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Abstract

How can we train models to perform well on
hard test data when hard training data is by defi-
nition difficult to label correctly? This question
has been termed the scalable oversight problem
and has drawn increasing attention as language
models have continually improved. In this pa-
per, we present the surprising conclusion that
current pretrained language models often gen-
eralize relatively well from easy to hard data,
even performing as well as oracle models fine-
tuned on hard data. We demonstrate this kind of
easy-to-hard generalization using simple fine-
tuning methods like in-context learning, linear
classifier heads, and QLoRA for seven differ-
ent measures of datapoint hardness, including
six empirically diverse human hardness mea-
sures (like grade level) and one model-based
measure (loss-based). Furthermore, we show
that even if one cares most about model perfor-
mance on hard data, it can be better to collect
easy data rather than hard data for finetuning,
since hard data is generally noisier and costlier
to collect. Our experiments use open mod-
els up to 70b in size and four publicly avail-
able question-answering datasets with ques-
tions ranging in difficulty from 3rd grade sci-
ence questions to college level STEM questions
and general-knowledge trivia. We conclude
that easy-to-hard generalization in LMs is sur-
prisingly strong for the tasks studied.1

1 Introduction

It is difficult to supervise LMs (i.e., train LMs to
give correct outputs) in specialized domains of hu-
man knowledge, because it is difficult to correctly
label data in such domains. Labeling difficulty
manifests itself in both time to annotate (and thus
cost) and label noise (Lease, 2011; Northcutt
et al., 2021). Labeling difficulty becomes severe
when specific expertise is required (Sambasivan
et al., 2021). For example, for sufficiently specific

1Our code is publicly available at: https://github.com/
allenai/easy-to-hard-generalization.
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Figure 1: A model prompted with easy data (e.g., 3rd
Grade problems) does almost as well on a hard task
(College problems) as a model prompted with hard data
(the College bar). Results shown for Mixtral-8x7B with
k=10 prompt examples, averaged over 5 random seeds.

physics problems, PhD holders and PhD students
can make errors on as many as 40% of (objective)
problems (Rein et al., 2023). As more NLP bench-
marks focus on challenging domain-specific tasks,
having access to large human-labeled training
corpora may become increasingly infeasible (e.g.,
existing benchmarks like MMLU (Hendrycks
et al., 2021) and GPQA (Rein et al., 2023) do not
come with training data). The question arises: how
can we train models to solve hard problems when
correctly labeling enough hard data for training
is difficult? This problem is an example of the
scalable oversight problem, which concerns how
to give a good reward signal to a model when it is
difficult to assess if its outputs are correct (Amodei
et al., 2016).

In this paper, we study the problem of easy-to-
hard generalization. Easy-to-hard generalization
refers to model performance on hard test data
when finetuned2 only on easy training data, defined
according to some human hardness measure (like

2We use “finetuning” interchangeably with “training”
and “fitting” to refer to fitting pretrained models to data
via in-context learning (ICL), parameter efficient finetuning
(QLoRA), or by training a linear classifier head.
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Test Input
LM Generated Answer

Q: John hires a driving service to get him to work each day. 
His work is 30 miles away and he has to go there and back each day. 
He goes to work 5 days a week for 50 weeks a year. 
He gets charged $2 per mile driven and he also gives his driver a $150 bonus per month
How much does he pay a year for driving? 
A: John goes to work 5 days a week for 50 weeks a year. 
John goes to work 5 x 50 = <<5*50=250>>250 times a year. 
John pays $2 per mile driven. 
John pays $2 x 30 x 2 = <<2*30*2=120>>120 for each trip. 
John pays $120 x 250 = <<120*250=30000>>30000 for each year. 
John pays $150 bonus per month. 
John pays $150 x 12 = <<150*12=1800>>1800 for each year. 
John pays $30000 + $1800 = <<30000+1800=31800>>31800 for each year. 
So the answer is 31800

Correct on hard problem given only easy data in prompt

High-school supervision
improves college performance

Correct!

1. k=  Examples
2. Examples have 2-3 

reasoning steps

Prompt 
1. k=4 Reasoning has as 

many as 8 steps!

LM Outputs

ICL
GSM8k

Question: 
Assume that any assignment statement can be executed in unit time. 
If as many identical processors as needed are used, what is the minimum 
number of time units needed to execute the assignments
A := B + C
B := A - B
C := A * E
D := A/F
E := B - C
F := A + B
with the same result as if the assignments were executed in the order shown? 
A) 1
B) 2
C) 3
D) 4

32.3%
23.4%
22.2%
21.9%

Zero-shot
Distribution

26.3%
26.7%
27.1%
19.9%

4-shot High School 
Examples Distribution

MMLU College-level Computer Science Example

vs.

Figure 2: Supervising Llama-2-70b with easy data (left: high school level computer science problems; right: math
problems with 2-3 reasoning steps) can enable generalization to hard data (left: a college level computer science
problem; right: a math problem involving 8 reasoning steps). Prompts themselves are omitted for brevity.

grade level). Since gathering data in domains like
graduate level STEM fields is expensive and time-
consuming, it would clearly be useful if we could
improve model performance in these domains by
only finetuning models on cleanly labeled data
from simpler domains, like high school STEM
questions. To assess how well current LMs gener-
alize from easy to hard data, we fit models to easy
data and test them on hard data (“easy-to-hard”),
then compare them to an oracle upper bound and
unsupervised lower bound. The oracle upper bound
is a model that has access to labeled hard data for
finetuning (“hard-to-hard”), while the unsupervised
lower bound is a model that is prompted zero-shot
to answer questions (“unsupervised-to-hard”). The
metric we are interested in is the Supervision Gap
Recovered (SGR):

Easy − Unsupervised
Hard − Unsupervised

where Easy, Hard, and Unsupervised refer to model
performance on hard test data when finetuned
on easy data, hard data, or no data (zero-shot),
respectively. This metric takes a value of 100%
when finetuning on easy data is as effective as hard
data, and it is 0% when a model finetuned on easy
data is no better than prompting a model zero-shot.

Our main result is that pretrained language mod-
els generalize surprisingly well from easy to hard
data, often performing almost as well as an “ora-
cle” model finetuned on hard data (illustrated in
Fig. 1). In experiments with ARC (Clark et al.,
2018), MMLU (Hendrycks et al., 2021), GSM8k
(Cobbe et al., 2021), and StrategyQA (Geva et al.,
2021), we find that the Supervision Gap Recov-
ered is usually between 70% and 100%, meaning
that easy supervision is at least 70% as good as
hard supervision for hard test performance (see

Fig. 2 for example problems). These results are
robust across (1) model family and scale (between
7b and 70b parameters), (2) six different human
hardness measures and a model-based measure,
(3) four datasets/tasks, and (4) several finetuning
methods including in-context learning with and
without chain-of-thought reasoning (Brown et al.,
2020; Wei et al., 2022), QLoRA (Dettmers et al.,
2023), and linear classifier heads (Belinkov, 2022).
Overall, our results suggest that current LMs gen-
eralize relatively well to test data across human
difficulty levels even when finetuned on data that is
measurably easier than the test data. We hypothe-
size that this occurs because easy data elicits latent
knowledge and skills from pretrained models in a
hardness-invariant way.

We additionally demonstrate that easy supervi-
sion can outperform hard supervision when (1)
within some data collection budget, a greater quan-
tity of easy data can be collected than hard data, or
(2) easy data can be labeled with lower error rates
than hard data (Sec. 5.3). Lastly, we study how
easy-to-hard generalization changes with model
scale and the gap between train and test hardness
(Sec. 5.4). The remainder of the paper is organized
along the following research questions:

RQ1: How Can We Measure Data Hardness?
RQ2: Can We Do Well on Hard Data by Training

on Easy Data?
RQ3: What Are the Cost-Benefit Tradeoffs of Col-

lecting Easy vs. Hard Training Data?
RQ4: Is Easy-To-Hard Generalization Consistent

Across Model Scale and Train-Test Hard-
ness Gap Size?

We summarize our main conclusions below:

1. Our six human hardness measures and one
model-based measure are empirically diverse
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and model performance declines on harder test
data for each measure.

2. LMs generalize surprisingly well from easy-to-
hard data, closing 70%-100% of the gap between
unsupervised and hard train data.

3. We show that it is often better to train on easy
data when hard data is more expensive to collect
or has noisier labels.

4. The Supervision Gap Recovered is highly robust
across model scale. Easy-to-hard performance
may begin to decline when the train-test hard-
ness gap is large enough.

2 Related Work

Curriculum Learning. Curriculum learning has
historically concerned itself with model perfor-
mance on hard data points (Bengio et al., 2009).
Previous work in this area has argued that learning
from easy data first is helpful for models later learn-
ing more complex concepts and therefore perform-
ing better on hard data (Xu et al., 2020). Whereas
curriculum learning aims to improve hard test per-
formance by optimally ordering the training data,
we simply aim to investigate how well models gen-
eralize to hard data based on the hardness of the
training data. Our results suggest that pretrained
LMs generalize surprisingly well from easy to hard
data, potentially alleviating the need for heavily
engineered training curricula.

Compositional Generalization. Work in compo-
sitional generalization has previously shown that
neural networks struggle to generalize to problems
that require combining reasoning steps in ways
not seen exactly during training (Lake and Baroni,
2018; Bogin et al., 2022; Zhou et al., 2023b). Fur-
ther work has begun characterizing the conditions
under which models generalize to compositionally
more difficult problems. For instance, Transform-
ers will generalize better on classes of algorithmic
problems whose solutions can be written in RASP,
meaning the programs can be implemented exactly
by a Transformer forward pass (Zhou et al., 2023a).
Recurrent test-time computation also appears to
be quite valuable for generalizing to problems
requiring more reasoning steps than those seen
during training (Schwarzschild et al., 2021; Bansal
et al., 2022). Interestingly, even GPT-3.5 with
Chain-of-Thought prompting can struggle to gen-
eralize to simple mathematical problems requiring
more reasoning steps than seen during finetuning
(Dziri et al., 2023). Our results are not inconsistent

with these studies, but instead demonstrate that
relative to an unsupervised-to-hard lower bound
and hard-to-hard upper bound, easy-to-hard
performance on compositional reasoning problems
is often surprisingly good (Sec. 5.2).

Easy-to-Hard Generalization. Amodei et al.
(2016) motivate the scalable oversight problem by
pointing out how it could be challenging to give
a proper reward signal to a model when it is diffi-
cult to assess if its outputs are correct. Assessing
easy-to-hard generalization provides useful con-
text for understanding the difficulty of the scalable
oversight problem, as it tells us how we can ex-
pect models to generalize from a setting where we
can properly supervise them to one where we can-
not. Past work evaluates easy-to-hard generaliza-
tion in NLP using model-based hardness measures
(Swayamdipta et al., 2020) and number of compo-
sitional reasoning steps required to solve a problem
(Fu et al., 2023). Swayamdipta et al. (2020) show
that BERT models perform worse on commonsense
reasoning tasks when finetuned on easy data rather
than hard data according to a loss-based metric re-
sembling minimum description length (Perez et al.,
2021). Fu et al. (2023) show a similar result with
GPT3 models for StrategyQA and GSM8k, finding
that prompting with “complex” examples does bet-
ter than “simple” examples, where examples are
categorized according to the number of reasoning
steps in the annotated human reasoning chain for a
problem. Relative to these works, we study easy-
to-hard generalization with (1) a greater number of
human hardness measures, including grade level,
expert rating, required cognitive skills, question
length, answer length, and number of reasoning
steps, as well as a model-based metric, (2) multi-
ple datasets involving science question answering,
compositional reasoning, and mathematical reason-
ing, and (3) multiple model sizes for understanding
scaling trends. In contrast to these works, we show
that in a number of settings easy-to-hard generaliza-
tion is comparable to hard-to-hard generalization.

In concurrent work, Burns et al. (2023) present
results on a related “weak-to-strong” generalization
problem, where a stronger model is finetuned using
labels from a weaker model. They also explore
easy-to-hard generalization for NLP tasks using a
model-based hardness measure. In contrast to this
work, (1) we define our main performance metric
(Supervised Gap Recovered) using an unsupervised
model as the baseline performance rather than a
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weaker model as the baseline performance, which
is important when an unsupervised stronger model
will greatly outperform a supervised weaker model
(as is observed in our experiments); (2) we use hu-
man hardness measures in addition to model-based
hardness, which is a more realistic and important
setting when the two may not correlate strongly
(see our Fig. 8); and (3) we use publicly available
datasets and open-source models rather than
unidentified “NLP tasks” and API-gated models.

3 Measuring Datapoint Hardness

Measuring easy-to-hard generalization requires
drawing a distinction between easy and hard data,
defined in terms of human ability to correctly
label the data. There could be many ways to
describe what makes problems harder, including
that (1) only people with specialized training
and knowledge can solve the problem (Lehman
et al., 2019); (2) it takes people longer to solve
the problem; (3) people are less certain that their
final solution is correct; (4) people with similar
expertise naturally disagree about the solution
to the problem, while agreeing that there is an
objective solution (Dumitrache et al., 2018; Pavlick
and Kwiatkowski, 2019; Nie et al., 2020); (5)
experts know of a reliable method for obtaining
the answer to a problem, but it is costly in terms
of time and effort or possibly noisy in its outputs
(like conducting scientific experiments). In this
paper, we aim to capture the above properties in
a number of specific measures we can obtain for
each instance in our datasets, including:

1. Education/Grade Level: What education level
(possibly in a particular domain) would typically
lead one to be able to answer the question?

2. Expert Rating: How difficult would an expert
rate the question, on an ordinal scale?

3. Required Cognitive Skill: What cognitive
skills are required by the question? This rating
is based on Bloom’s cognitive skills taxonomy,
in order of increasing complexity: (1) Remem-
bering, (2) Understanding, (3) Applying, (4) An-
alyzing, and (5) Evaluating (Bloom et al., 1956;
Adams, 2015).

4. Question Num. Words: Question length is a
natural proxy for question hardness, as longer
questions can involve more premises or a greater
number of concepts.

5. Answer Num. Chars: We also consider An-
swer Num. Chars, since longer answers may
reflect more specific or more complex problems.
Character count provides a measure that is ap-
plicable across tasks.

6. Compositional Steps: Compositional reasoning
is more difficult than executing individual rea-
soning “primitives.” We consider how many in-
dividual reasoning steps are involved in answer-
ing a question (i.e., the number of subproblems
whose solutions must be combined), according
to human-annotated reasoning chains.

7. Minimum Description Length: A model-
based measure of hardness, measuring datapoint
loss under a model family. Details for MDL
computation are given in Appendix A.

The first six hardness measures are fundamentally
human notions of hardness, but we can also
measure a model-based metric for datapoint
hardness. In this direction, the seventh measure is a
minimum-description-length (MDL) metric (Voita
and Titov, 2020). In practice, MDL can be mea-
sured by computing a test datapoint’s average label
probability across models of identical architecture
finetuned on increasing quantities of training data
for a task (Perez et al., 2021). Intuitively, MDL
captures how hard on average an in-distribution
test datapoint is for a model to generalize to given
some amount of training data. Ultimately, we use
our MDL metric to capture how well a stronger
model generalizes to data that is hard according
to a weaker model, in order to simulate a setting
where humans cannot label hard problems that
they would like for a strong model to solve.

In our experiments, we use four datasets that
contain instance-level annotations for some portion
of these measures, as shown in Table 1.

• ARC (Clark et al., 2018): U.S. gradeschool sci-
ence questions in multiple-choice format. We
combine ARC-Easy and ARC-Challenge splits.
Random performance is 25%.

• MMLU (Hendrycks et al., 2021): Domain-
specific multiple-choice questions for many do-
mains. We subset to high school and college
level math, physics, biology, chemistry, and
computer science questions (MMLU-STEM-5).
Grade level is high school (HS) vs. college. See
Figure 2 (left) for an example. Random perfor-
mance is 25%.
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ARC MMLU-STEM-5 StrategyQA GSM8k

n = 4521 n = 1746 n = 2290 n = 8792

Grade Level (3-8) Grade Level (HS vs. College) Grade Level Grade Level
Difficulty Score (1-3) Difficulty Score Difficulty Score Difficulty Score
Bloom Skill (1-5) Bloom Skill Bloom Skill Bloom Skill
Question Num. Words Question Num. Words Question Num. Words Question Num. Words
Answer Num. Chars Answer Num. Chars Answer Num. Chars Answer Num. Chars
Num. Reasoning Steps Num. Reasoning Steps Num. Reasoning Steps Num. Reasoning Steps
MDL MDL MDL MDL

Table 1: Hardness measures we use for each dataset. Grayed-out options are not present in the dataset’s annotations,
and thus not used in our experiments.

• StrategyQA (Geva et al., 2021): Yes/no gen-
eral knowledge trivia questions requiring com-
positional reasoning over individual facts. The
“Num. Reasoning Steps” measure is the number
of facts that must be combined. Majority-class
vote performance is 53.9%.

• GSM8k (Cobbe et al., 2021): U.S. grade school
math word problems in direct answer format
(i.e., no answer choices given). Random perfor-
mance is 0%. The number of steps in a problem
solution is the “Num. Reasoning Steps” mea-
sure and is obtained from the human-annotated
reasoning chain collected for each problem. See
Figure 2 (right) for an example.

There are generally fewer hard datapoints than easy
datapoints in our datasets, given the relative diffi-
culty of collecting hard data. In MMLU-STEM-5,
for example, there are 603 college level questions
and 1143 high school questions. We show his-
tograms for each hardness measure distribution in
Appendix Fig. 20. See Appendix C for further
dataset information.

4 Experiment Setup

Models. Apart from Fig. 1, we report results in
the main paper on the Llama-2 70b base model
(Touvron et al., 2023b). In Appendix B, we show
results for Llama-2 7b and 13b, an RLHF version
of Llama-2-70b (“Llama-2-chat”), Qwen-72b (Bai
et al., 2023), and Mixtral-8x7b (Jiang et al., 2024).

Data Hardness Stratification. To separate
datasets into easy and hard data (with leftover data
being medium data), we define easy/hard cutoffs as
follows: for Question Num. Words, Answer Num.
Chars, and MDL, we automatically define these
values to be at the 30th and 70th percentiles of the
variable range. Other variable cutoffs are defined
manually: For ARC, Grade Level is easy (3-5),

medium (6-7), hard (8); Difficulty Score is easy (1),
medium (2), hard (3); Bloom Skill is easy (1-2),
medium (3), hard (4-5). For MMLU, Grade Level
is easy (high school) and hard (college) with no
medium. For StrategyQA, Num. Reasoning Steps
is easy (1-2), medium (3), hard (4-5). For GSM8k,
Num. Reasoning Steps is easy (2-3), medium
(4-5), hard (6-11). We show histograms for each
hardness measure distribution in Appendix Fig. 20.

Finetuning Methods. We fit models to data with
in-context learning (ICL; Brown et al., 2020),
linear classifiers trained on frozen model hidden
states (Belinkov, 2022), or QLoRA (Dettmers
et al., 2023). StrategyQA and GSM8k benefit
heavily from utilizing chain-of-thought reasoning
(CoT; Wei et al., 2022), so we primarily conduct
experiments for these datasets with ICL+CoT and
QLoRA+CoT (using reasoning chains from the
datasets for supervision). See descriptions of each
method below, with full detail in Appendix D.

1. ICL: For in-context learning (ICL), we use
k=10 prompt examples for ARC and MMLU
and k=8 examples for StrategyQA and GSM8k
(we see diminishing returns for larger k). When
scoring multiple choice questions (no CoT), we
get a model prediction by computing the answer
probability for each answer choice given the test
input and the prompt. When generating outputs
with CoT, we greedily generate up to t = 100
tokens for StrategyQA and t = 300 tokens for
GSM8k. Accuracy is computed as exact match
between predicted answer and label.

2. Linear Probing: We train a linear classifier on
frozen LM hidden states. This is an effective
method for performing multiple choice QA
using LM representations (Liu et al., 2023),
and it does not require any finetuning of the
underlying LM. For a given question, we
compute one representation per answer choice
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by concatenating the question and answer
choice as input and extracting the model’s
final-token representation. Then, we score
each representation z by applying the linear
probe: f(z;w) = wT z. The answer choice with
the highest score is returned as the prediction.
The probe weight w is trained using SGD to
minimize cross-entropy loss on a dataset of rep-
resentations Z = {{zi,j}j=|A|

j=1 }Ni=1 derived from
N training datapoints with |A| answer choices.

3. QLoRA: To finetune our LMs, we execute
QLoRA with the LoRA implementation from
HuggingFace peft (Mangrulkar et al., 2022)
and the 8-bit AdamW from bitsandbytes
(Dettmers et al., 2022). We train the default lay-
ers for Llama-2 with rank r = 16 adapters, α =
32, and dropout p = 0.1. Model predictions are
obtained in the same manner as for ICL, i.e., by
scoring multiple choice options or generating
t = 100/300 tokens for StrategyQA/GSM8k.

Unsupervised Baseline. Our unsupervised base-
line is zero-shot prompting, scoring the answer
choice probabilities given the question and taking
the highest probability answer as the model pre-
diction. The one exception to this is for GSM8k,
which does not have multiple answer choices per
question. For this dataset, we use a simple “Let’s
think step by step” style prompt. See Appendix D.

Training Size Controls. For all experiments
with linear probing and QLoRA, we use n = 160
train points. While we would prefer to use more
finetuning data, the bottleneck we face is that
fairly comparing easy-to-hard with hard-to-hard
generalization requires both fixing the amount of
finetuning data and leaving enough hard data left
over for testing. Since we have as few as n = 603
hard test points for MMLU, we have to limit
finetuning data to n = 160 points to leave enough
test data for reasonably small confidence intervals.

Statistical Testing. We perform experiments
using 5 random seeds, controlling the training data
selection (leaving remaining data for testing). To
obtain confidence intervals and p-values, we use
block bootstrap sampling (Efron and Tibshirani,
1994). See Appendix E for further detail.

Figure 3: Accuracy vs test data hardness across datasets
(using Llama-2-70b with ICL). Data that humans find
harder is also harder for LMs. Error bars are 95% CIs
showing test sample variance.

5 Experiments

5.1 RQ1: How Can We Measure Data
Hardness?

We first explore properties of our hardness mea-
sures for each dataset. Here, we focus on hardness
measures unique to each dataset, with full results
across all measures shown in Appendix B.

Design. While our human hardness measures are
direct measurements of data hardness, we vali-
date that each measure is meaningful by assessing
model performance across test hardness levels, us-
ing Llama-2-70b and ICL with randomly sampled
prompts. We also create correlation heatmaps for
hardness measures in our datasets, using a Spear-
man rank-order correlation (Spearman, 1987) be-
tween hardness values for each datapoint.

Results. It appears that all of our hardness mea-
sures meaningfully capture some aspect of dat-
apoint hardness, as model accuracy declines for
harder test data for each of these measures (Fig. 3),
including for model-based hardness as measured
by an ensemble of 7b-parameter models (Appendix
Fig. 9). This also holds when finetuning with
QLoRA (Appendix Fig. 10). Next, we find that
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Figure 4: Accuracy on hard test data vs train data hardness (using Llama-2-70b and ICL, averaged over 5 seeds).
Models recover 70-100% of the supervision gap (between Unsupervised and Hard) when finetuned on Easy data.

our hardness measures are empirically very diverse
(Appendix Fig. 8). Correlations between hardness
measures are fairly low, suggesting that these mea-
sures capture different possible aspects of datapoint
hardness. We conclude that easy-to-hard general-
ization should be assessed with multiple notions
of datapoint hardness, since there are several dif-
ferent available measures and model performance
declines for harder test data along each measure.

5.2 RQ2: Can We Do Well on Hard Data by
Training on Easy Data?

We now examine how well models generalize from
easy training data to hard test data.

Design. For each of our hardness measures, we test
models on exclusively hard test data (according to
that hardness measure), while varying whether they
are finetuned on easy or hard data.3

Results. Surprisingly, Llama-2-70b with ICL
shows comparable generalization to hard test
data regardless of whether it is fit to easy or
hard data (Fig. 4). In fact, across all six hard-
ness measures, the Supervision Gap Recovered
is between 70% and 100%. These results are sta-
tistically significant, with CIs and p-values shown
in Appendix Table 2. Interestingly, for ARC and
MMLU, there is no difference in easy vs. hard

3We report test accuracy on the full data distribution and
the easy test split in Appendix Figs. 11 and 12, respectively.

generalization using ICL. Results are also robust
across finetuning methods and additional hardness
measures (Appendix Figs. 13, 18). With QLoRA,
for example, the SGR remains within 70%-100%
for ARC, MMLU and StrategyQA. While GSM8k
appears to exhibit worse easy-to-hard generaliza-
tion, we note that easy-to-all generalization is actu-
ally equally good to hard-to-all generalization (see
Fig. 11). Thus it seems like easy data provides
surprisingly good supervision for LMs.

These results contrast notably with past work
in curriculum learning and compositional gener-
alization (Bengio et al., 2009; Lake and Baroni,
2018). This is likely because models like Llama-
2-70b have learned much more during pretraining
than models commonly used in work on curriculum
learning and compositional generalization. So, it
would seem that finetuning these models on rela-
tively small amounts of easy data successfully elic-
its the relevant task knowledge from the models in
a way that is largely invariant to datapoint hardness.

5.3 RQ3: What Are the Cost-Benefit
Tradeoffs of Collecting Easy vs. Hard
Training Data?

One implication of the results from Sec. 5.2 is that
if easy data is almost as good as hard data, it could
be better to collect and fit to easy data, since hard
data can be noisier and costlier to collect (Samba-
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Figure 5: Hard test accuracy is often higher when train-
ing on comparable amounts (costs) of easy rather than
hard data. Here, we suppose hard data is 2x costlier to
collect. Results are for Llama-2-70b with linear probes.

sivan et al., 2021). Hence, we test the hypothesis
that finetuning on easy data outperforms hard data
under two possible assumptions: (1) that one can
collect more easy data than hard data given a fixed
budget (i.e., time, money), and (2) that easy data
is less noisily labeled than hard data.

Design. For (1) the budget assumption, we fit linear
probes on either easy or hard data using datasets of
sizes in {10, 20, 40, 80, 160, 320}. We then show
hard data test performance vs. training cost, assum-
ing hard data costs twice as much as easy data to
collect, meaning labeling 40 easy training points
is equivalent in cost to labeling 20 hard training
points. For (2) the noise assumption, we assume
that easy data is mislabeled p% of the time, while
hard data is mislabeled 2p% of the time. Here,
we measure test performance on hard data given
different values of p. Note the 1:2 data collection
cost ratio is almost exactly the ratio observed in
MMLU-STEM-5, which contains 603 college level
questions and 1143 high school questions, and a 1:2
labeling error ratio is plausible as well given expert
human accuracy on datasets like MMLU (estimated

Figure 6: When hard data has noisier labels than easy
data, finetuning on easy data can give better hard test
performance (shown for MMLU-STEM-5 using Llama-
2-70b with a linear probe).

at 89.8%) and GPQA (estimated at ≤72% for diffi-
cult graduate level STEM questions) (Hendrycks
et al., 2021; Rein et al., 2023).

Results. We show results for the data budget
assumption in Fig. 5. In terms of hard test
accuracy, there is more often than not an advantage
to fitting a model to easy data rather than hard data
when the cost ratio between them is 1:2.

For the noise assumption, we draw a similar con-
clusion based on the results for MMLU in Fig. 6.
For instance, easy data is preferable when its la-
beling error rate is 10% (or higher), meaning the
error rate for hard data is 20% (or higher). Since
high error rates are possible for difficult domain
questions (Rein et al., 2023), there are plausible
settings where it is better to finetune on easy data
than hard data due to label noise.

5.4 RQ4: Is Easy-To-Hard Generalization
Consistent Across Model Scale and
Train-Test Hardness Gap Size?

We consider two questions likely to be relevant
as models become more capable: (1) how does
the Supervision Gap Recovered change as models
scale in size, and (2) how does hard test perfor-
mance change as the gap between train and test
hardness grows? We are interested in these ques-
tions because in various settings AI performance
may exceed human expert performance, and we
want to know whether it will become more and
more difficult to supervise models as this occurs.

Design. For question (1), we measure easy-to-
hard and hard-to-hard performance on MMLU for
Llama-2 at three different model sizes: 7b, 13b,
and 70b. For question (2), we test models on
hard MMLU data (college STEM questions), while
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Figure 7: Performance on hard test data may begin to decline when finetuning on very easy data. Results shown for
college-level STEM questions using Llama-2-70b (see other hardness measures, models in Appendix Figs. 16, 17).

finetuning them on even easier datasets than high
school MMLU: 3rd and 8th grade ARC questions.

Results. First, we find that models show similar
levels of Supervision Gap Recovered across sizes
(Appendix Fig. 15). SGR is near 100% for model
sizes between 7b and 70b. For our second question,
we find that the difference between train and test
hardness may have an effect on test performance
(Fig. 7). Across methods, we see some decline
in generalization once the gap between train and
test hardness becomes sufficiently large. However,
even 3rd grade supervision can be surprisingly
effective for college STEM questions (e.g. SGR
falls from 74% to 57% when fitting to 8th grade vs.
3rd grade questions using ICL). In an evaluation
across our other hardness measures, easy training
data is only marginally worse than medium training
data (see Appendix Fig. 16). Together these results
suggest that, while (1) easy supervision remains ef-
fective as models scale up, (2) easy-to-hard perfor-
mance may begin to decline when the gap between
train and test hardness becomes sufficiently large.

6 Discussion

Are Our Tasks Hard Enough to Provide Gen-
eralizable Easy-To-Hard Results? Benchmark
datasets for LMs now require specialized domain
expertise (Hendrycks et al., 2021). The largest
difficulty gap that we test in this paper is between
3rd grade and college level STEM questions (using
ARC and MMLU). Concurrent work has called for
work studying gaps as large as 3rd grade to 12th
grade (described as “huge leaps in generalization”;
Burns et al., 2023). Therefore, we see our results
as relevant for future work that may operationalize
“easy” and “hard” differently.

How Do LMs Solve Hard Problems From As
Few As Ten Easy Examples? Our results suggest

that finetuning on even small amounts of easy data
successfully elicits relevant knowledge from LMs
in a way that is largely invariant to datapoint hard-
ness (we do not conclude that we are teaching LMs
entirely new skills). This could be because this
kind of finetuning encourages models to answer
questions based on “truthfulness” representations
of text, which should be invariant across domain
and data hardness (see Marks and Tegmark, 2023).
We emphasize that we do not interpret our results
as models merely “learning the task format” as
opposed to true generalization: we also fit models
using ICL prompts that are trivially simple but
match the task format for MMLU and StrategyQA,
and find that model performance varies based on
prompt data hardness and not simply prompt task
format (see Appendix Fig. 19). Hence it appears
that fitting to easy data encourages models to give
correct outputs for hard questions.

7 Conclusion

We study the problem of easy-to-hard generaliza-
tion, showing that (1) several meaningful human
and model-based hardness measures disagree about
which data is hardest; (2) LMs trained on easy data
often perform nearly as well as those trained on
hard data, recovering 70-100% of the Supervision
Gap between an unsupervised lower bound and
hard-to-hard upper bound; (3) practically, one can
perform better on hard test data by collecting and
training on easy data rather than hard data when
the hard data is noisier or costlier to collect; and (4)
SGR may begin to decline when the gap between
train and test hardness becomes sufficiently large.
These results are robust across datasets, training
methods, hardness measures, and model size.
Our findings suggest that the scalable oversight
problem may be easier than previously thought.
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Limitations

We aim to study how models generalize from
settings where humans can easily label data to
those where humans have difficulty labeling data.
Since we require ground truth labels to evaluate
model generalization, this limits our evaluations to
datasets where humans have reliably labeled the
data. While we aim to test a broad range of train
and test difficulties (like 3rd grade training data
and college-level test data), our results may not
generalize to settings with difficulty levels besides
those we test in this paper, especially test settings
where almost no amount of human effort can re-
liably produce accurate data labels (like unsolved
scientific questions).

Additionally, we are not able to verify that
test questions for ARC, MMLU, StrategyQA, and
GSM8k are not in training datasets of the open
models used in this paper, including Llama-2-70b
and Mixtral 8x-7b. This means we cannot be cer-
tain that models are generalizing from easy to hard
data, rather than reporting memorized hard ques-
tion answers. While this concern currently affects
all research on open source LLMs, including those
with public datasets (since finding test set contami-
nation in pretraining data is an unsolved problem),
we note that it would be beneficial for future work
to evaluate easy-to-hard generalization on test sets
that are either private or collected after pretraining
data collection cut-offs.

Ethics Statement

We hope that positive results in easy-to-hard gen-
eralization imply that we can train models to per-
form well in niche domain like biology, chemistry,
medicine, law, engineering, etc., without demand-
ing significant amounts of expert time and spend-
ing large amounts of money in order to annotate
data in these settings. In this way, we might make
LLMs more useful for hard tasks while requiring
less human effort to supervise their training. At
the same time, we note that there are dual use and
human labor displacement concerns around improv-
ing model capabilities in such domains. Ultimately
we hope for LLMs to be deployed responsibly, so
that they can be used to further human values and
not for any ill intent.
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A Measuring Minimum Description
Length

In addition to our human hardness measures,
we employ a model-based metric based on
minimum-description-length (Voita and Titov,
2020; Swayamdipta et al., 2020; Perez et al., 2021).
Since experiments use up to 70b parameter LMs,
we measure MDL with models in the 7b parameter
range, including Falcon-7b (TII, 2023), Mistral-
7b (Mistral AI, 2023), Persimmon-8b (Elsen et al.,
2023), and Llama-1-7b (Touvron et al., 2023a). To
get one MDL per datapoint, we average the MDL
scores obtained for each of the four models. For a
single model, we obtain a score by training N mod-
els on training sizes in n ∈ {5, 20, 80, 340, 900}
(roughly log-uniform) when fitting models with lin-
ear classifier heads or QLoRA and averaging model
label confidences across these n per-datapoint
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scores. For ICL we compute MDL using no train-
ing data, i.e. n = 0. In this way, our Linear
Probe and QLoRA MDL metrics represent MDL
according to the theoretical definition which in-
volves increasing amounts of training data, while
MDL (ZS Prompt) represents the confidence that
7b models assign to labels for data with no supervi-
sion. All metrics are then used for assessing how
stronger models will perform on data that weaker
models find to be hard. See distributions of MDL
scores on each dataset in Fig. 20. We only measure
probing-based and QLoRA-based MDL for ARC
and GSM8k, where we have sufficient data to set
aside n = 1000 points (up to 900 for training and
100 for model validation).

B Additional Results

We include a number of additional results in this
section.

1. For a table of model accuracies by training
method in an all-to-all setup, see Table 4.

2. We show correlations between hardness
measures for all data in Fig. 8.

3. We show that test accuracy declines with
test data hardness for QLoRA in Fig. 10,
and using ICL with additional hardness mea-
sures in Fig. 9.

4. We show easy-to-hard generalization as
measured on all test data (not subsetting to
hard test data) in Fig. 11, as well as testing
on easy test data in Fig. 12.

5. We show easy-to-hard generalization on ad-
ditional hardness measures in Fig. 18.

6. We show SGR statistics for all training
methods in Fig. 13.

7. We give SGR estimates along with confi-
dence intervals and p-values, obtained by
block bootstrap, in Table 2.

8. We show easy-to-hard generalization on
StrategyQA across different models in
Fig. 14.

9. We give additional results for test perfor-
mance by multiple training difficulty levels
in Fig. 16.

10. We give test performance by training diffi-
culty for multiple ∼70b models in Fig. 17.

11. In Fig. 19, we test the hypothesis that
task format alone is taught by training data,
as opposed to true generalization. We

list examples used for “task format only”
prompts, which are trivially simple exam-
ples matching multiple-choice or yes/no an-
swer prompts in our data.

C Dataset Details

We provide additional details for each dataset be-
low, including test data subsetting decisions (see
final sample sizes in Table 2). All datasets are pub-
licly available, and license information is included
via the links provided. All datapoints are in En-
glish. See also Table 1 for a list of which hardness
measures are available for which datasets, as well
as sample sizes. See Fig. 20 for histograms of
hardness measures per dataset.

• ARC (Clark et al., 2018):4 U.S. grade-
school science questions in multiple-choice
format. We combine the ARC-Easy
and ARC-Challenge splits. We re-
lease metadata including human hard-
ness metadata accompanying the origi-
nal source of the questions in our code-
base at https://github.com/allenai/
easy-to-hard-generalization. We set
aside 1000 points for MDL computation, so
experiments are conducted on n = 3521 test
points.

• MMLU (Hendrycks et al., 2021):5 Domain-
specific multiple-choice questions for a large
number of domains. We subset to high
school and college level math, physics, biol-
ogy, chemistry, and computer science ques-
tions (termed MMLU-STEM-5). Here, grade
level is high school (HS) vs. college. See
Figure 2 (left) for an example.

• StrategyQA (Geva et al., 2021):6 General
knowledge trivia questions requiring compo-
sitional reasoning over individual facts. The
number of facts that must be combined forms
the “Num. Reasoning Steps” measure.

• GSM8k (Cobbe et al., 2021):7 U.S. grade
school math word problems. The number of
steps in the solution to the problem forms
the “Num. Reasoning Steps” measure and

4https://huggingface.co/datasets/ai2_arc
5https://huggingface.co/datasets/tasksource/

mmlu
6https://huggingface.co/datasets/wics/

strategy-qa
7https://huggingface.co/datasets/gsm8k
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Correlations Between Hardness Measures

ARC

GSM8k StrategyQA

MMLU-STEM-5

Figure 8: Correlations between hardness measures across datasets (Spearman rank order correlation). We omit
MDL for GSM8k because 7b parameter models obtain extremely high loss on GSM8k problems, and MDL is valid
as a metric only when using a reasonably good model of the data.

is obtained from the human-annotated rea-
soning chain collected for each problem. We
set aside 1000 points for MDL computation,
then further subset to about n = 2000 test
points given the extreme expense of sam-
pling CoTs with t = 300 tokens for 70b
parameter models. See Figure 2 (right) for
an example datapoint.

Distributions for hardness measures for each
dataset and hardness measure (from Table. 1) are
shown in Fig. 20.

D Modeling and Tuning Details

We provide additional information around model
tuning for each training method here.
GPU Cost. We run experiments on NVIDIA
A6000 GPUs. A typical experiment setting is run-
ning Llama-2-70b over n = 2000 datapoints, quan-
tized 8bit, with ICL with k = 8, with batch size
1, using 5 random seeds for prompt data selec-
tion. Such an experiment requires 4 GPUs and
takes about 10 hours to complete. Experiment with
CoT are more expensive, taking about one hour per
n = 200 test points on GSM8k, using a decoding
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Figure 9: Test accuracy declines as test data hardness increases (shown for additional hardness measures), with
the exception of MMLU Answer Chars. Error bars are 95% CIs showing test sample variance.

length of t = 300 tokens. Linear probing experi-
ments have negligble runtime as we save the hidden
states to file, avoiding the need to rerun model for-
ward passes, while QLoRA experiments take about
as long as ICL experiments (slightly faster for CoT
settings).

Prompt Templates. All training methods use the
same prompts, one per dataset, that were selected
based on their success in past work (Saha et al.,
2023). We show prompts for ARC and MMLU in
Table 3. In this template, the {} placeholders are

filled with the question, four answer choices, and a
single answer choice (explained next). We use this
prompt for multiple choice scoring of the four an-
swer choices for all methods, meaning that we run
four forward passes to either (1) compute answer
choice probabilities for each answer choice for ICL
and QLoRA, or (2) collect final answer choice to-
ken representations for each answer choice for lin-
ear probing. Thus the final answer slot, “A: {}”
is populated by each answer choice once. When
prompting with k in-context examples for ICL, we
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Figure 10: Test accuracy declines as test data hardness increases (shown for QLoRA with Llama-2-70b). Error
bars are 95% CIs showing test sample variance.
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Figure 11: Easy-to-hard generalization measured on all test data (not subsetting to hard test data), while training on
easy/hard data defined according to each hardness measure (using Llama-2-70b prompted with k ≤ 10 examples).
Results are similar to testing on hard data, except for GSM8k, where accuracy on the whole data distribution
becomes comparable (training on easy data outperforms hard data on easy/medium test data).

separate examples with a line break (one line be-
tween each pair of examples).

For StrategyQA and GSM8k, we use a differ-
ent prompt format for CoT, shown in Table 3. In
this template, the {} placeholders are filled with

the question, the human reasoning chain, and the
answer choice (only for in-context examples). This
prompt is used to generate new reasoning chains
and answers at test time, so there is no text included
after “A:” for the test input. When prompting with
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Figure 12: Easy-to-hard generalization measured on easy test data, while training on easy/hard data defined
according to each hardness measure (using Llama-2-70b prompted with k ≤ 10 examples). This plot shows
hard-to-easy generalization for each dataset, compared to easy-to-easy genearlization. On some datasets, hard data
makes for better training data, while for others, easy training data is better for easy test performance.
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Figure 13: The Supervision Gap Recovered (SGR) shown by training method. Easy-to-hard generalization varies
somewhat by training method used, but SGR remains surprisingly high across datasets for the two most effective
training methods, ICL and QLoRA.

k in-context examples for ICL, we separate exam-
ples with a line break (one line between each pair
of examples). The exception to this formatting is
for GSM8k’s Unsupervised Baseline, which uses

a “Let’s think step-by-step” prompt (we also con-
sidered this for StrategyQA, but zero-shot answer
choice scoring worked better). The step-by-step
prompt is shown in Table 3. The test input is sup-
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Figure 14: Easy-to-hard generalization results for different models on StrategyQA, using Llama-2-70b prompted
with k = 4 examples using CoT. Results are similar for Llama-2-70b and Mixtral, while Qwen appears to have been
trained on StrategyQA data in a CoT format.
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Figure 15: Models perform as well on hard MMLU data when prompted with easy MMLU data as they do when
prompted with hard data, regardless of model size (k = 10 examples used for ICL).
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Figure 16: Test performance on hard data sometimes declines more significantly as the gap between train and test
hardness grows, but often the difference between training on Medium and Easy data is relatively small in nature
(using Llama-2-70b prompted with k ≤ 10 examples). MMLU not shown here since there are only two hardness
levels for that dataset (high school vs. college). See Fig. 7 for more results training on college vs. high school vs.
8th grade vs. 3rd grade data.
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Figure 18: Easy-to-hard generalization for additional hardness measures for each dataset, using Llama-2-70b with
ICL. SGR values remain high across possible hardness measures, meaning easy data provides surprisingly good
supervision. We do not represent Answer Num Chars. for StrategyQA here because that would cleanly divide the
data into ‘no’ and ‘yes’ categories. We do not conduct any additional experiments for GSM8k hardness measures as
these experiments (involving sampling CoTs with t = 300 tokens) are extremely computationally expensive.

plied to the curly brace placeholder.

In-context Learning. For ICL, we select k = 10
for ARC and MMLU and k = 8 for StrategyQA
and GSM8k as we see diminishing returns to ac-

curacy from larger values of k, and using larger k
values significantly slows down experiments.

Linear Probing. For Linear Probing, we fit a lin-
ear classifier to frozen LM hidden states. For a
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Figure 19: We consider prompts that contain trivially simple problems that match the task format for MMLU and
StrategyQA (see Table 5). Results are shown for ICL without CoT, using Llama-2-70b and Mixtral-8x7b. We
conclude that task format alone is not sufficient for encouraging generalization to hard data, because hard test
performance varies by train data hardness, while all prompts share the task format (the best supervised prompt is
better than other supervised prompts at a statistical significance threshold of p < .05 for three of four comparisons).
For example, Llama-2-70b actually does not generalize at all from hard prompt examples for StrategyQA, suggesting
that task format alone is not enough for generalization.

Dataname Hardness Measure SGR Estimate Test Hardness n

ARC Grade Level 0.96 ± 0.10 (p < 1e-4) Hard 1588
ARC 1/2/3 Difficulty 0.98 ± 0.36 (p = 0.0033) Hard 1588
ARC Bloom Skill 1.00 ± 0.20 (p < 1e-4) Hard 1588
MMLU HS vs. College 0.97 ± 0.59 (p = 0.0158) Hard 603
StrategyQA Num Reasoning Steps 0.72 ± 0.93 (p = 0.0788) Hard 427
GSM8k Num Reasoning Steps 0.79 ± 0.60 (p = 0.0125) Hard 333

ARC Grade Level 1.00 ± 0.09 (p < 1e-4) All 3521
ARC 1/2/3 Difficulty 0.96 ± 0.08 (p < 1e-4) All 3521
ARC Bloom Skill 0.98 ± 0.08 (p < 1e-4) All 3521
MMLU HS vs. College 1.00 ± 0.27 (p = 0.0001) All 1746
StrategyQA Num Reasoning Steps 0.87 ± 0.32 (p < 1e-4) All 2290
GSM8k Num Reasoning Steps 0.98 ± 0.39 (p = 0.0003) All 2065

Table 2: Supervision Gap Recovered (SGR) statistics for Llama-2-70b with ICL, on hard test data or all test
data, defined per dataset and hardness measure. Confidence intervals are 95% CIs estimated by block bootstrap
(accounting for test data variance and train data variance), and p-values represent a test for a difference from 0.

given question, we compute one representation per
answer choice by concatenating the question and
answer choice and feeding it to the model. To
get a single representation from the LM forward
pass, we concatenate the representations at the last
token index (i.e., the last answer token) from the
middlemost and last layer. Then, we score each
question-answer choice representation z by apply-
ing the linear probe: f(z;w) = wT z. The answer
choice with the highest score is returned as the
prediction. The probe weight w is trained using
SGD to minimize cross-entropy loss on a dataset
of frozen representations Z = {{zi,j}j=|A|

j=1 }Ni=1

for a dataset of N training datapoints and |A| an-
swer choices. We optimize the weight with the
default SGD implementation in PyTorch (Paszke
et al., 2019) for 100 epochs, without early stopping
on any dev data. Based on tuning experiments with
Llama-2-13b on ARC, we chose to use SGD rather

than AdamW, selecting the number of epochs for
convergence, and we chose to use the middlemost
and last layer representations (concatenated) rather
than either on its own. Note this produces very
high dimensional inputs, but by using ℓ2 regulariza-
tion with λ = 1, we are able to stably fit probes to
these 2d-dimensional input representations (where
d = 8192 for Llama-2-70b) with as few as n = 10
training points. The learning rate was fixed at 5e-2.

Model Finetuning with QLoRA. For QLoRA, we
selected hyperparameters based on early experi-
ments with Llama-13b on ARC. Based on this set-
ting, we selected an adaptor rank of r = 16 rather
than r = 8, with default hyperparameters other-
wise, including default selected layers to optimize.
We use AdamW with a a learning rate fixed at 1e-4,
and the model is optimized with a batch size of
50. At least 10 gradient updates are performed,
or a minimum of three epochs, whichever yields
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Figure 20: Distributions for hardness measures for each dataset and hardness measure.

ARC+MMLU prompt
Question: {}
A) {}
B) {}
C) {}
D) {}
Answer: {}
StrategyQA+GSM8k prompt
Q: {}
A: {} So the answer is {}
Unsupervised GSM8k prompt
Q: [question text here]
A: Let’s think step by step.
1. [step one]
2. [step two]
. . .
N. [last step]
Therefore, the answer is [answer here].
Now you try!
Q: {}
A: Let’s think step by step.
1.

Table 3: Prompt formats used in this paper. Question
text, reasoning text, answer choices, and answer text are
imputed in curly brackets. The notation “[step one]” is
literal, and no variables are imputed in these brackets.
When in-context examples are included in the prompt,
we separate each example with one empty line.

more gradient updates. This means that for train
n = 160 points and a batch size of 50, we generally
perform 12 gradient update steps (3 epochs) in our
experiments.
Decoding Steps. To select the number of decoding
steps for each datasets (t = 100 for StrategyQA
and t = 300 for GSM8k), we wanted to make
sure that we were generating reasoning chains long
enough for Llama-2-70b to solve hard test ques-
tions. Therefore, we intentionally selected this
parameter based on hard test performance, in order
to use as small a valuable as possible (based on ex-
periment efficiency) that did not compromise test
performance on hard data.
Quantization. All models are run in 8bit quantiza-
tion, except for Qwen and Mixtral, which are run
in 16bit format, and falcon-7b and persimmon-8b,
which are run in full precision. We observe no per-
formance loss from quantization in any experiment.
Training Size Controls. For all experiments with
linear probing and QLoRA, we use n = 160 train
points. While we would prefer to use more training
data, the bottleneck we face is that fairly compar-
ing easy-to-hard with hard-to-hard generalization
requires both fixing the amount of training data
and leaving enough hard data left over for test-
ing. Since we have as few as n = 603 hard test
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Dataset Method CoT n Acc (%)
ARC ICL No 0 85.94
ARC ICL No 10 91.77
ARC Linear Probe No 160 89.48
ARC QLoRA No 160 89.47
GSM8k ICL Yes 0 4.80
GSM8k ICL Yes 8 56.24
GSM8k QLoRA Yes 160 52.64
MMLU-STEM-5 ICL No 0 48.30
MMLU-STEM-5 ICL No 10 56.83
MMLU-STEM-5 Linear Probe No 160 53.01
MMLU-STEM-5 QLoRA No 160 52.77
StrategyQA ICL No 0 62.40
StrategyQA ICL No 8 70.04
StrategyQA ICL Yes 8 72.86
StrategyQA Linear Probe No 160 68.79
StrategyQA QLoRA No 160 66.36
StrategyQA QLoRA Yes 160 75.09

Table 4: Model accuracy table when finetuned on ran-
domly selected data from the whole data distribution
and tested on the whole data distribution (zero-shot ICL
rows included), using Llama-2-70b. Averaged over 5
seeds. Compare to Fig. 11.

points for MMLU, we have to limit training data to
n = 160 points to leave enough test data for reason-
ably small confidence intervals. Linear probing and
QLoRA demonstrate good sample-efficiency when
applied to Llama-2-70b, so we are able to obtain
comparable (and sometimes better) performance
than ICL across datasets using these methods.

E Statistical Testing

Here, we describe in greater detail how our statis-
tical testing works. We aim to make the most of
the data we have, e.g. n = 603 hard datapoints
for MMLU-STEM-5. Ultimately, we want to use a
block bootstrap that resamples (1) test datapoints
and (2) models (equivalent to picking which ran-
dom seed was chosen for training), in order to ac-
count for variance due to limited test data, selection
of training data, and any random training dynamics.
Therefore, we run five random seeds for each exper-
iment, randomly selecting training data and using
all remaining data as test data. Each experiment
produces a matrix (block) of results, with up to
five model predictions per datapoint. Running this
matrix through a block bootstrap that resamples
rows and columns produces a confidence interval
for the statistic of interest (Efron and Tibshirani,
1994). When computing the mean of a resampled
matrix, we ignore missing values (which represent
that a datapoint was used for training and could not
be tested on). We take 100,000 resamples.

We can use a bootstrap to obtain estimates for

our SGR statistic too. We aim to estimate the ex-
pected value of the random variable

Easy − Unsupervised
Hard − Unsupervised

using the samples Unsupervised, Easy, and Hard
representing their respective experiment outputs
(n× 5 matrices of model predictions). We perform
a paired test with respect to test datapoints (resam-
pling the same rows across each matrix), while
not assuming random seeds are paired (resampling
different columns for each matrix). Note that for
the Unsupervised matrix, each column is identical
because there is no prompt data. The results of
this analysis are given in Table 2. When showing
results for hard test data, we subset to just points
that are hard according to their respective hardness
measure.

The one exception to this kind of bootstrap sam-
pling is for results in Fig. 3 and 9, where we only
show CIs derived from test sample variance. In
these plots, we average over five random training
seeds.
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MMLU prompt
Question: Which one is usually yellow?
A) Cheese
B) Apple
C) Carrot
D) Bread
Answer: Cheese

Question: What do we use to wash dishes?
A) Broom
B) Shovel
C) Soap
D) Hammer
Answer: Soap

Question: What color is the sky when it’s sunny?
A) Grey
B) Blue
C) Black
D) Orange
Answer: Blue
...
StrategyQA prompt
Q: Does cheese come from a plant?
A: no

Q: Can you use a broom to sweep the floor?
A: yes

Q: Is the sky green when it’s sunny?
A: no
...

Table 5: Example questions used for testing model per-
formance based on task-format-only prompts. We use
ChatGPT to generate 50 such questions for MMLU
and 40 for StrategyQA. These are used for experiments
using k = 10 examples for MMLU and k = 8 for Strat-
egyQA, averaging over five different prompts (results
shown in Fig. 19).
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