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Abstract

Current pre-trained vision-language models
(PVLMs) achieve excellent performance on a
range of multi-modal datasets. Recent work
aims at building multilingual versions of such
models, and a range of multilingual multi-
modal datasets have been introduced for this
purpose. However, current PVLMs typically
perform poorly on such datasets when used
for zero-shot or few-shot cross-lingual trans-
fer, especially for low-resource languages. To
alleviate this problem, we propose a novel
meta-learning fine-tuning framework. Our
framework makes it possible to rapidly adapt
PVLMs to new languages by using Model-
agnostic Meta-learning (MAML) in a novel
cross-lingual multi-modal manner. Experi-
ments show that this new method boosts the per-
formance of current PVLMs in both zero-shot
and few-shot settings on four different vision-
language tasks across 14 languages.

1 Introduction

Multi-modal models focus on jointly learning repre-
sentations from multiple modalities, such as vision
and language. Many tasks require the integration
of information of vision and language, including
image captioning (Vinyals et al., 2015), natural lan-
guage visual reasoning (Zhou et al., 2017; Suhr
et al., 2019), and cross-modal retrieval (Zhen et al.,
2019). Multi-modal learning captures the inter-
action between different modalities, allowing the
resulting representations to be used in multimedia
applications that enhance human-computer interac-
tion.

Recently, pre-trained vision-language models
(PVLMs; Chen et al. 2020; Lu et al. 2019; Tan and
Bansal 2019) have achieved significant advances
in multi-modal tasks. However, the data which
PVLMs learn from is mostly for high-resource
languages such as English. The resulting mod-
els rely on large amounts of training data for good
performance, and often the models acquire biases

兩張圖中都只有一個人吹嗩吶，而且右
圖中的人面向左方。

(There is only one person blowing suona in both pictures, 
and the person on the right is facing to the left.)

بعال ةرك ةلسلا یمري ةرك ثالثب .طقن

(Basketball player throws 
a ball with three points.)

True Contradiction

Reasoning NLI

Figure 1: Examples in IGLUE (Bugliarello et al., 2022)
benchmark. The left example comes from MaRVL (Liu
et al., 2021) dataset, and the right example comes from
XVNLI dataset proposed in IGLUE.

that mean they perform poorly in low-resource
languages such as Indonesian or Swahili. To ad-
dress this, several multilingual PVLMs have been
proposed (Zhou et al., 2021; Ni et al., 2021). A
number of studies have used multilingual multi-
modal datasets (Bugliarello et al., 2022; Liu et al.,
2021) and Figure 1 shows two examples from such
datasets. The authors of these datasets used them
to evaluate current famous PVLMs and demon-
strated they do not perform well in low-resource
cross-lingual transfer settings.

In this paper, we conjecture that meta-learning
can mitigate this issue. This is a learning ap-
proach that enables machine learning models to
adapt quickly to new tasks by learning the learn-
ing algorithm itself. Model-agnostic Meta-learning
(MAML; Finn et al. 2017) is one of the most
widely used meta-learning frameworks. It is based
on gradient-descent optimization, does not re-
quire multiple models or complex settings, and
can be used for a range of models. In previ-
ous work (Verma et al., 2020; Finn et al., 2017;
Nooralahzadeh et al., 2020), MAML-based meth-
ods have been shown to be useful in low-resource
and cross-lingual transfer scenarios, including
both few-shot and zero-shot cross-lingual tasks.
However, prior work has only attempted to use
MAML for cross-lingual transfer in text-only tasks
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(Nooralahzadeh et al., 2020).
Inspired by previous works about using MAML

for natural language tasks, this paper proposes
XVL-MAML, a novel variant of MAML that ad-
dresses the limitations of previous PVLMs in
vision-language tasks for low-resource cross-
lingual transfer. Our framework combines a tra-
ditional supervised loss for learning down-stream
tasks with a contrastive loss to encourage the align-
ment between modalities, resulting in a cross-
lingual, multi-modal MAML optimization proce-
dure.

The intuition underlying our method is that a con-
trastive loss can align representations of different
modalities, and MAML allows the model to gen-
eralize quickly to unseen tasks (languages, in our
case). We show that XVL-MAML can lead to sig-
nificant improvements in PVLM performance for
cross-lingual transfer. We also find that using con-
trastive learning in a MAML framework on its own
can bring improvements in PVLM performance in
unsupervised settings.

In sum, our contributions are as follows: (1) We
propose a novel framework called XVL-MAML
which is the first meta-learning method special-
ized for vision-language cross-lingual transfer, and
doesn’t require the translation or pre-training data.
(2) We show that using only contrastive learning in
the MAML framework in an unsupervised setting
can also be useful. (3) We demonstrate that our
proposed framework can boost the performance of
current PVLMs across 14 languages and four tasks
in both zero-shot learning and few-shot learning.
(4) We conduct an ablation study to verify the effect
of contrastive learning in both supervised and un-
supervised settings and present an analysis across
languages and tasks.

2 Related Work

2.1 Multilingual Vision-and-Language
Methods and Tasks

Recent work has investigated vision-and-language
cross-lingual transfer tasks. Elliott et al. (2016)
proposed Multi30K, an image description dataset
which contains descriptions in multiple languages.
Previous methods (Gella et al., 2017; Rotman
et al., 2018) propose ways of bridging languages
through images, but they mainly focus on image-
text retrieval and only consider high-resource lan-
guages such as English and German. Pfeiffer et al.
(2022) built a multilingual visual question answer-

ing dataset xGQA. Liu et al. (2021) proposed a
multilingual version of the grounded visual rea-
soning dataset MaRVL, which follow the same
setting as the natural language visual reasoning
dataset NLVR2 (Su et al., 2019), but considers both
cross-lingual transfer and domain shift between lan-
guages.

Several pre-trained models are recently proposed
for vision-and-language cross-lingual transfer. Ni
et al. (2021) proposed M3P, a transformer-based
pre-trained model that maps the same concepts in
different modalities and languages into a common
semantic space. Similar to M3P, Liu et al. (2021)
extended UNITER (Chen et al., 2020), propos-
ing mUNITER based on M-BERT (Devlin et al.,
2019), and xUNITER based on XLM-R (Conneau
et al., 2020). Zhou et al. (2021) proposed UC2, a
model using a data augmentation method based on
machine translation for cross-lingual cross-modal
pre-training. Although pre-training methods have
proven powerful across multiple tasks, they require
large amounts of training data and show a clear per-
formance gap between English and low-resource
languages on the IGLUE benchmark (Bugliarello
et al., 2022).

Recently, some adapter-based efficient tuning
methods (Pfeiffer et al., 2022; Wang et al., 2023)
and translation augmented methods (Qiu et al.,
2022) were proposed for multilingual multimodal
tasks. But they still require a large amount of
data or machine translated data for training. Our
method, in contrast, only requires a small amount
of auxiliary data.

2.2 Meta-Learning

Meta-learning has been increasingly popular in
machine learning. Whereas conventional ma-
chine learning methods learn by data points, meta-
learning learns by tasks. Previous meta-learning
work (Vinyals et al., 2016; Finn et al., 2017) fo-
cused on adapting to new tasks quickly. But meta-
learning can be applied to other scenarios as well,
including semi-supervised learning (Ren et al.,
2018), multi-task learning (Yu et al., 2020), and
domain generalization (Li et al., 2018).

Prior work has also explored the effectiveness
of meta-learning in NLP: Wang et al. (2021) ap-
plied meta-learning in semantic parsing for do-
main generalization based on MAML (Finn et al.,
2017; Li et al., 2018). Obamuyide and Vlachos
(2019) leveraged meta-learning under limited su-

13



pervision in a relation classification task. Recently,
there have been some applications using MAML
in cross-lingual transfer: Gu et al. (2018) and
Nooralahzadeh et al. (2020) regard languages as
tasks in their meta-learning framework. In con-
trast to these existing approaches, which explore
text-only scenarios, we are the first to utilize meta-
learning for cross-lingual transfer in multi-modal
tasks.

3 Meta-learning for Vision-and-language
Cross-lingual Transfer

We first formally define the problem of vision-and-
Language cross-lingual transfer in the context of
zero-shot and few-shot scenarios in Section 3.1.
Then, we introduce our overall fine-tuning frame-
work in Section 3.2. And we introduce the con-
trastive learning used for vision-and-language tasks
in Section 3.3. Finally, we introduce our XVL-
MAML algorithm in Section 3.4.

3.1 Problem Definition
Following the multilingual vision-language IGLUE
benchmark (Bugliarello et al., 2022), we formulate
the problem of cross-lingual transfer learning in
vision-and-language scenarios. For understanding
tasks, the input is a pair of an image V and text U ,
and the output Y is the result inferred by the multi-
modal model. We can thus formulate this problem
as computing Pθ(Y |V,U), where θ are the parame-
ters of the PVLMs. During training, the image-text
pairs come from datasets Ds in a set of source lan-
guages, and our aim is to perform well on datasets
Dt for the same task in the target languages. For the
zero-shot setup, the pre-trained model fine-tuned
on Ds is directly used in inference on Dt for un-
seen target languages. For the few-shot setup, after
training on Ds, the model is continually fine-tuned
on several shots of the training set of Dt and then
evaluated on the development set of Dt.

3.2 Overall Fine-tuning Framework For
Cross-lingual Transfer

The pipeline of our proposed meta-learning fine-
tuning framework can be divided into three parts:

1. Fine-tune the pre-trained vision-language
model on data of the down-stream task in En-
glish

2. Fine-tune the model on data in the auxiliary
language (one language other than English)
using our proposed XVL-MAML algorithm.

3. Evaluate the fine-tuned model on data in the
target languages (languages other than En-
glish and the auxiliary language).

The traditional cross-lingual transfer learning
procedure described in Bugliarello et al. (2022)
only includes part 1 and 3. In part 3, if the set-
ting is zero-shot, the model is evaluated on data
in the target language directly, but if the setting is
few-shot, the model continues to be fine-tuned on
few-shot data in the target languages and is then
evaluated. The difference between our framework
and the traditional procedure is the additional fine-
tuning step of part 2. We will describe it specifi-
cally in Section 3.4, but before that, we will intro-
duce contrastive learning for vision-and-language
tasks.

3.3 Contrastive Learning for
Vision-and-language Tasks

The vision-and-language contrastive learning loss
proposed by Zhang et al. (2020) has proven ef-
fective in medical image scenarios and is used as
the pre-training objective function of CLIP (Rad-
ford et al., 2021). It can be regarded as an aux-
iliary task for representation learning, aiming to
enable models to gain better aligned multi-modal
representation for downstream tasks. In the con-
trastive learning scheme, a batch of embeddings
of images encoded by the model can be written
as I = {I1, ..., IN}, and a batch of embeddings
of texts encoded by the model can be written as
T = {T1, ..., TN}, where N is the size of batch,
(Ii, Ti) is an image-text pair. If the paired image-
text data describe the same or similar concepts,
then we can assume they are positive examples,
and non-paired data are negative examples. Then,
the embeddings of images and texts are fed into two
different linear transformation layers separately,
W1 and W2:

U = I ·W⊤
1 (1)

V = T ·W⊤
2 (2)

Where U and V represent the batch of image-text
pairs. Then the cosine similarity of each pair can be
computed as ⟨Ui, Vj⟩ = U⊤

i Vj

∥Ui∥∥Vj∥ . The objective is
to maximize the similarity of matched image-text
pairs and minimize the similarity of others. So the
image-text contrastive loss can be formulated as
follows:

L1i = − log
exp(⟨Ui, Vi⟩)∑N

K=1 exp(⟨Ui, Vk⟩)
(3)
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Following Zhang et al. (2020), the contrastive loss
should be symmetric for each modality, and the
text-image contrastive loss is:

L2i = − log
exp(⟨Vi, Ui⟩)∑N

K=1 exp(⟨Vi, Uk⟩)
(4)

The final contrastive loss of this batch of paired
data is then:

LCL =
N∑

i=1

(L1i + L2i ) (5)

Where LCL is the overall contrastive loss. When
we minimize LCL, we maximize the similarity of
image-text pairs which are positive examples.

3.4 XVL-MAML
Inspired by the effectiveness of MAML for quickly
adapting to new tasks, we propose a novel vari-
ant of the MAML algorithm specialized for cross-
lingual transfer in vision and language tasks, called
XVL-MAML. Specifically, we first integrate con-
trastive learning into the MAML algorithm, making
it specialized for the visual-language task of cross-
lingual transfer learning. Our intuition is that we
can use MAML with a contrastive loss as its learn-
ing objective for quickly adapting vision-language
alignment to new languages. In this framework,
the alignment between image and text in a specific
language can be regarded as a task. Inspired by
Nooralahzadeh et al. (2020), we use the data of
one auxiliary language for fine-tuning, but with a
contrastive loss as objective function in the MAML
algorithm.

Specifically, we sample a batch of support data
Bs and a batch of query data Bq in the data in
auxiliary language A for each virtual task T . As-
suming the parameters of the model are θ and the
contrastive loss on the support data is LCL(θ)Bs ,
then the parameters of the model can be updated
by one step of gradient descent:

θ
′
= θ − α∇θLCL(θ)Bs (6)

Following the MAML algorithm, our final objec-
tive for this task is to minimize LCL(θ

′
)Bq on the

query data Bq using gradient descent:

θ ← θ − β∇θLCL(θ
′
)Bq (7)

θ ← θ − β∇θLCL(θ − α∇θLCL(θ)Bs)Bq (8)

Optimized using this method, pre-trained vision-
language models can quickly adapt to new tasks

in other languages without using any annotation in
the auxiliary language for downstream tasks, so we
will refer to this as an unsupervised scenario.

In supervised scenarios, where the downstream
tasks labels in the auxiliary language are available,
we combine the loss of the downstream task L with
the vision-language contrastive loss LCL by adding
them together. So during fine-tuning, Equation (8)
is modified to:

θ ← θ − β(∇θL(θ
′′
)Bq + λ∇θLCL(θ

′
)Bq) (9)

Where the temporary parameters optimized for one
step by the downstream task loss L on the support
set Bs is θ

′′
, β is the meta-learning rate, and λ is

the scale factor of contrastive learning. By simply
adding the gradients of the downstream task and
contrastive learning in the meta-update, the model
learns downstream tasks and vision-language align-
ment simultaneously for cross-lingual transfer.

4 Experiments

In this section, we introduce both the base PVLMs
we use for vision-language cross-lingual transfer,
as well as the datasets and metrics we use to evalu-
ate our proposed method. Then we describe how
the experiments were conducted and discuss the
results.

4.1 Base models

In this paper, we choose xUNITER (Liu et al.,
2021) and UC2 (Zhou et al., 2021) as our base
models, as they use different pre-training methods.
Then we applied XVL-MAML to both models to
show that this method works across different mod-
els.

xUNITER is a multilingual version of the
UNITER model (Chen et al., 2020). It has a simi-
lar architecture to UNITER and uses Faster-RCNN
(Ren et al., 2015) as a feature extractor for images.
The image features are pooled and reshaped as
vectors with the same dimensions as text embed-
dings. UNITER has four pre-training methods:
Masked Language Modelling (MLM), Masked
Region Modelling (MRM), Image-Text Matching
(ITM), and Word Region Alignment (WRA). xU-
NITER, in addition to these pre-training methods,
also uses Masked Language Modelling for multi-
lingual data and uses the same text embedder as
XLM-R (Conneau et al., 2020).

15



xFlickr&Co
Method Model XNVLI xGQA MaRVL IR TR

mUNITER 53.7 10.0 53.7 8.1 8.9
xUNITER 59.0 20.8 56.0 13.8 12.5

UC2 62.5 29.0 56.4 19.7 17.0Baseline

M3P 58.2 28.2 56.0 12.9 11.9

xUNITER 63.0 (+4.0) 22.5 (+1.7) 59.4 (+4.4) 16.3 (+2.5) 14.2 (+1.7)Ours UC2 64.4 (+1.9) 29.9 (+0.9) 57.0 (+0.6) 21.3 (+1.6) 18.7 (+1.7)

Table 1: Zero-shot performance (accuracy) of four baseline models only fine-tuned on English data (Baseline) and
two models fine-tuned by our meta-learning method (Ours) on four IGLUE datasets (Bugliarello et al., 2022).

UC2 uses a similar model architecture as
UNITER, but different pre-training methods.
Specifically, UC2 augments pre-training on English
data by constructing a multilingual corpus via ma-
chine translation and then uses this augmented data
for pre-training. It also proposes the Visual Trans-
lation Language Modeling (VTLM) pre-training
method, which uses the image as a pivot to learn
the relationship between parallel texts in two lan-
guages and their corresponding images.

4.2 Datasets and Metrics
We use datasets for four tasks from the IGLUE
benchmark (Bugliarello et al., 2022), which in-
cludes xGQA (Pfeiffer et al., 2022), MaRVL (Liu
et al., 2021), XVNLI, and xFlickr&Co (Plummer
et al., 2015; Lin et al., 2014). We show examples
from MaRVL and XVNLI in Figure 1. Following
the convention in IGLUE, the evaluation metric is
accuracy for all tasks except cross-modal retrieval,
which uses Recall@1. The task format of these
four datasets are described below:

• MaRVL is a multicutural vision-language rea-
soning dataset, following the format of En-
glish NLVR2 (Suhr et al., 2019) which namely
to judge whether a sentence is correct or not
for a pair of images.

• XVNLI is a multilingual version of visual nat-
ural language inference task, which requires
models to predict the relationships between
premise and hypothesis based on a given im-
age.

• xGQA is a multilingual grounded question
answering task based on GQA (Hudson
and Manning, 2019) and machine translated
question-answer pairs.

• xFlickr&CO is a multilingual image-text re-
trieval dataset collected from Flickr30k (Plum-

mer et al., 2015) and COCO (Lin et al., 2015)

4.3 Implementation and Hyperparameters

We conduct all experiments based on the Visi-
olinguistic Transformer Architectures framework
VOLTA on four 2080Ti GPUs. We implement the
MAML algorithm using the Higher library. We use
the AdamW (Loshchilov and Hutter, 2018) opti-
mizer to fine-tune all models in PyTorch.

Fine-tuning on English Data Before evaluat-
ing models on data in low-resource languages, we
firstly fine-tune the pre-trained models on the cor-
responding English datasets: GQA (Hudson and
Manning, 2019), NLVR2 (Suhr et al., 2019), SNLI-
VE (Xie et al., 2019), and Flickr30k (Plummer
et al., 2015) for xGQA, MaRVL, XVNLI, and
xFlickr&Co, respectively, using the procedure of
Bugliarello et al. (2022) and Liu et al. (2021). We
follow the setting in IGLUE (Bugliarello et al.,
2022) and also use the IGLUE hyper-parameters
for each task when fine-tuning. We save the pa-
rameters of models in each epoch, then pick the
best performing model for each task as the initial-
ized parameters θ for the meta-learning fine-tuning
stage.

Fine-tuning with Meta-learning For the XVL-
MAML algorithm, the size of the support set and
the query set is 64. We explore learning rates 5×
10−5, 1× 10−5, 5× 10−6 , 1× 10−6 for both UC2
and xUNITER, and find the best learning rate is
5× 10−6 for both the normal fine-tuning stage and
the meta-update of MAML. For the inner learning
rate of XVL-MAML, we explore learning rates
5× 10−6, 5× 10−5, 5× 10−4 and 5× 10−3, and
find that 5× 10−4 is the best inner learning rate.

For the proposed meta-learning framework, we
find that models overfit after 300 iterations in most
situations (for each iterations, we sample a batch
of data as support set and a batch as query set),
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METHOD ZH TA SW TR ID avg

xUNITER

Base 54.34/4.74 55.40/6.55 56.41/7.61 57.53/10.99 56.44/7.79 56.02/7.54
Ours (zh → X) - 59.82/14.10 58.85/9.78 60.93/13.22 61.17/13.48 -

Ours (avg) 58.34/9.88 58.49/10.25 59.59/10.33 60.06/12.03 60.35/12.41 59.37/10.98
Ours (max) 59.75/10.28 59.82/14.10 60.83/10.14 62.20/15.25 61.17/13.48 60.75/12.65

UC2

Base 57.81/12.25 60.06/11.15 51.81/1.09 55.76/7.46 56.56/8.51 56.40/8.09
Ours (zh → X) - 58.94/12.13 53.61/7.57 55.34/7.99 56.74/8.03 -

Ours (avg 58.35/13.44 58.35/12.71 53.99/7.93 56.80/9.61 56.54/9.41 56.81/10.62
Ours (max) 59.59/13.04 58.94/12.13 54.60/9.11 58.13/13.48 56.74/12.60 57.60/12.07

Table 2: Zero-shot performance (accuracy/consistency) of two baseline models fine-tuned only on English data
(Base) and then fine-tuned by our meta-learning method (Ours) on the MaRVL dataset (Liu et al., 2021), where the
definition of consistency following Liu et al. (2021). Columns indicate target languages. The avg column gives
the average performance across all target languages in this row. zh→ X means the auxiliary language is Chinese,
and the target languages is other low-resource languages X . We also show the average and maximum performance
across all auxiliary languages for each target language.

so we set the number of iterations to 400 for all
our experiments, and evaluate the performance of
models for each 25 iterations to guarantee that we
can pick the model with best performance of each
setting for evaluation.

5 Results and Discussion

5.1 Zero-shot

We report the results of the baseline models and
the results for fine-tuning them using our meta-
learning framework in Table 1. In our setting, base-
line model means that the PVLM is only fine-tuned
on the English datasets. For simplicity, we report
the averaged results of all combinations of target
languages and auxiliary languages for each model
and task. We set the value of λ in Equation (8) to
2× 10−2 for xUNITER and 5× 10−2 for UC2 to
gain the best performance.

The results in the Table 1 indicate the effective-
ness of our meta-learning framework and show
that our method can boost the zero-shot perfor-
mance of UC2 and XUNITER on all four datasets
in IGLUE. Note that Table 1 shows average per-
formance across all languages. The performance
for individual languages can vary, and is shown in
detail in Appendix A, Table 4. We also show the
differences in improvements when using different
auxiliary languages for different target languages
in Figure 5.

5.2 Few-shot

We also conduct few-shot experiments following
the setting in IGLUE (Bugliarello et al., 2022) for

Unsupervised Setting

Method/Models UC2 xUNITER

Baseline 62.5±0.1 59.1±0.1

XVL-MAML(w/o down-stream) 63.1±0.1 60.8±0.1

Supervised Setting

Method/Models UC2 xUNITER

XVL-MAML(w/o contrastive) 63.8±0.1 61.6±0.1

XVL-MAML 64.4±0.1 62.9±0.1

Table 3: Ablation study in the unsupervised setting and
supervised setting. The labels of the down-stream task
data in the auxiliary language are not given in unsuper-
vised setting and provided in supervised setting.

both xUNITER and UC2 on XVNLI and MaRVL.
The results are shown in Figure 2, where the hor-
izontal axis represents the number of shots, and
the vertical axis represents the accuracy score. The
leftmost point of the horizontal axis is zero, which
represents the performance in the zero-shot setup.
The blue points and lines show the performance
of our method. The yellow points and lines rep-
resent the performance of the baseline. We have
performed five runs and the interval represents the
standard error. It is clear that in all four figures,
our method achieves better performance across all
shots. And it is worth noting that although there is
a slight increase from the performance of zero-shot
to one-shot, our proposed method, without seeing
any data in the target languages, outperforms the
baselines in the few-shot setting, except for UC2
on MaRVL. In other words, only a few instances
of training data in target languages are not enough
to eliminate the advantage of our method. This
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Figure 2: Average few-shot performance (accuracy) across all languages of two baseline models on the XVNLI and
MaRVL datasets. The horizontal axis represents the number of shots in the training data.
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Figure 3: Performance in each target languages averaged across auxiliary languages on the MaRVL dataset.

demonstrates that while our method requires train-
ing data in one auxiliary language, there is no need
for few-shot data in the target languages.

5.3 Ablation Study and Further Analysis

In this section, we conduct a series of ablation stud-
ies which investigate the effect of each part of our
proposed meta-learning framework. We have per-
formed five runs for each setting and reported the
average and standard error to estimate significant
differences.

The Effect of Contrastive Learning We investi-
gate the effect of contrastive learning in our meta-
learning fine-tuning framework. Specifically, we
fine-tune the model only using a contrastive learn-
ing loss in the MAML algorithm (called as "XVL-
MAML (w/o down-stream)" in Table 3), where the
labels of down-stream task data are not given. We
evaluate the performance of UC2 and xUNITER on
the XVNLI dataset in this setting and reported them
in unsupervised setting part of Table 3. The results
indicate that using contrastive learning solely in the
MAML algorithm can improve performance. It pro-
vides evidence for the hypothesis that contrastive
learning can enable models to learn alignments
of modalities in cross-lingual transfer, resulting in
better representations.

We also compare the performance of the model
in the supervised setting where labels of data in
auxiliary language are available; hence in the XVL-
MAML algorithm, both contrastive loss and down-

stream task loss are used. Then we remove the con-
trastive learning loss in XVL-MAML, only keep-
ing the down-stream task loss. We compare the
performance of these two settings in Table 3 to
show the effectiveness of the contrastive learning
loss in XVL-MAML in the supervised setting. In
the "Supervised Setting" part of Table 3, the first
row is XVL-MAML without contrastive learning
loss, which means only using down-stream task
loss when fine-tuning, and the second row is nor-
mal XVL-MAML using both contrastive loss and
down-stream task loss.

Moreover, we show the difference in perfor-
mance in each target language separately in Fig-
ure 3. Contrastive learning can bring improvements
for most of the target languages, especially those
whose performance is relatively low when not us-
ing contrastive learning. For example, in the left-
most plot, performance in zh, ta, and sw is relatively
lower than tr in the baseline, but gains significant
improvements when using our method. The similar
effect can be seen in other three plots and Table 2.

Diverse down-stream tasks We report the re-
sults of experiments using four diverse multilin-
gual vision-and-language understanding tasks in
Table 1. Our method can bring clear improvements
across all tasks for both UC2 and xUNITER, indi-
cating that the approach generalises across tasks.
Furthermore, these four IGLUE tasks also differ in
the distribution of language families and domains,
which indicates our method can be useful across
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Figure 4: Examples from the Chinese part of the MaRVL dataset and predictions of the baseline and ours method.
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Figure 5: Improvements of zero-shot performance by fine-tuning xUNITER on different auxiliary languages then
evaluating on different target languages using our proposed framework compared with baseline. The left heatmap is
for MaRVL, and the right is for XVNLI. Rows correspond to auxiliary and columns correspond to target languages.

language families and domains. Moreover, our
method can significantly boost the performance of
xUNITER even in the challenging MaRVL dataset
which encompasses five diverse language families
and cultures, improving accuracy by 4.4 points.

Diverse languages We also investigate the differ-
ence of performance between languages. Specifi-
cally, we take the MaRVL dataset as an example
and report results in Table 2, which lists the per-
formance when using Chinese (zh) as the auxil-
iary language for meta-learning, and the average
and maximum performance across all auxiliary lan-
guages for each target language respectively. In
most situations, our method results in clear im-
provements. We then visualize the improvements
of xUNITER when using different auxiliary lan-
guages for different target languages on MaRVL
and XVNLI in Figure 5. The improvements we
see for MaRVL (which range from 0.44 to 5.4) are
smaller than for XVNLI (which range from 2.8 to
6.4), and one possible reason is that the language
families of MaRVL are more diverse than those
of XVNLI. But in general, our method improves
performance for all combinations of auxiliary and
target languages, even when they come from differ-
ent language families. This further indicates that
our method is language-agnostic.

5.4 Example Predictions

We show some examples of inputs and predic-
tions for baseline and our method in Figure 4. We
use xUNITER to predict the Chinese part of the
MaRVL dataset. We have selected two examples
where the baseline prediction is incorrect, but our
method predicts correctly (the rightmost two exam-
ples), and two examples where both our method
and baseline method predict correctly (the leftmost
two examples). In the two rightmost examples, the
label is "True", but the baseline predicts "False".
We find that in these two examples, the same con-
cepts ("church" and "drum") described in related
texts have different visual features, which makes it
more difficult for models to identify them. In the
left two examples, however, the concepts (panda
and roses) described in the text do not have diverse
or obscure visual features when they appear in the
images. Therefore, based on these cases, we can
surmise that the meta-learning framework makes
the model more adaptive to diverse information and
resulting in better generalization capabilities when
mapping between texts and images.

6 Conclusions

In this paper, we focused on mitigating the problem
of poor performance of current PVLMs in vision-
language cross-lingual transfer. We proposed a
novel MAML framework to adapt pre-trained mod-
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els for new languages in vision-and-language tasks.
Our framework combines contrastive learning and
downstream task supervised learning. We verify
the effectiveness of our approach in both super-
vised and unsupervised settings. The key strength
of our method is that we leverage contrastive learn-
ing in the MAML procedure so that models can
quickly learn to align representations from differ-
ent modalities and adapt them to unseen languages.

Experimental results demonstrate that our pro-
posed meta-learning framework significantly im-
proves the performance of models in vision-and-
language cross-lingual transfer both in zero-shot
and few-shot setups. We applied our method to
two representative PVLMs, UC2 and xUNITER,
and verified its effectiveness on four datasets in
the IGLUE benchmark in 14 languages. We also
conducted an ablation study to explore the effect
of contrastive learning, and analysed the effect of
different languages and tasks.

Limitations

Our proposed method applies contrastive learning
to samples of image-text pairs. The alignments in-
duced in this fashion work best if there is a concept
or an object that is both depicted in the image and
referred to in the sentence. If this is not the case,
then the method may end up learning incorrect
alignments; this includes cases where the image
or the sentence contain multiple objects or con-
cepts, not all of which can be aligned. To address
this limitation, future work should explore how to
construct better positive and negative samples and
how to enable learning at a more fine-grained level.
Besides, current famous PVLMs are encoder-only
models, which is different with recent decoder-only
LLMs, so meta-learning methods for multi-modal
multilingual LLMs is worth to explore as a future
work.

Ethics Statement

The use of the IGLUE benchmark in our paper is
consistent with its intended use. We have checked
the datasets for offensive content by sampling and
visualizing examples. There are 14 languages in
the datasets we use, we list them in Table 4. More
detailed information about the IGLUE dataset can
be found in (Bugliarello et al., 2022).
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Ar Bn De Es Id Fr Ja Ko Pt Ru Sw Ta Tr Zh

MaRVL

xUNITER (Baseline) - - - - 56.44 - - - - - 56.41 55.40 57.53 54.34
UC2 (Baseline) - - - - 56.56 - - - - - 51.81 60.06 55.76 57.81

xUNITER (Ours) - - - - 60.35 - - - - - 59.59 58.49 60.06 59.75
UC2 (Ours) - - - - 56.74 - - - - - 54.60 58.94 58.13 59.59

XVNLI

xUNITER (Baseline) 53.52 - - 60.05 - 61.60 - - - 61.25 - - - -
UC2 (Baseline) 58.36 - - 63.86 - 65.01 - - - 64.72 - - - -

xUNITER (Ours) 56.70 - - 60.91 - 68.64 - - - 63.91 - - - -
UC2 (Ours) 59.94 - - 62.97 - 69.41 - - - 65,18 - - - -

xGQA

xUNITER (Baseline) - 11.41 33.21 - 32.38 - - 13.28 20.51 17.84 - - - 17.20
UC2 (Baseline) - 19.49 33.52 - 29.83 - - 23.29 31.23 32.61 - - - 33.25

xUNITER (Ours) - 12.46 34.10 - 33.63 - - 15.05 22.71 20.27 - - - 19.27
UC2 (Ours) - 19.63 34.50 - 29.58 - - 24.93 32.47 33.24 - - - 35.00

Xflickr&Co (IR)

xUNITER (Baseline) - - 14.70 16.40 15.15 - 9.55 - - 14.75 - - 8.85 17.20
UC2 (Baseline) - - 28.10 14.65 13.55 - 23.70 - - 18.20 - - 8.15 31.70

xUNITER (Ours) - - 16.20 18.85 18.50 - 12.10 - - 17.75 - - 11.10 19.40
UC2 (Ours) - - 29.35 16.90 14.25 - 25.15 - - 20.50 - - 10.50 32.10

Xflickr&Co (TR)

xUNITER (Baseline) - - 14.2 15.45 13.95 - 8.30 - - 13.15 - - 7.75 14.4
UC2 (Baseline) - - 23.55 11.90 10.35 - 22.75 - - 17.50 - - 6.15 26.85

xUNITER (Ours) - - 15.50 16.15 16.70 - 9.90 - - 15.70 - - 9.50 15.75
UC2 (Ours) - - 25.30 13.95 12.45 - 23.50 - - 19.80 - - 8.30 27.45

Table 4: Accuracy scores for each target language individually averaged over auxiliary languages.
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