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Abstract tasks crucial to information retrieval: Named
Entity Recognition (NER) and Reading Com-
Large language models (LLMs) excel in lan- prehension (RC), in 7 data-scarce languages:
guage understanding and generation, especially Azerbaijani, Igbo, Indonesian, Swiss German,
in English which has ample public benchmarks Turkish, Uzbek and Yorubd, which previously
for various natural language processing (NLP) lacked annotated resources in information re-
tasks. Nevertheless, their reliability across dif- trieval tasks. Our evaluation of leading LLMs
ferent languages and domains remains uncer- reveals that, despite their competitive perfor-
tain. Our new shared task introduces a novel mance, they still have notable weaknesses such
benchmark to assess the ability of multilingual as producing output in the non-target language
LLMs to comprehend and produce language or providing counterfactual information that
under sparse settings, particularly in scenar- cannot be inferred from the context. As more
ios with under-resourced languages, with an advanced models emerge, the benchmark will
emphasis on the ability to capture logical, fac- remain essential for supporting fairness and ap-
tual, or causal relationships within lengthy text plicability in information retrieval systems.

contexts. The shared task consists of two sub-
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1 Introduction

Access to information on diverse subjects, recent
events, or historical occurrences is of paramount
significance in bolstering educational, media, and
economic applications. Recent advancements in
organizing online knowledge facilitated by Large
Language Models (LL.Ms) have fundamentally re-
shaped the way we approach information retrieval.
Extensive analysis of models have shown promis-
ing capabilities in competitive natural language
processing (NLP) tasks, such as question answer-
ing (Mao et al., 2023), machine translation (Garcia
and Firat, 2022; Hendy et al., 2023), and different
types of reasoning (Zhou et al., 2021; Wei et al.,
2022; Liu et al., 2023).

LLMs, or foundation models, are typically
trained on extensive multilingual data sets, thereby
enhancing their accessibility across a spectrum of
languages (Floridi and Chiriatti, 2020; Touvron
et al., 2023a; Muennighoff et al., 2022; Anil et al.,
2023). However, this performance is limited in
low-resources languages which lack representation
in the public space (Yong et al., 2023). Recently,
initiatives for creating standardized benchmarks
for evaluating natural language processing (NLP)
systems in a more linguistically inclusive setting
had been proposed by corpora like XTREME (Hu
et al., 2020) and XTREME-UP (Ruder et al., 2023).
Although these data sets bring together large mul-
tilingual corpora they lack in generative human
prepared data related to information access.

By organizing the 1st Shared Task on Multi-
lingual Multi-task Information Retrieval (MMIR),
we aim to provide a common means where multi-
lingual LLMs can be evaluated in terms of their
applicability and fairness in providing access to
users speaking languages from different regions
across the world. As the evaluation resource we
use Wikipedia which we find representative of the
inclusion of languages online. We pick 7 lan-
guages with varying degrees of resources and lin-
guistic typology from 4 different language families:
Azerbaijani, Turkish and Uzbek (Turkic), Igbo and
Yoruba, (Niger-Congo), Indonesian (Austronesian),
and Swiss German (Germanic), and produce an-
notations in two tasks crucial for IR: named en-
tity recognition (NER) and reading comprehension
(RC). We present our data curation and annotation
process as well as the findings of the evaluation
in the resulting benchmark including prominent
LLMs trained on multi-lingual multi-task settings:

MT-0 (Muennighoff et al., 2022) and GPT-4 (Ope-
nAl, 2023a), in addition to the system submissions.
We also release this benchmark on CodaBench (Xu
et al., 2022), where we provide a possibility to ob-
tain the test sets and evaluate future submissions'
until MRL 2024 .

2 Task Description

With the advancement of language models access-
ing and processing vast amounts of information
in different formats and languages, it has become
of great importance to be able to assess their ca-
pabilities to access and provide the right informa-
tion useful to different audiences. In this shared
task, we provide a multi-task evaluation format
that assesses information retrieval capabilities of
language models in terms of two subtasks: named
entity recognition (NER) and Reading Comprehen-
sion (RC).

2.1 Named Entity Recognition (NER)

NER is a classification task that identifies phrases
in a text that refer to entities or predefined cate-
gories (such as dates, person, organization and loca-
tion names) and it is an important capability for in-
formation access systems that perform entity look-
ups for knowledge verification, spell-checking
or localization applications. The XTREME-UP
dataset (Ruder et al., 2023) contains processed data
from MasakhaNER (Adelani et al., 2021b)) and
MasakhaNER 2.0 (Adelani et al., 2022) in the fol-
lowing languages: Amharic, Ghomél4, Bambara,
Ewe, Hausa, Igbo, (Lu)Ganda, (Dho)Luo, Mossi
(Mooré), Nyanja (Chichewa), Nigerian Pidgin, Kin-
yarwanda, Shona, Swahili, Tswana (Setswana),
Twi, Wolof, Xhosa, Yoruba and Zulu.

The objective of the system is to tag the named
entities in a given text, either as a person (PER),
organization (ORG), or location (LOC).

2.2 Reading Comprehension (RC)

RC is an important capability that enables respond-
ing to natural language questions with answers
found in text. Here we focus on the information-
seeking scenario where questions can be asked
without knowing the answer. It is the system’s
task to locate a suitable answer passage (if any).
Examples can be found in Table 2.

"https://www.codabench. org/competitions/1672/
?secret_key=c68a56e8-542b-4c85-b4f5-7cebb65643c7
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Narendrabhai Damodardas Modi ni Minsita agba
India kerinld ati minisita agba ti India 16w
16w lati odun 2014. O je oloselu kan lati
Bharatiya Janata Party , agbari-ise oluyooda ara ilu
Hindu kan. Oun ni Prime Minister akoko ni ita ti Ile-
igbimojo ti Orile-ede India lati segun awon ofin itelera
meji pelu opoju to kun ati ekeji lati pari die sii ju odun
marun ni ofiisi lehin | Atal Bihari Vajpayee .

Table 1: Example of named entities in Yoruba language.

PER , LOC , and ORG are in colours red, green, and
blue respectively. We make use of Label Studio for
annotation (Tkachenko et al., 2020-2022).

The information-seeking question-answer pairs
tend to exhibit less lexical and morphosyntactic
overlap between the question and answer since they
are written separately, which is a more suitable set-
ting to evaluate typologically-diverse languages.
Here, the system is given a question, title, and a
passage and must provide the answer — if any — or
otherwise return that the question has “no answer”
in the passage. The XTREME-UP benchmark cur-
rently contains data only in Indonesian, Bengali,
Swahili and Telugu (Ruder et al., 2023). The com-
peting systems will therefore be required to infer
information from different language annotations.

3 Languages

Table 3 provides an overview of the variety in our
data set in terms of language families.

3.1 Azerbaijani (AZ)

Azerbaijani is a member of the Turkic language
family, and spoken largely in Azerbaijan and Iran.
Azerbaijani shares a high degree of linguistic char-
acteristics with other Turkic languages, especially
languages in the Western Oghuz subgroup such as
Turkish, Gagauz and Turkmen. Azerbaijani has an
agglutinative morphology, the language also uses a
Subject-Object-Verb (SOV) word order, and does
not have a gender in grammar. Azerbaijanis in
Azerbaijan are using Latin script since its readop-
tion in 1991. Arabic script is also used by Iranian
Azerbaijanis. The data preparation for this study is
done using text in Latin script.

3.2 Igbo (IG)

Igbo belongs to the Benue Congo group of the
NigerCongo language family and is spoken by
over 27 million people (Eberhard et al., 2021).
It is native to the southeastern Nigeria, but also

spoken in some parts of Equatorial Guinea and
Cameroon. There are several Igbo dialects but
the most used one is the central Igbo that was
standardized in 1962 (Ohiri-Aniche, 2007). The
standard Igbo consists 28 consonants and 8 vow-
els. There are two tones: high and low. High
tone is marked with an acute accent, e.g., 4, while
low tone is marked with a grave accent, e.g, a.
These are not normally represented in the orthogra-
phy. Igbo along with other African languages have
been include in several benchmarks by Masakhane
such as MasakhaNER (Adelani et al., 2021b,
2022), AfriQA (Ogundepo et al., 2023), Masakha-
POS (Dione et al., 2023), AfriSenti (Muhammad
et al., 2023) and so on.

3.3 Indonesian (ID)

Indonesian is a member of the Austronesian lan-
guage family and official language in Indone-
sia. The language itself is well-standarized in
terms of orthography and grammar through the
country, however, it has high variety on usages,
especially for registers and styles influenced by
the cultural influences which creates dialect vari-
ances (Aji et al.,, 2022). In the colloquial set-
ting, the language usage is more challenging due
to new creative abbreviations and jargons created
by the speakers, which is only popular for a par-
ticular generation. The research progress on In-
donesian has been tremendously improved due
to the recent advancement on benchmarks (In-
doNLU (Wilie et al., 2020), IndoNLG (Cahyaw-
jjaya et al., 2021), NusaCrowd (Cahyawijaya
et al.,, 2023a), IndoLEM (Koto et al., 2020))
and datasets (NusaX (Winata et al., 2023), Nu-
saWrites (Cahyawijaya et al., 2023b)).

3.4 Swiss German (ALS)

Swiss German is a member of the Germanic lan-
guage family and the subgroup of Alemannic di-
alects. In contrast to Standard German, Swiss Ger-
man provides a unique challenge for multilingual
NLP methods, as it is a non-standardized dialect
continuum with a great variety in terms of lexicon,
phonetics, morphology and syntax. Especially chal-
lenging is that there exists no official orthography,
and therefore each dialect variant and also each per-
son tends to write words differently following their
own interpretation of the phonetic spelling. As it
is not one of Switzerland’s official languages, it is
mainly used in the spoken form and in informal con-
texts. Formal writing is done in Standard German.
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Context

Question

Zaqatala" gozeti redaksiyas1 1923-cii ilin mart
ayindan faaliyyoto baslamisdir. ik avvallor "Za-
gatala kondlisi" adlanan gozet sonralar "Kolx-
ozun sosi”, "Bolsevik kolxozu ugrunda", "Qir-
miz1 bayraq" vo s. baghglarla foaliyyot
gostormigdir. 1991-ci ilin oktyabr ayindan iso
"Zaqatala" adi ilo foaliyyotini davam etdirir. Hal-
hazirda "Zaqatala" gozeti redaksiyasinda 5 nofor
caligir.

Indi gozetdo neco nofor
caligir?

Noch de jlingere Version isch de Eurytos vom
Herakles t66dt woore. Us Raach ndmmli, well
de em sini Tochter Iole nod hett wole gee, hett
er d Stadt Oichalia eroberet, de Eurytos und all
sini S66 t66dt und d Iole graubt.

Was isch de Grund gsi
fiir di totig vom Eury-
tos?

Answer

Indi "Zaqatala"
gozetindo 5  nofor
isloyir.

Will de Eurytos am Her-

akles nod sis Tochterli -
d Iole - het welle geh.

Jembatan Siak atau Jembatan Tengku Agung Sul-
tanah Latifah adalah jembatan sepanjang 1.196
m yang terletak di kota Siak Sri Indrapura. Jem-
batan ini membentang di atas Sungai Siak dan
diresmikan pada tanggal 11 Agustus 2007. Pem-
bangunan jembatan ini dimulai sejak 27 Desem-
ber 2002 dan nama jembatan ini diambil dari
nama gelar Tengku Syarifah Mariam binti Fadyl,
permaisuri dari Sultan Syarif Kasim II, sultan
terakhir di Kerajaan Siak.

Berapa panjang jem-
batan siak?

Jembatan siak memben-
tang sepanjang 1.196 m
yang terletak di kota
siak sri indrapura

Bugiinkii arokarya agacinin akrabasi olan bulun-
mus fosiller 50 milyon yagindadir. Dolayisiyla
diinyanin en eski aga¢ familyalarindan birinin
iyesidir.

Arokarya agacinin
diinyanin en eski agag
familyasina ait oldugu
neden diisiiniilmektedir?

Bulunan akraba fos-
illerinin 50 milyon
yaginda olmasi sebe-
biyle Arokarya agacinin

diinyanin eski aga¢
familyasina ait oldugu
diistiniilmektedir.

A bi Aisha Adamu Augie ni Zaria, Ipinle Kaduna,
Nigeria, Augie-Kuta je omobinrin oloogbe Sen-
ator Adamu Baba Augie (oloselu / olugbohun-
safefe), ati Onidajo Amina Augie (JSC). Augie-
Kuta bere si ni nife si fotoyiya nigbati baba re
fun u ni kamera ni odo.

Ki ni ibasepo to wa
laarin Aisha Adamu
Augie ati  Senator
Adamu Baba Augie?

Aisha Adamu je omo
fun Senator Adamu
Baba Augie

A bi Aisha Adamu Augie ni Zaria, Ipinle Kaduna,
Nigeria, Augie-Kuta je omobinrin oloogbe Sen-
ator Adamu Baba Augie (oloselu / olugbohun-
safefe), ati Onidajo Amina Augie (JSC). Augie-
Kuta bere si ni nife si fotoyiya nigbati baba re
fun u ni kamera ni odo.

Ki ni ibasepo to wa
laarin Aisha Adamu
Augie ati  Senator
Adamu Baba Augie?

Aisha Adamu je omo
fun Senator Adamu
Baba Augie

Table 2: Examples from the RC validation data in different languages.

313



Language Family
Azerbaijani Turkic
Igbo Niger-Congo
Indonesian Austronesian
Swiss German | Indo-European
Turkish Turkic
Uzbek Turkic
Yoruba Niger-Congo

Table 3: List of languages and language families.

Consequently, very few textual resources are avail-
able. Most notably, Hollenstein and Aepli com-
piled a text corpus for PoS tagging using the fol-
lowing sources: Alemannic Wikipedia, the Swatch
Group’s annual report, novels of Viktor Schobinger,
newspaper articles and blog posts (Hollenstein and
Aepli, 2014). Further resources are available in
the format of speech corpora, such as the SDS-200
corpus (Pliiss et al., 2022), Swiss Parliaments Cor-
pus (Pliiss et al., 2020), SwissDial corpus (Dogan-
Schonberger et al., 2021), Radio Rottu Oberwal-
lis corpus (Garner et al., 2014), ArchiMob corpus
(Samardzi¢ et al., 2016), SST4SG-350 (Pliiss et al.,
2023). Some of these also provide Swiss German
transcriptions.

3.5 Turkish (TR)

As the highest-resourced language from the Turkic
language family, Turkish is distinguished with its
agglutinative morphology and employs an Subject-
Object-Verb (SOV) word order. While lacking
grammatical gender, it also features a rich case
system. Verbs are inflected to indicate tense, mood,
and person, while personal pronouns are used for
person reference. The language incorporates vowel
harmony and sound rules, with a significant num-
ber of palatalized consonants. Turkish has no def-
inite or indefinite articles, relying on context for
specificity. Additionally, it has phonemic vowel
length, which affects word meaning. These proper-
ties collectively make Turkish a unique and com-
plex language, distinct from many Indo-European
languages, however its adoption of the Latin script
allows meaningful comparison to representatives
from the Indo-European family.

Corpus studies in Turkish include plenty mono-
lingual (Aksan et al., 2012) and parallel resources
(Tyers and Alperen, 2010; Cettolo et al., 2012; Ata-
man, 2018). Previous efforts also allowed the devel-

opment of different tree banks, such as for Univer-
sal Dependencies (Sulubacak et al., 2016; Suluba-
cak and Eryigit, 2018), semantic parsing (Sahin and
Adali, 2018) and a WordNET (Ehsani et al., 2018).
Turkish is now part of many public multilingual
benchmarks including the mc4 corpus (Raffel et al.,
2019), and it is recognized in different multilin-
gual NLP benchmarks to create human-annotated
resources, such as for machine translation (Cettolo
et al., 2013; Bojar et al., 2017) and morpholog-
ical analysis (Pimentel et al., 2021). There are
also annotated resources for Turkish which were
created through automatic annotation using label
transfer from other languages or translating exist-
ing resources, in tasks including natural language
inference (Conneau et al., 2018), NER (Sahin et al.,
2017), and summarization (Scialom et al., 2020).

3.6 Uzbek (UZ)

The Uzbek language is spoken by over 44 mil-
lion speakers globally, securing its position as the
second most spoken language in the Turkic Lan-
guages group, following Turkish. It accommodates
both Cyrillic and Latin scripts in its writing sys-
tems. Agglutination is a significant characteristic of
Uzbek, where suffixes are appended to morphemes.
It shares a high degree of agglutination with the
Azeri language among Turkic languages.

Uzbek is enriched with a diversity of dialects
influenced by East-Iranian (Tajik) and Turkish lan-
guages. However, the presence of multiple dialects
across various regions in Uzbekistan, each with
unique orthographic rules, make it challenging to
standardize grammatical conventions across the lan-
guage. Additionally, the Uzbek lexicon has been
heavily influenced by the Russian language, result-
ing in a blend and substitution of words. This lin-
guistic amalgamation poses substantial challenges
in the realm of computational linguistics due to its
complexity and variability.

There are few notable resources available in
Uzbek. Such as (Gribanova, 2012-2020), who de-
veloped a dataset on morphological word formation
involving copular and non-copular verbs includ-
ing some regional and other dialectal variation of
Uzbek. Further, (Gribanova, 2018-2020) compiled
a dataset including native Uzbek speakers’ assess-
ment about sentences involving verb-stranding and
argument ellipsis. Other resources include, Uzbek
WordNET (Agostini et al., 2021), a collection of
similar word pairs, (Salaev et al., 2022) and rule
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based Uzbek POS tagger (Sharipov et al., 2023).

3.7 Yoruba (YO)

Yorubd belongs to the Volta-Niger subgroup of
the Niger-Congo language, native to the South-
Western part of Nigeria, Benin and Togo. It is
spoken by over 45 million speakers according
to Ethnologue, making it one of the top-5 most
spoken African language after Nigerian-Pidgin,
Swahili, Hausa, and Amharic (Eberhard et al.,
2021). Yorubd makes use of the Latin script with
modified alphabet: it omits the letters “c,q,v,x,z”
and adds “e, gb, o, s”. The language is tonal, the
tones includes high, low, and neutral. The high (as
in a) and low (as in 4) tones are indicated when writ-
ing texts in the language. The tones are important
for the correct understanding and pronunciation of
the words in Yorubd. Despite the importance of
the tones, many texts written online do not support
the writing of the tonal marks, and this may pose a
challenge on some downstream NLP applications
e.g. machine translation (Adelani et al., 2021a) and
text-to-speech (Ogunremi et al., 2023).

4 Data Preparation

We obtain the textual data for the generative task
from the XML dumps provided on Wikimedia
downloads” and sample 200 articles, which are
split paragraph-wise for annotation. For the NE
annotation, we ensure we sample only biographical
articles and also only include articles available in
all six languages.

We use Label Studio for RC and NER annotation
(Tkachenko et al., 2020-2022) with the tag set
(Person (PER), Organization (ORG), Location
(LOC)) and ensure an annotation overlap of 2%
for NER. The question-answer pairs were always
produced from two separate annotators. We
recruited two annotators per language, for IG and
TR respectively four annotators contributed, and
five persons annotated YO. The resulting data
statistics for the validation and test splits can be
found in Table 4. The scripts used to obtain the
data, as well as pre- and post-processing methods
required to create and export Label Studio annota-
tion projects is included in this GitHub repository 3.

2https://dumps.wikimedia.org/
Shttps://github.com/Fenerator/
wikiDataProcessingForQAandNER

5 Experimental Methodology

5.1 Baseline Systems

MTO0 is the open-source multi-lingual multi-task
model developed by Big Science (Muennighoff
et al., 2022). We use the mTO-large version of the
model with 24 Transformer layers, which is based
on the mT5 model that supports 101 languages.
The model is finetuned on 46 additional languages
with English and translated prompts.

GPT-4 OpenAl (2023b) is a Transformer-style
large language model pre-trained to predict the next
token similar to GPT-3 (Brown et al., 2020) fol-
lowed by additional training to follow an instruc-
tion in a prompt and provide a response. The in-
struction training is based on Reinforcement Learn-
ing from Human Feedback (RLHF), similar to In-
structGPT (Ouyang et al., 2022).

5.2 Evaluation

We evaluate and report results in the generative
task using ROGUE-L (Lin and Hovy, 2003), chrF
(Popovic, 2015), chrF+, chrF++ (Popovié, 2017),
and BERTScore (Zhang et al., 2019) F1 computed
with RoBERTaBase (Liu et al., 2019a)  embed-
dings. Implementation is based on HuggingFace’s
evaluate library>. Overall performance in the NER
task is computed in terms of precision, recall and
F-1 scores using the CONLL Evaluation Scripts®,
implemented in accordance with (Tjong Kim Sang
and Buchholz, 2000).

We obtain a final score per task and system by
weighting the performance per language inversely
by the total number of tokens in the test sets per
language. We also perform human evaluation of
the RC outputs (context-question-answer pairs) of
all baselines, and the best performing submission.
Two annotators judge whether the generated an-
swer is correct, in a binary sense, and optionally
add observations on the characteristics of the gen-
erated grammar, adequacy between the answer and
the context, as well as any typical behavior from
models related to strengths, fall backs and stylistic
properties.

5.3 Submissions

The shared task received a valid submission from
Charles University (CUNI) which was also the win-

*https://huggingface.co/roberta-base
5https://github.com/huggingface/evaluate
6https://github.com/sighsmile/conlleval
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# Paragraphs # Sentences # Tokens
Lang Task Val Test Val Test  Val Test
AZ NER - - 126 124 7,774 8,200
IG NER - - 711 143 54,526 11,668
ID NER - - 0 0 0 0
ALS NER - - 130 166 8,761 11,610
TR NER - - 113 151 7,375 11,736
YO NER - - 100 303 4,166 11,490
AZ RC 38 64 116 220 2,138 3,618
IG RC 100 175 240 469 6,263 12,175
ID RC 100 175 230 488 4,789 10,293
ALS RC 100 175 434 728 7,516 13,430
TR RC 100 175 551 697 8,876 12,707
YO RC 100 175 370 680 8,258 15,259

Table 4: Dataset statistics for the validation and test splits.

Prompt Template
mTO <CONTEXT> <QUESTION>
GPT-4 1 will provide you with a passage and a ques-

tion, please provide a precise answer
Passage: <CONTEXT>
Question: <QUESTION>

Table 5: Zero-shot prompt template used to obtain an-
swers from the systems.

ning system. In this section we describe notable
details from the system developed by CUNI which
aims to perform multi-lingual multi-task informa-
tion retrieval by providing a pivoting approach
where any input is translated into English to per-
form the end task, and translated back to the origi-
nal language for final comparison.

CUNI Question Answering (CQA) system uses
the RoOBERTa model (Liu et al., 2019b) fine-tuned
on the question answering task using XTREME-UP
(Ruder et al., 2023) and span matching based on
the label projection approach by Chen et al. (2023).

CUNI Contrastive (CCo) In order to generate
more naturalistic language and overcome issues
related to domain mismatch, CUNI provided also
contrastive generations (i.e. ) in the RC task where
they compared their output quality on the valida-
tion sets with the LLAMA-2 (Touvron et al., 2023b)
model and make an additional experimental sub-
mission, which we also include in our evaluation.

CUNI NER also deploys multi-lingual fine-
tuning including the MasakhaNER (Adelani et al.,

w.score | CQA CCo mT0 GPT-4
ChrF 023 027 0.26 0.45
ChrF+ 022 025 024 0.44
ChrF++ 021 023 0.23 0.42
RougeL 025 020 0.28 0.36
BERT F1 0.83 084 0.82 0.87

Table 6: RC system evaluation. Results indicate
weighted average of the metrics over 6 languages. Re-
sults are weighted by the number of paragraphs in the
testset.

2021b) data in order to increase robustness of the
model to domain mismatch.

6 Results

6.1 Automatic Evaluation

We evaluate the overall system performance on the
generative task using automatic metrics weighted
by the number of articles in the test set contain-
ing individual context used for answering the RC
questions Table 6. Detailed results per system and
language are presented in Table 7. We also present
NER results for the CUNI system submission in
Table 8.

6.2 Human Evaluation

Table 11 provides an overview of the relative
amount of times the system generated an answer
judged as correct by the human annotators.
Pearson correlation coefficients between the au-
tomatic metrics and the human annotations can be
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ChrF ChrF+ ChrF++ Rougel. | BERTScore F1

system language | aut. r aut. r aut. r aut. r aut. r

CQA AZ 0.42 - 0.40 - 0.39 - 0.44 - 0.90 -

CQA ID 0.37 - 0.34 - 0.32 - 0.39 - 0.84 -

CQA IG 0.14 - 0.14 - 0.13 - 0.19 - 0.79 -

CQA TR 0.15 - 0.15 - 0.14 - 0.19 - 0.82 -

CQA UZ 0.44 - 0.43 - 0.42 - 0.47 - 0.89 -

CQA YO 0.23 - 0.22 - 0.21 - 0.24 - 0.82 -

CQA ALS 0.12 - 0.11 - 0.11 - 0.09 - 0.79 -

CCo AZ 0.34 036 | 033 0.37 | 031 035 | 028 0.34 | 0.87 0.25
CCo ID 0.39 -0.04 | 0.36 -0.02 | 0.33 -0.02 | 0.30 0.07 | 0.86 0.01
CCo IG 024 038 | 0.24 039 | 022 037 | 024 0.30 | 0.85 0.23
CCo TR 024 004 | 024 0.05 | 022 0.06 | 0.21 0.07 | 0.85 0.08
CCo UZ 036 044 | 034 042 | 031 043 | 022 0.38 ]| 0.85 0.32
CCo YO 0.19 0.39 | 0.18 0.41 | 0.17 041 | 0.17 0.28 | 0.81 -0.04
CCo ALS 0.19 027 | 0.19 0.28 | 0.17 0.27 | 0.07 0.33 | 0.82 0.39
mTO0 (1B) AZ 033 0.67 | 032 0.67 | 0.31 0.68 | 0.37 0.59 | 0.86 0.35
mTO (1B) ID 048 038 | 044 037 | 042 036 | 048 0.16 | 0.88 0.25
mTO0 (1B) IG 0.14 034 | 0.14 037 | 0.14 038 | 0.20 0.51 | 0.79 0.22
mTO (1B) TR 0.12 0.09 | 0.12 0.10 | 0.11 0.12 | 0.15 0.26 | 0.80 0.02
mTO0 (1B) UZ 049 047 | 047 047 | 046 047 | 055 0.5210.90 0.31
mTO (1B) YO 0.28 047 | 027 047 | 026 047 | 030 047 | 0.82 0.21
mTO0 (1B) ALS 0.12 046 | 0.11 047 | 0.11 046 | 0.09 0.47 | 0.78 0.39
GPT-4 AZ 041 042 | 041 044 | 039 044 | 031 0321 0.86 0.27
GPT-4 ID 0.51 0.08 | 049 0.09 | 047 0.10 | 047 0.11 | 0.88 0.08
GPT-4 IG 0.52 028 | 052 0.28 | 049 028 | 045 0.21 | 0.89 0.17
GPT-4 TR 0.57 0.02 | 057 0.03 | 053 003|049 0.05]|0.92 0.11
GPT-4 Uz 0.53 0.02 | 052 0.02 | 051 002|043 0.01 | 0.87 0.09
GPT-4 YO 0.28 052 | 027 052 026 053|021 0.59]0.82 0.48
GPT-4 ALS 034 026 | 034 0.27 | 030 0.26 | 0.19 0.26 | 0.85 0.30

Table 7: Detailed RC results per system and language. "aut." denotes automatic evaluation results on the entire test
set, r denotes the Pearson correlation coefficient between the respective metric and the binary human judgement on
the annotated subset of the test data.

All Tags LOC ORG PER

Lang. acc pre rec Fl1 pre rec F1 pre rec F1 pre rec Fl1

ALS 0.87 0.37 041 039|050 041 045030 0.27 028|057 043 049
AZ 0.87 049 047 048 | 068 040 050|049 040 044072 055 0.62
1G 0.89 046 0.58 0.51 067 051 058033 034 033|078 068 0.72
TR 0.89 052 048 050|066 043 052053 031 039080 053 0.64
YO 0.84 0.52 0.63 057|073 044 055|049 051 050|085 0.81 0.83
w. average | 0.87 047 0.52 049 | 0.64 044 052|042 036 039|075 0.60 0.66

Table 8: Test results for CUNI NER submission. Averages are weighted by number of tokens per language.
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| 7(ChrF,h) r(ChrF+,h) v(ChrF ++,h) r(RougeL,h) r(BERTF1,h)

CCo 0.26 0.27
mT0 (1B) 0.41 0.42
GPT-4 0.23 0.23

0.27 0.25 0.18
0.42 0.43 0.25
0.24 0.22 0.21

Table 9: Pearson correlation r between metrics and human binary annotation (h) averaged over languages.

r(ChrF,h) r(ChrF+,h) r(ChrF++,h) r(RougeL,h) r(BERTF1,h)
AZ 0.48 0.49 0.49 0.42 0.29
ID 0.14 0.15 0.15 0.11 0.11
IG 0.33 0.35 0.34 0.34 0.20
TR 0.05 0.06 0.07 0.13 0.07
UZ 0.31 0.30 0.31 0.30 0.24
YO 0.46 0.47 0.47 0.45 0.22
ALS 0.33 0.34 0.33 0.35 0.36

Table 10: Pearson correlation r between metrics and human binary annotation (h) averaged over systems.

Lang. | mT0 (1B) GPT-4 CCo
AZ 0.42 0.78  0.68
ID 0.85 098  0.54
IG 0.44 092 042
TR 0.44 0.90  0.60
uz 0.80 092  0.78
YO 0.52 0.64  0.36
ALS 0.48 092 048

Table 11: Relative amount of answers that were judged
as correct by human annotators.

found in detail in Table 8. Table 10 provides an
overview of the correlations by language, and Ta-
ble 9 condenses the correlations per system.

According to our analysis, we find the GPT-4
as a strong baseline in the RC task and it has com-
petitive rephrasing and reasoning capabilities. We
notice when GPT-4 generates an answer it often
rephrases the question into a statement which might
cause some grammatical errors if the case do not di-
rectly translate and may need additional inflectional
changes. In general, we find although grammatical
errors exist, they do not always lead to complete se-
mantic loss in the sentence and might allow check
the information.

An important remark is the factuality of the GPT-
4 answers which we also approach skeptically. We
find a small percentage of the time GPT-4 gener-
ates information that do not exist in the provided
context.

Especially in dialects and low-resourced lan-

guages, we observe incorrect language in the out-
put. The majority of these incorrect outputs are in
Swiss German (ALS) and Azerbaijani (AZ). We
also find this problem reciprocates in understanding
the prompt, whereas observing in Swiss German
similar words such as "zwei" (translation: two) and
"zwor" (translation: hence) are misinterpreted. The
ability to understand and generate output in the
desired language might be limited by data avail-
ability and current observations state it is not trivial
for GPT-4 to directly allow usage in low-resourced
languages.

The second baseline, MT-0, was found to be
relatively different in the style and characteristics
of the language generated. Most answers were
precise and rather short although, in light of our
human evaluation results, majorly correct in some
languages like Indonesian (ID) and Uzbek (UZ).
We find MT-0 to be more prone to spelling errors
which might lead to more semantic losses. For Igbo
(IG), Turkish (TR) and Swiss German (ALS) we
find the majority of answers are incorrect. We also
observe multiple typographical errors, such as the
way to write metrics (e.g., “k" instead of “km") in
ID, although the values are correct.

The answers provided by CUNI were generally
fluent and presented plausible language. The sys-
tem tended more frequently to make up non-factual
information or information that cannot be inferred
from the given context. We also observed incorrect
language in the output, which was at a significant
level in Swiss German (ALS) and Uzbek (UZ).
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7 Conclusion and Future Work

We presented a new multi-lingual multi-task bench-
mark on information retrieval from Wikipedia in
seven languages from typologically-diverse and
low-resourced language families. We organized
a shared task to call for system development on
this challenging benchmark where we conducted
a detailed analysis on how state-of-the-art LLMs
perform in language understanding and generation
under low-resourced settings. In addition to find-
ing strong evidence on fall backs in both under-
standing and generation capabilities of LLMs in
low-resourced languages, we also find it crucial
to invest in better automatic evaluation metrics for
generation in different languages. While we do not
find this task to be solved, we plan to keep the com-
petition open and promote more investment into
the progress of information retrieval for languages
with non-prominent and low-resourced characteris-
tics. Our leaderboard that will continue to promote
open access evaluation of new submissions of spe-
cialized systems will be available until MRL 2024
on the competition website.

Limitations

We have presented a multilingual evaluation bench-
mark for information retrieval which was created
relying on Wikipedia articles in different languages.
Using Wikipedia has inherent limitations such as
limitations in variety of content and styles across
languages making it challenging to ensure a uni-
form difficulty level for comprehension questions.
Additionally, relying solely on Wikipedia may in-
troduce biases, as certain languages might have
more comprehensive or detailed articles than oth-
ers. Moreover, evaluating language models on
Wikipedia-centric benchmarks may not fully reflect
their generalization abilities, as the models might
excel at leveraging the more structured and well-
formulated information found on Wikipedia but
may struggle more with more diverse and unstruc-
tured text from other sources. These limitations
underscore the need for diverse and contextually
rich benchmarks to provide a comprehensive as-
sessment of LLMs across multiple languages.
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