@inproceedings{wang-etal-2024-document,
title = "Document Alignment based on Overlapping Fixed-Length Segments",
author = "Wang, Xiaotian and
Utsuro, Takehito and
Nagata, Masaaki",
editor = "Fu, Xiyan and
Fleisig, Eve",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/add-emnlp-2024-awards/2024.acl-srw.10/",
doi = "10.18653/v1/2024.acl-srw.10",
pages = "51--61",
abstract = "Acquiring large-scale parallel corpora is crucial for NLP tasks such asNeural Machine Translation, and web crawling has become a popularmethodology for this purpose. Previous studies have been conductedbased on sentence-based segmentation (SBS) when aligning documents invarious languages which are obtained through web crawling. Among them,the TK-PERT method (Thompson and Koehn, 2020) achieved state-of-the-artresults and addressed the boilerplate text in web crawling data wellthrough a down-weighting approach. However, there remains a problemwith how to handle long-text encoding better. Thus, we introduce thestrategy of Overlapping Fixed-Length Segmentation (OFLS) in place ofSBS, and observe a pronounced enhancement when performing the sameapproach for document alignment. In this paper, we compare the SBS andOFLS using three previous methods, Mean-Pool, TK-PERT (Thompson andKoehn, 2020), and Optimal Transport (Clark et al., 2019; El- Kishky andGuzman, 2020), on the WMT16 document alignment shared task forFrench-English, as well as on our self-established Japanese-Englishdataset MnRN. As a result, for the WMT16 task, various SBS basedmethods showed an increase in recall by 1{\%} to 10{\%} after reproductionwith OFLS. For MnRN data, OFLS demonstrated notable accuracyimprovements and exhibited faster document embedding speed."
}
Markdown (Informal)
[Document Alignment based on Overlapping Fixed-Length Segments](https://preview.aclanthology.org/add-emnlp-2024-awards/2024.acl-srw.10/) (Wang et al., ACL 2024)
ACL
- Xiaotian Wang, Takehito Utsuro, and Masaaki Nagata. 2024. Document Alignment based on Overlapping Fixed-Length Segments. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop), pages 51–61, Bangkok, Thailand. Association for Computational Linguistics.