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Abstract

The scaling of Large Language Models (LLMs)
for retrieval-based tasks, particularly in Re-
trieval Augmented Generation (RAG), faces
significant memory constraints, especially
when fine-tuning extensive prompt sequences.
Current open-source libraries support full-
model inference and fine-tuning across mul-
tiple GPUs but fall short of accommodating the
efficient parameter distribution required for re-
trieved context. Addressing this gap, we intro-
duce a novel framework for PEFT-compatible
fine-tuning of GPT models, leveraging dis-
tributed training. Our framework uniquely uti-
lizes JAX’s just-in-time (JIT) compilation and
tensor-sharding for efficient resource manage-
ment, thereby enabling accelerated fine-tuning
with reduced memory requirements. This ad-
vancement significantly improves the scalabil-
ity and feasibility of fine-tuning LLMs for com-
plex RAG applications, even on systems with
limited GPU resources. Our experiments show
more than 12x improvement in runtime com-
pared to Hugging Face/DeepSpeed implemen-
tation with four GPUs while consuming less
than half the VRAM per GPU.

1 Introduction

Large Language Models (LLMs) like Chat-
GPT (Achiam et al., 2023) have revolutionized the
field of natural language processing, paving the
way for open-source alternatives that offer more
flexibility in fine-tuning. Llama-2 (Touvron et al.,
2023), a prominent LLM, exemplifies this trend,
offering extensive customization at the architec-
ture level. Alongside, Parameter Efficient Fine-
Tuning (PEFT) (Fu et al., 2023) techniques like
Low-Rank Adaptation have emerged, optimizing
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resource utilization in training these models. Re-
trieval Augmented Generation (RAG) (Lewis et al.,
2020a) is a paradigm that leverages a corpus to en-
rich LLM prompts with relevant context. However,
when fine-tuning on retrieval-based context, the
quadratic memory scaling of transformer models
with prompt length poses significant challenges, es-
pecially when integrating large context sizes. The
training process, which employs teacher-forcing
at each step of the sequence, exacerbates memory
demands, creating a bottleneck for effective LLM
utilization in RAG.

Current machine learning frameworks facilitate
LLM fine-tuning on distributed systems, employ-
ing model and pipeline parallelism strategies. How-
ever, these frameworks lack support for PEFT,
specifically in the context of parallel training.
While libraries such as DeepSpeed (Rasley et al.,
2020) and Accelerate (Gugger et al., 2022) offer
data parallelism for fine-tuning the entire model,
these libraries lack support for tensor-parallel train-
ing in the PEFT setting. In addition, combin-
ing multiple libraries adds unnecessary boilerplate
code to glue together dependencies required for
parameter-efficient and distributed training. These
libraries also require boilerplate code for configu-
ration since they target multiple models.

To bridge this gap, we introduce JORA (JAX-
based LORA), a library tailored for Llama-2 mod-
els, designed to enhance the fine-tuning process
for RAG applications. Utilizing JAX’s just-in-time
(JIT) compilation and innovative tensor-sharding
techniques, JORA not only accelerates the fine-
tuning process but also significantly optimizes
memory usage (Bradbury et al., 2018). Our evalu-
ations across standard training GPUs demonstrate
substantial improvements in training time and mem-
ory efficiency, addressing the critical challenges of
PEFT in retrieval-based training. Our library also
provides valuable helpers for using instruct format
datasets, merging LORA parameters, and convert-
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ing fine-tuned models to Hugging Face compatible
formats. Our work makes PEFT more accessible
and efficient for LLMs, particularly in resource-
constrained environments. By enhancing the scal-
ability and efficiency of LLMs in retrieval aug-
mented fine-tuning (RAFT), JORA opens new av-
enues for advanced natural language processing
applications.

2 Background

JORA introduces the concept of RAFT. This work-
flow employs retrieved knowledge and outcomes
to create context and expected outputs. The fine-
tuning process encourages the model to learn a ra-
tionale to derive the output from the knowledge.
Prior related work focuses on RAG, the infer-
ence counterpart of RAFT, whose bottleneck is
the sequence length used for context in the prompt.
Since RAFT shares the same bottleneck, our frame-
work focuses on adding efficiency by providing
a memory-efficient and distributed backend while
exposing an intuitive API. We highlight the impor-
tance of RAG and the capabilities of other libraries
which aim to solve related problems. We highlight
how our library fills the gap.

2.1 Retrieval Augmented Generation

RAG has gained significant attention in recent
years, with various approaches exploring it to en-
hance LLM generation. The integration of dense
and sparse retrievers with LLMs, as discussed in
(Robertson et al., 2009; Seo et al., 2019), high-
lights the diversity in retrieval techniques used for
augmenting LMs. Chen et al. (2017), Clark and
Gardner (2017), and others have contributed to
conditioning LMs on retrieved documents, demon-
strating significant improvements in knowledge-
intensive tasks (Lee et al., 2019; Guu et al., 2020;
Khandelwal et al., 2019; Lewis et al., 2020b; Izac-
ard and Grave, 2020; Borgeaud et al., 2022; Murez
et al.,, 2020). The concept of chain-of-thought
prompting in combination with retrieval mecha-
nisms, as proposed by Wei et al. (2022), marks a
novel approach in this domain. The evolution of
LMs into agent-like models, capable of generating
queries and performing actions based on prompts,
is evident in the works of Thoppilan et al. (2022),
who introduced models like LaMDA. Menick et al.
(2022), Komeili et al. (2021), and Nakano et al.
(2021) further explored the generation of internet
search queries by LMs.

2.2 Parallel Training Libraries

Several open-source libraries expose an interface
for multi-GPU training for LLMs. Hugging Face
implementation of Transformer models allows
multi-GPU inference. The Transformers library
also includes a trainer. Hugging Face’s Acceler-
ate (Gugger et al., 2022) library is a tool designed
to simplify the process of running PyTorch train-
ing scripts on different devices, including CPU,
single GPU, multiple GPUs, and TPUs while sup-
porting mixed precision and distributed settings.
It offers an easy-to-use API that allows users to
run their PyTorch code across any distributed con-
figuration with minimal changes, making training
and inference at scale more straightforward. Deep-
Speed (Rasley et al., 2020) is an open-source op-
timization library for PyTorch developed by Mi-
crosoft. It is designed to accelerate the training and
inference of deep learning models, mainly focus-
ing on large-scale models. The library addresses
challenges such as memory constraints and slow
training times, aiming to enhance deep learning
workflows’ performance and efficiency. Accelerate
utilizes DeepSpeed or FSDP for distributed train-
ing.

JORA solves several issues with prior libraries:
i) we target specific models to reduce the boiler-
plate required for the training process, ii) we uti-
lize JAX’s jit optimizations for training to improve
training performance compared to PyTorch. iii) we
provide a tensor-parallel, multi-GPU implementa-
tion of training, and iv) we provide utility functions
to simplify the data loading experience, fine-tuning
the model, and compatibility with the Hugging
Face ecosystem.

3 JORA Framework

JORA is a library for RAFT. Its purpose is to make
fine-tuning based on retrieved context more user-
friendly. In addition, it is designed to make RAFT
faster and more resource-efficient. Figure 1 gives a
high-level overview of JORA.

3.0.1 JAX

One of the highlights of our library is that it
allows LoRA training of LLMs using the JAX
framework. JAX provides composable trans-
formations of numerical functions e.g. auto-
matic differentiation (grad), vectorization (vmap),
parallelization (pmap), and just-in-time compila-
tion (jit) (Bradbury et al., 2018). A function must
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Figure 1: JORA is a library that aids in Retrieval Augmented Fine-Tuning by eliminating unnecessary boilerplate
and introducing memory efficient training through tensor-parallelism and LoRA.

be pure and statically composed to benefit from
these transformations. Functions compiled by JAX
use the Accelerated Linear Algebra (XLA) library.
Jit compilation allows program optimizations to the
XLA to improve execution speed which is ideal for
compute-heavy architectures such as transformers.

3.0.2 Dataset Loading and Training

L
{

"instruction”: "Calculate the area

of the following shape in square
centimeters.”,

"input”: "rectangle of size 4 cm x 5
cm”,

"output”: "20cm*2"

}’

Listing 1: An example of Alpaca format data.

Even though JORA is compatible with general-
purpose fine-tuning pipelines, we provide helper
functions for loading training data in alpaca for-
mat (Taori et al., 2023). The Alpaca dataset format
is ideal for RAFT since it follows the instruction-
tuning format. Each sample in this format may
contain an instruction, input (optional), and output.
Listing 1 shows an example of this data format. Re-
trieved knowledge can be used as the input and sep-
arated from the instruction and output. The output
represents the sequence that the model generates.

class AlpacaDataset(Dataset):
def __init__(self, *x, path: str,
split=Union[Literal[’train’],
Literal[’test’]],
split_percentage=0.8,
tokenizer=None, max_len=512,
alpaca_mix=0.3) -> None:

We provide the class ‘AlpacaDataset’ for user-
friendly data loading, which inherits from Py-
Torch’s ‘Dataset’ class. Listing 2 shows the sig-
nature for the constructor for this class. In addition
to loading the dataset, the alpaca_mix parame-
ter allows merging a percentage of the original al-
paca dataset to prevent overfitting on the fine-tuned
data. The class also provides the ability to create
training and testing splits based on the provided
split percentage. The AlpacaDataset collators ap-
ply instruction-masking by default.

3.0.3 Training API

How fine-tuning proceeds depends on a variety
of parameters. Since this library aims to sim-
plify the training process, JORA provides com-
mon defaults for starters. In addition, it al-
lows customization of the training process for
more advanced usage. Listing 3 shows the
configuration class. JAX_PARAMS_PATH
specifies the location of the model parameters.
LLAMA2_HF_PATH specifies the location of
Meta’s model in Hugging Face format. Our library
uses the Hugging Face model path to access it’s
tokenizer. Since the release of JAX native LLMs,
such as Gemma (Team et al., 2024), our library
supports loading models without a Hugging Face
format. For the sake of brevity, our examples fol-
low the datastructures for Llama-2. Other model
configurations follow suit with model specific nam-
ing schemes.

Listing 2: Function signature for the constructor for
AlpacaDataset.

class ParallamaConfig(NamedTuple):
JAX_PARAMS_PATH: str
LLAMA2 _HF_PATH: str
LORA_R: int = 16
LORA_ALPHA: int = 16
LORA_DROPOUT: float = .05

Listing 3: JORA allows the common defaults for the
configuration with room for specificity.
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3.0.4 Model Transfer API

Most open-source libraries that utilize LLM’s are
compatible with Hugging Face’s model format.
Since JORA uses JAX for its training procedure,
the caveat is incompatibility with the popular li-
braries. To overcome this limitation, we provide a
simple script to convert models trained using our
library to the Hugging Face format. Listing 4 pro-
vides a description of the conversion script usage.

JORA builds on LLM implementations in JAX
which uses jit and vmap. GPT-based models use the
decoder component of the transformer architecture
to produce text autoregressively. Since transformer
models consist of multi-headed self-attention, the
memory used at the inference stage scales quadrat-
ically with the input sequence length. This is a
significant drawback for RAFT since augmenting a
prompt with retrieved-context adds to the sequence
length. As such, one of the aims of our library is
to assuage the memory utilization requirements by
efficiently distributing memory usage across GPU
resources.

SYNOPSIS
huggingface_merger.py
HUGGINGFACE_PATH JAX_PATH SAVE_PATH

POSITIONAL ARGUMENTS
HUGGINGFACE_PATH
Type: str

path to the HuggingFace llama
model
JAX_PATH

Type: str

path to LoRA parameters fine-
tuned by JORA
SAVE_PATH

Type: str

path to save the updated
HuggingFace llama model

Listing 4: Hugging Face conversion script can be
invoked from the command-line. The converted model
can be used with other Hugging Face compatible
libraries such as LangChain.

For our implementation of LoRA, we follow
the suggestions presented by Hu et al. (2021),
i.e., the query and value attention weights are en-
hanced. Specifically, the approach suggests that
the computation, Wyx + by, can be tuned through
Wox + by + BAx where Wy are subset of the
models weights, B, A are the trainable count-
ports of W, added by LoRA, Wy, BA € R™*",
AeR™™ BeR™" andr << m,n.

Here, B and A are the trainable weights. W and
bo represent the weights and biases of a specific
neural network component. Composing the train-

able parameters to lower rank values significantly
reduces the total parameters involved in backprop-
agation. Generative models are trained to predict
the next token, given past tokens auto-regressively.
Thus, the objective, £, of the LLM is to reduce
the discrepancy between the next predicted token
Jt+1 and the next ground truth token y;11, given
the past tokens in the ground truth sequence, y}.
Consequently, the trained language model predicts
the next token, given the past predicted tokens, g

For our implementation of LoRA, we add the
LoRA parameters to the original weights as high-
lighted in Equation 1. The values of B and A are
initialized from zeros and normal sampling, respec-
tively.

Output = Wox + by + BAx

= (Wo+ BA)x + by &
JORA parallelizes all parameters of the Llama
model using JAX’s positional sharding module.
Transformers inherently support distributed compu-
tations through the use of parallel decoder blocks.
GPT’s consists of several layers of parallel decoder
blocks. We utilize the inherent design and shard
on the decoder axis. Projection and Embedding
layers are sharded on the non-sequential dimension
to avoid variation due to the input.

3.0.5 Library Usage

One of the core aims of JORA is to make fine-
tuning easily accessible to the end-user. Compared
to Hugging Face, JORA significantly reduces the
lines of code to get started. In addition, JORA pro-
vides a GUI for fine-tuning LLMs. The following
code can be used to fine-tune a model with minimal
changes to default training parameters:

from jora import train_lora,
ParallamaConfig,
generate_alpaca_dataset

config = ParallamaConfig(
MODEL_SIZE=model_size,
JAX_PARAMS_PATH=jax_path,
LLAMA2_META_PATH=hf_path)
dataset = generate_alpaca_dataset(
dataset_path, ’train’, config)
train_lora(config, dataset,
checkpoint_path)

Alternatively, the GUI can set the fine-tuning
parameters and training. Fig. 2 shows the interface
for the GUL. It can be invoked with the following
command:
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Llama-2 pretrained path

Set Llama-2 path
hf_models/path

JAX model path

jax_model.pkl Set JAX model path

Dataset path (Alpaca format)

Set dataset path
dataset.json

Checkpoints path

Set checkpoints path
checkpoints.

Train

Figure 2: JORA provides a simple GUI for fine-tuning.

python -m jora.gui

4 Experiments

We measure the improvement introduced by JORA
in terms of memory utilization and computation
speed, conducting experiments using Hugging
Face/DeepSpeed for comparison. Our setup con-
sists of a node of the SOL supercomputer (Jen-
newein et al., 2023) with 4 x A100 with 40GB of
VRAM each, an AMD EPYC 75F3 32-core Pro-
cessor, and 512GB of RAM. The GPUs are cross-
connected using NVLink. All experiments use 16-
bit brain floating point for parameter precision for
a fair comparison.

4.1 Memory Utilization Analysis

We compare the memory utilization of our imple-
mentation with that of the Hugging Face trainer
using Accelerate and PEFT. Our implementation
is adapted from the examples in the official Hug-
ging Face PEFT library, which uses Accelerate
and DeepSpeed for parallel computation. Through
parallelization, several parameters are replicated
across multiple GPUs. As such, the total memory
utilized by parallel training is greater than that used
in a single GPU setting. However, the advantage
of multi-GPU training is that the memory used by
each GPU individually is less than that used in
single-GPU training. JAX pre-allocates memory
to avoid fragmentation, which makes measuring
active allocation a challenge. For memory utiliza-

tion analysis, we override this behavior by setting
the XLA_PYTHON_CLIENT_ALLOCATOR en-
vironment variable to ‘platform.” This environment
variable informs JAX to allocate and deallocate
memory as needed but impacts performance. Thus,
for the performance evaluation, we use the default
configuration.

For parallel training, DeepSpeed distributes pa-
rameters using data parallelism. Thus, though a
single sample cannot be distributed, multiple sam-
ples can be aggregated, improving performance.
Thus, JORA is beneficial since it allows a single
lengthy sequence to backpropagate across multiple
GPUs. Table 1 shows that JORA uses less memory
per resource as the number of resources increases.
The only case where Hugging Face/DeepSpeed
consumes lower memory is where only one GPU
is available.

4.2 Computation Time Comparison

We also measure computation time using the same
RAFT dataset for the Hugging Face and JORA im-
plementations over iterations of 1, 2, and 4 GPUs.
Table 1 presents these results. JORA shows con-
sistently better performance than Hugging Face
implementation, with JORA implementation being
over 12 times faster than the baseline with 4 GPUs.
Since DeepSpeed used data parallelism, we ob-
serve a performance impact in multi-GPU settings,
with the bottleneck being the slowest GPU/sample
for backpropagation. In addition to improved per-
formance, since JORA uses JAX’s jit functionality
to run compiled computations, the performance of
the implementation shows more consistency. We
observe a computation performance drop between
single and multiple GPUs. This drop could be at-
tributed to cross-GPU communication overhead.

5 An Example Usage Scenario

JORA is designed to aid in RAFT. In this section,
we demonstrate a RAFT use case by fine-tuning it
on a social media dataset (Papasavva et al., 2020)
to help LLMs enable social-context understanding.
The purpose of RAG is to add additional context to
a prompt by searching for knowledge and adding
additional information. For RAFT, data can be
created based on retrieved knowledge. The LLM
learns to generate the retrieved answer based on
the context since the key rationale is held back. A
simple example is a database query, which corre-
sponds to a process that may be taken to produce
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GPUs 1 2 4
. 20645.2 23056 /23024 23978 /23921 /23463 /23397
Hugging Face PEFT w/  — Mem (MB) (39.81) (14.63/29.29) (47.87/50.39/31.96 / 17.46)
Microsoft DeepSpeed ZeRO-3 456 281 545
Performance (secs) © 0 1) © 62) © (')9)
Mem (MB) 23102 16068 /16008 11460/ 11448 /11448 /11400
JORA (Ours) (0.00) (0.00/ 0.00) (0.0/0.00/0.00/0.00)
0.19 0.79 0.44
Performance (secs) (0.00) (0.00) (0.00)

Table 1: JORA shows significant improvement w.r.t. Hugging Face implementation of PEFT paired with DeepSpeed
for parallelization. JORA uses tensor-parallelism to distribute memory allocation for parameters across GPU
resources. The number in the brackets denotes the standard deviation across five runs.

an output by evaluating the database. If the query is
not provided but rather a natural language equiva-
lent is provided, the LLM must learn the heuristics
represented by the hidden query.

Since prompt tuning is insufficient for models
to develop social-context understanding (Gandhi
et al., 2023), we use a fine-tuning process consist-
ing of two phases to add knowledge to an LLM.
Both phases of fine-tuning use PEFT. For our prob-
lem setting, rather than just predicting the follow-
ing words, we aim to gain an understanding of the
relation across different comments in a social me-
dia session. For instance, a comment in a social
media session may target the previous comment,
the original post that spawned the session, or some
comment in the middle of the discourse. To glean
insight into the target of the comment in terms of
its context, reasoning between the structure of the
conversation is critical. Unfortunately, the LLM
pre-training does not consider these relationships
specifically, and there is no public data related to
reasoning at the comment level in social media dis-
course. Thus, we rely on other general-purpose
structured data as a surrogate to learn structure and
reasoning. We use the WikiTableQuestions (Pasu-
pat and Liang, 2015) dataset to infuse structural
intelligence into the model. This dataset consists
of various independent tables, questions based on
one of the tables, and a corresponding answer. To
answer these questions, using the data in the in-
put table is vital. Some answers require aggregate
reasoning.

For the directionality analysis task (which post is
targeted by another comment in the same session),
we leveraged a corpus of 4chan threads (Papasavva
et al., 2020). This dataset consists of ~3 million
threads and ~100 million posts. Since 4chan al-
lows its users to tag whom they reply to, we use
this data as the ground truth for directionality in-
formation. We examine whether our RAFT phases

Target Post Reply Post p(Reply | Target)
7B 0.082 0.153 0.643
13B 0.159 0.200 0.815
7B-RAFT 0.865 0.541 0.558
13B-RAFT 0.971 0.847 0.855

Table 2: The veracity of the directionality identification
improves with the RAFT fine-tuning phases w.r.t. the
baselines. Given the conversation as context, the values
represent the accuracy of detecting the respective posts.
Llama-2 models are used.

improve (i) the model’s ability to detect the post
we are targeting for behavior comprehension and
(i) the model’s ability to distinguish who is be-
ing targeted by the poster. 4chan allows posters
to mention more than one comment as the target
of the reply. Here, we consider the model suc-
cessful if one of the multiple comments is identi-
fied. Table 2 shows the result of our experiment.
The RAFT model significantly improves perfor-
mance over the pre-trained counterparts. This il-
lustrates the application of RAFT to improve LLM
performance in social media analysis. Social me-
dia conversation threads can provide important
context but they can span large sequences. JORA
helps in the training process here by splitting a
discourse sequence’s computation tensors across
multiple GPUs. This is not possible using Hugging-
Face/Deepspeed since Data-Parallelism in these
frameworks distributes the workload between dif-
ferent data instances rather than dividing the com-
putation for a single data instance among multiple
accelerators.

6 Conclusion

This paper presents JORA, a JAX-based library for
Retrieval Augment fine-tuning of Llama-2 mod-
els. JORA provides convenient functions for data
manipulation and training. In addition, it imple-
ments best practices for memory efficient and per-
formant training. By using a combination of LoRA,
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tensor-parallelism, and jit, JORA can significantly
improve memory efficiency and computation time
over a distributed environment compared to Hug-
ging Face/DeepSpeed. Finally, JORA can export
trained models to the popular Hugging Face model
format for downstream usage with other Hugging
Face-compatible libraries.
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