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Abstract

Incremental dialogue model components pro-
duce a sequence of output prefixes based on
incoming input. Mistakes can occur due to
local ambiguities or to wrong hypotheses, mak-
ing the ability to revise past outputs a desirable
property that can be governed by a policy. In
this work, we formalise and characterise edits
and revisions in incremental sequence labelling
and propose metrics to evaluate revision poli-
cies. We then apply our methodology to profile
the incremental behaviour of three Transformer-
based encoders in various tasks, paving the road
for better revision policies.

1 Introduction

Since the dawn of Wikipedia, users have made
1.7× 109 edits to its pages. Its most revised entry
contains 56,713 revisions, all documented in the
page history.1 In such an active community, con-
flicts inevitably occur. Editors can begin compet-
ing to override each other’s contributions, causing
dysfunctional edit warrings.2 To help regulate the
environment, an editing policy is in force, aiming at
making edits constructive and improving quality.3

Edits, revisions and policies are key concepts
in incremental processing, where a model must
rely on partial input to generate partial output. In-
crementality can help optimise reactivity, natural-
ness, quality and realism in interactive settings
(Schlangen and Skantze, 2011). This is particularly
relevant in dialogue models whose NLU compo-
nents need to operate on incoming input, e.g. while
performing NER, slot filling or disfluency detec-
tion, or doing simultaneous translation.

Local ambiguities in the linguistic input and tran-
sient mistakes by the model can result in wrong
partial hypotheses, so that the ability to revise, by
editing previous outputs, is desirable (Kahardipraja

1According to Wikimedia Statistics and wiki Special.
2https://en.wikipedia.org/wiki/Wikipedia:Edit_warring
3https://en.wikipedia.org/wiki/Wikipedia:Editing_policy
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Figure 1: Constructed example of an incremental chart
containing output prefixes with marked edits (yellow)
and revisions in incremental sequence labelling. Red
stands for wrong final predictions wrt. the gold standard.

et al., 2023). Beyond monitoring the occurrence of
edits, it is also beneficial to have a policy regulating
when and which revisions should be made, reduc-
ing the occurrence of undesirable edits. Existing lit-
erature using consolidated incremental evaluation
metrics falls short in capturing relevant nuances of
the incremental behaviour in terms of revisions.

In this work, we propose an evaluation method-
ology for revision policies in incremental sequence
labelling. A constructed example is shown in Fig-
ure 1, with revisions indicated in the right column.
Specifically, our contributions to address the identi-
fied evaluation gap are: A formalisation of revision
policy in incremental sequence labelling, character-
ising types of edits and of revisions (§4.1-4.2); a
proposal of specialised evaluation metrics for revi-
sion policies, accompanied by a discussion on the
desired behaviour of incremental processors (§4.4-
4.5); and a demonstration of our methodology with
an analysis of the revision policy in three sequence
labelling Transformer-based models (§5).4

4Our implementation is available at https://github.
com/briemadu/inc-eval-revisions with accompanying
documentation on how to run the evaluation for other models.

https://stats.wikimedia.org/#/all-wikipedia-projects/contributing/user-edits/normal|table|2001-01-01~2023-05-01|(page_type)~content*non-content|monthly
https://en.wikipedia.org/wiki/Special:MostRevisions
https://en.wikipedia.org/wiki/Wikipedia:Edit_warring
https://en.wikipedia.org/wiki/Wikipedia:Editing_policy
https://github.com/briemadu/inc-eval-revisions
https://github.com/briemadu/inc-eval-revisions
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2 Motivation

Incremental natural language processing5 has time
at front line, being pivotal for interactive settings.
At each time step, models must operate on partial
input to deliver partial output, but sometimes pre-
vious decisions have to be revised. For example,
at time step 4 in Figure 1, the labels for the input
tokens 2 and 3 were edited into new states. With re-
gard to revisions, at least three types of incremental
processors exist, as summarised in Table 1:

1. Inherently incremental but monotonic models.
They keep an internal state that is updated and
used to extend the output at each time step,
but cannot revise previous outputs.

2. Non-incremental models used with a restart-
incremental interface, being forced to perform
a full recomputation at each time step. Such
models revise the output as a by-product of
their recomputations.

3. Incremental models with a dedicated policy
to detect the need to perform revisions only
when deemed necessary and, more specifi-
cally, deciding which parts of the output prefix
need to be revised and how.

non-incremental incremental

re
vi

si
on

s no n/a strictly monotonic
outputs

yes
recomputation policy
doing revisions as a
by-product

revision policy

Table 1: Types of incremental processors.

Monotonicity avoids instability in the output,
allowing subprocesses to start immediately, as it is
certain that the outputs will not change. However,
they never recover from mistakes, which is one
of the drawbacks of employing vanilla RNNs and
LSTMs (Hochreiter and Schmidhuber, 1997).

Models that depend on the availability of full
sentences at once can be “incrementalised” with
the restart-incremental paradigm (Schlangen and
Skantze, 2011), causing revisions to occur via re-
computations.6

5For a review, see Köhn (2018). In other contexts, also
referred to as real-time processing (Pozzan and Trueswell,
2015) or streaming (Kaushal et al., 2023).

6Also called incremental interface (Beuck et al., 2011a) or
beat-driven approach (Baumann et al., 2011).

Cutting-edge NLP models currently rely on
Transformers (Vaswani et al., 2017), which are non-
incremental. Using them in a restart-incremental
fashion requires recomputing from scratch at ev-
ery time step, which we hereby name the naive
recomputation policy. It is a very expensive policy
because, for a sequence of n tokens, the complexity
is
∑n

i=1 i
2 (i.e. the n-th square pyramidal number).

Besides, this naive approach wastes computational
budget, because not all recomputations cause revi-
sions. The results reported by Kahardipraja et al.
(2023), for example, show that only around 25%
of the recomputations actually changed the output
prefix. The disadvantages of the naive policy can
be alleviated by a smarter policy that cuts down the
number of time steps with recomputations.

Still, beyond deciding when to recompute, a re-
vision policy par excellence should directly guide
the more specific decision of when (and what) to
actually revise, and must be evaluated accordingly.

3 Related Literature

Revisability is in the nature of incremental process-
ing: Hypothesis revision is a necessary operation
to correct mistakes and build up a high-quality final
output (Schlangen and Skantze, 2011). Still, there
is a trade-off between requiring that later modules
handle a processor’s revisions and buying stabil-
ity by reducing some of its incrementality, which
makes the concept of hypothesis stability very rele-
vant (Baumann et al., 2009). Beuck et al. (2011a)
argue that performing revisions should not take as
long as the initial processing, so as to retain the ad-
vantages of incremental processing. They propose
two strategies: Allowing revisions only within a
fixed window or limiting their types. Empirically
determining how often a model changes the output
is an aspect of their analysis we also rely on.

The restart-incremental paradigm was investi-
gated for Transformer-based sequence labelling by
Madureira and Schlangen (2020) and Kahardipraja
et al. (2021); recently, adaptive policies were pro-
posed to reduce the computational load (Kaushal
et al., 2023; Kahardipraja et al., 2023). Rohanian
and Hough (2021) and Chen et al. (2022) explored
adaptation strategies to use Transformers for in-
cremental disfluency detection. In simultaneous
translation, where policies are a central concept
(Zheng et al., 2020a; Zhang et al., 2020), the restart-
incremental approach is in use and revisions are
studied (Arivazhagan et al., 2020; Sen et al., 2023).
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latency, quality, stability simultaneous translation Arivazhagan et al. (2020)
Ma et al. (2020)

quality, responsiveness, robustness, stability speech recognition and
diarization

Baumann et al. (2009)
Addlesee et al. (2020)

similarity, timing, diachronic general Baumann et al. (2011)

fluency, latency, quality, recovery capabilities, timing simultaneous interpreting
(MT and speech synthesis) Baumann et al. (2014)

decisiveness, monotonicity, stability, timeliness POS tagging Beuck et al. (2011a)

amount of predicted information, connectedness, delay,
inclusiveness, monotonicity, quality parsing Beuck et al. (2011b, 2013)

Köhn and Menzel (2014)

cognitive aspects, efficiency neural coreference resolution Grenander et al. (2022)

jumpiness, position reference resolution Schlangen et al. (2009)

accuracy, integration, representational similarity sequence-to-sequence Ulmer et al. (2019)

consistency, diminishing returns, interruptibility, mono-
tonicity, preemptability, (recognisable) quality anytime algorithms Zilberstein (1996)

Table 2: Overview of relevant properties for incremental evaluation in various tasks.

Sequence labelling is a staple of various incre-
mental linguistic tasks possibly used in dialogue
systems, like SRL (Konstas et al., 2014), POS-
tagging (Beuck et al., 2011a), dialogue act segmen-
tation (Manuvinakurike et al., 2016), disfluency
detection (Hough and Schlangen, 2015) and depen-
dency parsing (Honnibal and Johnson, 2014).

Revision Categorisation and Prediction Ap-
proaches to categorise the properties of revisions
or edits exist in various areas. Faigley and Witte
(1981) examine the effects and causes of revisions
in writing, providing a taxonomy on whether revi-
sions change meaning and bring new information.
Afrin and Litman (2018) classify revision quality
by whether they improve student essays. Antho-
nio et al. (2020) categorise revisions and edits in
WikiHow in terms of what they cause to the text.
Wikipedia’s edits have also been classified accord-
ing to factuality and fluency (Bronner and Monz,
2012) and intents (Rajagopal et al., 2022). Other
typologies and taxonomies have been proposed for
translation revisions (Fujita et al., 2017) and multi-
lingual NLG revision operations (Callaway, 2003).

Vaughan and McDonald (1986) outline three
phases of the revision process in NLG: Recognition,
editing and re-generation. Revision rules have been
applied for incremental summarisation by Robin
(1996). Non-incremental revision learning models
also exist, relying on revision rules for dependency
parsing (Attardi and Ciaramita, 2007) or classi-
fication in POS-tagging (Nakagawa et al., 2002).
Predicting stability and accuracy of hypotheses is a

relevant task (Selfridge et al., 2011), which allows
to distinguish hypotheses that will survive and are
thus more reliable (Baumann et al., 2009).

Incremental Evaluation Table 2 presents an
overview of relevant properties for incremental
evaluation. In their seminal work, Baumann et al.
(2011) define three general categories of metrics
for incremental processing: similarity, timing and
diachronic, which can be employed in incremental
sequence labelling. They are suitable for capturing
e.g. instability (edit overhead), quality of prefixes
(correctness) and lag (correction time). Kaushal
et al. (2023) propose streaming exact match, com-
paring prefixes with the final gold standard. While
these metrics capture instability and correctness of
output prefixes, we lack a standard way to evaluate
the quality of the performed revisions. We thus
complement their work by proposing fine-grained
metrics focusing on revisions and recomputations.

4 Evaluation Methodology

In this section, we present our evaluation method-
ology for incremental sequence labelling with a
focus on revisions. After formalising the task, we
characterise revisions and edits, define policies and
revision-oriented metrics and discuss the ideal be-
haviour of incremental sequence labelling models.

4.1 Formalisation
We begin by formalising incremental sequence
labelling tasks, extending the similar definition
of streaming sequence tagging by Kaushal et al.
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(2023) with edits and revisions. Like them, we as-
sume an idealised format where incremental units
are well-defined, fixed and complete input tokens,
and a model that produces a label for every new in-
put token, so that the output is necessarily extended
at every time step. Note, however, that incremen-
tal processors may have to operate at sub-token
level or with transitional input, which requires the
capability of retracting decisions and adjusting to
varying length in real-time. In some models, out-
puts may not have an immediate one-to-one corre-
spondence to the input (e.g. due to a delay strategy
(Baumann et al., 2011), or to techniques like op-
portunistic decoding (Zheng et al., 2020b)) and
parallel hypotheses can be kept in memory. See
Schlangen and Skantze (2011) for details.

Let L = {L1, . . . , LM} be a set of labels. In
standard sequence labelling, the task is to map an
input sequence of n tokens (wi)

n
i=1 to an output

sequence of n labels (li)ni=1, li ∈ L. Each output
label li classifies its corresponding token wi. The
task is more complex than plain token-level classi-
fication because the sequential nature of the input
and the output need to be taken into account when
predicting labels. If available, a gold-standard se-
quence (gi)ni=1, with gi ∈ L, is used to evaluate the
correctness of the predicted output sequence.

In an incremental setting, the input is provided
in a piecemeal fashion, one token at a time. At
each time step t = 1, 2, . . . , n, an increasing in-
put prefix (wi)

t
i=1 is available to the model and

an output prefix (li)
t
i=1 is predicted. Therefore,

an input sequence with n tokens will result in n
output prefixes p1, p2, . . . , pn, which we consider
to be partial hypotheses for the final output. Each
pi is a sequence of i labels, containing one addi-
tional label at the right in relation to pi−1. The last
hypothesis pn is the final decision of the model,
having observed the full input. The complete se-
quence of prefixes can be represented as a lower
triangular matrix, whose cells cji contain the label
assigned to wi at time j and each row i contains pi.
We can represent the incremental input and output
in an incremental chart (IC) as follows:

w1 p1 = l11
w1, w2 p2 = l21 l22

w1, w2, w3 p3 = l31 l32 l33
...

...
...

...
...

. . .
w1, w2, . . . , wn pn = ln1 ln2 ln3 · · · lnn

gold = g1 g2 g3 · · · gn
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Figure 2: Illustrative example of multiple locally valid
hypotheses for the prefix play one of. Only after more
input is processed definite labels can be assigned.

At each time step t, the observation of the new
input token wt causes the model to i) extend the
output sequence with one label for wt (an addition)
and ii) optionally also change its current hypotheses
l1, . . . , lt−1 for previous tokens (substitutions).

An edit occurs at time t for label i if lti ̸= lt−1
i ,

meaning that the model’s prediction for wi’s label
changed. A revision occurs when, apart from the
compulsory addition, a prefix changes at time t in
relation to the previous prefix, i.e. when at least
one label is edited.7 In Figure 1, revisions occur at
time steps 2, 4, 5, 6, 8, 9 and 10. Highlighted labels
in the prefixes are edits.

Gold Standard Evaluation can be done with re-
spect to incremental or non-incremental gold stan-
dards (Baumann et al., 2011). Often, only the non-
incremental version is available, i.e. the labels on
the complete sequence, assigned having all left and
right context taken into account. A genuinely in-
cremental gold standard contains step-by-step gold
prefixes encoding interpretations that are locally
valid until right context renders it invalid, as illus-
trated in Figure 2.8 Since it is usually not available,
we can instead “incrementalise” the final gold stan-
dard by deriving all its prefixes as hard labels. But
this approach somewhat unfairly expects that, even
at steps with multiple locally valid interpretations,
the model commits to the final decision without
observing the input that actually induces that inter-
pretation as correct and the others as wrong. More-
over, using an independent gold standard conflates
the external overall performance of the model with
the quality of its internal incrementality; an alter-
native is to consider the final output of the model
as a silver standard (Baumann et al., 2011). The
correctness of labels and prefixes is then measured
with a metric M with respect to the defined target.

7The addition is not taken into account here, as it has no
precedent label to be compared to at this point. The first time
step is by definition not a revision, since there is no prefix yet.

8For existing examples, see Hrycyk et al. (2021), Rawat
and Barres (2022) and Beuck et al. (2011b).
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Quality Edits (labels) Example Revisions (prefixes) Example
Convenience convenient change incorrect label (5,1) change incorrect prefix 5

inconvenient change correct label (4,2) change correct prefix 4

Effectiveness effective incorrect label → correct (5,4) improve prefix correctness 6
ineffective incorrect label → incorrect (9,3) do not change prefix correctness 9
defective correct label → incorrect (4,3) worsen prefix correctness 4

Novelty innovative label → new state (9,6) n/a n/a
repetitive label → previous state (6,1) n/a n/a

(Local) Recurrence recurrent subsequence with > 1 edit (9,3) subsequence with > 1 revision 8
steady subsequence with 1 edit (4,2) subsequence with 1 revision 2

Oscillation oscillating label with > 1 edit (6,1) > 1 revision all
stable label with 1 edit (4,2) single revision -

Company accompanied prefix with > 1 edit (9,6) prefix with > 1 edit 5
isolated prefix with 1 edit (6,1) prefix with 1 edit 6

Connectedness connected other neighbouring edit (9,4) only connected edits 9
disconnected no neighbouring edits (5,1) only disconnected edits 2
both n/a n/a both types of edits 5

Distance short range near current time step (5,4) only short range edits 2
long range far from current time step (9,3) only long range edits 6
both n/a n/a both types of edits 5

Definiteness definite label → final state (4,2) prefix → final state 10
temporary label → temporary state (5,3) prefix → temporary state 8

Time intermediate input still partial (5,4) input is still partial 4
final at final time step (10,3) at the final time step 10

Table 3: Characterisation of edits and revisions. The examples refer to Figure 1, pointing to the (time step, label
index) positions for edits and time steps for revisions. Here the gold standard is used to judge prefix correctness.

4.2 Characterisation of Revisions and Edits
In this section, we propose a detailed characterisa-
tion for the types of edits and revisions based on ten
dimensions, summarised in Table 3, as a means to
evaluate revision policies. In the next paragraphs,
we assume that either a genuine or a constructed
incremental sequence of target prefixes has been
selected according to the current needs. We will
use Figure 1 and its gold standard as examples.9

To characterise edits, we consider the state of an
output label in the current prefix in relation to its
state in the previous prefix, which are different by
definition. They relate to a label’s development in
time (vertically in their IC column) or to the prefix
they belong to (horizontally in their IC row). The
dimensions to characterise edits serve the purpose
of defining the qualities of the revisions, which
operate on prefixes.

4.2.1 Edits
The main aspect to account for is whether labels
need to be edited in the first place and, if yes,
whether they are edited into the desired state. Edits
on correct labels are inconvenient, and also defec-

9More examples are available in the code repository.

tive, since the label will fatally change into a wrong
label. This happens, for instance, at l2 in step 4,
as the correct label D is edited into a wrong B.
Edits on incorrect labels are convenient and can
be effective (if it enters into a correct state, like l4
at t = 5, which changes from an incorrect D to a
correct C) or ineffective (if it enters into another in-
correct state, e.g. l3 at t = 9, which changed from
an incorrect A to a still incorrect D).

Other dimensions can be used to analyse the
behaviour of the processor. Innovative edits cause
the label to change into a new state. For instance,
l6 becomes a C for the first time at t = 9. In the
next step, it is edited back into its previous state A,
and we consider it to be a repetitive edit.

Local recurrence refers to whether the edit oc-
curs in isolation in neighbouring time steps (edit
subsequences in an IC’s column). Oscillation refers
to how many edits occur in its complete column,
just one (stable) or more (oscillating). For instance,
l3 has two groups of recurrent edits along the time
axis, whereas l2 has one steady and stable edit.

Company characterises whether the edit occurs
with other edits in a prefix (same IC’s row). In
Figure 1, l6 is edited together with other labels at
t = 9, whereas l1 is edited in isolation at t = 6. Ac-
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companied edits can be either connected (i.e. with
directly neighbouring edited labels, as in t = 4) or
disconnected to the other edits in its prefix.

Short or long range refers to how far the edited
label is from the current time step, defined by a
distance parameter d. If we set d = 2, the edit that
changes l4 into a C at t = 5 is short range because
it is less than 2 time steps away from the current
token being processed. On the other hand, l3 is
edited at t = 9, very distant from the right frontier.

Edits can also be definite or temporary. Definite
edits make the label enter into its final state, like l2
at t = 4. Temporary edits are those like the B for
l3 at t = 5: It still gets edited further before a final
decision is reached (here, also a B). Besides, edits
can occur in intermediate steps during processing,
when the input sequence is incomplete, or at the
final time step, when the full sequence is available.

4.2.2 Revisions
Similar to edits, revisions are inconvenient if they
occur on correct prefixes (that should not change),
and thus also defective, because correctness neces-
sarily decreases. The prefix at t = 3 is correct, so
the revision at t = 4 causes the labels to become
wrong. Convenient revisions are effective if they
improve correctness, like at t = 6 where the num-
ber of correct labels in the prefix increases from 3
to 4, otherwise they can be ineffective (edits occur
but correctness remains the same, like at t = 9) or
again defective.

Revisions are locally recurrent when other re-
visions occur in neighbouring time steps. We see
that from t = 4 to t = 6. The revision at t = 2
is steady, as no other revisions occur immediately
before or after it. If only one revision occur while
a sequence is processed, it is stable, otherwise it
is oscillating. In our example, all revisions are
therefore oscillating.

Company, connectedness and distance refer to
what types of edits the revision causes. At the
second time step, the prefix contains only a discon-
nected and short range edit, whereas at the fifth
time step we observe accompanied edits, one con-
nected and one disconnected group and one short
and two long range edits.

Definite revisions create prefixes that will not be
further edited. In our example, this only happens
in the last time step; all others are temporary. In-
termediate revisions happen when the input is not
yet completed, otherwise they are final.

4.2.3 Recomputations
In models that detach recomputations from revi-
sions, the recomputations should also be evaluated.
Recomputations are active if they actually result in
a revision, otherwise they are inactive. The qual-
ity of the resulting revisions can then be evaluated
with the characteristics above.

4.3 Policies
To perform good revisions, a model must decide
when to recompute or revise. For that decision,
both a revision policy and a recomputation policy
can be generally defined as:

π : IC → [0, 1] π(ICt) = Pr(r|ICt) (1)

It gives the probability of performing a revi-
sion or recomputation r, respectively, given the
state of the incremental chart at time t.10 When
Pr(r|ICt) > τ , where τ is a threshold hyperpa-
rameter, a revision/recomputation is performed. If
the revisions are not a mere consequence of full
recomputations, the model must then also decide
what and how to edit.

4.4 Metrics
Traditional sequence labelling evaluation metrics
like accuracy or F1 can be computed on label, se-
quence or dataset level. The incremental dimen-
sion requires its own metrics, some of which we
discussed in §3. Here, we propose specific metrics
to evaluate revision and/or recomputation policies.
For each time step t in a sequence, either a revi-
sion (R) occurred, which is sometimes effective
(Re), or only an addition (A). Assuming we have
established a metric for prefix correctness,11 we
know whether the prefix at t − 1 was correct (C)
or incorrect (I). That results in a distribution of N
actions in {R,A}×{C, I}. From these counts, we
derive the metrics in Table 4, computed either per
sequence or over the whole dataset. Models that
have the option to recompute (R′) can also be eval-
uated in {R′,¬R′} × {C, I} with two additional
metrics.

Since only effective revisions are actually de-
sired, the R in the numerators can be replaced by
Re for a more focused evaluation. Revisions can

10It is also possible to make the policy dependent only in a
portion of the IC, as done e.g. by Kahardipraja et al. (2023).

11A binary variable or a continuous variable, like accuracy,
with a defined threshold for tolerated incorrectness.
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The fraction of...
Rate of Revision R/N time steps in which the model revises

Rate of Recomputation R′/N time steps in which the model recomputes
Rate of Active Recomputation (R′ ∩R)/R′ recomputations that actually causes a revision

R-Pertinence (R ∩ I)/R revisions that edit incorrect prefixes (adapted precision)
R-Appropriateness (R ∩ I)/I incorrect prefixes that are revised (adapted recall)

A-Pertinence (A ∩ C)/A additions upon correct prefixes (adapted precision)
A-Appropriateness (A ∩ C)/C correct prefixes that are not revised (adapted recall)

Re-Pertinence (Re ∩ I)/R revisions that effectively edit incorrect prefixes
Re-Appropriateness (Re ∩ I)/I incorrect prefixes that are revised effectively

Table 4: Proposed metrics for evaluating recomputation and revision policies. N is the total number of time steps.

be further weighted by how often and how far in
the sentence processing they happen. Similarly,
edits can be assessed by their correction time and
survival time (Baumann, 2013).

4.5 Ideal Processor
Let us now delineate the ideal behaviour of a revi-
sion policy for an incremental sequence labelling
model. A utopian model would always output the
correct label and thus never need to produce ed-
its or revisions (Kahardipraja et al., 2023).12 But
due to the incremental nature of language process-
ing, models should not be penalised for building
hypotheses that are locally valid, as long as a revi-
sion is timely triggered. That is, however, complex
to know in raw textual input where local ambigui-
ties are not identified. Instead, we can characterise
an outlook according to desirable principles and
available resources. In scenarios with an infinite
time budget, we can simply wait for the input to be
complete. If computation budget can be afforded,
restart-incrementality is a good fit. But the con-
straints are not always so loose.

An ideal revision policy should thus revise as
rarely as possible for stability. If a prefix/label is
correct, the policy should avoid revising it, whereas
an incorrect prefix/label should be revised (maybe
not immediately, but eventually). It should always
trigger effective, convenient, and definite revisions,
preferably in earlier time steps.13 Recurrent or os-
cillating revisions cause more instability and should
be avoided. Innovative edits are preferable (as long
as they are effective), and short range is better to be
combined with delay strategies. Connectedness is
a relevant dimension for BIO labelling schemes: If,

12That is indeed the case for strictly monotonic models if
we use their final output as gold standard.

13In the beginning, the absence of both right and left context
makes prediction harder. Towards the end, the availability of
more left context should lead to less, and better, revisions.

for instance, the beginning label is edited, ideally
the middle labels should change simultaneously. Fi-
nally, accompanied edits can be further evaluated in
their relation to each other and the linguistic input.
A good recomputation policy should, additionally,
always result in active revisions.

In terms of metrics, R-Pertinence and A-
Appropriateness should be exactly 1, i.e. all re-
visions should occur upon incorrect prefixes and
all correct prefixes should not be revised. A-
Pertinence and R-Appropriateness should be as
high as possible, but cannot be expected to be ex-
actly 1 because it may take some time steps until
the input that actually resolves the ambiguity or
mistake is observed.

5 Architecture Profiling

We now apply our methodology to profile the revi-
sion policy behaviour of three models: The refer-
ence restart-incremental Transformer and the two
TAPIR variations, which have a recomputation pol-
icy, proposed by Kahardipraja et al. (2023). We
evaluate them on three sequence labelling tasks:
Slot filling (Coucke et al., 2018), POS tagging (Sil-
veira et al., 2014) and NER (Tjong Kim Sang and
De Meulder, 2003), using the final output as gold
standard.14 Note that the same profiling can be
applied to any model with the ability of performing
revisions on any sequence labelling task.

Quantitative Assessment Table 5 shows that the
recomputation policy implemented in TAPIR re-
duces the number of restarts to between 10% and
25% in comparison to the restart incremental ap-

14Here we use only the buffer outputs to evaluate the re-
sulting revisions on prefixes that would have been passed on
to downstream processors. We do not consider the tempo-
rary outputs of the LSTM that the original model had access
to when deciding to perform a recomputation. Please refer
to the original paper for the details on non-incremental and
incremental performance on these tasks.
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% recomputation % active recomputation % revision

NER POS Slot NER POS Slot NER POS Slot

Rest.Incremental-Transformer 100.00 100.00 100.00 7.77 19.29 21.23 7.77 19.29 21.23
TAPIR-LTReviser 13.77 24.52 20.34 20.23 39.55 39.44 2.78 9.69 8.02
TAPIR-TrfReviser 10.36 20.23 21.41 25.36 34.09 33.65 2.62 6.89 7.20

Table 5: Rate of (active) recomputations and of revisions for each model and task.

R-pert A-pert R-approp A-approp
0.0

0.5

1.0
RI-Transformer

R-pert A-pert R-approp A-approp

Tapir-LT

R-pert A-pert R-approp A-approp

Tapir-Trf
Slot POS NER

task
Slot
POS
NER

Figure 3: Revision metrics for all models and tasks. The white lines represent only the effective revisions.

proach, considerably alleviating the computation
load; the number of revisions is also 2 to 3 times
lower. Still, only up to 40% of the remaining recom-
putations are active, which means that the use of
computational budget is still suboptimal. Further-
more, in Figure 3 we see that A-Appropriateness
is very close to 1, as it should be. R-Pertinence
is slightly below the ideal 1, but still greater than
0.8 in all cases, although it is around 0.1 lower
when only effective revisions are considered. A-
Pertinence is at similar values, with a lower re-
sult for POS-tagging. R-Appropriateness and Re-
appropriateness, however, are low in the restart-
incremental Transformer and becomes even lower
in the TAPIR models.

This may be evidence that the TAPIR models are
waiting for more input before deciding to recom-
pute an incorrect prefix, which is in line with the
shifts in the distributions we observe in Figure 4.
TAPIR tends to have more revisions towards the end
of the sentence than the restart-incremental Trans-
former. This strategy can indeed help revisions be
more effective, given that more left context is avail-
able, but it also results in having to wait longer for
final decisions, which is not ideal.

The cumulative distributions of the fraction of
time steps with revisions per sentence, shown in
Figure 5, illustrate that the policy reduces the num-
ber of revisions per sentence: 50% or less of the
sentences have no revisions in the naive policy,
which makes all recomputation effort be used to
perform only an addition, while TAPIR’s policy
caused more sentences to not trigger revisions.

RI-Transformer Tapir-LT Tapir-Trf

model
0

20

40

60

80

100

%

Slot POS NER

Figure 4: How far in the sentence processing (% of time
steps or tokens) revisions occur.

Qualitative Assessment Figures 6 and 7 show
the percentages of edits and revisions types to char-
acterise TAPIR-TrfReviser’s policy. In terms of ed-
its, most are effective, convenient, innovative and
steady. Only around 50% are short range, which
means that delay strategies would have limited im-
provements in reducing edit overhead. For slot fill-
ing, around 20% of the edits occur in the last time

0 100
0.0

0.5
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Figure 5: Proportion of time steps with revisions per
sentence (cumulative).
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Slot POS NER

Figure 6: Edits by TAPIR-TrfReviser’s policy.

step, which is undesired, because it means that the
intermediate predictions for these labels are wrong
until the model processes the full sentence.

Regarding revisions, TAPIR’s policy works best
for POS-tagging in terms of effectiveness, conve-
nience, oscillation and recurrence, and worse for
slot filling. Most of the edits are isolated, which
means that recomputations have been performed
for the full partial input to only result in one edit.
The proportion of short vs. long range and tem-
porary vs. definite revisions was, in general, bal-
anced. We also see that proportionally fewer re-
visions occurred in the final step. Although the
high percentage of intermediate revisions is high,
Figure 4 shows that they are happening towards
the end, which prevents incremental subprocessors
to reliably count on the intermediate outputs. Slot
filling is, here, an example of the occurrence of
final revisions being less than ideal.

Based on these results, we conclude that TAPIR’s
policy is very successful in reducing the number of
recomputations and also in revising less, but there
is room for improving the quality of the resulting
revisions, both in terms of metrics and of charac-
teristics. This speaks for a more dedicated revision
policy that could avoid full recomputations and use
the state of the incremental chart and internal rep-
resentations of the model for a more fine-grained
prediction of which labels should change.

6 Conclusion

In this work, we have argued that the importance of
a solid evaluation framework for revision policies

Slot POS NER
task

effective
defective

ineffective
convenient

inconvenient
steady

recurrent
oscillating

stable
isolated edit

accompanied edits
connected edits

disconnected edits
dis and connected edits

short range
long range

short and long range
temporary

definite
intermediate

final

74.9 87.3 82.1
16.6 7.8 12.5
8.5 4.9 5.3

87.1 93.8 89.9
12.9 6.2 10.1
59.0 85.0 83.0
41.0 15.0 17.0
72.9 76.5 63.3
27.1 23.5 36.7
61.8 72.2 78.3
38.2 27.8 21.7
28.8 8.9 11.6
67.9 87.1 85.9
3.3 4.0 2.5

50.7 45.0 43.4
31.9 41.9 48.4
17.5 13.0 8.3
46.3 51.9 41.6
53.7 48.1 58.4
80.1 91.5 94.3
19.9 8.5 5.7

Figure 7: Revisions by TAPIR-TrfReviser’s policy.

in incremental sequence labelling cannot be over-
stated. Despite being very useful to capture some
incremental aspects like instability or timeliness,
existing evaluation metrics set aside other major
strands of revisions. To fill that void, we have
introduced metrics, characteristics and rationale
to support the analysis of revision policies. This
methodology serves as a tool to ascertain their qual-
ity, to determine their appropriateness in different
contexts and to compare different policies.

We identify a few more roads to quality: The
creation of incremental gold standards containing
locally valid hypothesis, the development of fine-
grained revision policies predicting what to revise
and a more systematic integration of linguistic as-
pects of the input into the evaluation procedure.
For those willing to drive those routes, we hope our
methodology has paved the road well.
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