confusion matrix.

6.4 Analysis on the Number of Clusters

During difficulty-aware segment pre-training, we exploit the clustering algorithm KMeans to classify
different segments into multiple categories. To explore the effect of the number of clusters on the results,
we set up different m and report the experimental results in Figure 5.

Analysis of the number of clusters m

- F
74 ACC

F1 & Accuracy

2 4 6 8 10 12 14 16
Number of clusters m

Figure 5: Effect of the the number of clusters m.
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When m is small, the model’s ability to distinguish difficulty levels is weak. When m is relatively big,
more difficulty fragments are extracted, and the overall performance of modeling as multiple representa-
tions is better. When m=14, we obtain the best results on both F1 and accuracy.

6.5 Experiments on Different Multi-view Representation Fusion Methods

With reference to the work (Kong et al., 2022), we design several different ways of difficulty multi-view
representation fusion.

Average Weight (AW). The method used in our paper.

Random Weight (RW). We set a learnable parameter o € R'*™, and compute the weight of each
difficulty representation:

T = R; 11
Z;ea1+...+eam v ( )

(2

Transforming Weight (TW). We set a linear layer (LL) to transform each difficulty representation to
1 dimension, and compute the weights by:

m

B LL(R;) '
= Z} LL(Ry) + -+ LL(Rm)R’ (12)

The experimental results are shown in Table 5. The fusion method does not have a significant effect
on the results. We believe this is because our difficulty vector C' is learned as a parameter and is able to
adapt itself to changes in the weights of individual difficulty representations, and thus it is not sensitive
to fusion methods.

Method P R F1 Acc
AW 73266 73.125 72466 73.125
RW 72738 73.125 72.147 73.125
™ 73.464 72500 72.541  72.500

Table 5: Experiments on different fusion methods.

6.6 Case Study

To display our interesting task of readability assessment for children’s books, we list some examples in
Table 6, reporting the predicted results by DSDR and some baseline models.

Title Length  True level SVM BEI;‘;dlctBI;gE;ei 4 DSDR
ZF1 & — 3 (Green Mountain is a mystery) 11191 1 1 3 3 [
/N AFIRFA (Peter Pan Karlsson) 154340 2 3 3 3 2
e F AR5 (The Secret of the Hat) 50805 2 3 3 3 2
/NEFKIE (Little Soldier Zhang Ga) 54901 3 2 3 3 3
A& T HEEMN (A Tree Grows in Brooklyn) 277362 3 1 3 3 2

Table 6: Case study

7 Conclusion

In this paper, we propose a novel model DSDR to assess the reading difficulty of book-level long texts.
Through difficulty-aware segment pre-training, the pre-trained model is enhanced with the ability to
represent difficulty knowledge, and the difficulty multi-view representations help to compress a long
text into a representation without loss of information. In addition, we construct a new dataset Graded
Children’s Books in which each book is labelled with a difficulty level. Experimental results show
that our approach achieves superior performance against traditional methods and popular pre-trained
language models.
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