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Abstract

Today’s probabilistic language generators fall
short when it comes to producing coherent and
fluent text despite the fact that the underlying
models perform well under standard metrics
(e.g., perplexity). This discrepancy has puzzled
the language generation community for the last
few years. In this work, we posit that the ab-
straction of natural language generation as a
discrete stochastic process—which allows for
an information-theoretic analysis—can pro-
vide new insights into the behavior of probabi-
listic language generators, for example, why
high-probability texts can be dull or repetitive.
Humans use language as a means of com-
municating information, aiming to do so in a
simultaneously efficient and error-minimizing
manner; in fact, psycholinguistics research
suggests humans choose each word in a string
with this subconscious goal in mind. We for-
mally define the set of strings that meet this
criterion: Those for which each word has an
information content close to the expected in-
formation content, namely, the conditional
entropy of our model. We then propose a sim-
ple and efficient procedure for enforcing this
criterion when generating from probabilistic
models, which we call locally typical sam-
pling. Automatic and human evaluations show
that, in comparison to nucleus and top-k sam-
pling, locally typical sampling offers com-
petitive performance (in both abstractive
summarization and story generation) in terms
of quality while consistently reducing degen-
erate repetitions.

1 Introduction

Modern probabilistic models have repeatedly
demonstrated their prowess at modeling natural
language, placing high probability on held-out
corpora from many different domains (Brown
et al., 2020; Hoffmann et al., 2022; Chowdhery
et al., 2022). Yet when used as text generators,
their performance is far from perfect. One of the
largest determinants of the generated text’s qual-
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ity is the choice of decoding strategy—that is,
the decision rule used to extract strings from a
model. Perhaps surprisingly, for many language
generation tasks, decoding strategies that aim to
find the highest-probability strings produce text
that is undesirable (Holtzman et al., 2020; See
et al.,, 2019; Eikema and Aziz, 2020; Zhang
et al., 2021; DeLucia et al., 2021). For instance,
Stahlberg and Byrne (2019) report that in their neu-
ral machine translation experiments, the highest-
probability string is usually the empty string. On
the other hand, stochastic strategies, which take
random samples from the model, often lead to text
with better qualitative properties (Fan et al., 2018;
Holtzman et al., 2020; Basu et al., 2021). How-
ever, stochastic strategies still have a host of other
problems, while not entirely dispensing with those
seen in maximization-based approaches.'

At first glance, it is unintuitive that high-
probability strings are often neither desirable nor
human-like. Due to this pathology, a number of
studies have concluded that there must be faults
in the training objective or architecture of the
probabilistic models behind language generators
(Welleck et al., 2020; Guan et al., 2020; Li et al.,
2020, inter alia). Yet, this conclusion is at odds
with these models’ performance in terms of other
metrics. The fact that modern models can place
high probability on held-out text suggests that
they provide good estimates (in at least some as-
pects) of the probability distribution underlying
human language. We posit that looking at lan-
guage generation through an information-theoretic
lens may shed light on this paradox.

Communication via natural language can in-
tuitively be cast in information-theoretic terms.
Indeed, there is a long history of studying language
through the lens of information theory (Shannon,

'While maximization-based strategies can produce text
that is generic or degenerate, stochastic strategies occasion-
ally produce nonsensical text. Both types of strategies tend
to eventually fall into repetitive loops.
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1948, 1951; Hale, 2001; Piantadosi et al., 2011;
Pimentel et al., 2020, inter alia). In this para-
digm, linguistic strings are messages used to con-
vey information, and their information content
can be quantified as a function of their proba-
bility of being uttered—often driven by context.
Assuming that humans use language in order to
transmit information in an efficient yet robust
manner (Zaslavsky et al., 2018; Gibson et al.,
2019), the subset of strings typically used by hu-
mans should encode information at some (perhaps
near-optimal) rate.” In fact, prior works studying
the uniform information density hypothesis (Levy
and Jaeger, 2007; Mahowald et al., 2013) empir-
ically observed this property in humans’ use of
natural language.

These insights lead us to re-think what it means
to be a probabilistic language generator. First, we
contend that language generators, in some cases,
can be thought of as discrete stochastic processes.
This, in turn, allows us to cleanly define typicality
(and the typical set) for these processes. We ar-
gue, however, that due to discrepancies between
the model behind these generators and the true
distribution over natural language strings, directly
sampling from the typical set is not a good idea.
Indeed, for language generators that do not use
an end-of-string (Eos) state, this is exactly what is
done by ancestral sampling—a decoding strategy
not known for providing high-quality text. In-
spired by research on human sentence processing,
we then define the more restrictive notion of local
typicality, and argue that if we want text generated
from a model to be ‘‘human-like,”” we should per-
haps enforce this information-theoretic criterion
in generations ourselves. To this end, we develop
a new algorithm, which we call locally typi-
cal sampling. Concretely, we hypothesize that
for text to be perceived as natural, each word
should have an information content close to its
expected information content given prior context.
When sampling from probabilistic language gen-
erators, we should limit our options to strings
that adhere to this property. In experiments on
abstractive summarization and story generation,
we observe that, compared to nucleus and top-k
sampling: (i) locally typical sampling reduces the
number of degenerate repetitions, giving a REP

ZInformation rate may be defined with respect to time
(as is the case with spoken language) or with respect to
a specific linguistic unit, such as a word (as is the case
with text).
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value (Welleck et al., 2020) on par with human
text, and (ii) text generated using typical sam-
pling is generally closer in quality to that of hu-
man text.’?

2 Two Views of Language Modeling

In this work, we discuss language models* in an
information-theoretic light. Our first step towards
this goal is to re-frame their presentation. Con-
cretely, we put forth that there are actually two
lenses through which we can view language mod-
eling productively. Under the traditional lens, we
can think of a language model as a distribution
over full strings: A language model constitutes
the distribution of a single string-valued random
variable. Under an alternative lens, we can think
of a language model as a discrete stochastic pro-
cess: a collection of indexed random variables.
We compare and contrast these views formally,
and then show how to use the language process
view to derive a new sampling algorithm in §5.

2.1 A Single String-Valued
Random Variable

We codify the traditional view of language mod-
eling in the following definition. Let V be an
alphabet—a non-empty, finite set.

Definition 2.1 (Language Model). A language
model p is a probability distribution over all
strings Yy € V*.3 Under this view, we can think
of a language model as describing a single V*-
valued random variable.

Under Definition 2.1, it is common to express a
language model in the following factorized form

T

yr) = [ pwe | y<i)

t=1

ply=uy1- (D

where we define y_, < (Yo, ..., yi_1) with the
padding yo = Bos as a distinguished beginning-
of-sequence symbol. Through the chain rule of

3 An implementation of typical sampling can be found in
the HuggingFace Transformers library (Wolf et al., 2020).

“Here we use the term language model to refer to any
(valid) probability distribution over natural language strings.
We subsequently specify the necessary conditions for val-
idity. Note that this distribution may also be conditioned on
an input.

5The Kleene closure of a set V is defined as V* def
Unzo V™


https://huggingface.co/

probability, we can always factorize a model as in
Eq. (1). The process which produces such a fac-
torization is called local normalization.® How-
ever, with local normalization, we encounter a
subtlety: One has to define each conditional prob-
ability p(y: | y;) not over V, but rather over the
augmented set V = V) U {kos}, that is, where we
have added the distinguished end-of-string sym-
bol Eos. Why? Because without Eos, it would be
impossible to normalize the language model, that
is, have it sumto 1.7

2.2 A Discrete Stochastic Process

Interestingly, the factorization in Eq. (1) suggests
that we might view language models, not as a
single string-valued random variable, but rather as
a collection of random variables {Y; }?°,, namely,
as a discrete stochastic process.® Under this view,
we arrive at the following definition of what we
term a language process, to distinguish it from the
definition of a language model given above.

Definition 2.2 (Language Process). A language
process over V is a discrete stochastic process
Y = {Y;}{°, where each Y; is V-valued. The
process is described by a distribution p, and we
denote its conditional distribution as p(Y; = y; |
Y o+ = y) fort > 0. In slight abuse of notation
but out of convention, we take Y; for t < 0 to be
BOS, i.e., conditioning p on just BOS signifies the
initial distribution of the process.

Definition 2.2 is very generic. In words, it
just says that a language process is any discrete
process where we sample a new word® given the
previously sampled words. The first question that
naturally comes to mind is when the definitions of
alanguage model and a language process coincide.
As it turns out, there is a simple answer.

Definition 2.3 (Tightness). Ler Y = {Y;}{2,
be a language process over alphabet V with dis-

The ubiquity of Eq. (1) has led some authors to defining
language models in the locally normalized form, even though
globally normalized language models are also perfectly fine
to consider (Goyal et al., 2019).

7Some authors erroneously omit Eos from their definition.
However, we require a distinguished symbol Eos to be able
to locally normalize the language model and make it a valid
probability distribution.

8This process is discrete both in time and in value.

One could just as easily define a language process over
subwords, morphemes, or characters.

tribution p. A language process is tight (Booth
and Thompson, 1973) if and only if

|yl
Z Hp(yt:yt [ Ya=y)=1
ye(V*@{ros}) t=1

2)

where A@ B= {ab|a c A,be B}

In words, tightness says that a language process
must not leak probability mass to infinite strings.
Because a language model must be a (valid)
probability distribution, it must also be tight.

Proposition 2.4. Let Y = {Y;}{2, be a lan-
guage process over alphabet V with distribution
p and let p; £ Zydvtilwﬁm})\n‘ﬂ PuY <imv<),
Dyevt-1 H;ﬁlp(Yi:yi\YQ:yQ)
Then'Y is tight if and only if p, = 1 for some
0<t<ooory ;o pt— .

Proof. Note that p, is the probability of sampling
EOS at exactly step t given that the history of the
string is of length (¢ — 1).

e Case 1: Suppose p; = 1 for some 0 < ¢ <
0o. Then, Y is clearly tight as no probability
mass is leaked to strings beyond length ¢,
where ¢ < oc.

e Case 2: Now suppose p; < 1 for all ¢.
In this case, we have that the probabil-
ity of all infinite-length strings is given by
[1;2, (1 — p;). However, by a standard result
(see, e.g., Knopp, 1954, Ch. 12), we have that
[[E,(1=p) =0 = 32 p — oo,
provided p; < 1.

Both cases together complete the proof. |

We can now see that language processes
are strictly more general than language models:
Eq. (1) shows us that any language model can be
written as a language process, but Proposition 2.4
shows the converse is not necessarily true. In-
deed, Proposition 2.4 allows us to easily construct
a simple language process (example given below)
that cannot be converted to a language model,
which motivates the formalism.

Example 2.5. Let V = {a}. Define a language
process Y = {Y;};2, over V such that each Y;
is distributed according to p(a | y;) =1 — 5+
and p(eos | y;) = zi<. Note that we keep the
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convention that Yy = Bos for t < 0, and thus
po = 0. We have > )% pr = % < oo, so, by
Proposition 2.4,'Y is not a language model. Com-
puting the infinite product ;2 (1 — p;) shows
Y leaks =~ .58 to infinite strings.

Life after eos? Proposition 2.4 further hints at
the more intuitive difference between language
models and language processes—what happens
after eos? In the traditional definition of a lan-
guage model (Definition 2.1), life ends at Eos.
That is, any string with symbols after Eos would
not be a valid sample from a language model be-
cause such strings are not in the model’s support.
On the other hand, a language process offers a
more chipper view: Once we hit EOs, we can just
generate another symbol. A language process is
better thought of as an infinite babbler than a dis-
tribution over any sort of strings. At some level,
this is indeed the implicit view that is adopted by
some when language modeling, as many language
models do not have Eos in the traditional sense.
For the rest of this paper we will also take this
view, and consider language processes for which
we can continue generating after sampling an
EOS symbol.

2.3 Other Useful Properties

Next, we discuss some other properties about lan-
guage processes that are important for understand-
ing the theoretical results presented in §3.

Definition 2.6 (Markov). A language process
Y = {Y;}2, over alphabet V with distribution
p is Markov'® if the following equality holds

p(Ye | Y<t) =p(Ye | Yiek, ..., Y1)

where k > 0 is the Markov order. We again take
Y, for t < 0 to be Bos, indicating our initial
distribution.

Many language processes are explicitly defined
to be Markov, for example, ones based on n-gram
language models. However, many language pro-
cesses based on recurrent neural networks are, in
principle, non-Markov. Yet despite being capable
of learning non-Markov distributions, researchers
have found that recurrent neural language models

10Also known as a Markov chain.

tend to learn Markov distributions. For instance,
Khandelwal et al. (2018) show that a recurrent
neural language model’s memory is empirically
bounded at roughly 200 words. Thus, we can
still generally assume this property when work-
ing with language processes parameterized by
such models.!!

Definition 2.7 (Stationarity). A k-Markov lan-
guage process Y = {Y;}{2, over alphabet V with
distribution p is stationary if the following holds

p(Y;f-‘rn | th*kJrTlv EE) th—l-i-n) (3)
= P(Yt ‘ Y;ffka o a}/tfl)

for n > 0. We again take Y; for t < 0 to be Bos,
indicating our initial distribution.

While not theoretically Markovian, human lan-
guage is generally considered stationary, that is,
the probability distribution over the next word
should not depend on absolute position, but rather
the history.

Definition 2.8 (Ergodicity). A language process
Y = {Yi}i°, is ergodic if its statistical properties
(e.g., ensemble averages) can be deduced from
a single, sufficiently long, random sample of the
process.

The above definition is informal, as ergodic-
ity is a complex property that would take time
to treat rigorously (see, e.g., McMillan, 1953;
Breiman, 1957). One of the important implications
of ergodicity for language processes, however,
is rather straightforward. If our language pro-
cess is over alphabet V with distribution p and
is ergodic, then for every symbol y € V and
for every history y_, € V*, there must exist
an extension Yy = Y4, Y, - ,Yp—1 such that
p(Yy =y | Yoy = yp) > 0. In plain terms,
this just says that we can always reach every word
in our alphabet via some path no matter where
we currently are. In our context, ergodicity also
relates to the problem with Eos. If we convert a lan-
guage model into a language process (as discussed

"'Note that, in principle, human language is not Markov,
in so far as many linguists believe human language is capa-
ble of arbitrarily deep center-embeddings (Chomsky, 1957,
1995). Yet research suggests that humans do not make use
of this property in practice (Reich, 1969; Karlsson, 2010),
and so we do not consider the Markovian property of most
models as a limitation to their ability to model natural lan-
guage in practice.
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in §2.1) and make the Eos state absorbing,'? this
language process must be non-ergodic, as once it
encounters EOS, no other state is reachable.

2.4 Estimating a Language Model from Data

Language models are typically estimated from
language data. The standard method for estimating
the parameters of p is via maximization of the
log-likelihood of a training corpus &

[yl

L(6;8) = => > logp(ye | )

yes§ t=1

“)

where 6 are the model p’s parameters. The
above is equivalent to minimizing the cross-
entropy loss between p and the empirical dis-
tribution. Note that we assume all y € S end in
the special Eos token.

3 Information-Theoretic Properties of
Language Processes

The view of language modeling as a discrete
stochastic process naturally lends itself to an
analysis through the lens of information theory.
Indeed, much of information theory is concerned
with the study of discrete stochastic processes
(see, e.g., Cover and Thomas, 2012, Ch. 4). In this
section, we review standard information-theoretic
definitions in §3.1 and build on these to introduce
our own notion of local typicality in §3.2.

3.1 Typicality

An important definition in the study of stochastic
processes is entropy rate, which generalizes the
notion of entropy from a random variable to a sto-
chastic process.

Definition 3.1 (Entropy Rate). Let Y = {V;}7°,
be a stationary, ergodic discrete stochastic pro-
cess over alphabet V with distribution p. The
entropy rate of Y is defined as

H(Y) £ lim

t—00

1

P LTS AN C)
The entropy rate is useful in that it tells us, in the

limit, how spread out (i.e., entropic) the distribu-

tion is. Another interpretation is that it quantifies

the complexity of Y. In the case of an i.i.d. pro-

12This would be done by setting the transition probability
p(Y; =k0s | Yop =y.,) =1if y.q = EOs.
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cess, the entropy rate and the entropy coincide,
making the entropy rate a true generalization of
the entropy. Using entropy rate, we can define
the notion of the typical set.

Definition 3.2 (Typical Set). Ler Y = {Y;}$°, be
a stationary, ergodic discrete stochastic process
where each Y; follows distribution p and takes
on values in a finite support Y. For 1 < T < oo,
the (T,¢)-typical set of Y is the set of all se-
quences of length exactly T' with average per-
symbol negative log-probability close to H(Y), i.e.

log p(y)

O H(Y)

T = {y |

< 5} (6)

In informal terms, the typical set is the set of all
samples that we would expect when sampling from
p. To give the reader intuition about typicality, we
now turn to a classical example.'?

Example 3.3. Consider an i.i.d. stochastic pro-
cess Y = {Yi}°, where Y; is defined as the
outcome of flipping a biased coin: we have
p(HEADS) = .6 and p(TAILS) = .4. If we flip 100
coins, the most likely outcome is the sequence of
100 heads. However, this would be a surprising
outcome to most people, who would intuitively
expect the sequence to consist of roughly 60%
heads and 40% tails. Indeed, even for relatively
large ¢, the sequence of 100 heads is not in the
7}(T) typical set; its average symbol probability is
6> 2710 ~ 0.51.

The above example demonstrates that the typ-
ical set often does not contain the most likely
sequence. Additionally, the typical set is interest-
ing because, as T' — o0, it contains nearly all the
probability mass; we formalize this property in a
proposition.

Proposition 3.4. Let Y = {Y;}{°, be a station-
ary, ergodic discrete stochastic process where
each Y; follows distribution p and takes on val-
ues in a finite support ). For every € > 0, for
sufficiently large T, the following conditions hold:

i) e p(y) >1—¢

ii) (1= )27 W¥)-2) < 70| < o7 Y)+)

13See Dieleman (2020) for further discussion of the con-
cept of typicality in the context of generative modeling.



In words, as we take T — oo, the probability
mass covered by the typical set is nearly 1 and the
number of elements in it is nearly 27 1Y),

Proof. See Breiman (1957) for proof. |

What’s Wrong with the Typical Set? LetY
be a stationary, ergodic language process. By the
conditions of Definition 3.2, we know that Y has
a typical set. We have motivated the typical set,
intuitively, as the subset of strings that are usual
or typical among all strings. Under this intuition,
it makes sense that—when using Y as a language
generator—this is the set from which we would
like to select a string. A relatively straightforward
corollary of Proposition 3.4 is that ancestral sam-
pling should pull from just this set. To see this, we
can turn to (i) in Proposition 3.4: since ancestral
sampling provides an i.i.d. sample from Y, the
probability of getting an element not in 72(T) as
T — oois (1 —¢), that is, practically never. How-
ever, there is the confound that our models are
not perfect representations of the true distribution
behind the ‘‘human’’ natural language process.
Perhaps for this reason (and the reasons discussed
in §4), ancestral sampling is not known to result
in samples that humans judge to be high qual-
ity in the task of language generation; rather it
often leads to text that humans perceive as inco-
herent (Holtzman et al., 2020). Furthermore, the
typical set’s definition relies on Y being a station-
ary and ergodic language process. As we saw in
§2.2, however, a language model that we convert
into a language process will be non-ergodic by
definition (at least if we keep Eos as an absorb-
ing state). Thus, while the typical set is a natural
starting point, it does not actually get us to our
end goal of defining a set of strings that humans
would find typical. To remedy this problem, we
introduce the new concept of local typicality.

3.2 Local Typicality

A core contribution of this work is to define a more
restrictive notion of typicality—termed here local
typicality—which we subsequently motivate as
useful in the context of describing the set of strings
humans typically produce.

Definition 3.5 (Locally Typical Set). Let Y =
{Y1}:2, be a discrete stochastic process over
finite support Y. The (T, €)-locally typical set of
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Y is the set of all sequences of length exactly T
such that

LY ={y=yp--yr |VI<t<T, (7)
logp(ye | y<r) +H(Y: | Yoo = y4)| <€}

In comparison to the typical set, the locally
typical set further restricts the set of samples to
those for which each individual symbol y; has
probability near the local conditional entropy, that
is, the entropy of the distribution p(- | y;). In
general, there is no strong theoretical relationship
between the typical set and the locally typical set.
However, in the case of an i.i.d. stochastic pro-
cess we can prove that the latter constitutes a sub-
set of the former.

Proposition 3.6. Let Y = {Y;}°, be an ii.d.

discrete stochastic process, then EQT) - 7Z(T).

Proof. Since Y is i.i.d., we have that H(Y) =
HY; | Y<t) = H(Y;). Let y be an element
of £"). Then, S [log p(ys) + H(Y:)| < Te.

Sy log p(ye)+
T

TH(Y;)| < Te, which implies ‘MJF

H(Y:)| < e, which implies y € 7D, |

Thus, by the triangle inequality,

A natural question to ask at this point is why
the definition of local typicality is useful in the
context of a language process. Our argument,
presented in the following section, is cognitive
in nature.

4 Local Typicality in Natural Language

To motivate our definition of local typicality in
the context of natural language, we must first
look at language through an information-theoretic
lens. We will consider two distributions in this
section: p, the distribution that a speaker of the
language is assumed to generate strings from,
and p our language process that approximates
p—albeit, perhaps not perfectly. In this setting,
we view a natural language string y as a means
of communicating some information, where each
word y; is a symbol via which we construct our
message. The information content of y is then
defined as its negative log-probability under a
specified distribution: — log p(y). Following the
chain rule of probability, this quantity can be
decomposed over words, that is, the information
content of a word is its negative log-probability
given prior context: —log p(yt | Y)-



4.1 Properties of Human Communication

Given the above definitions, we can now ask
a question at the heart of this work: What are
the information-theoretic characteristics of natu-
ral language typically produced by humans. In
other words, what do strings sampled from p
look like, from the perspective of p, our trained
language process? Research in psycholinguistics
suggests that a core component of what makes text
human-like is its per-unit information content.

To motivate this conclusion, we first consider
a language user’s objective. When using natu-
ral language, humans aim to transmit information
efficiently while also minimizing the risk of mis-
communication (Zipf, 1949). In order to achieve
this goal, speakers avoid producing words with
either very high or very low information con-
tent (Fenk and Fenk, 1980; Aylett and Turk,
2004; Levy and Jaeger, 2007; Mahowald et al.,
2013, inter alia), a behavior in line with theories
of efficient and robust communication.'* Indeed,
cross-linguistic research has shown that languages
trade off information content and speech rate, per-
haps aiming at a specific (optimal) information
rate (Coupé et al., 2019; Pimentel et al., 2021).
Further, not using words in a context where they
have very high or low information content avoids
characteristics that appear to negatively impact
traditional grammaticality judgments: An ideal
natural language string would not compensate for
unusually near-zero probability in the first half
(e.g., syntactic error) with unusually high proba-
bility in the second half (e.g., especially frequent
words) (Schiitze, 2016; Lau et al., 2017).

4.2 An Information-Theoretic Formalization

The definition of local typicality presented in
§3.2 can be viewed as an embodiment of the
characteristics of human language just described
above. One logical interpretation of these behav-
iors is that, at every time step, natural-sounding
language should have per-symbol information
content close to the expected (average) per-symbol
information content.'> We formalize the relation-
ship between natural language and local typicality
in the following hypothesis.

14See Gibson et al. (2019) for an in-depth review of how
efficiency has shaped the evolution of language.

5The standard definition of (Shannon) entropy for a ran-
dom variable X with support X is equivalent to the expected
information of X: H(X) = — > __ p(x) log p(z).

Abs. Summarization Story Generation (1) ‘ Wikipedia

0.754
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0.504

Dens

0.254

0.001

Figure 1: The per-token distribution of the deviation
(e) of information content from conditional entropy.
Values are computed using the reference (human) text
for three different language generation tasks, where
probabilities and entropies are computed using prob-
abilistic models trained on the respective task (see §6
for model details). Dotted line and adjacent label in-
dicate median £ while dashed line and adjacent label
indicate mean €.

Hypothesis 4.1. Samples y = yo---yr from a
human language process with distribution p tend
to belong to the process’s locally typical set £§T)
for large enough T' and some € > 0. In words,
this means that we should expect every word
in natural-sounding sentences to be close to the
expected information content under p, i.e., the
conditional entropy given prior context.

We verify this relationship empirically using
data from human language processes. In Figure 1,
we show the distribution of the difference between
the information content of y; and the expected
information content of Y;, namely, — log p(y: |
yo) — HY; | Yo = y.), according to the
model on human-generated text. The peaked na-
ture of the distributions in Figure 1 reveals that
human language indeed tends to have per-word
information content quite close a specific value;
the centering of these distributions around ~ 0
suggests that this value is H(Y; | Y = y).
Notably, Meister et al. (2022) shows the same
is not true for text generated by models accord-
ing to a number of different popular decoding
schemes, which instead produce strings with
much higher probability, that is, with lower infor-
mation content.

In an ideal situation, such a property of nat-
ural language would be reflected in p, in which
case sampling from the typical set should be suf-
ficient to ensure human-like language. However,
our models are by no means perfect. The fail-
ure to capture the property of human language
expounded in Hypothesis 4.1 may come from a
number of possible modeling deficiencies, for ex-
ample, poor ability to capture the tails of these
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distributions. We hypothesize that, when using
language models to generate text, enforcing this
local-typicality criterion explicitly may serve as a
patch for this shortcoming.

5 Sampling from a Language Process

In this section, we describe how to sample from
a language process parameterized by the distribu-
tion p,'® or in more commonly used terminology,
how to decode from p. There are many different
algorithms one could employ to sample from p.
The most intuitive strategy is ancestral sampling,!”
which works as follows: Sample y; ~ p(- | y;)
for each history y_,; successively until some cho-
sen criterion, for example, the Eos symbol is
sampled or a maximum length is reached. Note
that in the case of the former criterion, this pro-
cedure is equivalent to sampling entire strings
according to the distribution p. Perhaps the most
popular set of techniques for sampling fall under
a paradigm we call truncated sampling, where
the vocabulary at a time step is truncated to a
core subset of words. For instance, Fan et al.
(2018) propose limiting the sampling space to the
top-k most likely words in each decoding step,
and Holtzman et al. (2020) consider the smallest
nucleus (i.e., subset) of words whose cumulative
probability mass exceeds a chosen threshold 7.

In this paper, we give a general treatment
of truncated sampling and then discuss our vari-
ant. Given a context-dependent constraint subset
C(y.;) C V of the vocabulary, we define the
truncated distribution as

wr Py | Y<t) {y €C(Y4)}

Y| Yet) = )]
wlv<) Z(y-)
where the normalizer is defined as

Zy) = > pyly<) )

yeC(Yy)

and we call C(y.;) the truncation set. Now we
give two examples of truncated samplers.

oHere we only consider locally normalized p, i.e., pro-
cesses in which sampling is done on a word-by-word
basis.

17 Another natural option would be to choose words which
maximize the probability assigned by p to the resulting string,
but this work focuses on stochastic strategies.
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Algorithm 5.1 (Top-k Sampling). In top-k sam-
pling, the truncation set C(y_,) is defined as the
top-k highest-probability tokens y according to
(- | Y<), i-e., the solution to the following subset
maximization problem

maximize Z Py | Y<r)
Cly<t)eP(V) yeC(Y<¢) (10)
subjectto |C(y)| <k

where P is the power set operator.

Algorithm 5.2 (Nucleus Sampling). In nucleus
sampling, we choose a threshold parameter n
and define the truncation set C(y_,) as the solu-
tion to the following subset minimization problem:

minimize  |C(y,)|
C(y<t)eP(V)
| (1
subject to Z P y<) =

yeC(Y<¢)
where again ‘P is the power set operator.

5.1 Shortcomings of Existing Algorithms

To motivate sampling based on the locally typical
set, we must first better understand the shortcom-
ings of current decoding strategies. While strings
generated using stochastic strategies may have
lower probability according to p, they often out-
perform those decoded using maximization-based
strategies in terms of qualitative metrics. A num-
ber of recent works have tried to offer explanations
for this phenomenon. Some have attributed it to
a diversity—quality trade-off (Zhang et al., 2021;
Basu et al., 2021), while others blame shortcom-
ings of model architectures or training strategies
(Welleck et al., 2020; Li et al., 2020).

Our analysis from §4 inspires an alternative
explanation, motivated by information theory and
psycholinguistics, for why models that perform so
well (in terms of metrics such as perplexity) can
still exhibit such undesirable behavior when used
to generate text. First, the connection between
probability and information content may explain
why high-probability text is often dull or generic
(Holtzman et al., 2020; Eikema and Aziz, 2020);
its low information content likely makes for bor-
ing (i.e., uninformative) text. This connection also
offers a potential explanation for the rather strange
behavior that, when a string has a repetitive loop,
language models often assign increasingly higher



probability to the repeated substring (Holtzman
et al., 2020); the substring conveys less and less
information after each occurrence.

A further implication of this framing is the
equivalence between decoding strings from a
probabilistic language generator and sampling
messages from the natural language communi-
cation channel. If we wish to solely sample from
the subset of messages that a human would typi-
cally construct, that is, that are human-like, then
we should begin by narrowing down this subset
to those messages that meet at least some of the
same criteria as human-generated messages. In
this work, we have identified the criterion that
such messages tend to be in the locally typical
set. This observation motivates a new decoding
strategy in which our information-theoretic cri-
terion is explicitly enforced, which we subse-
quently present.

5.2 Locally Typical Sampling

We now introduce our novel sampling algorithm,
which we entitle locally typical sampling.

Algorithm 5.3. Locally typical sampling is a trun-
cated sampling scheme where the truncation set
C(y.¢) is the solution to the following subset
optimization problem:

minimize
C(y<t)eP(V)

Z HY; | Yo =yo) (12)

yeC' (Y<y)

+1logp(y | Y1)

subject to Z p(y|lyey) > 7
yeC(Y<¢)

In words, Algorithm 5.3 limits the sampling
distribution to only those words with negative
log-probability within a certain absolute range
from the conditional entropy (expected informa-
tion content) of the model at that time step. In the
spirit of nucleus sampling, this range is determined
by a hyperparameter 7, the amount of probability
mass from the original distribution that we wish
to consider.

Interestingly, Algorithm 5.3 does not imply
that high-probability words should not be chosen.
Indeed, in the situation where conditional entropy
is low, namely, when the model places most of
the probability mass on a small subset of words, it
is likely the case that only high-probability words
fall into the locally typical set.

110

Computational Complexity. From a practical
perspective, locally typical sampling can be im-
plemented with the same efficiency as nucleus
or top-k sampling. First, we compute the con-
ditional entropy, which is an O(]V|) operation.
Second, we sort words by their absolute distance
from H(p(- | Y <+ = y,)), which can be done
in O(|V|log|V|) time with standard sorting al-
gorithms. Finally, we greedily take words from
this list until their cumulative probability exceeds
the threshold 7, which again takes O(|V|) time.
Thus, creating our altered distribution has time
complexity O(|V|log [V]).!8

Relationship to Other Decoding Strategies.
Notably, we already see motivation for this cri-
terion in the performance of several well-known
decoding strategies. For example, beam search is
the predominant decoding strategy for machine
translation models (Wu et al., 2016; Edunov et al.,
2018; Ng et al., 2019; Meister et al., 2020b), a
setting in which beam search (incidentally) often
already enforces this criterion.!® Yet, when used
in more open-ended tasks, where the entropy of
the language model is higher, beam search can
lead to low-quality text (Li et al., 2016; Holtzman
et al., 2020; Welleck et al., 2020; Meister et al.,
2022). Locally typical sampling is also closely
related to nucleus sampling. When the probability
distribution over the vocabulary has low condi-
tional entropy, that is, when there are only a
few reasonable choices for the next word accord-
ing to our model, nucleus and typical will have
the same truncation set. Locally typical sampling
and Mirostat (Basu et al., 2021) likewise have
similar decision rules for truncation. Mirostat de-
codes strings such that they have a perplexity
(or, equivalently, a per-word information content)
close to a target value. In contrast to Mirostat,
however, locally typical sampling does not re-
quire a specific target information content to be

8For each of the truncation sampling algorithms, the trun-
cation set can also be identified using the selection algorithm
(no sorting required) in O(|V]) time. We provide the analysis
using sorting as that is the standard implementation.

YWhen trained without label-smoothing, which artifi-
cially inflates conditional entropies, machine translation
models tend to have quite low conditional entropies (see,
e.g., Figure 3 in Meister et al., 2020a). Therefore, at each
decoding step, the set of words with negative log-probability
near the conditional entropy of the model are typically
those with high probability—the same as those chosen by
beam search.



defined. Rather, locally typical sampling defines
this quantity as the conditional entropy, choosing
it dynamically (per word) and making it less sen-
sitive to hyperparameter choice. Finally, locally
typical sampling is also related to Braverman
et al.’s (2020) strategy, which proposes a look-
ahead decoding algorithm that generates text with
a similar entropy rate to that of human-generated
text. Our strategy’s motivation is similar—to
match the tendencies in information content ex-
hibited by human-generated text—albeit without
requiring the computational overhead of a look-
ahead strategy.

6 Experiments

In this section, we explore the efficacy of our
decoding strategy on two natural language gener-
ation tasks: abstractive summarization and story
generation. We assess performance with respect
to several other stochastic decoding strategies:
nucleus sampling, top-k sampling, temperature
sampling,?’ beam search, and Mirostat. Our eval-
uation includes both automatic metrics and hu-
man ratings.

6.1 Setup

Models and Data. We use the HuggingFace
framework (Wolf et al., 2020) for reproducibil-
ity, employing their implementations of nucleus,
top-k, temperature sampling, and beam search. We
rely on the implementation of Mirostat provided
by its authors. For story generation, we finetune
the medium and large versions of GPT-2 (Radford
et al., 2019) from checkpoints made available
by OpenAl on the WRiTINGPrROMPTS dataset (Fan
et al., 2018). We use the medium checkpoint
finetuned on WikiTExT-103 (Merity et al., 2017)
to produce the data used in Figure 1. For abstrac-
tive summarization, we use BART (Lewis et al.,
2020) finetuned on the CNN/DaLYMAIL dataset
(Nallapati et al., 2016).2! All reported metrics
are computed on the respective test sets.

20Temperature sampling is defined as ancestral sampling
after local renormalization with an annealing term 7.

21 As we are interested in getting as close an estimate of
p as possible with our models p, all fine-tuning is done
without label-smoothing. Note that label-smoothing may
also artificially inflate conditional entropy estimates, as it
pushes the learned distribution towards the most entropic
distribution: the uniform distribution (Pereyra et al., 2017).
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Hyperparameters. In a preliminary hyperpa-
rameter sweep using Mauve?? (Pillutla et al.,
2021), we found k£ = {30,40}, n = {0.9,0.95}
and 7 = 3.0 to be the best performing hyperpa-
rameters for top-k sampling, nucleus sampling
and Mirostat, respectively. For locally typical
sampling, we found 7 = 0.2,7 = 0.95 to pro-
vide the best results for story generation and
abstractive summarization, respectively. Standard
values according to the literature for other hyper-
parameters (i.e., for beam search and temperature
sampling) were employed. We use these values
in our human evaluations and in computation of
automatic metrics.

Automatic Quality Metrics. As automatic
quality metrics, we evaluate the generated text’s
perplexity—under both the model used to gen-
erate the text (PPL(g)) and an independent, i.e.,
not finetuned, LM (PPL(7)), namely GPT-2 large
(Radford et al., 2019). Several prior works have
shown that neither low nor high perplexity (Zhang
et al., 2021; Nadeem et al., 2020; Pillutla et al.,
2021) are direct indicators of text quality. Rather,
human-like text often has perplexity within a cer-
tain range. Consequently, we report the differ-
ence in this metric from the reference text as
well. We additionally evaluate using MAuve®
(Pillutla et al., 2021) with the reference text.

Automatic Diversity Metrics. We also evalu-
ate locally typical sampling using automatic di-
versity metrics. We compute Rep (Welleck et al.,
2020), Zipf’s coefficient, and n-gram diversity.
For rer we use the average of REP/{ scores, as
defined in Eq. 9 of Welleck et al. (2020) for
¢ € {16, 32,128}. We define n-gram diversity D
as the average fraction of unique vs. total n-grams
forn € {1,2,3,4} in a string

D 24: #unique n-grams in string (13)
n=1

#n-grams in string

Human Evaluations. We use the Amazon
Mechanical Turk framework to obtain human

22We use the default settings given by the authors for all
MAuVE computations, although we employ different LMs in
our parameter sweep vs. reported results (standard GPT-2 vs.
GPT-2 large, respectively) to reduce bias in the final results.
Notably, MAUVE presents similar performances when used
with these two pretrained LMs (Pimentel et al., 2022).

23We use the implementation provided by the authors.


https://huggingface.co/
https://github.com/basusourya/mirostat
https://www.mturk.com/
https://www.mturk.com/
https://github.com/krishnap25/mauve-experiments.git

Story Generation

PPL (g) PPL (i) MaUVE (1) RrEP () Zipf D (T) Human (1)
Reference 16.33 26.71 - 0.28 1.09 0.85  4.12(+0.02)
Temperature (7=0.5)  25.34(+9.01) 18.78(-7.93) 0.95 0.25 1.07(-0.02) 0.87 4.13(+0.02)
Temperature (7=1) 25.67(+9.39) 11.77(—14.94) 0.95 0.26 1.07(-0.02) 0.87 4.13(+0.02)
Nucleus (n=0.9) 7.75(-8.58) 10.25(—16.46) 0.95 0.35 1.29+0.200 0.79  4.09(+0.02)
Nucleus (n=0.95) 11.65(-4.68) 11.77(-14.94) 0.95 0.30 1.20(+0.11)  0.84  4.13(£0.02)
Top-k (k=30) 7.07(-9.26) 18.78(-7.93) 0.88 0.35 1.41(+0.32) 0.80  4.13(+0.02)
Top-k (k=40) 11.83(-4.5) 13.08(-13.63) 0.92 0.35 1.33(+0.24)  0.82  4.09(+0.02)
Mirostat (7=3) 8.14(-8.19) 23.53(-3.18) 0.93 0.34 1.30(+0.21) 0.83  4.12(+0.02)
Typical (7=0.2) 14.25(-2.08)  23.51(-3.20) 0.78 0.30 1.27(+0.18)  0.84  4.15(+0.02)
Typical (7=0.95) 11.59(-4.74)  11.77(-14.94) 0.96 0.31 1.21(+0.12)  0.84  4.13(+0.02)

Table 1: Automatic quality and diversity metrics, as described in §6.1, along with human ratings on the
WrITINGPROMPTS dataset. Human ratings are averaged across criteria to form a single metric. Bolded
values are the best results among decoding strategies, where for perplexity (PPL) and Zipf’s coefficient,
we take this to be the delta from measurements on human text (numbers in purple). Numbers in blue are
standard error estimates. Results are from finetuned GPT-2 large.

judgments of text quality from 5 different an-
notators on 200 examples per decoding strategy,
per task. We use solely MTurk Master Workers
in order to maximize the quality of our ratings.
We follow DeLucia et al. (2021) in setting up our
evaluations. Each Human Intelligence Task (HIT)
consists of either a single prompt from which a
story should be generated or a single news article
to be summarized. The raters are first presented
with the different rating criteria, along with de-
scriptions of the type of text that meets these cri-
teria at different levels of the scale. Raters are
additionally provided several examples of stories/
summarizations that both meet and fail to meet
the rating criteria. They are then presented with
the respective prompt/news article and the cor-
responding stories/summaries generated by dif-
ferent decoders and by the reference in random
order. For abstractive summarization, we ask an-
notators to score on fluency and relevance, while
for story generation, annotators score on fluency,
coherence, and interestingness, each using a scale
from 1 to 5. We choose these criteria following
recommendations from van der Lee et al. (2019).

For each story/summarization and each of the
criteria, we take the median score across raters
as the final score.”* Workers are paid $1.50 per
HIT for the abstractive summarization task and $2
per HIT for the story generation task, for which

2*We use an attention check in each HIT. Responses where
the attention check has been failed are thrown out.

entries were longer. Note that these rates translate
to >$15/hour.

6.2 Results

Quantitative Performance. Tables 1 and 2
show the results of our different evaluation met-
rics. Human scores are averaged across the qual-
itative metrics to give an aggregate score; the
value in parentheses is the standard error of the
estimate. We show full breakdowns of score dis-
tributions in Table 5. We see that in general, lo-
cally typical sampling performs on par with or
better than other sampling techniques, producing
text with human quality ratings closest to that
of the reference among the stochastic decoding
strategies. Interestingly, beam search still outper-
forms locally typical sampling in abstractive sum-
marization, albeit by a small margin. This could
perhaps be attributed to the deterministic nature of
beam search, which suggests that an interesting di-
rection for future research may be a deterministic
version of locally typical sampling, for example,
where the highest-probability word within the
truncated set is always chosen. Importantly, all the
strategies we explore are quite close to human-
level performance—in some cases even surpass-
ing human references in terms of ratings. At this
level, it is perhaps only reasonable to expect that
the differentiation between the top strategies is
small. Accordingly, we also consider how robust
locally typical sampling is to hyperparameter
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Abstractive Summarization

PPL (g) PPL (i) MAUVE (1)  REP ({) Zipf D (1) Human (1)
Reference 10.29 34.21 - 0.13 0.76 0.97  4.31 (+0.03)
Beam (k=5) 1.39 (-8.90) 34.21 (—0.00) 0.90 0.14  0.77 (+0.0) 0.97 4.35 (+0.03)
Temperature (7=0.5) 7.10 (-3.19) 55.31 (+21.1) 0.97 0.15 0.75 (—0.01) 0.97 4.25 (+0.03)
Temperature (7=1) 6.46 (—3.83) 35.96 (+1.75) 0.95 0.14 0.75(-0.01) 097 4.29 (+0.03)
Nucleus (n=0.9) 2.97 (-7.32) 33.63 (—-0.58) 0.90 0.17 093 (+0.17) 0.96 4.26 (+0.03)
Nucleus (n=0.95) 3.96 (-6.33) 56.43 (+22.22) 0.99 0.15 091 (+0.15 0.97 4.26 (+0.03)
Top-k (k=30) 3.13 (-7.16)  34.79 (+0.58) 0.98 0.16 093 (+0.17) 0.97 4.31 (+£0.03)
Top-k (k=40) 3.26 (-7.03) 28.38 (—5.83) 0.96 0.16 093017 097 4.29 (+0.03)
Typical (7=0.2) 3.80 (-6.49) 62.33 (+28.12) 0.72 0.14 091 (+0.15) 097  4.27 (+0.03)
Typical (7=0.95) 3.86 (—6.43) 56.67 (+22.46) 0.96 0.15 092016y 097  4.32 (+0.03)

Table 2: Automatic quality and diversity metrics, as described in §6.1, along with human ratings on the
CNN/DAiLYMAIL dataset. Human ratings are averaged across criteria to form a single metric. Bolded
values are the best results among decoding strategies, where for perplexity (PPL) and Zipf’s coefficient,
we take this to be the delta from measurements on human text (numbers in purple). Numbers in blue are

standard error estimates.
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Figure 2: Rep (Welleck et al., 2020) values for different & and 7/n (lower is better). Lines indicate REP measurement

for reference text and Mirostat (left)/beam search (right).

choice. Figure 2 shows ReEp measurements for
different values of the hyperparameters k, 7, and
7 for top-k, nucleus, and locally typical sampling,
respectively. Interestingly, REP appears to be far
less sensitive to 7 than to k£ and 7. While many
values of k& and n appear to lead to degenerate
repetitions in story generation, most values of 7
lead to text with a Rep value on par with human
text, demonstrating that an advantage of our tech-
nique is its robustness to hyperparameter choice.
See Figure 3 in the Appendix for a larger explo-
ration of how other quality metrics vary as a func-
tion of 7.

Qualitative Performance. We present some
examples of text generated according to each
of the decoding strategies in Tables 3 and 4. For
both of the tasks, we choose the example with ID
1 in the respective test set and provide examples

from each of the decoding strategies, employing
the hyperparameter values that lead to the best
human scores in Tables 2 and 1. For the summa-
rization task, we see that locally typical sampling
provides a comprehensive and coherent summary
of the article, quite similar to that of beam search.
In comparison, the text produced by temperature
sampling is not necessarily coherent; text from nu-
cleus sampling and top-k£ sampling misses some
of the important information in the article, for
example, the charges of burglary and arson. While
the qualitative performance in story generation is
much more subjective, locally typical sampling
arguably provides the most fluent story among all
the decoding strategies. Other stories lack coher-
ence and, even within the first few sentences, we
see repeated phrases and words. Together, these
results suggest that locally typical sampling may
indeed produce more desirable text.
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Abstractive Summarization (CNN/DailyMail)

Prompt (CNN) The attorney for a suburban New York cardiologist charged in what authorities say was a
failed scheme to have another physician hurt or killed is calling the allegations against his client
‘‘completely unsubstantiated.”” Appearing Saturday morning on CNN’s ‘‘New Day,”” Randy
Zelin defended his client, Dr. Anthony Moschetto, who faces criminal solicitation, conspiracy,
burglary, arson, criminal prescription sale and weapons charges in connection to what prosecutors
called a plot to take out a rival doctor on Long Island. ‘‘None of anything in this case has any
evidentiary value,”” Zelin told CNN’s Christi Paul...

Reference | A lawyer for Dr. Anthony Moschetto says the charges against him are baseless. Moschetto, 54,
was arrested for selling drugs and weapons, prosecutors say. Authorities allege Moschetto hired
accomplices to burn down the practice of former associate.

Beam Dr. Anthony Moschetto faces criminal solicitation, conspiracy, burglary, arson and weapons

k=5 charges. ‘‘None of anything in this case has any evidentiary value,”” his attorney says.

Nucleus Dr. Anthony Moschetto, 54, pleaded not guilty to charges Wednesday. Two men — identified

n = 0.95 as James Chmela and James Kalamaras — were named as accomplices.

Top-k Dr. Anthony Moschetto is accused of providing police with weapons and prescription drugs.

k=30 Authorities say he was part of a conspiracy to harm or kill a rival doctor. His attorney calls
the allegations against his client ‘‘completely unsubstantiated’’

Typical Dr. Anthony Moschetto is charged with crimes including arson, conspiracy, burglary, prescription

7 =0.95 sale, weapons charges. His attorney says ‘‘none of anything in this case has any evidentiary value’’

Table 3: Sample generations for abstractive summarization; examples correspond to ID 1 in the test set.
Decoding strategy hyperparameters are chosen based off of performance in human evaluations shown

in Table 2.

7 Conclusion

In this work, we analyze decoding from prob-
abilistic language generators in the information-
theoretic framework. We equate a language model
to a discrete stochastic process, and use the known
properties of such processes to quantitatively de-
scribe the samples we should expect. Motivated
by results in psycholinguistics, we hypothesize
that—with the goal of communicating efficiently
and robustly—humans produce text whose per-
word information content is within a close range
of the expected information content of a word
given prior context. Current language models may
fall short in capturing this property, which is a
possible explanation for why the corresponding
language processes often do not lead to human-
like text. Yet, this observation provides a simple
new criterion for decoding more human-like text
from probabilistic language generators: Constrain-
ing the sampling space to words that meet this
criterion. In experiments on two language genera-
tion tasks, we find that our strategy—called locally
typical sampling—Ileads to text of comparable
or better quality than other stochastic decoding
strategies according to human ratings. Further,
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when compared to these other decoding strate-
gies, several quantitative properties of typically-
sampled text more closely align with those of
human text.
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Story Generation (WritingPrompts)

Prompt A kid doodling in a math class accidentally creates the world’s first functional magic circle
in centuries.

Reference It was dark and Levi was pretty sure he was lying on his back. There was firelight flickering
off of what was left of a ceiling. He could hear something but it was muffled. He was almost
positive it was screaming. When he tried to move he felt an excruciating pain in his left side
that caused him to cry out...

Nucleus ““Why do you draw a circle?”’ He asked as he handed the piece of paper over to her. She

n = 0.95 rolled her eyes and looked down at the picture, ‘‘Because I like math!”” *“Then what?”” ‘I like
to draw the circles.”” She ran a hand through her curls and looked away. ‘‘See, I have three
circles.”” ““Hmph, I didn’t think I saw that in your class.”” A younger student brought up the
ceiling and murmured...

Top-k ‘‘Aha. Aah! That makes three.”” Professor Gosh sighed. ‘‘Oh my God, you had to have been

k=30 there.”” “*“Well, I'm not sure if that’s the right term, but this circle is going to work.”” “‘But I
just told you that it wasn’t working, didn’t you, you little sh**? I'm not kidding! That circle
is gon na work!”’ ‘‘So what now?’’...

Temp It was teachers duty to ensure that our kingdom is pure and pure and successful, however it

T=10 does not mean we do not try to be as rebellious as any other kingdom. Most of our teachers
are suitable for rulership, being knowledgeable in sadistic rec thunking of time stopping
magic circle created by several apprentices...

Mirostat ready to go home, when a little kid starts to sketch a circle. ‘‘No. Just stop. It’s not working.”’

T=3 ‘‘But the circle turns to smoke and then to a flame. It’s not working, I know it is!”’ Another
kid, who was also drawing a circle with his phone, starts to scream. The teacher, looking at
the circle, lost his patience and started to yell...

Typical As soon as he got the clock on his desk he jumped up. The noise it was making had changed

7=0.2 his day forever. His hair, normally unkempt, now glistened and he had to have more hair

because of it. ‘“Yes!”’” He had declared triumphantly as he watched his father fumble around
in the backpack in search of a little compass he always kept with him. He took it from the
desk and quickly walked out the door to see what had happened. He wasn’t the first child in
the world to draw something...

Table 4: Sample generations for story generation from GPT-2 large finetuned on the WRITINGPROMPTS
dataset; examples correspond to ID 1 in the test set. Decoding strategy hyperparameters are chosen
based off of best performance in human evaluations shown in Table 1.

Another ethical consideration worth discussing
concerns the use of language models for text gen-
eration. Text generated by these models may con-
tain malicious content, either by design of the user

While we hope the results of our work will not be
misused, they may nonetheless provide insights
for those employing these models with ill-intent
as to how machine-generated text can be made

or as a byproduct of the training data/algorithm.  more ‘‘human-like,”’ and thus more convincing.
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A Additional Results

Decoder Story Generation (1) . Story Generation (m) . Summarization
Coherence Fluency  Interestingness | Coherence Fluency Interestingness Fluency Relevance

Reference 4.36 (£0.31)  4.25 (+0.23) 4.56 (+£0.25) 4.02 (+£0.27) 4.2 (+0.27) 4.15 (x0.2) 4.43 (£0.25) 4.18 (+0.27)

Beam (k=5) - — - — - - 4.47 (+0.24)  4.23 (+0.28)

Temperature (7=0.9) 4.32 (+0.25) 4.16 (+0.19) 4.47 (+0.27) 4.02 (+0.22) 4.26 (+0.29) 4.19 (+0.24) 4.36 (+0.25)  4.13 (+0.26)
Temperature (7=1) 4.36 (+0.28) 4.25 (+0.22) 4.47 (+0.30) 4.02 (+0.32) 4.2 (+0.29) 4.18 (+0.22) 4.42 (+026) 4.15 (+0.28)

Nucleus (7=0.9) 4.32 (£0.25)  4.28 (+0.24) 4.48 (+£0.31) 3.99 (+0.27) 4.16 (+0.32) 4.13 (+0.21) 4.39 (+0.27)  4.13 (+0.3)
Nucleus (n=0.95) 4.3 (+0.28) 4.28 (+0.29) 4.49 (+0.26) 4.00 (£0.19) 4.24 (+0.35) 4.14 (+0.17) 4.44 (+0.26) 4.08 (+0.29)
Top-k (k=30) 4.35 (+0.25)  4.21 (+0.24) 4.53 (+0.27) 4.03 (+0.24) 4.2 (4+0.3) 4.16 (+0.22) 4.44 (+0.24) 4.18 (+0.26)
Top-k (k=40) 4.34 (+0.27) 4.24 (+0.23) 4.53 (+0.25) 4.00 (+0.27)  4.17 (+0.31) 4.11 (+0.18) 441 (025 4.17 (+0.33)
Mirostat (7=3) 4.39 (£0.27)  4.26 (+0.23) 4.55 (+0.27) 4.02 (£0.22)  4.16 (+0.32) 4.17 (+0.22) — —
Typical (7=0.2) 4.36 (£0.29) 4.24 (+0.24) 4.55 (+0.25) 4.07 (£0.26) 4.23 (+0.32) 4.14 (+0.26) 4.37 (+0.28) 4.16 (+0.29)

Typical (7=0.95) 4.35 (+0.28) 4.24 (+0.23) 4.53 (+0.26) 4.04 (+0.21)  4.18 (+0.31) 4.18 (+0.22) 4.42 (+0.28) 4.22 (+0.27)

Table 5: Breakdown of human ratings on quality metrics per task; results for story generation are from
finetuned versions of GPT-2 medium (m) and large (1). Values in blue are variances.
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Figure 3: MauVE, Zipf’s coefficient, (average) probability mass of candidate token pool, and (average)
candidate token pool size as a function of decoder hyperparameters for nucleus, top-k, and locally
typical sampling.
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