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Abstract

Functional Distributional Semantics is a lin-
guistically motivated framework for modelling
lexical and sentence-level semantics with truth-
conditional functions using distributional infor-
mation. Previous implementations of the frame-
work focus on subject–verb–object (SVO)
triples only, which largely limits the contex-
tual information available for training and thus
the capability of the learnt model. In this pa-
per, we discuss the challenges of extending
the previous architectures to training on arbi-
trary sentences. We address the challenges by
proposing a more expressive lexical model that
works over a continuous semantic space. This
improves the flexibility and computational effi-
ciency of the model, as well as its compatibility
with present-day machine-learning frameworks.
Our proposal allows the model to be applied to
a wider range of semantic tasks, and improved
performances are demonstrated from experi-
mental results.

1 Introduction

Functional Distributional Semantics (FDS; Emer-
son and Copestake, 2016; Emerson, 2018) aims
to capture the truth-conditional aspects of words
through learning from distributional information of
a corpus. Whilst truth-conditional semantics deals
with predications over discrete entities, FDS aims
to generalize about predications over a space of
entity representations with probabilistic semantics.

Contrasted with most distributional methods
which map words to vectors, FDS can model vari-
ous aspects of meaning in a linguistically rigorous
manner. For example, vagueness is represented
by the probabilistic nature of predications, and hy-
pernymy, defined formally as the subsumption of
the extensions between two word senses, can be
represented by the subsumption of regions of space
(Emerson, 2020b).

Going beyond simple vector spaces, some mod-
els of distributional semantics represent words as

tensors for composition (e.g., Coecke et al., 2010;
Baroni et al., 2014), as static distributions for un-
certainty and entailment (e.g., Vilnis and McCal-
lum, 2015), as posterior distributions for context-
specific meaning (e.g., Bražinskas et al., 2018), and
as regions for set-theoretic properties (e.g., Das-
gupta et al., 2022). Among them, only a region-
based approach favours logical interpretations (for
a discussion, see: Emerson, 2020b, 2023).

In order to be computationally tractable, most
models of distributional semantics are trained
based on instances defined by context windows
(e.g., Mikolov et al., 2013a; Pennington et al., 2014)
or incomplete linguistic structures such as immedi-
ate dependencies (e.g., Levy and Goldberg, 2014;
Czarnowska et al., 2019). All previous instances of
FDS (further discussed in §2) are only trained on
SVO triples. Consequently, these models underuti-
lize much contextual information.

We hope to extend FDS learning to arbitrary sen-
tences, but not larger linguistic units (e.g., para-
graphs), for handling them requires non-trivial
extensions such as robust coreference resolution,
which is beyond the scope of this work. To this end,
we propose to adopt a continuous semantic space
and a more expressive lexical model in place of the
previous world model on a discrete space. Our new
formulation provides a computationally efficient
and linguistically principled solution to applying
FDS to arbitrary sentences. Furthermore, this also
situates the framework closer to modern machine
learning models which are mostly built upon con-
tinuous latent spaces, thus favouring comparisons
among and integration with them. For example,
Liu and Emerson (2022) integrated a pre-trained
computer vision model with a continuous space
to FDS, applying it to annotated images. Joint
learning of the visually-grounded and corpus-based
models was however left as future work due to the
incompatibility of latent spaces.

In this paper, we first give an introduction to FDS
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in §2, explaining why it is difficult for previous
implementations to scale up. Then, we present in
detail the proposed formulation and how to train
the model in §3–§4. Finally, we demonstrate how
our model can be applied to a number of semantic
evaluation data sets and present the results in §5.

2 Functional Distributional Semantics

The core idea of Functional Distributional Seman-
tics is that a sentence refers to a set of entities, and
a word is a predicate that is true or false of entities.
Compared to other approaches to distributional se-
mantics, it aligns more with model-theoretic se-
mantics, which approaches meaning in the same
way in terms of a model structure.

However, fixing a specific set of entities would
make it impossible to generalize to new situations.
In order for the model to be learnable, predicates do
not directly take entities as input, but rather entity
representations, referred to as pixies for brevity. A
predicate is represented as a function from pixies
to probabilities of truth. This allows the model to
account for vagueness.

FDS does not submit to a fixed interpretation
of pixies nor process of obtaining them. Rather,
pixies are introduced to merely convey information
of latent entities. In the work of Liu and Emerson
(2022), pixies are dimensionality-reduced vectors
obtained from a pretrained network. In this work,
they are learnt to best represent entities accord-
ing to our particular formulation by probabilistic
graphical models, which are introduced below and
in detail in §4.

2.1 Probabilistic Graphical Models

The framework is formalized in terms of a family
of probabilistic graphical models, each of which
generates predicates in a semantic graph. It con-
sists of the world model, which handles the joint
distribution of pixies, and the lexical model, which
handles truth-conditional semantics. Given an ar-
gument structure (predicate–argument structure mi-
nus predicates, i.e., a directed graph with labelled
edges and unlabelled nodes), a predicate can be
generated for each node, in three steps. First, a
pixie is generated for each node, which together
represent the entities to be described. Then, a truth
value in {⊤,⊥} is generated for each entity and
each predicate in the vocabulary V . Finally, a sin-
gle predicate is generated for each entity. This is
shown in Fig. 1, for the simple predicate–argument

ARG1 ARG2

postman deliver
ARG1 ARG2

mail

Figure 1: Probabilistic graphical model of FDS for gen-
erating words in an SVO triple (e.g., ‘postman deliver
mail’). The Z nodes are pixie-valued random variables;
T nodes are truth-valued; R nodes are predicate-valued.
Only the R nodes are observed (e.g., R1=postman,
R2=deliver, R3=mail). This figure contrasts two po-
sitions where argument information can be used. In
previous work, argument information (i.e., ARG1 and
ARG2) only contributes to the world model (in dashed
lines). In our formulation, it only contributes to the
lexical model (in green lines).

structure of an SVO triple. Different argument
structures have different graphical models.

In previous work, Z is sparse binary-valued vec-
tors, and the joint distribution of pixies is deter-
mined by a Cardinality Restricted Boltzmann Ma-
chine (CaRBM) using the argument structure. The
lexical model comprises unary semantic functions,
each of which maps one pixie to the probability
that the predicate is true of the pixie.

In §3, we will propose to move the information
about the predicate–argument structure from the
world model to the lexical model and set Z = Rd.
Concretely, the dependencies among pixies are re-
moved and extra truth-valued random variables
T
(r,a)
Zi,Zj

are added (also shown in Fig. 1).

2.2 Model Learning from DMRS
The model is trained on graphs of Dependency
Minimal Recursion Semantics (DMRS; Copestake
et al., 2005; Copestake, 2009). A DMRS graph
is derived using the broad-coverage English Re-
source Grammar (ERG; Flickinger, 2000, 2011),
providing a compact representation of the predica-
tions expressed by a sentence. Figs. 1 and 2 show
three simplified DMRS graphs (with quantifiers
and scope removed). Model parameters are opti-
mized in an unsupervised manner to maximize the
likelihood of generating the observed predicates
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given the argument structure of a DMRS graph.
In principle, the formalism of semantic graphs

for learning is not restricted to DMRS, but any
that include predicate–argument structures. Bender
et al. (2015) argued that deriving semantic graphs
compositionally and automatically using a broad-
coverage grammar is more scalable and consistent
than manual annotation, as is common for other for-
malisms such as Abstract Meaning Representation
(AMR; Banarescu et al., 2013).

In §2.3–§2.4, we discuss the linguistic and com-
putational challenges of training previous FDS
models on more complex sentences.

2.3 Linguistic Challenges

Vocabulary. Addressing SVO triples only re-
quires training and testing on nouns and verbs.
With arbitrary sentences, the vocabulary of predi-
cates expands to (1) adjectives, adverbs and adpo-
sitions, which are also predicates, (2) conjunctions,
which not only contribute to extensional logic oper-
ations (e.g., and, or and else) but also intensional,
modal or temporal ones (e.g., until, if and since),
and (3) quantifiers. In addition, scope-taking pred-
icates like quantifiers and conjunctions are barely
meaningful when the scopes of them are under-
specified. Therefore, it is not straightforward to
apply the framework to arbitrary sentences without
further linguistic assumptions.

Overloaded Argument Roles. The world model
with CaRBM uses shared weights for argument
roles of different predicates. However, argu-
ment roles are overloaded in DMRS. For example,
ARG1 of the inchoative predicate _break_v_1 and
causative _break_v_cause specify what is broken
and what breaks something, respectively. Conse-
quently, predicate-specific thematic interpretations
of argument roles are missed out. Argument roles
also vary across different parts of speech: the ARG1
of nouns mostly denotes their prepositional com-
plements, that of verbs denotes the agent, and that
of an adjective denotes the element to be modified.
Dealing with a larger vocabulary of predicates mag-
nifies the problem with the coarse generalization
by the undirected graphical models.

2.4 Computational Challenges

With Discrete Pixie Space. Training the model
requires computing the likelihood of the observed
data, thus the prior of the latent variables. How-
ever, it is intractable to compute the probability of

a set of pixies in the discrete CaRBM because it
requires normalizing over all possible sets of pixie
values. Emerson (2020a) approximated the prob-
ability using belief propagation methods (Yedidia
et al., 2003), which is still computationally expen-
sive. This problem only gets worse when consider-
ing larger semantic graphs.

With Continuous Pixie Space. Switching to
more tractable continuous distributions makes nor-
malization easier. Nevertheless, the problem is
still not simple. Fabiani (2022) explored the use
of a continuous space, using a Gaussian Markov
Random Field for the world model, and parame-
terizing the inverse covariance matrix according
to the argument roles. Such a matrix has a size
of nd × nd for a DMRS graph with n predicates
with pixie dimension d. The complexity of com-
puting its determinant scales to O(d3n3), which is
feasible for simple graphs such as SVO triples but
computationally prohibitive for larger graphs.

3 Enriching the Lexical Model

In this section, we describe our enriched lexical
model and explain how it provides a solution to the
linguistic and computational challenges mentioned.

3.1 Neo-Davidsonian Event Semantics

We follow Neo-Davidsonian event semantics
(Davidson, 1967; Parsons, 1990) as with previous
work, assuming that verbal and adjectival predi-
cates refer to events. For example, to evaluate the
claim that ‘x eats y’, we decompose it into three
claims: e is an eating event, the ARG1 of this eating
event is x, and the ARG2 of this eating event is y.

The event argument naturally allows FDS to
be applied to not just nouns and verbs but arbi-
trary sentences with various types of modifications.
For example, for x eats y very quickly, we have
eat(e1, x, y) ∧ quick(e2, e1) ∧ very(e3, e2).

3.2 Semantic Functions

As mentioned in §2.1, we introduce truth-valued
random variables for argument roles. The proba-
bility of truth is determined by either a unary func-
tion, as in (1), or a binary function, as in (2), over
continuous-valued pixies.

P
(
T
(r,0)
Ze

=⊤
∣∣∣ ze
)
= t(r,0)(ze) (1)

P
(
T
(r,a)
Ze,Zx

=⊤
∣∣∣ ze, zx

)
= t(r,a)(ze, zx) (2)
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postman deliver and parcel
ARG1

mail
L-INDEX

ARG2
R-INDEX

postman deliver quick
ARG1 ARG2

mail

ARG1

Figure 2: Probabilistic graphical models which can generate the two sentences ‘A postman delivers mail and parcels’
(left) and ‘A postman delivers mail quickly’ (right) respectively, illustrating how the example in Fig. 1 can be
extended with a coordinating conjunction and an adverb. Blue and red lines show the correspondence between
dependencies in the graphical models and DMRS argument structures.

We may interpret t(r,0)(ze) as the probability that
r is true of the entity e (represented by ze) and
t(r,a)(ze, zx) as the probability that the a-th argu-
ment role of r holds between e and x (represented
by ze and zx). For example, given a predicate r
that takes two arguments (e.g., the transitive ‘eat’),
the probability of the predication being true is:

P
(
T
(r,0)
Ze

∧T
(r,1)
Ze,Zx

∧T
(r,2)
Ze,Zy

=⊤
∣∣∣ ze, zx, zy

)

= t(r,0)(ze)t
(r,1)(ze, zx)t

(r,2)(ze, zy)
(3)

In the same spirit as Paperno et al. (2014)’s pro-
posal, this decomposition of arity-dependent predi-
cates allows dropped arguments to be handled nat-
urally. For the example ‘y is eaten’, we have:

P
(
T
(r,0)
Ze

∧T
(r,2)
Ze,Zy

=⊤
∣∣∣ ze, zy

)

= t(r,0)(ze)t
(r,2)(ze, zy)

(4)

3.3 Addressing the Challenges
Lexical Model beyond Nouns and Verbs. In
our lexical model, nouns, verbs, adjectives, and ad-
verbs all introduce truth-valued random variables
but not adpositions, whose uses are considered too
flexible to be modelled by our implementation (dis-
cussed in §4.3). Proper nouns that mostly denote
distinct entities are discarded and arguments that
take proper nouns are dropped, as it results in an
unreasonably large vocabulary otherwise. We also
discard pronouns which require coreferences. Ar-
gument roles are propagated through coordinating
conjunctions: if a predicate takes a coordinating
conjunction as an argument, the argument role is
applied to each conjunct. We also neglect quanti-
fiers and modal verbs. Fig. 2 illustrates how the

example in Fig. 1 can be extended with additional
truth-valued random variables to handle coordinat-
ing conjunctions and adverbs. The proposed lexical
model thus addresses the vocabulary challenge and
also provides a workaround to the problem with
overgeneralization of arguments in §2.3.

Computational Efficiency. The information of
the predicate–argument structure, which was previ-
ously encoded in the world model via dependencies
between pixies, is now embedded in the design of
the semantic functions. As discussed in §2.4, the
main computational challenge in FDS is normaliz-
ing joint distributions for sets of pixies. In contrast,
the computational cost of binary semantic functions
can be kept essentially the same as for unary func-
tions, as discussed further in §4.3. By offloading
the complexity from the world model to the lexical
model, we can use a simple prior distribution that
is trivially normalized, as discussed further in §4.5.

Summary. As compared to previous implemen-
tations, our proposal makes FDS more scalable
by covering a much broader class of predicates,
drastically reducing the computational complex-
ity, and providing a more appropriate treatment
of predicate-specific argument roles for richer sen-
tence structures.

4 Variational Autoencoder

As mentioned in §2.2, each training instance is a
DMRS graph, which can be characterised in terms
of n predicates R = {r1, . . . , rn} , and the argu-
ment structure A =

{
(i, j, a) : ri

ARGa−−−→ rj

}
.

To optimize the parameters θ of the generative
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model, we use a variational autoencoder (VAE)
(Kingma and Welling, 2014; Rezende et al., 2014).
The intractable true posterior distributions pθ(z |
R,A) over the pixies z = {z1, . . . , zn} are first
approximated by tractable distributions chosen a
priori (discussed in §4.1). Instead of directly per-
forming maximum likelihood estimation on the
observed DMRS graphs, the lower bound in (5) is
maximized following the β-VAE (Higgins et al.,
2017), using a probabilistic encoder qϕ (discussed
in §4.2) and decoder pθ (discussed in §4.3). §4.4
and §4.5 reformulate the two terms in (5) respec-
tively based on empirical insights for training sta-
bility. Parameters of the encoder and decoder are
thus jointly learnt via gradient descent.

Lϕ,θ(R | A) = Eqϕ(z|R,A) [lnPθ(R | z,A)]
− βDKL (qϕ(z | R,A) ∥ pθ(z | A))

(5)

4.1 Approximate Posterior Distributions
Given an observed DMRS graph with n latent pix-
ies Zi, the approximate posterior is partitioned into
n independent Gaussians with spherical covariance.
Gaussian distributions provide convenient closed
forms for analytical computation. For instance,
sampling of pixies can be avoided in §4.3. For
each Zi, the encoder qϕ predicts a mean vector
µZi and a variance σ2

Zi
. This gives the distribution

in (6), where N is the Gaussian density function.

qϕ(z | R,A) =
n∏

i=1

N (zi;µZi , σ
2
Zi
I) (6)

4.2 Amortized Variational Inference
We devise an encoder that uses both the local
predicate–argument structure and global topical
information from the whole sentence. For exam-
ple, the encoder should predict different pixie dis-
tributions for ‘deliver’ in the contexts of Fig. 2
(delivering mail) and Fig. 3 (delivering a song).
The encoder architecture is described by (7), (8),
(9) and illustrated in Fig. 3. It is similar to the
encoder of Bražinskas et al. (2018), but leverages
argument structure. It can also be seen as a simple
instantiation of Deep Sets (Zaheer et al., 2017) or
a graph-convolutional network (GCN) with com-
plement edges (De Cao et al., 2019). The mean
µZi and log variance lnσ2

Zi
are inferred based on a

hidden layer h(Zi), where the logarithm ensures a
positive variance. The input embeddings e(r,a) rep-
resent predicates standing in particular relation to
the target predicate, as detailed in Fig. 3. f can be

talented singer song
ARG1 ARG1

deliver
ARG2

emotionally

ARG1

Figure 3: An encoder for inferring the posterior distri-
bution of the pixie of deliver in the sentence talented
singer deliver song emotionally. The inputs represent
context predicates standing in particular relation to the
target predicate. The embedding e(r,a) represents the
predicate r with relation a, where negative a indicates
an argument role of the target predicate, positive a an
argument role of a context predicate, 0 the target predi-
cate itself, and ∅ the absence of a direct argument role.
The embedding with dropout is shown in dashed lines.

the identity function or a non-linear function, e.g.,
the hyperbolic tangent. We perform experiments
on both choices.

h(Zi) = f


 1

n

n∑

j=1

e(rj ,aj,i)


 (7)

µZi = W⊤h(Zi) + c1 (8)

lnσ2
Zi

= w⊤h(Zi) + c2 (9)

During VAE training, the parameters of t(ri,0)

and e(ri,0) will be optimized to maximize t(ri,0)(zi).
There is a chance that the distributions of pixies
are inferred purely from the embedding of intrin-
sic arguments and the remaining embeddings are
trivially optimized to very small values. To prevent
such a learning shortcut, we apply dropout to the
embeddings e(ri,0) with a certain probability where
h(Zi) aggregates without it.

In contrast to our work, Emerson (2020a) used a
two-layer GCN as the encoder. Scaling a GCN to
larger graphs requires a deeper network to incorpo-
rate long-distance, yet crucial topical information.
However, a deeper network is computationally ex-
pensive and hard to train. We believe that it is
worthwhile to start with a simpler and more effi-
cient architecture for our new formulation.

4.3 Probabilistic Decoder
The generative model can be seen as a probabilis-
tic decoder. It consists of the unary and binary
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semantic functions of predicates. The functions
are implemented as linear classifiers in (10) and
(11), where S denotes the sigmoid function and
zi,j denotes the concatenation of zi and zj .

t(ri,0)(zi) = S
(
v(ri,0)

⊤
zi + b(r,0)

)
(10)

t(ri,a)(zi, zj) = S
(
v(ri,a)

⊤
zi,j + b(ri,a)

)
(11)

Linear classifiers provide a number of advan-
tages over complex ones, albeit less expressive.
First, they are computationally less expensive. Sec-
ond, the frequency of word occurrence in a corpus
has a long tail, so there are inadequate instances
for training more powerful classifiers for the rare
predicates. Last but not least, since the pixies are
normally distributed given the observation as de-
fined in §4.2, we may use the probit approxima-
tion (Murphy, 2012, §8.4.4.2) for computing the
expectation of (1) and (2) over the approximate
posterior. (12) shows such approximation for the
unary semantic function.1 Computing the first term
in (5) otherwise requires sampling, which is more
computationally expensive and can result in poor
estimations when the variance is high.

Eqϕ

[
t(r,0)(zi)

]
≈ S

(
v(r,0)

⊤
µZi + b(r,0)

(1 + π
8σ

2
Zi
)
1
2

)
(12)

4.4 Contrastive Objective on Truth

The first term of (5) requires computing the proba-
bility of generating the observed predicates R given
the distributions of pixies z and the argument struc-
ture A. In previous work, such a probability is set
to be proportional to the probabilities of truth of the
predications. Consequently, training on this objec-
tive only considers the relative probabilities of truth
but not absolute probabilities. Truth regularization
was introduced to increase the absolute probabil-
ities for better interpretability (Emerson, 2020a).
However, both improved and deteriorated model
performances were reported by Liu and Emerson
(2022) with such regularization. Moreover, we find
from experiments that training using the original
objective is unstable and requires careful tuning of
the regularization coefficient, which furthermore is
sensitive to the value of β.

Instead of maximizing the relative probabilities,
we propose a contrastive objective on absolute prob-
abilities of truth: we aim to maximize the truth of

1For brevity, we use Eqϕ to denote Eqϕ(z|R,S) hereafter.

the observed predicate and the falsehood of nega-
tively sampled predicates, analogous to Skip-gram
negative sampling (Mikolov et al., 2013b).

The objective is given in (13) and (14), for unary
and binary semantic functions respectively. Each
term Ci or Ci,j,a corresponds to a truth value node
in Fig. 1 and 2, and N(i) denotes the negative
samples for the predicate ri.

Ci = lnEqϕ

[
t(ri,0)(zi)

]

+
∑

r′∈N(i)

lnEqϕ

[
1− t(r

′,0)(zi)
] (13)

Ci,j,a = lnEqϕ

[
t(ri,a)(zi, zj)

]

+
∑

r′∈N(i)

lnEqϕ

[
1− t(r

′,a)(zi, zj)
] (14)

Underlying this objective is the assertion that
randomly drawn predicates are usually false of the
inferred pixies. This objective departs from the
generative model in §2.2 and directly operates on
probabilities of truth instead of generation proba-
bilities. The proposed objective achieves a very
similar goal as the original one, i.e., to maximize
the probabilities of truth of the observed predicates
and minimizes those of the unobserved, while truth
regularization is unnecessary and changes in β do
not lead to instability.

For each observed predicate, we draw K sam-
ples from the unigram distribution. However, we
restrict the distribution to predicates that are com-
patible with the observed argument roles. Each
predicate has a set of possible argument roles (those
that appear somewhere in the training data). We
restrict to predicates whose possible argument roles
are a superset of the observed roles.

4.5 Alternative Variance Regularization

Since we have removed the dependencies among
pixies and we have no prior knowledge about the la-
tent space, the KL term in (5) is not informative. In
fact, we empirically find that it can even be harmful:
(1) adopting a standard normal prior with β > 0
always yields worse performance on the develop-
ment set (discussed in §5.2) than when β = 0, and
(2) when β = 0, the inferred variance occasion-
ally takes very large values when f is the identity
function, rendering inference uninformative.

We devise an alternative regularization term (15)
that replaces the KL divergence in (5), where d is
the dimensionality. This term is derived from the
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KL divergence of qϕ from a standard normal distri-
bution, which pulls variances to one but neglects
the means. This way, the variance is still regular-
ized to avoid extreme values, while not imposing a
strong belief about the expected locations of pixies.

D =
d

2

n∑

i=1

(
σ2
Zi

− lnσ2
Zi

)
(15)

For each instance, the final training objective to
maximize is reformulated to (16).

L̃ϕ,θ(R | A) =
n∑

i=1

Ci +
∑

(i,j,a)∈A
Ci,j,a − βD (16)

5 Experiments

Evaluating a semantic model is not an easy task.
We focus on tasks that involve semantic composi-
tion and contextualized meaning. In particular, we
select RELPRON (Rimell et al., 2016) and GS2011
(Grefenstette and Sadrzadeh, 2011) (and GS2013
(Grefenstette and Sadrzadeh, 2015), a re-annotated
version of GS2011), the two data sets evaluated by
Emerson (2020a). This allows a direct comparison
between our approaches. In addition, our proposed
approach formally incorporates adjectives, which
gives us the opportunity to evaluate on GS2012
(Grefenstette, 2013). Our implementation is avail-
able online.2

5.1 Training Data
The data we train on is DMRS graphs extracted
from Wikiwoods3 (Flickinger et al., 2010; Solberg,
2012) using Pydelphin4 (Copestake et al., 2016).
Wikiwoods provides linguistic analyses of 55m sen-
tences (900m tokens) in English Wikipedia. Each
sentence was parsed by the PET parser (Callmeier,
2001; Toutanova et al., 2005) using the 1212 ver-
sion of the ERG, and the parses are ranked by
a ranking model trained on WeScience (Ytrestøl
et al., 2009). The preprocessed data consists of
DMRS graphs of 36m sentences, where 254m to-
kens are involved in training (preprocessing details
described in §A.1). We preprocess the evaluation
data into DMRS graphs following ERG analyses.

5.2 Model Configurations
We test for two model configurations: FDSAStanh
and FDSASid. They differ in activation functions

2https://github.com/aaronlolo326/TCSfromDMRS
3http://ltr.uio.no/wikiwoods/1212/
4https://github.com/delph-in/pydelphin

Model
MAP

Dev. Test

Vector addition (add.) (Rimell et al., 2016) 0.496 0.472
Sim. Practical Lexical Function (Rimell et al., 2016) 0.496 0.497
Vector add. (Czarnowska et al., 2019) 0.485 0.475
Dependency vector add. (Czarnowska et al., 2019) 0.497 0.439
Pixie Autoencoder (PixieAE) (Emerson, 2020a) 0.261 0.189
Ensemble of PixieAE & vector add. (Emerson, 2020a) 0.532 0.489

BERTBASE (tuned template with full stop) 0.677 0.667
BERTBASE (tuned template without full stop) 0.302 0.200
FDSAStanh 0.486 0.477
FDSASid 0.657 0.580

Table 1: Results on RELPRON.

(discussed in §4.2). Each of them comprises 54m
parameters. All other hyperparameters are sim-
ply fixed (reported in §A.2). Since only REL-
PRON provides a development set but not GS2011,
GS2013, or GS2012, each of our models is tuned
on the development set of RELPRON (described
in §A.2) and have their outputs averaged over three
random seeds. For fair comparisons, we only report
results of previous works that train their models on
a corpus in an unsupervised manner. We select the
best result from each of their models.

5.3 Evaluation on Semantic Composition

RELPRON is a data set of subject and object rela-
tive clauses. It consists of terms (e.g., ‘telescope’),
paired with up to 10 corresponding properties (e.g.,
‘device that astronomer use’). Each property comes
in lemmatized words. The development set con-
tains 65 terms and 518 properties and the test set
contains 73 terms and 569 properties. The task is to
rank all properties for each term so that the correct
ones come before the incorrect ones. Performance
is measured using Mean Average Precision (MAP).

5.3.1 Using FDS
Following Emerson (2020a), for each property, the
encoder is used to compose from the relative clause
and infer the pixie distribution of the target subject
or object. Then, for each term, we rank the proper-
ties by the log of the expected probability that the
term is true of the target pixie. This is obtained by
applying the semantic function of the term to the
inferred pixie distribution using (12).

5.3.2 Results
As a baseline, we adopt BERTBASE (Devlin et al.,
2019), a language model with 110m parameters,
using the Transformers library (Wolf et al., 2019).
It performs masked prediction on a cloze sentence,
e.g., ‘[CLS] a device that an astronomer uses is a
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https://github.com/aaronlolo326/TCSfromDMRS
http://ltr.uio.no/wikiwoods/1212/
https://github.com/delph-in/pydelphin


[MASK]. [SEP]’. As RELPRON properties are lem-
matized and contain no articles, they must be con-
verted into cloze sentences using a template. Ex-
perimenting with different cloze templates, the best
one on the development set uses singular nouns,
the article a/an, an inflected verb (using Pattern
(Smedt and Daelemans, 2012)), and a full stop.

Table 1 shows the results on RELPRON. Our
best model outperforms all existing work, except
the BERTBASE baseline. Nevertheless, it is impor-
tant to note that BERTBASE has twice as many pa-
rameters and is trained on ten times more tokens
compared to each of our models. As mentioned by
Emerson (2020a), vector space models are good
at capturing topical relatedness, whereas the Pix-
ieAE uses FDS and learns different information.
Our large improvement over Emerson’s ensemble
model suggests that our formulation manages to
combine the best of both worlds.

The BERTBASE baseline achieves a new state
of the art. Nevertheless, our experiments show
BERT’s sensitivity to the template. While Emer-
son (2020a) discussed template tuning for BERT,
they did not mention punctuation, which we find
to be crucial for high performance. Aligning with
Kementchedjhieva et al. (2021)’s observation, we
found that BERT often generates a full stop with
over 90% probability when the template does not
end with one, although the [SEP] token already
indicates the end of a sentence. This shows that
ending the sequence with a full stop is more impor-
tant to BERT than grammaticality. Performance is
also degraded if either of the [CLS] or [SEP] tokens
are missing. In contrast, FDS models operate on
DMRS, abstracting over punctuation and inflection,
and extra tuning of templates is unnecessary.

Rimell et al. (2016) also designed RELPRON
to have confounders, non-corresponding terms and
properties with lexical overlap, e.g., ‘soil’ with
‘activity that soil support’ (which corresponds to
‘farming’) and ‘fuel’ with ‘phenomenon that re-
quire fuel’ (which corresponds to ‘propulsion’).
There are 33 confounders in the test set and Emer-
son (2020a) reported that a vector addition model
incorrectly ranked all the confounding properties
in the top 4 for the overlapping term. In contrast,
FDSAStanh, FDSASid and BERTBASE rank them
65st, 70th and 70th on average respectively.

5.4 Evaluation on Verb Disambiguation

GS2011 tests if a model is able to disambiguate
ambiguous transitive verbs given the context of a
subject and an object noun. It comprises 199 entries
and 2,500 judgements by 25 annotators. Each entry
of the data set provides an SVO triple (e.g., ‘ser-
vice meet need’) from the British National Corpus
(BNC) and a transitive landmark verb (e.g., ‘visit’
and ‘satisfy’) from WordNet (Miller, 1995). Using
a score from 1 to 7, the annotators rate the semantic
similarity of the verb pair when each of the verbs
takes the given subject and object. We also report
the results on GS2013, the re-annotated version of
GS2011 with a total of 9,950 judgements, where
each pair is annotated by 50 annotators.

GS2012 also tests for verb disambiguation. It ad-
ditionally includes an adjective for both the subject
and object in the entries of GS2011 (e.g., ‘social
service meet educational need’). It comprises 194
entries and 9,700 judgements by 50 annotators. A
good model is expected to utilize the adjectives for
better contextualization.

For each of these data sets, we measure the cor-
relation of models’ predictions with either separate
or averaged annotators’ judgements using Spear-
man’s ρ. We compute the inter-annotator agree-
ments (IAAs) by averaging the Spearman’s ρ of
each annotator’s judgement against the other anno-
tators’. IAA is believed to provide the theoretical
maximum value for any model’s performance.

5.4.1 Using FDS

We follow Emerson (2020a) that a score between a
verb pair is the log of the expected probability that
the landmark verb is true of the other verb pixie.

5.4.2 Results

We adopt BERTBASE as a baseline using the best
template tuned on the development set of REL-
PRON. Tables 2, 3 and 4 show the results.

Care must be taken when comparing the face val-
ues of correlations for two reasons. First, models
are trained on data of different sizes and sources.
Hashimoto and Tsuruoka (2015) mentioned that
their models trained on 1.9m sentences of BNC
yield comparable results to those trained on 33m
sentences from Wikipedia, which might be due to
GS2011 being produced based on BNC. Training
on a different corpus (e.g., Wikipedia) can better re-
flect how well a model generalizes. Hashimoto and
Tsuruoka (2016) showed that models trained on
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Model
Training Data ρ

Sources #Sentence (m) #Token (m) Separate Averaged

Kartsaklis and Sadrzadeh (2013); Grefenstette (2013); Van de Cruys et al. (2013); Polajnar
et al. (2015); Fried et al. (2015); Tian et al. (2016); Emerson and Copestake (2017) < 0.4 < 0.5

Hashimoto et al. (2014) B 6 - 0.41 0.50
Hashimoto and Tsuruoka (2015) W 80 [33] - - 0.614
Hashimoto and Tsuruoka (2016) (Ensemble) W+B 86 [35] - 0.524 0.680
Gupta et al. (2015) W+B+U - - 0.406 -
Gamallo (2019) W+B - 2,500 0.46 -
Wijnholds et al. (2020) U 130 3,200 - 0.54
Emerson (2020a) (PixieAE) W 55 [31] 900 [72] 0.406 0.504

BERTBASE W+O - 3,300 0.394 0.519
FDSAStanh W 55 [36] 900 [254] 0.438 0.553
FDSASid W 55 [36] 900 [254] 0.444 0.552

Inter-annotator agreement 0.578 0.739

Table 2: Results on GS2011. Sources: W: Wikipedia, B: BNC, U: ukWaC (Baroni et al., 2009), O: BookCorpus
(Zhu et al., 2015). Numbers of sentences and tokens are for raw data. In brackets are numbers after preprocessing;
for our models, we report the number of tokens contributing to semantic functions. ‘-’ means not reported.

Model
Training Data ρ

#Snt. (m) #Token (m) Sep. Avg.

Grefenstette and Sadrzadeh (2015) - - 0.26 -
Tilk et al. (2016) 138 - 0.34 -
Hong et al. (2018) - 2,000 0.367 -

BERTBASE - 3,300 0.426 0.562
FDSAStanh 55 [36] 900 [254] 0.439 0.573
FDSASid 55 [36] 900 [254] 0.457 0.601

Inter-annotator agreement 0.587 0.777

Table 3: Results on GS2013.

Model
Training Data ρ

#Snt. (m) #Token (m) Sep. Avg.

Grefenstette and Sadrzadeh (2015) - - 0.27 -
Tian et al. (2016) - - 0.33 -
Gupta et al. (2015) - - 0.357 -
Paperno et al. (2014) - 2,800 0.36 -

BERTBASE - 3,300 0.404 0.608
FDSAStanh 55 [36] 900 [254] 0.444 0.655
FDSASid 55 [36] 900 [254] 0.449 0.660

Inter-annotator agreement 0.459 0.687

Table 4: Results on GS2012.

Wikipedia and BNC produce disagreeing outputs,
and ensembling them is useful as seen in Table 2.

Second, there is no development set. It is not
easy to conclude from a large number of model vari-
ants with high variances in test set results. For in-
stance, Hashimoto et al. (2014) reported results for
10 settings, where 8 and 9 out of 10 have ρ < 0.35
for separate and averaged judgements respectively.
Gamallo (2019) presented 11 model variants and
FDSASid only loses to one of them.

All models trained on substantially more data
lose to our models across three data sets, ex-
cept Gamallo (2019)’s. Bootstrap tests on sep-
arate judgements across three data sets show

that FDSASid outperforms BERTBASE significantly
(p < 0.02). We also improve over the PixieAE
that adopted FDS on GS2011. FDSASid performs
nearly on par with IAA on GS2012, showing that
our approach appropriately handles adjectives.

Trained on similar sources and comparable
numbers of sentences, Hashimoto and Tsuruoka
(2015)’s model outperforms ours by a consider-
able margin. They concluded that the use of verb
matrices allows direct interaction between verbs
and their arguments which helps with verb disam-
biguation. In contrast, the binary semantic function
introduced in (11) allows very limited interaction
between the two pixies z0 and za, which in the verb
disambiguation case correspond to the verb and ar-
gument entities respectively. Two advantages of
this formulation are that the number of parameters
required grows just linearly with respect to the pixie
dimension, and the probit approximation in (12) is
still applicable. Increasing the expressiveness of
the function while keeping a reasonable number
of model parameters is an interesting avenue for
future work.

6 Conclusion

We analyzed the linguistic and computational chal-
lenges of Functional Distributional Semantics and
presented a new formulation where we have im-
proved: applicability to diverse natural language
structures, computational efficiency, compatibility
with contemporary models, and performances on
a range of semantic tasks. We believe this work
bridges truth-conditional semantics to practical dis-
tributional semantics at scale.
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Limitations

From a linguistic perspective, we only handle the
extensional fragment of natural language. Con-
sequently, modality and temporal information are
excluded from the framework. Nevertheless, we
train on encyclopediac text which is believed to be
a reasonable domain for the extensional restriction.

From a computational perspective, although the
reformulated model is already more computation-
ally efficient than previous implementations of
FDS, the variable sizes and topologies of input
graphs make efficient batching difficult. It is thus
not maximally optimized for training on GPUs
(statistics are given in §A.3). We currently set the
batch size to 1 and perform gradient accumulation
to attain a larger effective batch size.

The framework is now only applicable to English
because the training data is DMRS graphs parsed
from texts using the English Resource Grammar
(ERG). This implies: (1) sentences not parsable by
the grammar are not available for training, (2) the
correct parse for each sentence may not be ranked
top by the parser, and (3) for the model to be appli-
cable to other languages, we either need a broad-
coverage grammar on these languages for parsing
texts to semantic graphs, or adequate semantic de-
pendency graphs of sentences already annotated in
these languages. Still, the ERG is a broad-coverage
grammar so (1) is largely mitigated.

Ethics Statement

We anticipate no ethical issues directly stemming
from our experiments. However, as with all dis-
tributional semantic models, our trained model is
likely to have picked up social biases present in the
training corpus. Any real-world application of a
trained model would need to mitigate risks due to
such biases.
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A Training Details

A.1 Preprocessing

Predicates in DMRS can be divided into two
classes, namely abstract predicates and surface
predicates. Abstract predicates constitute a very
small class. They mostly represent grammatical
constructions (e.g., apposition and passivization)
and are ignored in this work. On the other hand,
surface predicates are exclusively introduced by
lexical entries, which include nouns, verbs, adjec-
tives, adverbs, adpositions, conjunctions and overt
quantifiers. As in previous work, we assume an
extensional model structure with entities being ex-
istentially quantified, so we ignore predications
that take scopal arguments., e.g., quantifiers and
modal verbs. Furthermore, the predicates are lem-
mas. Derivational and morphological distinctions
of word-forms are thus disregarded in the frame-
work. This alleviates data sparsity and aligns to
the extensional assumption without further tempo-
ral information from inflections, such as tense and
aspect.

To keep a reasonable size of vocabulary, we filter
out the semantic functions that occur fewer than
100 times and keep only the 100,000 most frequent
embeddings for the encoder. After that, we further
remove the DMRS graphs with only one distinct
predicate. A total of 60,081 semantic functions of
41,046 predicates are trained.
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A.2 Hyperparameters and Tuning
For the common hyperparameter values among all
models, we set the probability of dropout in the
encoder to 0.5, and model parameters are optimized
with gradient descent using the Adam optimizer.

For FDSAStanh and FDSASid, we set K to 32,
d to 300, and the dimension of the encoder’s em-
bedding to 300. We set β to 0 for FDSAStanh and
β for FDSASid to 0.01. The initial learning rates
of both the parameters in the encoder and seman-
tic functions are set to 0.001. The learning rates
are multiplied by 0.8 per each epoch. We perform
gradient accumulation over 128 batches of size 1.
We trained with distributed data parallelism using
3 GPUs, so the effective batch size is 384 and the
effective learning rates are 0.000333.

As mentioned in §5.3.2, the performance of
FDSAStanh peaks early and plateaus on the devel-
opment set of RELPRON within 2 epochs whereas
FDSASid is still improving after 6 epochs. Since
we train models in an unsupervised manner and the
only development set we have is from RELPRON,
we have to ensure that training is not stopped pre-
maturely based on the development set for evalua-
tion on all other test sets.

To ensure sufficient time for training, we set a
minimum number of epochs to be trained for each
of our models, and apply early stopping by taking
the performance on the development set of REL-
PRON at the end of it as a benchmark. Concretely,
if a later checkpoint performs better than the bench-
mark on the development set of REPLRON, we se-
lect such a checkpoint for evaluations. To take care
of different training dynamics, we set FDSAStanh
to train for a minimum of 3 epochs and FDSASid
for a minimum of 7 epochs, before performing the
early stops.

A.3 Computational Configurations
All models are implemented in PyTorch (Paszke
et al., 2019) trained with distributed data paral-
lelism on three NVIDIA GeForce GTX 1080 Ti
for a single run. Training a run of FDSAStanh and
FDSASid model takes about 540 and 1260 GPU
hours respectively.
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