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Abstract
Although Large Language Models (LLMs)
have been trained using just the next token pre-
diction objective, these have shown impressive
performance on various tasks. Consequently,
it has attracted research interests in this regard.
While one line of work in the past has sug-
gested that LLMs learn surface-level statistics
from the dataset, another line of work empha-
sizes that the learned representations are effec-
tive for simulating the underlying world model,
considering the causal relationship for the next
token prediction. This phenomenon is often
referred to as the emergence of a world model
in sequence prediction tasks. Recent work has
demonstrated this phenomenon in a simulated
setting of board games like Othello and Chess.
In this paper, we analyze the game of Check-
ers to find out the emergence of a world model
in a language model. By training a GPT-style
autoregressive language model using only the
next character prediction objective, we find that
the model does show a hint of learning a world
model representation of the board positions.
We perform our analysis on two datasets: 1)
synthetic dataset, which comes from the check-
ers game tree, and 2) human gameplay dataset.
With multiple models trained with different
layer sizes, we find that increasing the param-
eter size does help learn better world model
representation decoded by linear probes.

1 Introduction

Though the Large Language Models (LLMs) have
shown a remarkable ability to perform well on a
wide range of tasks (Radford et al., 2019; Brown
et al., 2020), the underlying process behind pre-
dicting the desired next token remains a black box.
Since these language models are trained on a huge
corpus of human-written text, it remains challeng-
ing to validate whether the network models the
causal relationships or relies on spurious correla-
tions occurring in the large corpus. Some initial
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findings suggest LLMs rely on surface-level statis-
tics, stating LLMs are ‘stochastic parrots’ (Bender
et al., 2021) and ‘causal parrots’ (Zečević et al.,
2023). On the other hand, some of the recent work
highlights LLMs learn feature representations that
help create a proxy for an internal representation
of the world. This property of the emergence of
the ‘world model’ (Ha and Schmidhuber, 2018)
in the learned representations has attracted signif-
icant research interest in recent years (Li et al.,
2021; Toshniwal et al., 2022; Li et al., 2023; Nanda
et al., 2023; Karvonen, 2024). The former line
of work deals with model interpretations from an
end-to-end perspective, whereas the latter heavily
relies on understanding the complex properties via
learned hidden representations. In this work, we
focus on the latter part and analyze the learning pro-
cess of GPT-style autoregressive models (Radford
et al., 2018). Recent works in this line have shown
these representations encoding complex properties
present in the language (Bau et al., 2020; Goh et al.,
2021; Geva et al., 2021; Burns et al., 2023; Elhage
et al., 2022; Gurnee et al., 2023). More recently, re-
searchers have explored the learning behavior using
a simulated setting coming from a board game like
Othello (Li et al., 2023; Nanda et al., 2023) and
Chess (Toshniwal et al., 2022; Karvonen, 2024).
We extend this setting to the game of Checkers
(also see App. A) by training a GPT-style architec-
ture (Radford et al., 2018) over the task of the next
character prediction. We consider gameplay trajec-
tories (sequence of moves in the game of checkers)
coming from human gameplay as well as create
a synthetic dataset using a random legal move in
the game, i.e., considering the random sequences
obtained from the game tree of checkers. A note-
worthy feature of this training setup is that no infor-
mation is provided to the network about the game
of checkers, i.e., no legal moves feedback, no game
design, and no information about the quality of the
trajectory (more strategic or less strategic). Inter-
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Figure 1: The Figure shows the GPT-style architecture trained over gameplay move sequences (represented as a
PDN string) for Checkers. The evidence of the emergence of the ‘world model’ is obtained by probing the latent
activations hi from different layers for predicting the actual board state, where θ denotes the parameters for linear
probes. Note that the figures show the next move prediction as an objective for representation purposes; in actual
experiments, we considered the next character prediction for training the models. (see §3 for more details)

estingly, the training setup we follow does not even
consider the next move prediction as the learning
objective but rather the next character prediction
(multiple characters form a move in the game), and
the network only considers the sequence of char-
acters as an instream to learn about the game. The
closed setup of the game with definite board states
helps facilitate simulating the underlying ‘world
model’, i.e., the rules of the game decide the legal
moves. We explore if the next character prediction
tasks help learn useful representation forming the
proxy for the board game, i.e., ‘world model’ for
checkers. We train multiple networks with differ-
ent layer sizes and observe the learning behavior
across the training. Further, for analyzing the emer-
gent behavior of the trained model, we consider
using probes (Alain and Bengio, 2018; Belinkov,
2022) trained over latent representations learned by
the model. Figure 1 provides a brief overview of
the experimental setup. We observe that the deeper
layers of the generative models tend to predict the
game board state better, showcasing a piece of ev-
idence for emergent behavior. In a nutshell, we
make the following contributions:

• We create a simulated setting of decision-
making tasks using the game of Checkers.
Following previous works on OthelloGPT (Li
et al., 2023; Nanda et al., 2023) and ChessGPT
(Karvonen, 2024), this adds a new setting, fa-

cilitating the interpretability research.
• We curate a human gameplay dataset and a

synthetic version of the dataset, containing
22,607 and 16 million gameplay trajectories,
respectively.

• We analyze the learned representations in
detail and provide empirical evidence to
support the emergent behavior of GPT-style
autoregressive models. We release the
codebase and the dataset for the experiments
https://github.com/Exploration-Lab/
CheckersGPT

2 Related Work

The study of representations as a proxy for world
models has been an active area of research interest
in recent times. Li et al. (2021) study sequence
generation models over synthetic tasks and report
finding latent features encoding a proxy of world
models. Some of the other works on similar lines
highlight language models encoding ground con-
cepts (Abdou et al., 2021; Patel and Pavlick, 2022;
Burns et al., 2023), following previous works that
study the linguistic features learned by sentence
representations (Conneau et al., 2018; Tenney et al.,
2019). Moreover, other recent works like McGrath
et al. (2022); Lovering et al. (2022) analyze the
representation learned by AlphaZero (Silver et al.,
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Dataset Source Game # Games # Tokens

Human Othello 132,921 59
Synthetic Othello 16,000,000 59
Human Chess 16,000,000 1023

Human Checkers 22,607 399
Synthetic Checkers 16,000,000 399

Table 1: Statistics for synthetic and human gameplay
datasets. The stats for Othello and Chess are taken from
Li et al. (2023) and Karvonen (2024), respectively.

2017) encoding chess concepts. Some initial works
in the simulated setting of board games study the
game of Chess for GPT-style architectures (Toshni-
wal et al., 2022), which was extended for the Oth-
ello game in Li et al. (2023); Nanda et al. (2023);
Hazineh et al. (2023). More recently, Karvonen
(2024) provides a detailed analysis by training a
GPT-syle architecture on the Chess gameplay se-
quences.

3 Methodology

To study the learning behavior of GPT-style archi-
tecture trained on a next token prediction task, we
create an experimental setup by considering the se-
quence of gameplay moves in checkers (see Figure
1). We consider a character as a token and train
the model to predict the next character in the game-
play sequence strings. Note that in the gameplay
string, multiple sets of characters define a move in
the gameplay. We intentionally train the models in
such a fashion so that it doesn’t provide any prior
knowledge about the game of checkers (no game
rules or board states). We further validate if such a
training objective can learn a world model for the
game of checkers while optimizing to predict the
next token based on the previous tokens.

3.1 Dataset

To obtain the set of sequences coming from a
Checkers game, we considered two sources: 1) Syn-
thetic dataset, and 2) human gameplay dataset. The
synthetic sequences are generated via uniformly
sampling next moves from a Checkers game tree,
whereas the Human gameplays are obtained from
an online Checkers platform.1 Figure 2 shows the
distribution of token lengths in the obtained human
gameplay dataset. To have a similar distribution
for the synthetic version, we clip the sequence in
the range of 100 to 400. Previous approaches (Li

1https://www.fierz.ch/download.php

Figure 2: Distribution of the token length in the syn-
thetic and human gameplay datasets. We stop the game
tree at the token length of 400 and generate the synthetic
dataset.

et al., 2023; Nanda et al., 2023; Karvonen, 2024)
used a similar strategy to create synthetic and hu-
man gameplay versions of the datasets for board
games like Othello and Chess. Table 1 compares
the created Checkers game sequence resource with
the existing works. The gameplay sequences in
the created datasets are represented as a Portable
Draught Notation (PDN) string. App. Figure 5
provides a detailed explanation of the gameplay
sequence format.

3.2 Model Training

We focus on studying the learning behavior of the
model trained on the next token prediction task.
Rather than providing the task as the next move
prediction in a sequence, we reduce the inductive
bias by training the architecture on the next charac-
ter prediction instead. Moreover, the model has no
idea about the underlying mechanism from which
these strings are generated. We use a vocabulary
size of 17 characters to encapsulate the gameplay
PDN string, which is “-./0123456789;x” white
space “ ” and new line “\n.” Note that the squares
(positions in the Checkers board) are also encoded
in the string, reducing the inductive bias of encod-
ing a single board position as a token. We consider
a GPT-style architecture (Radford et al., 2018) for
all of our experiments and train them in an autore-
gressive fashion to predict the next character in the
sequence. For a sequence of N tokens t1, t2, . . . tN
defining the gameplay trajectory. The model is
trained to predict the token ti using all the previous
tokens t1, t2, . . . ti−1. We employ the autoregres-
sive style training using a causal mask and min-
imize the cross-entropy loss between the actual
sequence token and the predicted logits. App. Ta-
ble 2 provides the architecture-specific details for
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the trained models. To notice the effect of parame-
ter size, we use the same set of hyperparameters for
training different variants of the same architecture,
i.e., 1-layer, 2-layer, 4-layer, 8-layer. App. Figure
5 provides some qualitative examples of the input
format provided to the model. For both datasets,
we used a 99/1 train/test split to train the model in
an autoregressive fashion.

3.3 Evaluation

We monitor the learning behavior of the models
using various objectives.
1) Loss: We monitor the training/test losses across
the training to validate if the model is able to mini-
mize the learning objective.
2) Valid Moves Accuracy: Another metric that
helps capture the learning behavior is the percent-
age of valid moves generated by the model. We
consider the Checkers game engine to explore the
game tree and validate the trajectory generated by
the trained models. Note that the model predicts
the game sequence at the character level, whereas
the game tree validates the sequence of legal game
moves. We sample N sequences from the trained
model and check if the sequence contains strings
processable by the game engine, i.e., all the gener-
ated sets of characters signify a gameplay sequence
with all legal moves. We consider the generated
string invalid even if one of the predicted characters
is invalid. We report the percentage of valid strings
from the sampled K strings.
Probing Internal Model Representations: To
gain a deeper insight into the latent representations
learned by the model, we make use of the prob-
ing literature (Alain and Bengio, 2018). Probing
provides a way to quantify the quality of learned
representations (Belinkov, 2022). We consider the
underlying world model representation of the game
board state and train linear probes over the layer
activations to predict the current board state. The
linear probe for square s at layer l of the model is
formulated as follows:

Ps,l = Softmax(Ws,l ·Al),

where Pi,l is the probability distribution over the
3 classes for square s, as predicted by the probe
at layer l, Wi,l is the weight matrix for the lin-
ear probe associated with square i at layer l, Al is
the 512-dimensional activation vector from layer
l of the model. We trained separate linear probes
for each model layer as well as each board square.

Each probe at layer l takes the input as the activa-
tion from the model’s lth layer.

We hypothesize that if a linear probe with lit-
tle capacity can learn to predict the state of the
board (which is not a linear function of the input),
it demonstrates the capability of the model to trans-
form the input into a linear representation of the
board states in the latent activations. Essentially,
the higher the accuracy of linear probes, the better
the quality of learned representations, highlight-
ing the learning of the underlying world model.
Though the board contains 64 squares, only 32 are
active board places where a piece can exist. We
only consider the active 32 squares for reporting
the probing accuracy. For each square, the probe
is designed to classify it into one of the three pos-
sible states (Black Piece, White Piece, and Empty
square). Recently, Nanda et al. (2023) reported
the OthelloGPT representing (Mine, Yours, Empty)
rather than (Black, White, Empty) in the form of
linear representations. We follow a similar for-
mat for our experiments, where the probes pre-
dict the current game state relative to the current
player at each turn, i.e., for odd turns, the model
considers Black pieces as Mine and White pieces
as Yours, and vice versa for even turns. More-
over, in our setup, since the model is trained on a
next character prediction task rather than the next
move prediction, multiple characters form a single
move. For computing the probing accuracy, we
consider the features corresponding to the last to-
ken before the next move. For white’s move, we
consider the representations corresponding to ‘.’,
i.e., the white move starts after <turn#>, and for
black’s move, we consider features corresponding
to <space> token before black’s moves (see App.
Figure 5 for a reference PDN string). We perform
a 50/50 train/test split for probing experiments and
report the test accuracy.

4 Results and Discussion

We perform all the experiments by considering dif-
ferent layer-sized models over the synthetic and
human gameplay datasets. Overall, we found the
training done on human trajectories to be much
more stable than the ones done on randomly sam-
pled trajectories from the game tree, with the mod-
els trained on the synthetic version of the dataset
having low valid moves accuracy. App. Table 3 and
Table 4 show the number and percentage of gen-
erated legal moves, respectively. We observe that
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Figure 3: Probe classification accuracy for various mod-
els with different layer sizes. The dashed line represents
the probe accuracy models with random weights.

the models with 4 and 8 layers learn better than the
ones with a smaller number of layers and are able to
generate sequences with 90% and 99% legal moves,
respectively. However, we found that the model
trained over the synthetic sequences generates a
very low number of valid moves (in ranges of 100
even after 600K training steps), when compared to
models trained on human gameplay sequences.

Probing Experiments: Figure 3 provides probing
accuracy for various models with different layer
sizes. We observe that for trained models, the probe
accuracy for predicting board states using latent ac-
tivations increases significantly compared to mod-
els with randomly initialized parameters. More-
over, we observe that the board states become more
predictable for deeper layers in the larger network
(8-layer), highlighting the quality of learned rep-
resentations forming the underlying world model.
App. Table 5 shows the probe accuracy for differ-
ent layers of the models. Surprisingly, we observe
that though the model trained on a synthetic dataset
generates a very low number of valid moves, the la-
tent representations learned by the model are good
enough to predict the board state with a compara-
ble probing accuracy. Note that, for validation of
the model’s learning, we considered the metric of
valid moves percentage, where all the trajectories
with a single wrong character are ignored, making
it a rigid evaluation scheme. Previous works like
Karvonen (2024), have considered top-k% to re-
port the accuracy of the valid move; however, in
Checkers specifically, multiple sets of moves are
possible with different numbers of characters, i.e.,
when taking a capture x move, the number of char-
acters in a move change (in contrast to chess where
the number of characters is fixed). Given the set-
ting, it becomes difficult to process the validation

metric in such a fashion. App. Figure 6 shows
the predictions obtained for the best model with 8
layers along with the corresponding ground truth
board states.

5 Discussion

The notion of emergence argues that as the com-
plexity of a system increases, new properties start
to appear (Anderson, 1972). This idea of emer-
gence has recently gained attention due to the in-
creasing sizes of datasets as well as a number of
parameters in LLMs, i.e., exhibiting ‘emergent abil-
ities’ (Ganguli et al., 2022; Srivastava et al., 2023;
Wei et al., 2022). Though there has been some ev-
idence of these emergent abilities, Schaeffer et al.
(2023) argues that the design of evaluation met-
rics plays a crucial role in observing the emergent
behavior when increasing parameter size. In this
work, we studied another variant of emergence,
more specifically, if a simple objective of next char-
acter prediction can lead to learning the underlying
‘world models’, i.e., does the model learn the gov-
erning dynamics of the actual system (Checkers in
our case) to satisfy the next token prediction ob-
jective. Though our findings point towards models
learning the underlying ‘world models,’ it is to be
noted that the evaluation measure we use may not
be a good measure and only provides a weak sig-
nal. As recently highlighted by Vafa et al. (2024),
a better evaluation metric is required for justifying
the presence of implicit world model representa-
tions. Moreover, the settings we used had huge
constraints; it would be interesting to consider a
more open-ended setting encapsulated using a writ-
ten text in the future.

6 Conclusion

In this work, we developed and studied a simulated
setting, considering the board game of Checkers,
and asked if a next token prediction objective in a
GPT-style architecture helps learn the underlying
world model for a task. With a detailed set of ex-
periments over a varying range of models, we find
that the deeper models (with about 25M param-
eters) show evidence of learning representations
that encapsulate a proxy for the underlying world
model. We believe this study will help facilitate
future research on the emergent behavior of autore-
gressive models, by providing a firm playground
for understanding representations learned during
training over Checkers game sequences.
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Limitations

We only consider the probing accuracy to get a
hint of model learning ‘world models.’ For making
the claim more concrete, previous works (Li et al.,
2023; Nanda et al., 2023; Karvonen, 2024) have
also proposed various intervention schemes applied
over the trained probes, where they intervene over
the learned representation to observe the changes in
model’s predictions, highlighting the formation of
world models. In the future, it would be interesting
to try similar strategies for the proposed setting of
checkers.
Another major limitation of this work is the limited
setting for the number of experiments; we only con-
sidered one architecture with different layer sizes
to gain deeper insights into the training behavior of
the models. In the future, it would be interesting to
validate the same for a range of models with high
parameter sizes.
Due to the limited number of game trajecto-
ries available online as well as limited comput-
ing, we performed all the experiments in a small
dataset/parameter size regime. It would be good
to study the training process with a larger number
of parameters, specifically for the synthetic dataset
where we could not get the model to generate valid
game trajectories.

Ethical Considerations

In this work, we focused on a simulated setting of
the game of Checkers. To the best of our knowl-
edge, the proposed setting and the model does not
have any negative consequences on the society at
large. Moreover, the proposed approach and model
are restricted to research only; we do not advocate
the usage of the model in real-life online Checker
gameplay.
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Appendix

A The Game of Checkers

Checkers2 is a board game played by two oppo-
nents on opposite sides of the game board. One
player has dark pieces; the other has light pieces.
A move consists of moving a piece forward to an
adjacent unoccupied square. If the adjacent square
contains an opponent’s piece, and the square im-
mediately beyond it is vacant, the piece may be
captured (and removed from the game) by jumping
over it. Only the dark squares of the checkerboard
are used, and a piece can only move forward into an
unoccupied square. When capturing an opponent’s
piece is possible, capturing is mandatory in most
official rules. In almost all variants, a player with
no valid move remaining loses. This occurs if the
player has no pieces left or if all the player’s pieces
are obstructed from moving by opponent pieces.
The gameplay sequence is captured in the PDN
format3, which is of the form “1. 10-15 22-18 2.
15x22 . . .”. Figure 5 describes the structure of the
gameplay sequences in detail. The moves can be
broadly classified into a normal move represented
with "-" where a piece moves from one position to
another, a capture move represented with "x" where
an opponent piece is captured, and a multi-capture
move "x x" where multiple pieces are captured.
Figure 4 shows an example on the checker’s board.

B Hyperparameters

The full set of hyperparameters is given in the Table
2. We trained the model on 4 NVIDIA A40 with a
total training time of close to 14 hours. We used a
50/50 split to train the linear probes and a 99/1 split
to train the model. We used the AdamW optimizer
(Loshchilov and Hutter, 2019), with a maximum
learning rate of 3e-4 and a minimum learning rate
of 3e-5. We used the block size of 399 for our
autoregressive task. We chose the model dimen-
sion of the transformer to be 512 with 8 heads and
8/4/2/1 layers. We trained the model for 600,000
iterations.

2https://en.wikipedia.org/wiki/Checkers
3https://en.wikipedia.org/wiki/Portable_

Draughts_Notation

(a) Normal Move 10-15

(b) Capture Move 15x22

(c) Multi Capture Move 7x14x21

Figure 4: Different types of moves

Hyperparameter Value

Optimizer AdamW
Learning Rate Schedule Cosine
Max Learning Rate 3e-4
Min Learning Rate 3e-5
Weight Decay 0.1
Betas 0.9, 0.95
Batch Size 100
Block Size 399
Training Iterations 600,000
Dropout 0.0
d_model 512
n_heads 8
n_layers 8,4,2,1

Parameters (8 layers) 25M
Parameters (4 layers) 12.6M
Parameters (2 layers) 6.3M
Parameters (1 layers) 3.16M

Table 2: Hyperparameter values for the model training.
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Game Sequence Format:
<turn-#>player-1-moves<space>player-2-moves<turn-#>player-1-moves<space>player-2-moves. . .

1. 10-15 22-18 2. 15x22 25x18 3. 11-15 18x11 ...
1. 11-15 24-20 2. 8-11 28-24 3. 9-13 22-18 ...
1. 9-14 22-18 2. 11-15 18x11 3. 8x15 25-22 ...
1. 12-16 24-20 2. 11-15 20x11 3. 7x16 22-18 ...
1. 10-15 21-17 2. 6-10 17-14 3. 9x18 23x14 ...

Special Characters:
‘-’: denotes the move from one board position to another board position
‘x’: denotes the moves when a piece is captured.

Figure 5: Input string formats for the GPT-style architecture training in the autoregressive format. The game
sequence is a string of characters, and the network predicts the next character based on the previous characters.
red text is the template style denoting the separation between the turns and the moves by the two players. The
blue text denotes moves by player-1 followed by orange text showing moves by player-2. Note that the network
only predicts the next character for all the experimentation, and no other information about the game rules is
provided to the network.

Iteration 500 1K 5K 10K 50K 100K 300K 600K

8 Layer 189 1034 3482 3913 4595 4576 4733 4808

4 layer 152 667 3412 3735 4527 4553 4551 4802

2 layer 125 256 2 1 1 7 367 4693

1 layer 3 0 0 0 0 0 0 0

Table 3: The table shows the total number of valid moves generated by the models across training iterations. We
generate 100 gameplay sequences from the obtained checkpoints and sum up all the legal moves obtained for the
sequences. For a single trajectory, we only generate the sequence until the model generates an invalid character and
increase the count accordingly; for example, if the first 20 moves are legal in the current trajectory, we increase the
number of legal moves count by 20.

Iteration 500 1K 5K 10K 50K 100K 300K 600K

8 Layer 0% 0% 33% 54% 86% 91% 99% 100%

4 Layer 0% 0% 34% 54% 87% 84% 90% 100%

2 Layer 0% 0% 0% 0% 0% 0% 6% 93%

1 Layer 0% 0% 0% 0% 0% 0% 0% 0%

Table 4: The table shows the percentage of valid game sequences generated by different models over the range of
learning steps (Iterations). We observe that for models with a higher number of layers, the models start to generate
valid moves 99% of the time. Whereas the smaller model with Layer-2 learns slowly, reaching 93% after 600K
training steps, the smallest model with only 1 transformer layer fails to generate trajectories with legal moves.
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8

8 Layer 0.783 0.802 0.806 0.812 0.823 0.853 0.866 0.848
8 Layer(Synthetic data) 0.738 0.741 0.749 0.802 0.870 0.872 0.865 0.835

8 Layer Random 0.745 0.751 0.754 0.755 0.756 0.756 0.756 0.757

4 layer 0.795 0.784 0.792 0.80 - - - -
4 layer Random 0.753 0.758 0.761 0.761 - - - -

2 layer 0.774 0.792 - - - - - -
2 layer Random 0.759 0.764 - - - - - -

1 layer 0.726 - - - - - - -
1 layer Random 0.761 - - - - - - -

Table 5: Probing classifier accuracy obtained for each layer’s activation. The bottom row in each sub-row denotes
the random accuracy (i.e., for a model with no training). We observe that as the number of layers increases, the
improvements in the probing accuracies improve by a significant margin over the random.
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(a) Board prediction of each layer

(b) Black piece prediction of each layer

(c) White piece prediction of each layer

(d) Blank piece prediction of each layer

Figure 6: The figure shows the qualitative example for an instance of probes predicting the current board state.
For each of the subfigures, the leftmost figure highlights the ground truth state with the predictions in the top row
(clipped version for highlighting the prominent predictions) and the raw predictions in the bottom row.
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