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Preface

Based on the success of past low-resource machine translation (MT) workshops at AMTA 2018, MT
Summit 2019, AACL-IJCNLP 2020, AMTA 2021, and COLING 2022, we introduce LoResMT 2023
workshop at EACL 2023 (https://2023.eacl.org/). In the past few years, machine translation (MT) per-
formance has improved significantly. With the development of new techniques such as multilingual
translation and transfer learning, the use of MT is no longer a privilege for users of popular languages.
However, the goal of expanding MT coverage to more diverse languages is hindered by the fact that MT
methods require large amounts of data to train quality systems. This has made developing MT systems
for low-resource languages challenging. Therefore, the need for developing comparable MT systems with
relatively small datasets remains highly desirable.

Despite the advancements in MT technologies, creating an MT system for a new language or enhancing
an existing one still requires a significant amount of effort to gather the necessary resources. The data-
intensive nature of neural machine translation (NMT) approaches necessitates parallel and monolingual
corpora in various domains, which are always in high demand. Developing MT systems also require
dependable evaluation benchmarks and test sets. Furthermore, MT systems rely on numerous natural
language processing (NLP) tools to pre-process human-generated texts into the required input format
and post-process MT output into the appropriate textual forms in the target language. These tools inclu-
de word tokenizers/de-tokenizers, word segmenters, and morphological analyzers, among others. The
quality of these tools significantly impacts the translation output, yet there is a limited discourse on their
methods, their role in training different MT systems, and their support coverage in different languages.

LoResMT is a platform that aims to facilitate discussions among researchers who are working on machi-
ne translation (MT) systems and methods for low-resource, under-represented, ethnic, and endangered
languages. The goal of the platform is to address the challenges associated with the development of MT
systems for languages that have limited resources or are at risk of being lost.

This year, LoResMT received research papers covering a wide range of languages spoken around the
world. In addition to research papers, the workshop also accepts relevant findings papers at EACL 2023
to be presented at LoResMT. Aside from the research papers, LoResMT also featured two invited talks.
These talks allowed participants to hear from experts in the field of MT and learn about the latest deve-
lopments and challenges in MT for low-resource languages.

The program committee members play a crucial role in ensuring the success of the workshop. They
review the submissions and provide constructive feedback to help the authors refine their papers and
ensure they meet the set standards. Without their dedication, expertise, and hard work, the workshop
would not be possible. The authors who submitted their work to LoResMT are also an integral part of
the workshop’s success. Their research and contributions offer new insights into the field of machine
translation for low-resource languages, and their participation enriches the discussions and fosters col-
laboration. We are sincerely grateful to both the program committee members and the authors for their
invaluable contributions and for making LoResMT a success.

Kat, Valentin, Nathaniel, Atul, Chao
(On behalf of the LoResMT chairs)
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Abstract

In many humanitarian scenarios, translation
into severely low resource languages often does
not require a universal translation engine, but a
dedicated text-specific translation engine. For
example, healthcare records, hygienic proce-
dures, government communication, emergency
procedures and religious texts are all limited
texts. While generic translation engines for
all languages do not exist, translation of multi-
lingually known limited texts into new, endan-
gered languages may be possible and reduce hu-
man translation effort. We attempt to leverage
translation resources from many rich resource
languages to efficiently produce best possible
translation quality for a well known text, which
is available in multiple languages, in a new,
severely low resource language. We examine
two approaches: 1.) best selection of seed
sentences to jump start translations in a new
language in view of best generalization to the
remainder of a larger targeted text(s), and 2.)
we adapt large general multilingual translation
engines from many other languages to focus on
a specific text in a new, unknown language. We
find that adapting large pretrained multilingual
models to the domain/text first and then to the
severely low resource language works best. If
we also select a best set of seed sentences, we
can improve average chrF performance on new
test languages from a baseline of 21.9 to 50.7,
while reducing the number of seed sentences to
only ∼1,000 in the new, unknown language.

1 Introduction

A language dies when no one speaks it. An en-
dangered language is a language that is spoken by
enough people that it could survive under favorable
conditions but few or no children are learning it
(Crystal, 2002; Kincade, 1991; Wurm, 2001). More
than half of the 7,139 languages will die in the next
80 years (Austin and Sallabank, 2011; Eberhard
et al., 2021). Endangered languages may survive
and thrive if they gain prestige, power and visibility

Figure 1: Translation workflow for endangered languages.

(Crystal, 2002). Frisian, for example, struggles to
gain prestige in Germany, and is endangered even
though it has a large number of speakers. Hebrew,
conversely, has been revived as a spoken language
because it is critical to the development and identity
of the Jewish community. We empower endangered
language communities by exercising a language.
This can be achieved by translating important texts
to their language so that these communities can
gain information, knowledge, power and visibility
in their own language. One life-saving example of
this knowledge-transfer is translating water, sanita-
tion and hygiene (WASH) text into their languages,
a process that has long started before the COVID-
19 pandemic but has gained much attention since
then (Thampi et al., 2020; Reddy et al., 2017).

The problem in these scenarios, therefore, is not
to build a high accuracy translation engine for any
texts using huge data corpora, but rather to build a
good translation for a known text (for which trans-
lations in many other languages exist), but in a new
language with only extremely little seed data (a few
hundred sentences). We assume there is little to no
endangered language data and few human transla-
tors. To produce high quality translation, existing
methods rely on a seed corpus produced by human
translators. Previous work has shown progress in
using extremely small seed corpora with as small
as ∼1,000 lines of data and has found that random
sampling performs better than choosing a fixed por-
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tion of the text to build a seed corpus (Zhou and
Waibel, 2021b; Lin et al., 2020; Qi et al., 2018).
But researchers have yet to 1.) examine various Ac-
tive Learning (AL) methods to improve accuracy
and effectiveness in building better optimized seed
corpora so as to minimize the initial human effort
and 2.) completely solve the problem of using large
multilingual models for representational learning
so that we can train (or adapt) them to a new lan-
guage using an extremely small seed corpus.

To solve these two problems, we propose ex-
plainable and robust active learning methods that
perform as well as or better than random sampling;
we transfer methods learned on data of known lan-
guages to the new, endangered language. We also
examine different training schedules and we find a
strategic way of growing large multilingual mod-
els in a multilingual and multi-stage fashion with
extremely small endangered seed corpora.

In our translation workflow, human translators
are informed by machine sentence ranking to pro-
duce a seed corpus. Machine systems then use this
seed corpus to produce a full translation draft. Hu-
man translators post-edit the draft, and feed new
data to machines each time they finish post-editing
a portion of the text. In each iteration, machines
produce better and better drafts with new data, and
human translators find it easier and faster to post-
edit. Together they complete the translation of the
whole text into an endangered language (Figure 1).

To produce sentence ranking, traditional active
learning approaches assume abundant data, but
we have little to no data in the target endangered
language. We question this assumption and build
seed corpora by ranking all sentences in existing
translations from other languages to generalize to a
new, endangered language. This ranking is target-
independent as we do not require any endangered
language data. To produce such a ranking, we ex-
plore active learning methods (Table 1). For each
reference language, we build unigram, n-gram and
entropy models (Figure 2). To prevent any lan-
guage from overpowering the ranking, we aggre-
gate sentence scores across multiple languages and
rank the final aggregation. To select the pool of
languages for aggregation, we build methods on
different voting mechanisms.

To curate a seed corpus in the new, endan-
gered language where we have no data initially,
we pass the sentence ranking learned from known
languages to human translators. Human translators

Figure 2: Visualizing different active learning methods. We
score and rank each sentence in a text corpus.

take this ranking, and translate the top few (∼1,000
or less) sentences, curating the seed corpus.

To train on such small seed corpus, we find pre-
training to be key. For the pretrained model, we
either create our own pretrained model by training
on known languages, or use an existing pretrained
model. We explore both paths in our work, with
and without activating the knowledge in existing
large pretrained models. We observe an average
increase of 28.8 in chrF score over the baselines.

Our contribution is three-fold: 1. We develop 14
active learning methods on known languages and
transfer ranking to the new, endangered language;
2. We activate the knowledge of large multilingual
models by proposing multilingual and multi-stage
adaptations through 24 different training schedules;
we find that adapting pretrained models to the do-
main and then to the endangered language works
best; 3. We aggregate scores from 115 languages to
provide a universal ranking and increase robustness
by relaxed memoization method.

2 Related Works

2.1 Translation into Endangered Languages

Recent advances have succeeded in building mul-
tilingual methods to translate from multiple rich
resource languages to a new, endangered language
(Johnson et al., 2017; Ha et al., 2016; Firat et al.,
2016; Zhou et al., 2018a,b). Many have demon-
strated good transfer learning to low resource lan-
guages (Zhou and Waibel, 2021b; Lin et al., 2020;
Qi et al., 2018), while some work on zero-shot
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learning (Neubig and Hu, 2018; Pham et al., 2019;
Philip et al., 2020; Karakanta et al., 2018; Zhang
et al., 2020; Chen et al., 2022, 2021). However,
zero-shot learning is volatile and unstable, so we
choose to use extremely small data instead.

2.2 Active Learning in Machine Translation

Active learning has a long history in machine trans-
lation (Settles, 2012; Eck et al., 2005; González-
Rubio et al., 2012). Random sampling is often
surprisingly powerful (Kendall and Smith, 1938;
Knuth, 1991; Sennrich et al., 2016a). There is ex-
tensive research to beat random sampling by meth-
ods based on entropy (Koneru et al., 2022), cover-
age and uncertainty (Peris and Casacuberta, 2018;
Zhao et al., 2020), clustering (Haffari et al., 2009;
Gangadharaiah et al., 2009), consensus (Haffari
and Sarkar, 2009), syntactic parsing (Miura et al.,
2016), density and diversity (Koneru et al., 2022;
Ambati et al., 2011), and learning to learn active
learning strategies (Liu et al., 2018).

2.3 Large Pretrained Multilingual Model

The state-of-the-art multilingual machine transla-
tion systems translate from many source languages
to many target languages (Johnson et al., 2017; Ha
et al., 2016; Zoph and Knight, 2016). The bottle-
neck in building such systems is in computation
limits, as the training data increases quadratically
with the number of languages. Some companies
have built and released large pretrained multilin-
gual models (Liu et al., 2020; Tang et al., 2020).
M2M100 is trained in 100 languages (Fan et al.,
2021; Schwenk et al., 2021; El-Kishky et al., 2020)
and covers a few endangered languages.

3 Methods

We translate a fixed text that is available in many
languages to a new, endangered language. In our
translation workflow, we first develop active learn-
ing methods to transfer sentence ranking from
known languages to a new, endangered language.
We then pass this ranking to human translators for
them to translate the top few (∼1,000 or less) sen-
tences into the endangered language, curating the
seed corpus. We finally train on the seed corpus,
either from scratch or from a pretrained model.

We build training schedules on an extremely
small seed corpus, we also build active learning
strategies of creating and transferring the sentence
ranking to the new, endangered language. We pro-

Figure 3: 24 different training schedules.
[N]: multilingual model on N neighboring languages
[N+1]2: multi-target model with endangered language
[N+1]: single-target model with endangered language
[1]2: autoencoder in endangered language.

pose and compare 24 training schedules and 14 ac-
tive learning methods for machine translation into
a new, endangered language. To compare all active
learning algorithms fairly, we use the same trans-
lation system unit as a control for all experiments,
varying only the seed corpora built by different
methods. We select the same number of words in
all seed corpora as most translators are paid by the
number of words (Bloodgood and Callison-Burch,
2010; Eck, 2008; Tomanek and Hahn, 2009).

3.1 Training Schedules

In our setup we have the new, endangered language
as the target language, and we have a few neigh-
boring languages as the source languages that are
either in the same linguistic language family or ge-
ographically close to facilitate linguistic transfer.
In effect, we have N source languages with full
translations of the text and a new and endangered
language that has an extremely small seed corpus.

We use the state-of-the-art multilingual trans-
former prepending both source and target language
labels to each source sentence (Johnson et al., 2017;
Ha et al., 2016). For precise translation for all
named entities, we use an existing method of order-
preserving named entity translation by masking
each named entity with ordered __NEs using a par-
allel multilingual lexicon table in 125 languages
(Zhou and Waibel, 2021b; Wu et al., 2018).

Using this multilingual transformer architecture
as a base, we build 5 training units on the small seed
corpus of the new, endangered language and the
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existing translations of known languages. We let
[N]2 denote the training of all source languages in
a N-by-N multilingual transformer. We let [N+1]2

denote the training of all languages including the
endangered language in a (N+1)-by-(N+1) multilin-
gual transformer. We let [N+1] denote the (N+1)-
by-1 multilingual transformer that focuses on trans-
lating into the endangered language. We let [1]2 be
the autoencoder on the endangered language.

Our translation system is built on these 5 train-
ing units: an optional [M2M100] (Fan et al., 2021),
[N]2, [N+1]2, [N+1] and [1]2. These 5 stages in-
crease in specificity while they decrease in data
size. Building on them, we show 24 different train-
ing schedules, among which 8 are pretrained with
in-domain data and 16 are pretrained with out-of-
domain large multilingual models (Figure 3). We
only consider models with pretraining and there-
fore do not exhaust all 32 training schedules.

3.2 Active Learning Strategies

We have two baselines: the linguistic baseline of
the excerpt-based approach, Luke, and the statis-
tical baseline of random sampling, Rand. The
excerpt-based approach, which selects a portion
of the text with consecutive sentences, preserves
the text’s formality, cohesion and context but lacks
global coverage. Random sampling increases
global coverage but sacrifices local coherence.

3.2.1 N-gram Approach
Many researchers count the number of unknown
n-grams as score functions to solve the knapsack
problem, covering all vocabulary (Eck, 2008; Eck
et al., 2005; Haffari et al., 2009). Instead of solv-
ing the knapsack problem, we choose sentences
to partially cover the vocabulary and build an ex-
tremely small seed corpus. To cover the vocabulary
strategically, we sum the frequency counts of the
unknown n-grams to increase density. These fre-
quency counts promote frequent words for learning
to be meaningful in the extremely low resource sce-
nario. In Table 1 we denote frequency function by
F (·), denote sequence length by L and denote the
highest n-gram order by J .

3.2.2 Entropy Approach
Many have worked on entropy methods in mod-
elling density and diversity (Ambati et al., 2011;
Eck, 2008; Zeng et al., 2019; Haffari et al., 2009).
We use traditional Language Models (LMs) instead
of neural language models, as our data size is ex-

Name Description Score Function

S Frequency sum of
unknown words

L∑
i=0

F (wu
i )

SN Normalized S by L 1
L

L∑
i=0

F (wu
i )

SNGJ Normalized Fre-
quency sum of
n-grams up to J

1
L

J∑
j=1

L∑
i=0

F (gui,j)

AGGM
J Aggregation of n-

gram scores up to J
with set M

∑
M

1
L

J∑
j=1

L∑
i=0

F (gui,j)

ENTK Entropy methods,
K is KenLM or not

HK
c (s)− Il(s) ·HK

r (s)−
Ir(s) ·HK

l (s)

Table 1: Summary of score functions.

tremely small. For implementations of LMs, we
use KenLM and NLTK’s LM because of their sim-
plicity and speed, especially KenLM (Heafield,
2011; Bird and Loper, 2004). In Table 1 we let
H(·) be the cross entropy function, with the choice
of KenLM (K) or NLTK (N). To separate training
from testing in using language models, we divide
the data into three portions, the sentences that we
have chosen (c), and the remaining that are split
equally into two parts, left (l) and right (r). Let Il(·)
and Ir(·) be indicator functions to show whether a
sentence belongs to the left or the right. We aim to
maximize the diversity Hc and optimize density by
adjusting Hl and Hr (Koneru et al., 2022).

3.2.3 Aggregation Approach

To prevent any language from overpowering the
ranking, we aggregate sentence scores across dif-
ferent languages (Figure 2). We investigate the use
of a customized set of languages for each endan-
gered language, versus the use of a universal set
of languages representing world languages. The
former requires some understanding of the neigh-
boring languages, the latter requires careful choices
of the representative set (Blasi et al., 2022).

We have 4 aggregation methods: one-vote-per-
language (L), where we aggregate over all lan-
guages, one-vote-per-family (F), where we aggre-
gate over languages representing the top few fami-
lies, one-vote-per-person (P), where we aggregate
over the top few most spoken languages, and one-
vote-per-neighbor (N), where we aggregate over a
customized set of neighboring languages. For the
world language distribution, L covers all, F sam-
ples across it, P covers the head, while N creates a
niche area around the endangered language.
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Target L Family Source Languages

Frisian 0 Germanic English*, German, Dutch, Norwegian, Afrikaans, Swedish, French, Italian, Portuguese, Romanian
Hmong 0 Hmong–MienKomrem*, Vietnamese, Thai, Chinese, Myanmar, Haka, Tangsa, Zokam, Siyin, Falam
Pokomchi 0 Mayan Chuj*, Cakchiquel, Mam, Kanjobal, Cuzco, Ayacucho, Bolivian, Huallaga, Aymara, Guajajara
Turkmen 1 Turkic Kyrgyz*, Tuvan, Uzbek, Karakalpak, Kazakh, Azerbaijani, Japanese, Korean, Finnish, Hungarian
Sesotho 1 Niger–Congo Yoruba*, Gikuyu, Xhosa, Kuanyama, Kpelle, Fon, Bulu, Swati, Venda, Lenje
Welsh 1 Celtic English*, German, Danish, Dutch, Norwegian, Swedish, French, Italian, Portuguese, Romanian
Xhosa 2 Nguni Swati*, Gikuyu, Sesotho, Yoruba, Lenje, Gbaya, Afrikaans, Wolaitta, Kuanyama, Bulu
Indonesian3 Austronesian Javanese*, Malagsy, Tagalog, Ilokano, Cebuano, Fijian, Sunda, Zokam, Wa, Maori
Hungarian4 Uralic Finnish*, French, English, German, Latin, Romanian, Swedish, Spanish, Italian, Portuguese
Spanish 5 Romance English*, German, Danish, Dutch, Norwegian, Swedish, French, Italian, Portuguese, Romanian

Table 2: Summary of different target languages used (Campbell and Belew, 2018; Collin, 2010). L, resource level, is from a
scale of 0 to 5 (Joshi et al., 2020). Reference languages used for active learning methods except aggregate methods are starred.

Aggregation decreases variance and increases
accuracy. Typical aggregation involve taking the
sum or the average. Since they have the same effect
on sentence ranking, we take the sum for simplicity.

To save space and time, we devise relaxed mem-
oization. At every step, we compute sentence score
for each language, producing a score matrix of lan-
guages versus sentences. We update entries that are
affected by the selected sentence, cache and reuse
other entries. Further parallelism results in >360
times speedup, from ∼6.5 months to ∼13 hours.

3.3 Evaluation Method and Metrics

Existing multilingual systems produce multiple out-
puts from all source languages, rendering compar-
ison messy. To simplify, we combine translations
from all source languages into one by an existing
centeredness method (Zhou and Waibel, 2021b).
Using this method, we score each translated sen-
tence by the sum of its similarity scores to all others.
We rank these scores and take the highest score as
our combined score. The expected value of the
combined score is higher than that of each source.

To compare effectively, we control all test sets
to be the same. Since different active learning
strategies produce different seed corpora to be used
as training and validation sets, the training and
validation sets vary. Their complement, the test sets
therefore also vary, rendering comparison difficult.
To build the same test set, we devise an intersection
method. We take the whole text and carve out all
seed corpora, that is, all training and validation sets
from all experiments. The remaining is the final
test set, which is the intersection of all test sets.

Our metrics are: chrF, characTER, BLEU,
COMET score, and BERTscore (Popović, 2015;
Wang et al., 2016; Post, 2018; Zhang et al., 2019;
Stewart et al., 2020; Rei et al., 2021). We priori-
tize chrF over BLEU for better accuracy, fluency

and expressive power in morphologically-rich lan-
guages (Papineni et al., 2002).

4 Data

Existing research classifies world languages into
Resource 0 to 5, with 0 having the lowest resource
and 5 having the highest (Joshi et al., 2020). We
choose 10 target languages ranging from Resource
0 to 5 (Table 2). For each target language we
choose ten neighboring languages as source lan-
guages (Table 2). We prioritize Resource 0 to 2
languages as real endangered languages, and we
use Resource 3 to 5 languages as hypothetical ones.

To translate into these languages, our text is the
Bible in 125 languages (Mayer and Cysouw, 2014).
Each endangered seed corpus contains ∼3% of
the text, while all other languages have full text.
Our goal is to translate the rest of the text into
the endangered language. In pretraining, we use a
80/10/10 split for training, validation and testing,
respectively. In training, we use approximately a
3.0/0.2/96.8 split for training, validation and test-
ing, respectively. Our training data for each exper-
iment is ∼1,000 lines. We use BPE with size of
∼3,000 for the endangered language and ∼9,000
for the combined (Sennrich et al., 2016b).

Training on ∼100 million parameters with
Geforce RTX 2080 Ti and RTX 3090, we use a
6-layer encoder and a 6-layer decoder with 512
hidden states, 8 attention heads, 512 word vector
size, 2,048 hidden units, 6,000 batch size, 0.1 la-
bel smoothing, 2.5 learning learning rate and 1.0
finetuning learning rate, 0.1 dropout and attention
dropout, a patience of 5 after 190,000 steps in [N]2

with an update interval of 1000, a patience of 5
for [N+1]2 with an update interval of 200, and a
patience of 25 for [N+1] and [1]2 with an update
interval of 50, “adam” optimizer and “noam” decay
method (Klein et al., 2017; Papineni et al., 2002).
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↑chrF Frisian Hmong Pokomchi Turkmen Sesotho Welsh Xhosa Indonesian Hungarian Spanish Average

Baselines:
+ Bilingual 23.1 25.0 28.7 18.9 25.2 22.2 21.4 27.2 20.1 22.1 23.4
+ Multilingual 28.0 28.1 31.9 22.6 28.3 26.5 23.9 29.7 22.3 26.8 26.8

Our Models:
+ Schedule B 50.5 43.9 42.8 38.9 43.2 46.0 34.9 47.2 37.4 50.1 43.5
+ Active (AL) 53.6 45.7 44.4 40.3 44.9 47.7 36.8 49.1 39.0 52.7 45.4

Table 3: Results for translation into 10 languages that are new and severely low resourced to the system, independent of M2M100.

↑chrF Frisian Welsh Hungarian Spanish Average

Baselines:
+ Bilingual 23.1 22.2 20.1 22.1 21.9
+ Multilingual 28.0 26.5 22.3 26.8 25.9
+ M2M100 26.0 9.9 38.8 47.5 24.9

Our Models:
+ Schedule I 53.5 49.5 42.2 53.2 49.6
+ Active (AL) 54.9 49.8 43.2 54.9 50.7

Table 4: Results for translation into 4 languages that are new
and severely low resourced to the system, activating knowl-
edge in M2M100 and leveraging active learning.

5 Results

For simplicity, we use the centeredness method
to combine translations from all source languages
and have one score per metric. To compare across
different methods, all experiments have the same
test set (3,461 lines), the intersection of all test sets.

Our models improve over the baselines: With
Schedule I, we observe an average improvement
of 24.7 in chrF score over the M2M100 baseline
(Table 4). By active learning with 4-gram model,
we observe an increase of 28.8 in chrF score over
the bilingual baseline.

Our strategic training schedule improves the
translation further by activating the knowledge
of M2M100 : With Schedule B and the 4-gram
model, we observe an average improvement of 18.6
in chrF score over the multilingual baseline (Ta-
ble 3). For Schedule I, the increase is 24.8 over
the multilingual baseline (Table 4). Indeed, the
increase with the activation of M2M100 is greater.

5.1 Training Schedules

We compare 24 training schedules using a ran-
domly sampled seed corpus (∼1,000 lines) to trans-
late into Frisian (Table 5 and 6).

Pretraining with [N]2 works well without
M2M100: We compare 8 training schedules with-
out M2M100 (Table 6). We find that Schedule B
(pretraining on [N]2 and training on [N+1]2 and
[N+1]) and Schedule F (pretraining on [N]2 and

training on [N+1]) work well without M2M100.
Schedule B gives a chrF score of 51.1 and Sched-
ule F gives a chrF score of 51.2.

M2M100 is useful when a target language and
its corresponding source languages are in the
M2M100 list and the test set does not overlap with
the M2M100 training set. However, we strongly ad-
vise discretion, as training data for large pretrained
models is usually not clearly specified and most
are not trained with endangered languages in mind.
M2M100 training data may very likely contain the
Bible data, so it only serves as a comparison and
provides an alternative view to show that our model
is robust with large models. When M2M100 does
not apply, our models pretrained with [N]2 suffice.

Full stage training increases robustness: For
models without M2M100 we can use Schedule
B (Table 7) or F (Table 10). Though the results
for Frisian are similar, B is much better than F
for morphologically rich languages like Pokomchi,
Turkmen and Xhosa. Indeed, B with full training is
more robust than F, which skips [N+1]2. Similarly,
for models with M2M100, we can use Schedule I
(Table 8) or L (Table 9). Again, Schedule I with
full training stages perform better than Schedule L.

Applying M2M100 alone gives poor results:
Schedule X produces poor results (Table 5). Prob-
lems include catastrophic forgetting, bias towards
rich resource languages, and unclean data. Exist-
ing research shows some released models mislabel
their English data as Welsh (Radford et al.).

Mixed models with M2M100 perform well: A
few training schedules beat those pretrained with
[N]2 (Table 6). Schedule I (training on 5 stages)
gives a chrF score of 52.9, L (training 3 stages
skipping [N+1] and [1]2) gives 52.8, M (training
4 stages skipping [N+1]2) gives 52.7, J (training 4
stages skipping [1]2) gives 51.8, and N (training 3
stages skipping [N+1]2 and [1]2) gives 51.9. All
are higher than those without M2M100.

Adapting M2M100 to the domain and then to
the endangered language works best: Schedule I
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Network I J K L M N O P Q R S T U V W X

[M2M100]⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
[N]2 ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
[N+1]2 ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
[N+1] ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
[1]2 ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↑chrF 52.9 51.8 49.5 52.8 52.7 51.9 27.4 16.9 49.6 48.5 39.6 48.7 48.5 45.7 27.8 26.3
↓cTER 0.492 0.508 0.482 0.488 0.493 0.502 0.654 0.800 0.530 0.546 0.553 0.539 0.538 0.579 0.650 0.667
↑BLEU 28.8 27.9 24.2 28.9 28.8 28.2 3.0 0.6 24.8 24.2 13.9 24.3 24.5 22.0 3.4 3.3
↑COMET -0.56 -0.59 -0.63 -0.53 -0.56 -0.57 -1.28 -1.75 -0.67 -0.70 -0.89 -0.68 -0.69 -0.80 -1.21 -1.30
↑BERTS 0.891 0.889 0.886 0.892 0.891 0.890 0.813 0.775 0.883 0.881 0.861 0.882 0.880 0.873 0.823 0.819

Table 5: Comparing 16 training schedules with M2M100. BERTS is BERTScore, cTER is characTER and LRatio is length ratio.

Network A B C D E F G H

[N]2 ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
[N+1]2 ⇓ ⇓ ⇓ ⇓
[N+1] ⇓ ⇓ ⇓ ⇓
[1] 2 ⇓ ⇓ ⇓ ⇓
↑chrF 38.7 51.1 35.6 50.8 43.4 51.2 25.6 24.1
↓cTER 0.555 0.517 0.572 0.515 0.523 0.507 0.650 0.682
↑BLEU 12.5 24.9 9.2 24.5 17.5 26.2 2.5 2.1
↑COMET-0.87 -0.66 -0.91 -0.65 -0.81 -0.63 -0.99 -1.02
↑BERTS 0.850 0.882 0.839 0.884 0.865 0.885 0.801 0.794

Table 6: Comparing 8 training schedules without M2M100.
[N]2: multilingual model on N neighboring languages
[N+1]2 : multi-target model with endangered language
[N+1]: single-target model with endangered language
[1]2: autoencoder in endangered language.

(training on 5 stages) with score 52.9 performs best.
These models first adapt M2M100 to the domain
by doing another pretraining on N2. After adapting
M2M100 to the domain, we adapt the model to the
endangered language by training on [N+1]2. The
final two stages [N+1] and [1]2 are optional.

5.2 Active Learning Methods

Using Schedule B without M2M100, and L with
M2M100, we compare 14 active learning methods
across languages (Table 7 and 8).

Normalizing by sequence length improves
density: Without normalization, the model chooses
longer sentences with many rare words. Normaliza-
tion improves density. For Sesotho, the chrF score
is 39.0 without normalization and 41.6 with it.

Marginal benefit of increasing n-gram order
wanes: Existing research shows bigrams suffice
(Eck, 2008). As the n-gram order increases, the
data gets sparser and the marginal benefit subsides.
Hmong has the best score (46.1) using bigrams.

Tipping points vary with language: The opti-
mal highest n-gram order may differ from language
to language. 4-grams work best for Frisian while

bigrams work best for Hmong. Hmong is an isolat-
ing language while Frisian is a fusional language.
A possible explanation is that higher n-grams may
have more impact on fusional languages.

Entropy and n-gram methods both beat base-
lines and higher n-gram models perform best:
KenLM is much faster and performs better than
NLTK. The entropy method using KenLM beats
both baselines. Frisian has a chrF score of 52.7 with
the entropy method using KenLM. This is much
higher than the baselines: Luke (47.5) and Rand
(50.5). The 4-gram model (53.6) is higher because
building LMs from a few lines of data may not be
accurate. Simpler n-gram models work better than
more evolved entropy models with small data.

Aggregation over all languages serves as a
universal ranking: The first 10 active learning
methods are based on learning from one reference
language and generalizing to the endangered lan-
guage, while the last 4 focus on aggregation over
multiple languages (Table 7 and 8). For Welsh, ag-
gregation over multiple languages (48.2 with most
spoken languages) performs better than those that
rely on one reference language; but for other lan-
guages aggregation performs worse. Aggregation
over all languages performs better than other ag-
gregation methods for all languages except Welsh.
This hinges on the reference language. For Frisian,
choosing English (a Germanic language) as a ref-
erence language, performs better than aggregation.
For Welsh (a Celtic language), choosing a reference
language that is not as close, performs worse. But
we often do not have such information for endan-
gered languages. In such cases, universal ranking
by aggregating over all languages is useful.

Our active learning methods mimic curricu-
lum learning: Our models pick short and simple
sentences first, emulating curriculum learning and
helping human translators (Bengio et al., 2009;
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↑chrF Frisian Hmong Pokomchi Turkmen Sesotho Welsh Xhosa Indonesian Hungarian Spanish Average

Baselines:
+ Luke 47.5 41.6 39.4 34.9 41.2 41.2 32.0 43.3 34.4 46.7 40.2
+ Rand 50.5 43.9 42.8 38.9 43.2 46.0 34.9 47.2 37.4 50.1 43.5

Our Models:
+ S 49.2 38.5 40.4 35.2 39.0 41.9 32.5 43.5 35.1 48.0 40.3
+ SN 50.9 43.9 43.2 38.3 41.6 43.2 36.1 46.9 36.7 50.3 43.1
+ SNG2 53.2 46.1 43.3 39.5 44.4 45.8 36.6 48.4 37.8 51.8 44.7
+ SNG3 52.7 46.0 44.5 39.6 45.5 47.5 36.8 48.9 39.2 52.3 45.3
+ SNG4 53.6 45.7 44.4 40.3 44.9 47.7 36.8 49.1 39.0 52.7 45.4
+ SNG5 53.0 45.6 43.9 39.7 45.4 46.7 36.8 49.1 38.4 52.5 45.1
+ ENTN 50.9 43.7 38.1 37.2 42.5 44.5 34.7 46.7 36.0 49.9 42.4
+ ENTK 52.7 45.7 43.5 40.2 44.6 45.2 36.4 49.0 39.1 51.8 44.8
+ AGGL

5 47.1 41.5 39.8 34.0 39.9 42.1 31.4 43.5 33.7 45.2 39.8
+ AGGF

5 45.0 38.4 38.5 32.4 38.8 47.1 30.4 41.2 33.3 44.2 38.9
+ AGGP

5 45.5 38.8 38.0 32.0 38.8 48.2 30.5 41.0 33.2 44.0 39.0
+ AGGN

5 45.4 39.1 38.3 32.4 38.8 48.0 30.7 41.2 33.2 44.3 39.1

Table 7: 140 experiments comparing 14 active learning methods translating into 10 different languages with Schedule B.

↑chrF Frisian Welsh Hungarian Spanish Average

Baselines:
+ Luke 49.3 44.3 38.8 48.4 45.2
+ Rand 53.5 49.5 42.2 53.2 49.6

Our Models:
+ S 51.9 45.9 40.4 51.1 47.3
+ SN 54.8 47.4 42.3 53.2 49.4
+ SNG2 54.5 49.5 43.5 54.2 50.4
+ SNG3 54.4 50.4 43.9 54.5 50.8
+ SNG4 54.9 49.8 43.2 54.9 50.7
+ SNG5 54.5 50.1 43.5 54.1 50.6
+ ENTN 52.7 47.2 40.9 52.9 48.4
+ ENTK 54.6 49.4 43.5 53.8 50.3
+ AGGA

5 49.4 44.2 37.3 48.2 44.8
+ AGGS

5 46.5 49.8 36.4 46.4 44.8
+ AGGM

5 48.6 50.4 36.5 46.9 45.6
+ AGGT

5 48.8 50.8 36.4 46.9 45.7

Table 8: 56 experiments activating the knowledge in M2M100
with Schedule I.

Graves et al., 2017; Jiang et al., 2015).
All active learning methods cover different

genres: Our methods pick a mix of sentences from
different genres, sentence lengths and complexity
levels. Moreover, our methods pick narrative sen-
tences first, which is helpful for human translators.

Our model captures some language subtleties:
Apart from the metrics, we showed our translation
to native speakers (Table 12). We translate "He
sees that it is good" to "lug ca rua huv nwg lu sab"
("He puts it in the liver") in Hmong, which uses
liver to express joy. This increases lexical choice.

Our models and mixed models perform better
than M2M100 alone: M2M100 often produces ex-
tremely short sentences or repetition. Our models
do not have those issues.

6 Future Work

We propose 24 training schedules for translation
into endangered languages. We also propose and
compare 14 active learning methods to build seed
corpus without any endangered language data. Our
model is robust with large multilingual models.

While the industry trend is to move towards big-
ger models with bigger data, our minimalist ap-
proach not only uses fewer languages, but we also
aggregate over fewer languages. This saves compu-
tation power and resources, and therefore time and
money, while improving translation performance.

However, we still face challenges with the lack
of local coherence and context. The excerpt-based
approach enjoys advantage with formality, cohe-
sion and contextual relevance. Active learning
methods, on the contrary, do not have consec-
utive sentences and therefore lose local coher-
ence and pose challenges to human translators
(Muntés Mulero et al., 2012; Denkowski, 2015;
Sperber et al., 2017; Maruf et al., 2019; Webster
et al., 2020; Zhou and Waibel, 2021a; Salunkhe
et al., 2016). This is an active research area.

Evaluation is still a challenge. It is difficult to
find native speakers and establish long-term col-
laborations. There is also much variety among
endangered languages. Some are more accessible
than others and these might provide earlier, realistic
evaluation of our method. Empowering endangered
languages is not just a technology problem. It re-
quires much efforts in communication with local
communities. Through our technologies, we would
like to work with local communities to revive en-
dangered languages and bring them to flourish.
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A Appendices

For simplicity, in Table 2 Pokomchi is Eastern
Pokomchi, Hmong is Hmong Hoa, Kanjobal is
Eastern Kanjobal, Mam is Northern Mam, Cuzco is
Cuzco Quechua, Ayacucho is Ayacucho Quechua,
Bolivian is South Bolivian Quechua, and Hual-
laga is Huallaga Quechua, Chinese is Traditional
Chinese, Haka is Haka Chin, Siyin is Siyin Chin,
Falam is Falam Chin, Kpelle is Kpelle Guinea.

In Table 3, our model with training scheduling
uses Schedule B, our model with active learning
uses SNG4. In Table 4, our model with training
scheduling uses Schedule I, our model with active
learning uses SNG4.

In the entropy score function in Table 1, we use
highest n-gram order of 2 for NLTK’s LM, we use
highest n-gram order of 2 for the two halves (HK

l

and HK
r ) and order of 5 for the sampled data (HK

c )
for KenLM. Since KenLM needs at least a few
words to start with, we use MLE as a warm start to
select up to 5 sentences before launching KenLM.

For finetuning from a M2M100 Model, training
on ∼418 million parameters with Geforce RTX
3090, we use a 12-layer encoder and a 12-layer de-
coder with 1024 hidden states, 16 attention heads,
1024 word vector size, 4,096 hidden units, 0.2 la-
bel smoothing, 0.0002 training learning rate and
finetuning 0.00005 learning rate, 0.1 dropout and
attention dropout, “adam” optimizer and “noam”
decay method (Fan et al., 2021; Schwenk et al.,
2021; El-Kishky et al., 2020).

↑chrF Frisian Welsh Hungarian Spanish Average

Baselines:
Luke 49.1 41.7 38.3 48.7 44.5
Rand 52.8 46.8 41.9 52.9 48.6
Our Models:
S 51.6 44.8 40.7 52.0 47.3
SN 53.2 45.8 42.2 52.9 48.5
SNG2 54.2 47.6 42.5 53.8 49.5
SNG3 53.7 47.9 43.3 54.5 49.9
SNG4 54.3 48.5 43.2 54.4 50.1
SNG5 53.9 48.6 43.2 54.5 50.1
ENTN 52.1 44.8 40.7 52.4 47.5
ENTK 53.7 46.7 43.1 53.7 49.3
AGGA

5 48.4 43.2 37.1 48.4 44.3
AGGS

5 47.3 48.1 36.1 47.1 44.7
AGGM

5 46.9 47.8 36.3 47.2 44.6
AGGT

5 47.1 48.8 36.1 46.8 44.7

Table 9: 56 experiments integrated with M2M100 on Schedule
L.
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↑chrF Frisian Hmong Pokomchi Turkmen Sesotho Welsh Xhosa Indonesian Hungarian Spanish Average

Baselines:
Luke 47.5 38.2 37.4 33.8 38.5 38.5 29.2 41.7 31.5 46.3 38.3
Rand 51.3 38.9 41.5 36.4 39.0 43.1 32.1 45.3 34.8 50.2 41.3

Our Models:
S 48.7 35.8 39.8 27.6 36.1 38.1 29.4 41.5 32.5 47.5 37.7
SN 50.9 38.4 41.5 36.9 38.7 41.1 32.5 44.8 33.1 49.2 40.7
SNG2 52.9 40.9 42.4 37.3 41.0 44.3 33.4 45.8 35.8 51.2 42.5
SNG3 53.1 41.8 43.2 38.4 41.9 45.6 34.0 47.0 36.4 52.2 43.4
SNG4 53.6 41.8 42.2 38.1 41.7 44.5 33.5 47.5 36.7 52.5 43.2
SNG5 53.0 41.5 42.0 38.1 42.3 45.1 33.5 47.3 36.4 52.2 43.1
ENTN 50.7 39.5 34.0 34.8 39.4 42.5 32.4 44.4 33.9 48.6 40.0
ENTK 52.5 42.4 42.3 38.5 41.6 43.4 33.6 47.1 37.1 51.7 43.0
AGGL

5 47.4 38.8 38.9 33.2 37.3 40.1 28.9 41.6 31.7 45.7 38.4
AGGF

5 44.6 36.0 37.1 30.9 35.8 44.3 27.8 39.2 30.7 43.9 37.0
AGGP

5 45.2 36.6 36.9 30.8 35.6 44.9 27.9 39.0 30.5 43.8 37.1
AGGN

5 45.4 36.8 37.1 31.3 35.7 46.0 28.0 39.2 30.2 43.8 37.4

Table 10: 140 experiments comparing 14 active learning methods translating into 10 different languages on Schedule F.

Seed Corpus
Size

Frisian Hmong Pokomchi Turkmen Sesotho Welsh Xhosa Indonesian Hungarian Spanish Average

Word count 25695 31249 36763 17354 25642 25786 15017 22318 18619 22831 24127

Line count for each experiment
Baselines:
Luke 1151 1151 1151 1151 1151 1151 1151 1151 1151 1151 1151
Rand 1022 1001 1101 1045 976 1117 988 1065 1066 1023 1040
Our Models:
S 692 654 832 689 657 771 598 634 644 682 685
SN 1522 1399 1522 1524 1434 1595 1501 1601 1545 1488 1513
SNG2 1484 1350 1490 1454 1369 1557 1418 1513 1468 1463 1457
SNG3 1385 1319 1468 1416 1317 1439 1368 1451 1415 1365 1394
SNG4 1327 1295 1419 1367 1279 1409 1309 1426 1374 1310 1352
SNG5 1289 1289 1397 1311 1280 1381 1256 1359 1334 1273 1317
ENTN 1796 1721 1769 1840 1761 1914 1839 1967 1884 1805 1830
ENTK 1340 1287 1507 1266 1132 1405 1128 1358 1264 1327 1301
AGGA

5 984 1025 1060 998 967 1031 1016 1018 993 958 1005
AGGS

5 1049 1084 1152 1043 1025 1182 1147 1093 1076 1019 1087
AGGM

5 1058 1097 1159 1109 1025 1232 1159 1101 1087 1018 1105
AGGT

5 1048 1094 1153 1101 1020 1274 1141 1101 1087 1014 1103

Table 11: Seed Corpus Size for different target languages. The seed corpus gives rise to both training data and validation data,
therefore the training size is smaller than the above. Note that all experiments for a given target language share the same number
of words, although they have different number of lines. Since each language use different number of words to express the same
meaning of a given text, we choose the number of words in the given book "Luke" as the standard reference for each target
language. For example, "Luke" in Xhosa contains 15,017 words while "Luke" in Frisian contains 25,695 words.
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Target System Translation Reference

Frisian mar Ruth sei: Ik scil dy net forlitte, en ik scil
fen dy net weromkomme; hwent hwer "tstû hin-
negeane, den scil ik hinnegean, en dêr scil ik dy
fornachtsje. dyn folk is myn folk, en dyn God is
myn God.

mar Ruth sei: Sit net tsjin my oan, dat ik jo forlitte en weromt-
sjen scil; hwent hwer "t jo hinne geane, dêr scil ik hinne gean,
en hwer "t jo fornachtsje, dêr scil ik fornachtsje; jins folk is
myn folk en jins God is myn God;

Hmong Lauj has rua nwg tas, "Tsw xob ua le ntawd, kuv
yuav moog rua koj lub chaw kws koj moog, hab
kuv yuav nyob huv koj haiv tuabneeg. koj yog
kuv tug Vaajtswv."

tassws Luv has tas, "Tsw xob has kuas kuv tso koj tseg ncaim
koj rov qaab moog. koj moog hovtwg los kuv yuav moog hab,
koj nyob hovtwg los kuv yuav nyob hov ntawd hab, koj haiv
tuabneeg los yog kuv haiv tuabneeg hab, koj tug Vaajtswv los
yog kuv tug Vaajtswv.

Pokomchi eh je’ wili i xq’orarik reh i Rut: Maacanaa’ chih
taj i hin. re’ hin naa nub’anam aweh chupaam
i ye’aab’ naa nuk’achariik ayu’. re’ hin naa
nuk’achariik awuuk’, eh re’ hin naa nukahniik
chi nuDios, inki.

re’ Rut je’ wili i chaq’wik xub’an: Maa pahqaaj aakuyariik
weh re’ hin ma’ jaruuj nee tinukanaa’ kahnoq, xa aha’ pa’ nee
tiooj i hat, nee wo’ kinooj chawiij, xa aha’ pa’ nee ti k’achariik
i hat ar nee kink’acharik i hin. eh re’ aatinamiit re’ wo’ re’
nutinamiit i hin, eh re’ aaDios re’ wo’ re’ nuDios i hin.

Turkmen Rut: oňa: "Sen nirä gitseň, men hem seniň
ýanyňa gitmerin. Sen nirä gitseň, men hem seniň
halkym bolaryn. Men seniň Hudaýym bolaryn.

emma Rut: "Seni terk edip ýanyňdan gitmegi menden haýyş
etme. sen Nirä gitseň, Menem şol ýere gitjek. sen nirede
bolsaň, Menem şol ýerde boljak. seniň halkyň - meniň halkym,
seniň Hudaýyň meniň Hudaýym bolar.

Sesotho yaba Ruthe o re ho yena: "O se ke wa tloha
ho wena, hobane ke tla ya le wena, ke tla ya le
wena, mme ke tla ya hona moo. setjhaba sa ka,
le Modimo wa hao."

empa Ruthe a re: "O se ke wa nqobella hore ke kgaohane le
wena, kapa hore ke se ke ka tsamaya le wena, hobane" moo
o yang teng ke tla ya teng, moo o phelang teng ke tla phela
teng; tjhaba sa heno e be tjhaba sa heso, Modimo wa hao e be
Modimo wa ka.

Welsh a Ruth a ddywedodd, Nuw gael arnaf fi, atolwg,
atolwg, oddi wrthyt: canys lle yr wyt yn myned,
ac yno yr wyt yn myned, y byddaf fy hun. dy
bobl yw fy bobl, a’th Dduw yw fy Duw.

a Ruth a ddywedodd, Nac erfyn arnaf fi ymado â thi, i gilio
oddi ar dy ôl di: canys pa le bynnag yr elych di, yr af finnau;
ac ym mha le bynnag y lletyech di, y lletyaf finnau: dy bobl di
fydd fy mhobl i, a’th Dduw di fy Nuw innau:

Xhosa URute waphendula wathi: "Undiyekeli ukuba
ndixhamle, kuba ndiza kuhlala apho uthanda
khona. mna ndiza kuba ngabantu bam, abe
nguThixo wam."

Waphendula uRute wathi: "Sukundinyanzela usithi
mandikushiye. apho uya khona, nam ndiya kuya, ndiye kuhlala
nalapho uhlala khona, amawenu abe ngamawethu, noThixo
wakho abe nguThixo wam.

Indonesian tetapi Rut: menjawab: "Janganlah engkau
meninggalkan aku dan pulang ke tempat kedia-
manmu, sebab aku akan pergi dan berdiam di
mana engkau diam, sebab orang-orangmu akan
menjadi umat-Ku dan Allahmu."

tetapi kata Rut: "Janganlah desak aku meninggalkan engkau
dan pulang dengan tidak mengikuti engkau; sebab ke mana
engkau pergi, ke situ jugalah aku pergi, dan di mana en-
gkau bermalam, di situ jugalah aku bermalam: bangsamulah
bangsaku dan Allahmulah Allahku;

Hungarian Ruth így felelt: Nem kérlek téged, hogy gondolj
meg téged, mert csak hozzád megyek, és én ot-
thagytam, hogy legyenek hozzád. a te népem az
én, és az én Istenem az én.

de Ruth azt felelte: Ne unszolj engem, hogy elhagyjalak és
visszatérjek tőled. mert ahová te mégy, odamegyek, ahol te
megszállsz, ott szállok meg. Néped az én népem, és Istened az
én Istenem.

Spanish y Rut: dijo a David: No me permite de ti, y me
quitaré de ti; porque donde vayas, yo iré a donde
vayas, y habitaré; y tu pueblo es mi pueblo, y tu
Dios es mi Dios.

respondió Rut: No me ruegues que te deje, y me aparte de ti;
porque a dondequiera que tú fueres, iré yo, y dondequiera que
vivieres, viviré. tu pueblo será mi pueblo, y tu Dios mi Dios.

Table 12: Qualitative evaluation using SNG5 to translate into each target language.
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Abstract

We propose a two-stage approach for training
a single NMT model to translate unseen lan-
guages both to and from English. For the first
stage, we initialize an encoder-decoder model
to pretrained XLM-R and RoBERTa weights,
then perform multilingual fine-tuning on par-
allel data in 40 languages to English. We find
this model can generalize to zero-shot trans-
lations on unseen languages. For the second
stage, we leverage this generalization ability
to generate synthetic parallel data from mono-
lingual datasets, then bidirectionally train with
successive rounds of back-translation.

Our approach, which we EcXTra (English-
centric Crosslingual (X) Transfer), is conceptu-
ally simple, only using a standard cross-entropy
objective throughout. It is also data-driven, se-
quentially leveraging auxiliary parallel data and
monolingual data. We evaluate unsupervised
NMT results for 7 low-resource languages, and
find that each round of back-translation train-
ing further refines bidirectional performance.
Our final single EcXTra-trained model achieves
competitive translation performance in all trans-
lation directions, notably establishing a new
state-of-the-art for English-to-Kazakh (22.9 >
10.4 BLEU).

1 Introduction

Current neural machine translation (NMT) systems
owe much of their success to efficient training
over large corpora of parallel sentences, and conse-
quently tend to struggle in low-resource scenarios
and domains (Kim et al., 2020; Marchisio et al.,
2020). This has motivated investigation into the
field of zero-resource NMT, in which no parallel
sentences are available for the source-target lan-
guage pair. This is especially valuable for low-
resource languages, which by nature have little to
no parallel data.

∗Correspondence to: bryanli@seas.upenn.edu

There are two mainstream lines of inquiry to-
wards developing models to tackle zero-resource
machine translation. Unsupervised machine trans-
lation learns a model from monolingual data from
the source and target languages. Some research in-
volves introducing new unsupervised pre-training
objectives between monolingual datasets (Lample
and Conneau, 2019; Artetxe et al., 2019). Oth-
ers devise training schemes with composite loss
functions on various objectives (Ko et al., 2021;
Garcia et al., 2021). In contrast, zero-shot ma-
chine translation learns a model by training on
other datasets (Liu et al., 2020) or other language
pairs (Chen et al., 2021, 2022), then directly em-
ploy this model for translating unseen languages.

This work leverages both mainstream ap-
proaches in zero-resource translation. We propose
a conceptually simple, yet effective, two-stage ap-
proach for training a single NMT model to trans-
late unseen languages both to and from English.
The first stage model is trained on real parallel
data from 40 high-resource languages to English.
This results in a strong zero-shot model, which we
use to translate unseen languages to English. By
applying back-translation to flip the order, we ob-
tain English-to-unseen synthetic parallel data. In
the second stage, we continue training the model
on successive rounds of offline back-translation,
where each round uses the prior round for both for
weight initialization and for synthetic parallel data.

We term our overall unsupervised translation
approach EcXTra (English-centric Crosslingual
(X) Transfer). EcXTra can be thought of as a
data-driven approach, which sequentially lever-
ages auxiliary parallel data then monolingual data.
Each stage’s model is initialized to an informed
pretrained model, before fine-tuning. We initial-
ize the first stage model’s encoder and decoder
to XLM-RoBERTa (Conneau et al., 2020) and
RoBERTa (Liu et al., 2019) respectively, and we
initialize the second stage model’s weights to those
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of the first stage. In doing so, EcXTRa importantly
avoids the complicated training schemes and cus-
tom training objectives of prior work.

As our approach is simple to train and extend to
new unseen languages, we release all code, data
and pretrained models.1 Our contributions are:

1. We introduce EcXTra, a two-stage approach
for training a single NMT model to translate
unseen languages to and from English. In
its two stages, EcXTra combines zero-shot
NMT and unsupervised NMT: multilingual
fine-tuning and back-translation respectively.

2. Our work is an empirical study of an agnostic
view towards multilinguality, as we train the
zero-shot stage on balanced splits of parallel
data from 40 languages to English. In contrast,
prior work has largely explored multilingual-
ity by selecting train languages with oracle
knowledge of the test languages.

3. We evaluate the bidirectional unsupervised
NMT performance of a single EcXTra-trained
model on 7 foreign-English test sets (14 to-
tal). This final model, trained in two rounds
of back-translation, achieves competitive un-
supervised performance for most language
directions, establishing a new state-of-the-
art for English-Kazakh. We are also the
first to report, the best of our knowledge,
unsupervised results for 3 translation direc-
tions: English-Pashto, English-Myanmar, and
English-Icelandic.

2 Our Approach

Our training procedure closely follows the standard
machine translation task. Machine translation in-
volves developing models to output text in a target
language T , given text in a source language S . In a
typical supervised MT setting, it is assumed there is
a parallel corpus P = {(si, ti)}ni=1 in which each
sentence ti ∈ T is a translation of si ∈ S . A model
is then trained on these examples, to minimize the
cross-entropy loss given by

L(P; θ) =
n∑

i=1

log p(ti|si; θ) (1)

where θ is a collection of learned parameters.
Given enough parallel data, this training frame-

work allows contemporary NMT models to achieve
1https://github.com/manestay/EcXTra

strong performance (Dabre et al., 2020). However,
in the unsupervised setting arises the fundamental
challenge that we no longer have any parallel data
between the source and target languages of interest.

Conceptually, we divide the two stages of our
training procedure into four steps:

1a. Zero-shot model transfer by initializing to
pretrained multilingual LMs. We use an XLM-
RoBERTa encoder and a RoBERTa decoder.

1b. Multilingual fine-tuning for this initialized
model, on parallel data from diverse source lan-
guages to English.

2a. Synthetic parallel data creation using back-
translations from the stage 1 model.

2b. Back-translation training by initializing to
the stage 1 model, then further training on the syn-
thetic parallel data, in both translation directions.
Steps 2a and 2b are iterated for several rounds, in
each initializing to the prior round model.

Observe that these are are widely-used tech-
niques in the field of machine translation. Our
main contribution is in presenting an effective syn-
thesis of the techniques to enable a single model
to perform zero-shot and bidirectional translation
(while using only a standard loss function).

Terminology It is worthwhile formalizing our
exact terminology, given that prior work in this
field uses terms rather inconsistently.2 Our setting
is English-centric, as the language pairs include
English as either the source or target3 Our final
model is bidirectional, in that it can translate S to T
and also translate T to S . We call the non-English
side of a pair a foreign language. Therefore, we
use the terms foreign-English and many-to-English
interchangeably (likewise with English-foreign and
English-to-any). Languages seen during training
on parallel datasets are auxiliary languages.

2.1 Zero-shot Model Transfer

There are many structural as well as lexical similar-
ities across different languages, especially within
language families. By training a multilingual trans-
lation model on gold-standard parallel datasets for
auxiliary higher-resource languages, we aim to ex-
ploit these similarities. Specifically, we train model

2See Section 2.1 of Garcia et al. (2021) for further discus-
sion on this inconsistency.

3We focus on the English-centric setting because it is the
language with the most parallel data to other languages.
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parameters θ on parallel data between n auxiliary
languages S = S1 . . .Sn and some target language
T (for us, English). The goal is to have the model
learn to generalize to translating m unseen lan-
guage data U = U1 . . .Um to T . In other words,
in the absence of gold-standard parallel data P
in our zero-resource languages, we make use of
knowledge transfer from larger parallel datasets
with auxiliary source languages. Looking back at
Equation 1, we redefine its objective function as

n∑

i=1

L(D(Si, T ); θ) (2)

where D(Si, T ) is the gold-standard parallel
dataset for language Si and English (T ).

EcXTRA: Multilingual fine-tuning Multilin-
guality, namely having diverse auxiliary lan-
guages is key to good zero-resource NMT perfor-
mance (Garcia et al., 2021). In this setting, because
there are no true (si, ti) examples until inference
time, performance becomes especially sensitive to
the initialization of parameters θ. We do so by
initializing the encoder with XLM-RoBERTa and
decoder with RoBERTa. The former allows for
transfer learning from strong pretrained models
that are already trained on monolingual data in lan-
guages (including the unseen languages of interest),
whereas the latter allows for a good understanding
of fluent English sentences. Initializing the encoder
and decoder to pretrained LMs follows prior work
(Rothe et al., 2020; Ma et al., 2020).

From this initialization, we then fine-tune the
model on parallel data from many high-resource
languages to English. The resulting model is able
to translate from unseen language to English, but
not the other way. We next discuss how we extend
our approach to develop a bidirectional model.

2.2 Synthetic Parallel Data Creation

We assume in this step that we have monolingual
data in the unseen languages, which are typically
collected by crawling web data. We make use of
the model trained in the previous stage to translate
all the monolingual sentences (sj)kj=1 to English,
thereby having synthetic parallel data (sj , t̂j)

k
j=1

where t̂i is the translation output from the zero-
shot model. We then flip the order in each pair to
produce examples P̂ = (t̂j , sj)

k
j=1, then continue

training. This process of bootstrapping additional
data is called (offline) back-translation.

While back-translation is typically used in low-
resource settings, our approach extends it to-
wards the zero-resource setting. We perform back-
translation for all unseen languages, and concate-
nating together all synthetic parallel data (P̂i)mi=1.

EcXTRA: Training on Synthetic Data In this
step, we train a bidirectional English-centric model.
We ensure bidirectionality by training on both the
English-foreign synthetic parallel data, and the
foreign-English auxiliary parallel data. Our new
objective function is thus a combination of the two
cross-entropy losses:

n∑

i=1

L(D(Si, T ); θ) +
m∑

i=1

L(P̂i; θ)

Just as we initialized the zero-shot model to pre-
trained multilingual LMs, so too do we initialize
the unsupervised model to the zero-shot model. Af-
ter training an initial unsupervised bidirectional
model, we further refine performance by running it-
erative rounds of the synthetic parallel data creation
and training process.

3 Datasets Used

Here we succinctly describe the data, providing
further details in Appendix B.

Training For the zero-shot stage, we use parallel
corpora from higher-resource auxiliary languages
to English. We utilize a subset of the Many-to-
English v1 dataset (Gowda et al., 2021). We con-
sider only the 40 largest foreign-English pairs,4 and
equally sample 2 million examples from each.5

The resulting dataset, which we term m2e-40,
consists of 80 million sentence pairs from 40 source
languages. Note that unlike most prior work, we
have taken an agnostic view towards multilinguality
— we do not choose the training languages with
reference to the testing languages.

For the unsupervised stage, we use monolingual
corpora in the 7 test languages (below) from Com-
monCrawl and CC-100.

Testing We evaluate our approach on 7 lan-
guages: Kazakh (kk), Gujarati (gu), Sinhala
(si), Nepali (ne), Pashto (ps), Icelandic (is), and
Burmese (my). Test sets are taken from WMT21,

4Codes for training languages (with those used for valida-
tion in bold): tr, sr, fr, he, ru, ar, zh, bs, nl, de, pt, no, it, es,
pl, fi, fa, sv, da, el, hu, sl, vi, et, sk, ja, lt, lv, uk, th, cs, ko, id,
ca, mt, ro, bg, hr, hi, eu

5The rationale is further discussed in Section A.
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Figure 1: An illustration of the first stage of training
(or EcXTra-r0). The model learns to translate foreign
sentences to English. The encoder is initialized to XLM-
RoBERTa, and the decoder is initialized to RoBERTa.
Both embeddings are frozen (blue rectangle), while lay-
ers are finetuned (red ellipse).

FLORES-101 and WAT21. The languages were
chosen for both their diversity and for comparison
to prior unsupervised NMT work.

Validation To validate the zero-shot stage, we
select 15 foreign-English parallel datasets from
WMT19 development data; these languages are
seen during training.

In the unsupervised stage we only have access
to monolingual data. For validation purposes, we
thus reserve a small number of synthetic sentence
pairs (250 per direction * 14 directions).

4 Experimental Setup

We move from the overall EcXTra approach, to the
specifics of using EcXTra to train an NMT model.

4.1 Stage 1: Multilingual Fine-Tuning

Multilingual fine-tuning is the process of training a
many-to-English zero-shot NMT model on parallel
data from auxiliary languages to English. Figure 1
depicts the multilingual fine-tuning process.

Architecture We use an encoder-decoder,
Transformer-based NMT model. Encoder layers
and embeddings are initialized to XLM-R large,
and decoder layers and embeddings are initialized

to RoBERTa-large. These models were pretrained
on a large multilingual corpora with various
self-supervised language objectives. The encoder
vocabulary is from XLM-R, and the decoder
vocabulary is from RoBERTa.

Setup In the multilingual fine-tuning stage, we
fine-tune our initialized model on WikiMatrix-25en.
We freeze both the encoder and decoder embed-
dings and fine-tune both the encoder and decoder
layers. This model thus has 0.76B trainable pa-
rameters (1.1B total). We select the best model
checkpoint using early stopping.

Our training scheme uses the same supervised
training objective of standard supervised NMT
models. We hypothesize that this training scheme
unlocks the cross-lingual transferability of XLM-
R to zero-shot settings, with the same reasoning
as Chen et al. (2022).

4.2 Stage 2: Back-Translation

In the unsupervised stage, we perform offline back-
translation to bootstrap from foreign-English trans-
lation to English-foreign (and back). Figure 2 de-
picts the back-translation and training process.

Architecture Most of the architecture is trans-
ferred directly from the stage 1 model: encoder
embeddings, encoder layers, and decoder layers.
We cannot transfer the decoder embeddings, since
the model now needs to output multiple languages.
Instead, the decoder embeddings are tied to the
encoder embeddings, which are frozen XLM-R
embeddings. The resulting model thus has 0.96B
trainable parameters (1.2B total parameters).

Notation Recall the zero-shot stage can be
thought of as a pre-training step for the unsuper-
vised stage. We thus designate the zero-shot model
as EcXTra-r0, and the unsupervised models as
EcXTra-ri, where i denotes the current round of
back-translation (or simply ri for brevity). We de-
note the m2e-40 dataset as D0, the concatenation
of all foreign monolingual corpora as D(l), and
the English monolingual corpus as D(e). Synthetic
parallel data are D̂(l)←(e)i or D̂(e)←(l)i .

Training Data As 25M parallel sentences were
used to train r0, we generate about the same amount
(3M per language * 8 languages = 24M) of back-
translation data. Each ri therefore is trained on
~50M sentences, given the bidirectional training.
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Figure 2: An illustration of the second stage of training, split into 2 rounds. Each round n is trained on a
concatenation of back-translations from round n− 1, and the the opposite direction training data from round n− 1.
Round 1 uses English-foreign synthetic data and transfers only the encoder, while round 2 uses synthetic data for
both directions and transfers both encoder and decoder. Note that EcXTra blocks are abbreviated from Figure 1.

For each source language sentence, we add a
special start token to indicate the desired target lan-
guage, following the trick of Johnson et al. (2017).
An example is <2kk> to target Kazakh.6

Setup Back-translation proceeds in successive
stages. The main idea is that, for the current round
ri, we use ri−1 to generate synthetic parallel data
by translating the monolingual corpus—D(l) for
odd rounds, D(e) for even rounds. The source
and target directions are then flipped before being
used as training data. We also use ri−1 to intialize
weights for ri.

In our approach we aim to train bidirectional
models. Therefore, the training data of ri consists

6Our specific implementation is detailed in Appendix D.

of both back-translations from ri−1, as well as the
opposite direction training data used for ri−1 itself.
Thus the training data for round 1 is D̂(l)←(e)1+D0,
and for round 2 is D̂(e)←(l)2 + D̂(l)←(e)1 .

We ensure that for synthetic parallel data, the tar-
get side is always fluent monolingual text. As ob-
served by Niu et al. (2018), this avoids the possible
degradation from training to produce MT output.

For our experiments, we set m = 2, performing
two rounds of back-translation – consistent with
prior findings that improvement tapers off after
two rounds (Hoang et al., 2018). The final model,
EcXTra-r2, will have learned from back-translated
data in both directions.
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Round
kk-en gu-en si-en ne-en ps-en is-en my-en Avg.
→ ← → ← → ← → ← → ← → ← → ← → ←

r0 19.6 n/a 23.2 n/a 17.5 n/a 20.9 n/a 9.8 n/a 26.0 n/a 16.5 n/a 19.1 n/a

r1 18.5 20.7 21.1 13.1 14.8 6.6 18.0 8.3 9.0 8.0 24.4 23.4 14.3 8.3 17.2 12.6
r2 18.2 22.9 21.5 13.9 17.8 7.1 19.7 9.3 13.0 8.1 30.6 25.4 12.9 8.8 19.1 13.6

Table 1: BLEU scores for various rounds of EcXTra models on several low-resource translation test sets. The row
divisions indicate groups by approach: zero-shot (no synthetic parallel data), unsupervised (synthetic parallel data).
Foreign-English translation (→) columns are in white, while English-foreign (←) columns are in grey. ‘Avg.’ is the
unweighted average BLEU scores across that translation direction. ‘n/a’ indicates unsupported directions. For the
second group, the best BLEU score per column is bolded.

5 Results

We evaluate our models on test sets for 7 low-
resource-to-English pairs in both translation di-
rections (14 directions total). We use evaluation
metrics with are consistent with prior work. By
default, we report detokenized sacreBLEU (Post,
2018).7 For the Indic languages (gu, si, ne), we
report tokenized BLEU with the Indic-NLP li-
brary (Kunchukuttan, 2020). For Burmese (my),
we report SPM-BLEU (Goyal et al., 2022) to han-
dle the language’s optional spacing.

5.1 Main Results
Table 1 shows results for each EcXTra round.

Foreign-English Results (→) EcXTra-r0 (or r0)
is indeed able to perform zero-shot foreign-English
translations. The unsupervised r1 has lower scores,
this is likely because this model is now tasked with
performing 7 additional tasks on top of the origi-
nal many-to-English task. r2 recovers the overall
performance, with the same average BLEU as r0.
While r2 underperforms r1 for a few individual
pairs, it handily beats r0 for ps-en (13.0 > 9.8) and
for is-en (30.6 > 26.0), underscoring the overall
quality of the back-translations.

English-Foreign Results (←) Similarly for
English-foreign, we observe that r2 matches or
exceeds r1 overall across language pairs (13.6 >
12.6). This is in spite of r1 and r2 sharing the same
English-foreign training data D(l)←(e)1 .

5.2 Comparisons with Prior Work
Table 2 compares the best EcXtra-trained model,
r2, with prior work (as well as the zero-shot r0).8

7BLEU|nrefs:1|case:mixed|eff:no|tok:
13a|smooth:exp|version:2.0.0

8Confidence intervals for our results are not shown, but
fall between ±0.4 to ±1.0.

We emphasize that these results are not fully compa-
rable, given the differing training datasets, models,
and number of languages supported.9 However,
the comparisons can still illustrate the effectiveness
of the language-agnostic nature and simplicity of
EcXTra. We compare to:

SixT (Chen et al., 2021): trained on a German-
English parallel dataset.

SixT+ (Chen et al., 2022): trained on AUX6, a
parallel dataset in 6 high-resource languages. This
is concurrent to our work.

mBART-ft (Tang et al., 2021): mBART-ft is an
mBART model further fine-tuned on AUX6.

Garcia et al. (2021) : a single bidirectional unsu-
pervised NMT model trained in 3 stages using com-
binations of various training objectives on parallel
data, real and synthetic (from back-translation).

Zero-Shot NMT Results Considering the first
four rows of Table 2 we see that EcXTra-r0 out-
performs mBART-ft and SixT for all translation
pairs. Overall, it underperforms SixT+ (a concur-
rent work), but ties for si-en, and bests it for my-en
(16.5 > 15.3).10

Unsupervised NMT Results We next compare
our best unsupervised model, EcXTra-r2 to Garcia
et al. (2021), the only prior work, to the best of our
knowledge, that also trains a single bidirectional
unsupervised NMT model. r2 notably achieves a
new state-of-the-art for unsupervised en-kk (22.9
> 10.4), and also improves on kk-en (18.2 > 16.4)
and si-en (17.8 > 16.2). r2 underperforms for gu-en
(13.9 < 16.4) and ne-en (19.7 < 21.7).

9More discussion can be found in Section A.
10Chen et al. (2022) did not provide is-en results, but their

model should support it.

21



Round
kk-en gu-en si-en ne-en ps-en is-en my-en
→ ← → ← → ← → ← → ← → ← → ←

mBART-ft 19.6 n/a 17.3 n/a 12.2 n/a 14.4 n/a 0.9 n/a ... n/a 3.6 n/a
SixT 19.0 n/a 17.3 n/a 12.2 n/a 14.4 n/a 11.4 n/a ... n/a 5.4 n/a
SixT+ 27.3 n/a 27.5 n/a 17.5 n/a 23.7 n/a 12.9 n/a ... n/a 15.3 n/a
EcXTra-r0 19.6 n/a 23.2 n/a 17.5 n/a 20.9 n/a 9.8 n/a 26.0 n/a 16.5 n/a

Garcia et al. (2021) 16.4 10.4 22.2 16.4 16.2 7.9 21.7 8.9 n/a n/a n/a n/a n/a n/a
EcXTra-r2 18.2 22.9 21.5 13.9 17.8 7.1 19.7 9.3 13.0 8.1 30.6 25.4 12.9 8.8

Supervised1234567 ... 12.1 ... 28.2 ... 6.5 ... 26.3 ... 11.0 ... 23.6 ... 13.9

Table 2: BLEU scores comparing various models to EcXTra. The row divisions indicate groups by approach:
zero-shot (no synthetic parallel data), unsupervised (synthetic parallel data), and supervised (real parallel data). ‘n/a’
indicates unsupported directions, while ‘...’ indicates results not provided. Within a row group, the best BLEU
score per column is bolded. Supervised results, from left to right: 1Rasooli et al. (2021) 2Li et al. (2019) 3Bei et al.
(2019) 4Ko et al. (2021) 5Shi et al. (2020) 6Símonarson et al. (2021) 7Hlaing et al. (2021)

Our work is the first to report unsupervised NMT
on en-ps, en-is, and en-my. For an upper bound we
cite prior results from supervised NMT systems;
these are for reference only (and not even necessar-
ily bidirectional nor multilingual). As expected, r2
underperforms for most tasks. However, r2 notably
exceeds supervised results for en-is (25.4 > 23.6),
showing the strength of our approach.

6 Discussion and Analysis

Enabling English-foreign translation in the second
stage seems to come at the cost of some foreign-
English performance. This may be an instance
of the insufficient modeling capacity problem of
multilingual NMT models (Zhang et al., 2020).
Still, r2 improves over r1, while training on en-
tirely synthetic parallel data generated from back-
translations in both directions. This finding under-
scores the effectiveness of successive rounds of
back-translation.

The EcXTra-trained model r0 underperforms
SixT+ (Chen et al., 2022) for foreign-English trans-
lations. Because EcXTra is a training approach,
we can use SixT+ as a drop-in replacement for
r0 for both weight initialization, and for its back-
translations. We suspect that training such a com-
bined model would achieve even better English-
foreign performance, and leave this to future work.

The EcXTra-trained model r2 underpeforms Gar-
cia et al. (2021) for English-Indic translations. This
is likely a function of our m2e-40 dataset having a
much lower proportion of Hindi that the dataset of
Garcia et al. (2021).11 While we take an agnostic

11This is not explicitly specified in their paper, but is clear

view of multilinguality, our training data is by no
means writing script-centric; possibly making our
model worse at outputting Indic texts. The exceed-
ing en-kk and high en-is scores of r2 provide some
evidence for this.

Overall, the r2 achieves competitive unsuper-
vised translation results. Our model supports 3
additional language pairs over prior bidirectional
unsupervised translation models, and the EcXTra
approach makes it simple to extend to even more
translation pairs. We underscore the overall appeal
of our approach, in that we can use the zero-shot
model to bootstrap back-translations for any un-
seen language, and train a bidirectional translation
system from there.

6.1 Many-to-English Performance of
Unsupervised Models

Unlike for the zero-shot r0, the unsupervised r2 has
seen text in the text languages, albeit as synthetic
parallel sentences with English. A natural question
to ask is whether r2 is able to maintain many-to-
English performance for non-test languages.

We perform the following experiment to exam-
ine this. The models are tasked with supervised
translation from 4 train languages (zh, hi, tr, ru) to
English. r0 and r1 directly see these in their train-
ing parallel data, whereas r2 has only indirectly
seen them through the prior rounds.

The results are shown in Table 3. As was found
for the test languages, r1 performs worse than r0.
r2 has the same average BLEU across language
pairs as r1. From this short experiment we have

given their 4 auxiliary languages, vs our 40.
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Round zh-en hi-en tr-en ru-en Avg.

r0 19.2 21.9 28.5 34.0 25.9
r1 17.0 17.6 26.2 32.5 23.3
r2 17.4 16.0 27.1 32.9 23.3

Table 3: BLEU scores for each EcXtra training round
on several supervised foreign-English translations.

shown that the unsupervised models r1 and r2 do
retain reasonable Many-to-English performance.
We leave future work to investigate mitigation of
the forgetting of prior learned tasks, endemic to
(almost) all deep learning-based models.

7 Related Work

The field of low-resource and zero-resource neural
machine translation is an area of continued inter-
est. Below, we describe related works those which
follow our data constraint: parallel foreign-English
data in auxiliary languages, and monolingual data
in unseen languages.

7.1 Many-to-English zero-shot NMT Models
Chen et al. (2021) propose SixT, a fine-tuning
method for foreign-English zero-shot NMT. They
initialize both the encoder and decoder to XLM-
R. They follow a two-stage fine-tuning approach,
first only fine-tuning the decoder layers, then con-
tinuing training by unfreezing the encoder layers
and decoder embeddings. The model is trained on
a parallel corpora in only de-en, and they report
zero-shot to-English performance for 10 languages.

Chen et al. (2022) propose SixT+, which builds
upon the authors’ prior work, and is trained on a
parallel corpus in 6 source languages. This is con-
current to the first submission of our work. They
show their model can address zero-shot tasks from
NMT to cross-lingual abstractive summarization.
This work has the same goal as our first stage of
training.12 The main differences are in our train-
ing data (40 vs 6 source languages, 80M vs 120M
pairs), and our simpler zero-shot training stage (no
unfreezing, no position disentangled encoder).

7.2 Unsupervised MT Models
Utilizing Both Parallel and Monolingual Data
Ko et al. (2021) propose NMT-Adapt, a method
which follows the same data constraints as our

12Chen et al. (2022) does perform a small-scale study on
back-translation for translating English-foreign, but these mod-
els are neither multilingual nor bidirectional.

work. Their method jointly optimizes four
tasks: denoising autoencoder, adversarial training,
high-resource translation, and low-resource back-
translation – the latter two of which we also use.
However, their work trains individual models for
each direction, and furthermore for each model ex-
plicitly trains on related high-resource language
datasets. This approach is thus more expensive and
less adaptable to new languages as ours.

Bidirectional Multilingual NMT Garcia et al.
(2021) train a single model to translate unseen lan-
guages to and from English, under the same data
constraints as our work. They proceed in 3 stages,
each of which uses a mixture of training data and
objectives: MASS (Song et al., 2019) for monolin-
gual data, cross-entropy for auxiliary parallel data,
and both iterative back-translation (Hoang et al.,
2018) and cross-translation (Garcia et al., 2020) for
synthetic parallel data. This work shares our goal
of developing a single bidirectional UNMT model
for unseen languages. There are two main differ-
ences. First, their aforementioned training scheme
is fairly involved. Second, their approach relies on
cross-translation, which explicitly ties individual
auxiliary languages to unseen languages, limiting
their model’s cross-lingual generalizability.

8 Conclusion

We have described a two-stage training approach
for developing a single bidirectional, unsupervised
NMT model, which we term EcXTra. The main
contribution of EcXTra is in its effective synthe-
sis of techniques from both zero-shot NMT, multi-
lingual fine-tuning, and from unsupervised NMT,
back-translation. While prior work also uses sim-
ilar underlying techniques, they have much more
involved training processes, either to consider the
bidirectional and zero-shot direction, or introduce
additional loss functions (which make training
more involved). Furthermore, in this work we have
taken an agnostic view towards multilinguality.

We trained a single NMT model through EcXTra,
and find that each round of back-translation train-
ing further refines bidirectional translation perfor-
mance. This gives rise to the view of EcXTra as suc-
cessive rounds of informed initialization into fur-
ther fine-tuning. The final, unsupervised EcXTra-
trained model achieves competitive performance
on 7 foreign-English tasks, in both directions. The
straightforward nature of EcXTra allows it to be
easily extended to new unseen languages.
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A Limitations

The notable limitations are the datasets used, the
compute required for training, and a want for fur-
ther ablation studies.

Our training dataset m2e-40 is a subset of the
Many-English dataset (Gowda et al., 2021). This
is a collection of various datasets, many of which
contain mined parallel sentences. While we have
assumed in our paper, like prior work, that these
datasets are “real” parallel data, they are in fact
quite noisy, and contain many low-quality sentence
pairs that likely harm downstream system perfor-
mance (Kreutzer et al., 2022).

Another potential limitation is that when we se-
lect only 2 million samples for each training lan-
guage pair, instead of using all samples, we limit
performance. This is possible, but our work ex-
plores a language-agnostic multilingual setting. We
refer the interested reader to (Zhang et al., 2022),
which finds through an empirical study that overall
multilingual translation performance is best when
languages are balanced.

Our method requires a solid amount of comput-
ing resources in order to train the entire NMT sys-
tem (see details in Appendix C). Unlike several
other works, we train a single model for all direc-
tions, which allows us to be more resource-efficient.
However, very recent work has found that even
without fine-tuning, multilingual pretrained LMs
are able to perform zero-shot translations to and
from low-resource languages (Patel et al., 2022) –
so long as they are given few-shot examples (which
can even be synthetic). We suspect such in-context
learning based approaches will be soon popular in
machine translation, as they have become in many
other NLP fields.

We also note that in our work, we evaluated
using only BLEU scores. BLEU, of course, is
widely-used and understood in the MT community.
However, over the decades, researchers have called
into question relying solely on BLEU results for
MT evaluation. We acknowledge this point, and
keep our work as-is given our resource limitations,
and given our consistency with prior unsupervised
NMT work on reporting results.

A.1 Preliminary Ablations

We understand that ablation studies are useful to
ascertain the contribution of various parts of the
training approach. Unfortunately, we were unable
to pursue this in detail because of resource limita-

tions on our end. Therefore, we enumerate several
possible ablations here, and provide preliminary
observations from some small-scale experiments:

Model Size We found the large models for XLM-
R and RoBERTa, instead of the base models, sig-
nificantly increased performance for all language
pairs and directions.

Our Dataset vs. Prior Work Datasets In the
unsupervised and zero-shot NMT literature, be-
cause of the variety of task formulations and setups,
works do not use consistent datasets for training.
This is true for the models we provide reference
comparisons to, Chen et al. (2022) and Garcia et al.
(2021). These works, like ours, provide compar-
isons to prior work, with a disclaimer that these
results cannot be completely fair. To some extent,
the multilinguality agnostic dataset is a key part
of the full EcXTra approach. Still, an elucidat-
ing ablation experiment could be to train our first
stage model using the AUX6 dataset of Chen et al.
(2022), then run back-translations using the mono-
lingual datasets specified by Garcia et al. (2021).
However, this would require additional computa-
tional resources that we unfortunately lack.

Unidirectional Unsupervised NMT We found a
unidirectional English-foreign second stage model
achieves similar BLEU to the bidirectional second
stage models. This suggests that this MT system
has no issue with bidirectionality, affirming the
findings of Niu et al. (2018).

Bilingual vs. Multilingual NMT Models We
found a second stage model trained to only trans-
late a single bilingual pair, kk-en, performs quite
a bit better for those translation directions than a
multilingual model. This suggests that the model
has difficulty with maintaining performance given
all the different translation tasks, especially those
with unique scripts such as Burmese and Nepali.

Training models for individual language pairs
(with their own limited vocabularies), and tailoring
the datasets specifically to relevant high-resource
languages, is one approach as performed by (Ko
et al., 2021). For example, their ne-en specific
model achieves 26.3 BLEU vs. EcXTra’s 8.8.13.
However, this approach is still someone unsatisfy-
ing, as our ultimate goal is still to train a single

13Still, in the ne-en direction their models achieves only
18.8 BLEU (vs. EcXTra’s 19.9) This suggests the multilin-
gual similarities are currently better exploited for to-English
translation, than from-English.
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multilingual NMT system. We hope for continued
research to close this gap between multilingual and
bilingual NMT systems.

Initializing Stage 2 to Stage 1 Model In this
experimental setting, we use the trained stage 1
model only to create English-foreign synthetic par-
allel data, but initialize to RoBERTa and XLM-R
(instead of the stage 1 model). We ran this model
for a few epochs, before stopping it because we
found the validation BLEU increased very slowly
relative to the original stage 2 training. This af-
firms our earlier claim that the stage 1 model is an
informed initialization for the stage 2 model.

B Details on Datasets Used

Here, we expand upon Section 3 and provide fur-
ther detail on the datasets used in this paper.

B.1 Zero-Shot NMT Datasets

Test We consider translation of 7 low-resource
languages, which come from 6 language fami-
lies. We draw these test sets from publicly avail-
able datasets from WMT2114, FLoRes v115, and
WAT2116. Where possible, we use the same test
sets as specified by prior unsupervised NMT work.

Training Our first stage model is trained on a
parallel dataset we term m2e-40. This is a subset of
the Many-English17 dataset (Gowda et al., 2021),
which itself is a collection of other publicly avail-
able datasets. Of the 500 language pairs in this
dataset, we choose the 40 languages with the most
parallel sentences18. This criterion contrasts with
prior work (Siddhant et al., 2022; Chen et al., 2022),
which specifically select language pairs based on
coverage and/or similarity to the unseen test lan-
guages. Table 5 shows more information for the
training languages.

Prior work has handled the imbalance in aux-
iliary language pairs through temperature sam-
pling (Devlin et al., 2019). Essentially, this is a
simple trick to up-sample high-resource languages

14https://www.statmt.org/wmt21/index.
html

15https://github.com/facebookresearch/
flores/tree/main/floresv1

16http://lotus.kuee.kyoto-u.ac.jp/WAT/
my-en-data/

17http://rtg.isi.edu/many-eng/data-v1.
html

18The motivation for choosing 40 languages is largely be-
cause of resource limitations on our end. Ideally, we would
have liked to train on all languages with 1M+ sentence pairs.

and down-sample low-resource once. In our work
we take the even simpler trick of equally sampling
2 million sentences from each training language.
This follows the finding of Zhang et al. (2022) that
more equal sampling of languages results in the
relatively best multilingual performance.

The Many-English dataset is provided as pre-
tokenized and pre-processed. For our use-case,
we are fine-tuning the encoder of XLM-R, which
was pretrained on untokenized text. Therefore, we
detokenize both the English and the foreign sides
of our subset using sacremoses19.

Validation The validation data comes from the
development tarball of WMT1920. Of the 40 train-
ing languages, 15 of them are found in this tar-
ball. As some translation directions appear mul-
tiple times (e.g. fr-en), we choose just 1 per task.
Table 6 shows more information. For the super-
vised NMT experiment of Section 6.1, we utilize
the same development datasets for the languages
{zh, hi, tr, ru}.

B.2 Unsupervised NMT Datasets

Training We use several monolingual datasets
for training our unsupervised NMT model. For the
7 test languages we draw from Common Crawl21

for {kk, gu, is} and CC-10022 for {my, ps, ne, si}.
We take the first 4M sentences of each mono-

lingual dataset–except for Burmese (my), which
has only 2M sentences. We then filter out dupli-
cated lines, and empty lines. We thus have 26M
test language sentences.

For the English-to-many direction, we require
monolingual English data, which we draw from
News crawl23. As above, we take the first 4M sen-
tences, then filter out duplicated and empty lines.
The English monolingual sentences are then trans-
lated in the 7 languages, resulting in 7 * 4M = 28M
synthetic sentence pairs total.

Validation For each round of back-translation
training, we use datasets in 14 directions – from/to
the 7 translation directions. We withhold the first
250 sentence pairs of each translation direction (14

19https://github.com/alvations/
sacremoses

20http://data.statmt.org/wmt19/
translation-task/dev.tgz

21https://data.statmt.org/ngrams/
22https://data.statmt.org/cc-100/
23https://data.statmt.org/news-crawl/

en/
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directions, so 3500 pairs total) to serve as valida-
tion. The early stopping criteria is standard BLEU.
We tried as an alternative the round-trip BLEU pro-
posed by Lample et al. (2018), but found this made
little difference in final evaluation results.

C Modeling and Training Setup

Our research was pursued in a resource-limited
setting. For training, we used 4 NVIDIA RTX
A6000 GPUs (48GB vRAM each). For inference,
we used the above, and additionally had access to
16 NVIDIA GeForce RTX 2080 Ti GPUs (11GB
vRAM each).

Given the above resource-limited training and
inference setup, we provide some rough estimates
of runtime. Training a stage 1 model takes about
1 week. Training a stage 2 model takes about
6 weeks, given the steps: a) run xx->en back-
translations on 26m sentences (2 weeks), b) train
the round 1 model (1 week), c) run en->xx back-
translations on 28M sentences (2 week), d) train
the round 2 model (1 week). Given more standard
GPU resources, we would expect at least a 3-4x
speedup in the whole training process.

We use the transformers package (Wolf
et al., 2020) as the backbone for our modeling
work. Specifically, we use it to load pretrained
model weights and tokenizers. The rest of the code
is implemented in PyTorch (Paszke et al., 2019).

Hyperparameters The most up-to-date version
of the hyperparameters can be found in the repos-
itory.24 For training, the batch size = 20000 for
round 0, and 11500 for rounds 1 and 2. We use
an Adam optimizer, with learning rate = 1e-3, and
warmup steps = 12500. The learning rate decay
schedule is based on the inverse square root of the
update number. The dropout probability = 0.1, and
the random mask probability = 0.4. For inference,
the batch size = 1500, and beam size = 5.

D Start Tokens to Indicate Target
Language

Following Johnson et al. (2017), we add special
start tokens to each source sentence, to indicate
the desired target language. This only applies to
stage 2, because stage 1 always targets English.
The default implementation directly adds these to-
kens, of the form <2xx> to the target vocabulary.
Our setting requires adapting the implementation

24https://github.com/manestay/EcXTra/

because as we have frozen the target embeddings
(and source embeddings), we cannot increase the
vocabulary size. We therefore indicate the target
language with a two-token sequence, which con-
sists of the usual start token <s>, and another
token TOKi drawn from the long tail of the vo-
cabulary. The model then must learn that <s> +
TOKi means to translate to a given language.

To be concrete, we use XLM-R tokenization,
which consists of 250,002 SentencePiece tokens.
For this paper, in which the model supports 8
languages, we arbitrary select indices 202201 to
202208, and assign each to a language.

E How Zero-Resource is Zero-Resource?

In this work, we have defined zero-resource as the
setting in which no parallel sentences are available
for a language pair of interest. This definition fol-
lows the general usage in the field. To be exactly
precise, though, the pretrained multilingual model
used, XLM-RoBERTa, has indeed seen monolin-
gual text in each of the 7 low-resource languages.

F Sample Output

Sample output for the EcXTra NMT models are
shown in Tables 7 and 8.
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Code Language Family Script Source # Pairs

kk Kazakh Turkic Cyrillic newstest2019 1000
gu Gujarati Indic Gujarati newstest2019 1016
si Sinhala Indic Sinhala FLoRes v1 2905
ne Nepali Indic Devanagari FLoRes v1 2924
ps Pashto Iranian Arabic newstest2020 2719
is Icelandic Germanic Latin newstest21 1000
my Burmese Burmese-Lolo Burmese WAT21 1018

Table 4: Information for the test languages, and the foreign-English datasets used. The columns are, from left to
right, the ISO 639-1 language code, the name of the language, the language family at the Genus level, the data
source, and the number of sentence pairs.

Code Language Code Language

tr Turkish hu Hungarian
sr Serbian sl Slovenian
fr French vi Vietnamese
he Hebrew et Estonian
ru Russian sk Slovak
ar Arabic ja Japanese
zh Chinese lt Lithuanian
bs Bosnian lv Latvian
nl Dutch uk Ukrainian
de German th Thai
pt Portuguese cs Czech
no Norwegian ko Korean
it Italian id Indonesian
es Spanish ca Catalan
pl Polish mt Maltese
fi Finnish ro Romanian
fa Persian bg Bulgarian
sv Swedish hr Croatian
da Danish hi Hindi
el Greek eu Basque

Table 5: Information for the train languages. The
columns are, from left to right, the ISO 639-1 language
code, and the name of the language.

Code Language Source # Pairs

tr Turkish newsdev2016 1001
fr French newstest2009 2525
ru Russian newstest2012 3003
zh Chinese newsdev2017 2002
de German newstest2009 2525
it Italian newstest2009 2525
es Spanish newstest2009 2525
fi Finnish newsdev2015 1500
hu Hungarian newstest2009 2525
et Estonian newsdev2017 2000
lt Lithuanian newsdev2019 2000
lv Latvian newsdev 2017 2003
cs Czech newstest2009 2525
ro Romanian newsdev2016 1999
hi Hindi newsdev2014 520

Table 6: Information on the validation languages, and
the foreign-English datasets used. The columns are,
from left to right, the ISO 639-1 language code, the
name of the language, the source (from WMT develop-
ment set), and the number of sentence pairs.
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Model Translation (kk-en)

Reference The first medal place was given to Dastan Aitbay from Kyzylorda and his project on
"Safe Headphones" Innovative headphones".

EcXTra-r0 The winning first place was won by Dastan Aitbay’s innovative earpiece "Safe head-
phones" from the city of Kyushu.

EcXTra-r1 First place was won by Dastan Attbay of the city of Kyrgyzlord "Innovative earphones
"Safe headphones."

EcXTra-r2 The cool first place was won by Dastan Aitbay, from the city of Kyrgyzstan, the
"Inventive earcap Safe Headphones."

Table 7: Sample kk-en unsupervised translations for the input: Жүлделi бiрiншi орынды Қызылорда қала-
сынан Дастан Айтбайдың "Инновациялық құлаққап "Safe headphones"жобасы жеңiп алды.

Model Translation (en-is)

Reference Markmiðið er að fegra svæðið og leyfa mósaíkverki Gerðar Helgadóttur á Tollhúsinu
að njóta sýn betur.

EcXTra-r0 N/A

EcXTra-r1 Markmið er að fagna svæðið og gera mosaík Gerður Helgadóttir á Tollhúsinu áberandi.

EcXTra-r2 Tilgangurinn er að fallega svæðið og gera mosamynd Gerður Helgadóttir á tollhúsinu
meira áberandi.

Table 8: Sample en-is unsupervised translations for the input: The aim is to beautify the area and make Gerður
Helgadóttir’s mosaic on the Customs House more prominent.
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Abstract
Multilingual pre-training significantly im-
proves many multilingual NLP tasks, includ-
ing machine translation. Most existing meth-
ods are based on some variants of masked
language modeling and text-denoising objec-
tives on monolingual data. Multilingual pre-
training on monolingual data ignores the avail-
ability of parallel data in many language pairs.
Also, some other works integrate the available
human-generated parallel translation data in
their pre-training. This kind of parallel data
is definitely helpful, but it is limited even in
high-resource language pairs. This paper intro-
duces a novel semi-supervised method, SPDG,
that generates high-quality pseudo-parallel data
for multilingual pre-training. First, a denois-
ing model is pre-trained on monolingual data
to reorder, add, remove, and substitute words,
enhancing the pre-training documents’ quality.
Then, we generate different pseudo-translations
for each pre-training document using dictionar-
ies for word-by-word translation and applying
the pre-trained denoising model. The resulting
pseudo-parallel data is then used to pre-train
our multilingual sequence-to-sequence model,
PEACH. Our experiments show that PEACH
outperforms existing approaches used in train-
ing mT5 (Xue et al., 2021) and mBART (Liu
et al., 2020) on various translation tasks, in-
cluding supervised, zero- and few-shot scenar-
ios. Moreover, PEACH’s ability to transfer
knowledge between similar languages makes it
particularly useful for low-resource languages.
Our results demonstrate that with high-quality
dictionaries for generating accurate pseudo-
parallel, PEACH can be valuable for low-
resource languages.

1 Introduction

Machine Translation (MT) involves transferring
a text from one language to another. Recent in-
vestigations have revealed that multilingual pre-
training on a large corpus is profitable for NLP

∗equal contribution

systems’ performance on multilingual downstream
tasks (Liu et al., 2020; Lample and Conneau, 2019;
Conneau et al., 2020; Xue et al., 2021; Devlin et al.,
2019) and knowledge transferability between lan-
guages (Wu and Dredze, 2019; K et al., 2020; Liu
et al., 2020). Furthermore, using parallel data in
pre-training encoder and encoder-decoder models
effectively increases the models’ performance in
downstream tasks (Lample and Conneau, 2019; Chi
et al., 2021). The existing pre-training approaches
are mainly based on Masked Language Modeling
(MLM) and its variations (Liu et al., 2020; Raffel
et al., 2020; Xue et al., 2021; Lewis et al., 2020).

Although using parallel data in pre-training mul-
tilingual models improves their performance on
downstream tasks, the amount of available paral-
lel data is limited (Tran et al., 2020). Moreover,
MLM-based objectives for sequence-to-sequence
(seq2seq) models usually ask the model to generate
an output in the same language as input, which is
not in the interests of translation tasks. Addition-
ally, MLM-based objectives use shared subwords
or alphabets between different languages to learn
shared embedding spaces across them (Lample and
Conneau, 2019; Lample et al., 2017; Smith et al.,
2017); this would not be possible for languages
without shared alphabets.

Using dictionaries to define anchor points be-
tween different languages in cross-lingual pre-
training of the encoder of seq2seq models has been
investigated and shown to be effective for unsu-
pervised translation (Duan et al., 2020). Still, it
never has been used as a method for pre-training
multilingual seq2seq models.

Our proposed method, Semi-Supervised Pseudo-
Parallel Document Generation (SPDG), addresses
the challenge of limited parallel data for low-
resource languages by leveraging dictionaries to
generate pseudo-parallel documents. SPDG adopts
unsupervised translation techniques (Kim et al.,
2018; Lample et al., 2017) to generate a high-
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quality translation for each pre-training document.
We use a pre-trained denoising seq2seq model with
word reordering, adding, removing, and substitut-
ing to enhance the quality of the word-by-word
translated document. The improved unsupervised
translated text is used as the target text for train-
ing our multilingual seq2seq model, PEACH, us-
ing SPDG as a new pre-training method. SPDG
enables transfer of knowledge between similar
languages, making it particularly useful for low-
resource languages.

Our experiments show that PEACH outperforms
the pre-trained models with mT5’s MLM and
mBART’s MLM with Reordering objectives in En-
glish, French, and German. Additionally, PEACH
demonstrates strong performance in zero- and few-
shot scenarios. Moreover, we test our model for
other multilingual tasks, such as natural language
inference, to investigate the model’s ability in this
task. Our results show that our model achieves
a higher score in this task than other objectives,
which shows PEACH’s ability to transfer knowl-
edge between languages. The main contribution of
this paper is twofold:

• We propose a novel semi-supervised pre-
training method using bilingual dictionaries
and pre-trained denoising models for seq2seq
multilingual models.

• We show the benefits of SPDG objective in
translation, supervised and zero- and few-shot
cases, and knowledge transfer between lan-
guages.

2 Related Work

Among the first endeavor for MT, dictionary and
rule-based methods were popular (Dolan et al.,
1993; Kaji, 1988; Meyers et al., 1998), followed by
Knowledge-Based Machine Translation (KBMT)
and statistical methods (Mitamara et al., 1993; Car-
bonell et al., 1981; Koehn, 2009; Al-Onaizan et al.,
1999). The popularity of neural machine transla-
tion has only grown in the recent decade with the
introduction of the first deep neural model for trans-
lation (Kalchbrenner and Blunsom, 2013).

While the RNN-based seq2seq models seemed
to be promising in neural machine translation (Wu
et al., 2016; Bahdanau et al., 2015; Sutskever
et al., 2014), the advent of the transformer ar-
chitecture (Vaswani et al., 2017) plays an inte-
gral role in modern MT. With the introduction of

the transformer architecture, pre-training general-
purpose language models seemed to be an effec-
tive way to improve different NLP tasks (Devlin
et al., 2019; Liu et al., 2019). In most cases, trans-
former models were asked to denoise a noisy input
to learn a language (Lewis et al., 2020; Devlin
et al., 2019; Raffel et al., 2020). One of the most
popular pre-training objectives for both encoder-
only and encoder-decoder models is called Masked
Language Modeling (MLM), in which the model
should predict the masked part of a document and
generate it in its output (Raffel et al., 2020). How-
ever, many other objectives were also developed for
encoder-decoder and encoder-only models (Song
et al., 2019; Clark et al., 2020).

Meanwhile, unsupervised methods for neural
machine translation (NMT) using monolingual cor-
pora based on adversarial learning (Lample et al.,
2017) and transformer-based text denoising (Kim
et al., 2018) was tested and demonstrated promising
outcomes. Using bilingual dictionaries for defin-
ing anchors in pre-training unsupervised translation
models was successful (Duan et al., 2020) but never
has been used for generating data for supervised
translation on a large scale. Our work differs from
using dictionaries as anchor points for learning a
better representation for tokens in encoder (Duan
et al., 2020). We use dictionaries to generate a
pseudo translation of the source language in the tar-
get language instead of just defining some anchor
points. Thus, the model in pre-training steps learns
to generate a text in the target language based on in-
put in the source language using only monolingual
data and dictionaries on a large scale.

Pre-training task-specific models by generating
pseudo-summaries was successful in some cases
for summarization (Salemi et al., 2021; Zhang
et al., 2020), but it has not been performed for
pre-training encoder-decoder seq2seq models for
supervised translation according to the best of our
knowledge. On the other hand, the endeavors for
pre-training specific models for translation ended
up in training multilingual language models (Xue
et al., 2021; Liu et al., 2020). mT5 (Xue et al.,
2021) is trained with the MLM objective of T5
(Raffel et al., 2020). In its pre-training objective,
some spans of the input document are masked by
specific tokens, and the model has to predict those
spans by generating them in its output. mBART
(Liu et al., 2020) is another multilingual model
based on the BART (Lewis et al., 2020) model,
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pre-trained with MLM with Reordering objective.
In mBART’s pre-training objective, the order of
sentences in the input document is corrupted while
a specific token masks some spans of the document.
The model has to generate the original document
in its output.

PEACH is different from both mentioned mod-
els because we use a semi-supervised method to
generate several pseudo-translations (one for each
selected language) of each pre-training document.
These translations are then fed to pre-train PEACH.
Furthermore, in the mentioned models, the inputs
and outputs are from the same language while we
ask the model to translate texts from one language
to another in our pre-training phase.

3 PEACH

PEACH is a new sequence-to-sequence multilin-
gual transformer model trained with SPDG, a semi-
supervised pseudo-parallel document generation
method. This section explains the pre-training ob-
jective and the model architecture.

3.1 Semi-Supervised Pseudo-Parallel
Document Generation (SPDG)

Our proposed pre-training objective, SPDG, gen-
erates a pseudo-translation of the input document.
For generating pseudo-translations, we use Kim
et al. (2018)’s approach for unsupervised transla-
tion with some modifications. Our pipeline for
pre-training a model based on SPDG is shown in
Figure 2. We pre-train a seq2seq denoising model
for the target language using the pre-training cor-
pus of that language. Next, for each pre-training
document in the source language, we translate it
to the target language word-by-word using dictio-
naries. Then, we give this word-by-word translated
document to the pre-trained model with denoising
objectives to improve its quality and restore miss-
ing words.

Using this method, we can generate the pseudo-
translation of each pre-training document from
the source language to the target language. We
use these pseudo-translations as gold translations
for each pre-training document to pre-train a new
language model for translation tasks. Since this
pre-training objective is similar to translation, we
hypothesize that the pre-trained model learns the
translation task faster than the models trained using
monolingual data.

Word-by-Word Translation Using Dictionaries
The first step to generate pseudo-parallel docu-
ments is to map sentences from one language to
another using dictionaries. We used bilingual dic-
tionaries provided by Conneau et al. (2017) for our
work. To map sentences word-by-word from one
language to another, we first tokenize sentences
using the NLTK1 library. Then, for each token,
we find a translation for the token in the target
language using a dictionary from the source to the
target language. Some tokens, such as punctuations
and numbers, do not need to be translated to the tar-
get language because they are shared between them.
Therefore, we just put them in the translated words
set. Furthermore, we can not find any translation
for named entities in dictionaries. To solve this is-
sue, spaCy2 small (<lang>_core_news_sm) models
for named entity recognition for each language are
used to extract named entities. We transliterate the
named entities and put them in the translated words
set. Tokens without translation in dictionaries that
are not named entities, punctuations, or numbers
are skipped. We hope denoising objectives could
find an appropriate substitute for these tokens in
the next step. The implementation details of word-
by-word translation can be found in Appendix B.

Improving Word-by-Word Translations with
Denoising Objectives A critical problem with
word-by-word translation is that the word order in
the target language is not usually the same as the
source. Furthermore, some words in the source
language might not have any translation in the tar-
get language or vice versa. Additionally, since
many words have multiple meanings, word-by-
word translation might select the wrong translation
for a word.

We define four denoising objectives to overcome
the mentioned challenges, and train a denoising
model for each language. The pipeline is shown
in Figure 1. First, we shuffle the words in each
sentence in a document while keeping the relative
order of shuffled words in different sentences in
the document. Next, we remove, add, and replace
some of the words in each sentence to encourage
the model to resolve the aforementioned issues in
word-by-word translation. We use the corrupted
document as the model’s input and ask the model
to generate the original one as its output.

The deshuffling objective aims to improve the
1https://www.nltk.org/
2https://spacy.io/
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Figure 1: An overview of denoising objectives used for training denoising models. We use word shuffling, addition,
substitution, and removing based on the values in Table 7 in Appendix C.

Figure 2: An overview of our pre-training pipeline for training a model based on SPDG. The method uses the output
of the word-by-word translation of a pre-training document as the input of the trained denoising model based on
Figure 1 to improve its quality.

ability of the model to reorder word-by-word trans-
lated documents. Removing and adding words help
the model to correct some translations. Moreover,
replacing is beneficial especially for correcting the
word-by-word translation of ambiguous words.

Figure 2 depicts our pipeline for pre-training
with SPDG on a single example. In the mentioned
example, after word-by-word translation, some of
the words in the pre-training document cannot be
translated into German because they do not exist
in the dictionary. Furthermore, the relative order
of words in the word-by-word translated text is
not grammatically correct, and some words can be
substituted with more suitable ones. It can be seen
that after applying the denoising model to the word-
by-word translated text, the mentioned problems
are resolved.

3.2 Pre-Training with Multilingual SPDG

Most common multilingual models, such as mT5
(Xue et al., 2021) and mBART (Liu et al., 2020),
use MLM and MLM with Reordering as their pre-
training objectives. Despite their success, these
objectives are not perfectly aligned with the goal
of MT. Specifically, these objectives are designed
to work on monolingual inputs; they denoise the

input document in a specific language and produce
the denoised version in the same language. Here,
we design Algorithm 1, in which the pre-training
task’s input is in one language, and its output is in
another language. The algorithms’ inputs are the
corpora of all languages that the model should be
trained on as well as their names. The algorithm
generates the input-output pairs for pre-training the
multilingual model.

Algorithm 1: Multilingual SPDG
Input :Corpora, Langs
Output :MInputs,Moutputs
MInputs := ∅
MOutputs := ∅
for corpus in Corpora do

for doc in corpus do
for lang in Langs− Lang(doc) do

pst := SPDG(doc, Lang(doc), lang)
MInputs := MInputs ∪ {doc}
MOutputs := MOutputs ∪ {pst}

end for
end for

end for

In Algorithm 1, given a pre-training document,
we generate a pseudo-translation of it to each of the
other languages. So, the model can observe transla-
tions in different languages for a single document.
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This helps the model in learning cross-lingual
knowledge even about a language not present in a
specific training instance. The mentioned claim is
because the model learns about the language differ-
ences by translating the same input into multiple
languages.

It should be noted that based on the goal of
pre-training a language model for translation, it
is possible to change Algorithm 1. For example,
if the multilingual model is going to be used to
just translate from or to English, there is no need
to pre-train the model with the task of generating
pseudo-translation from German to French. Since
we are interested in evaluating our model on all
pairs of the pre-training languages, we generate
pseudo-translation for all pairs in Algorithm 1.

Architecture Our model, PEACH, and the other
presented denoising models are all based on trans-
former (Vaswani et al., 2017) encoder-decoder ar-
chitecture with a 12 layer encoder and a 12 layer
decoder with 768 hidden size, 3072 feed-forward
filter size, and 12 self-attention heads.

4 Experiments

In this section, we compare the results of PEACH,
trained with SPDG, with other common objectives
utilized for pre-training multilingual models. To
investigate the effectiveness of SPDG in compari-
son with common objectives, we pre-trained two
other models based on mT5’s MLM objective (Xue
et al., 2021) and mBART’s MLM with Reordering
objective (Liu et al., 2020) in the same setup.

The codes for pre-training and fine-tuning of all
models are publicly available on GitHub3.

4.1 Pre-Training Data and Configuration

We pre-train PEACH on English, French, and Ger-
man with the CC100 corpora (Wenzek et al., 2020;
Conneau et al., 2020). Due to the lack of comput-
ing power, we cannot use more than around 550M
words of text from each language. So, we train
our model on around 1.6B total words. Our pre-
training batch size is 96, with a maximum of 512
input and output tokens, and we train it for 500K
steps on Google Colab TPUs (v2-8). The AdaFac-
tor (Shazeer and Stern, 2018) optimizer with a de-
cay rate of 0.8 and a dropout rate of 0.1 is used
in pre-training and fine-tuning. Furthermore, we
use the SentencePiece BPE algorithm (Gage, 1994;

3https://github.com/AmirAbaskohi/PEACH

Kudo and Richardson, 2018) to generate a vocab-
ulary of 32K words for denoising models and 96k
for multilingual models. We pre-train PEACH with
Multilingual SPDG for 75% of its pre-training steps
and mT5’s MLM (Xue et al., 2021) approach for
the other 25% pre-training steps. The latter pre-
training objective is used because it increases the
scope of the fine-tuning tasks that our model can
do well. Indeed, multilingual SPDG teaches the
model to transform a text from one language to an-
other, but it does not help the model in tasks where
their inputs and outputs are in the same language.
Therefore, pre-training the model with MLM for a
few steps is helpful.

We train the denoising models with the same
setup as PEACH. An important factor in training
denoising models is the rate of corruption for train-
ing documents. We shuffle all words in sentences
while removing, adding, and replacing a small pro-
portion of them. We use the word-by-word trans-
lation script outputs to decide on these rates. First,
we calculate the rate of missing words in word-
by-word translation using dictionaries for all lan-
guages to a specific language on around 1GB of
text of each language. Then, we use a normal dis-
tribution with mean and standard deviation of the
same as the calculated numbers to define the rate
of words that should be removed from a sentence.
The values of corruption rates for each language
are reported in Table 7 in Appendix C, in which we
explain the method to find the best values for rates.

Due to the lack of computing power, we cannot
train a large-scale PEACH and compare it with pre-
trained models like mT5 or mBART. Instead, we
train two models based on mT5 (Xue et al., 2021)
objective, which we call MLM, and mBART (Liu
et al., 2020) objective, which we call MLM with
Reordering, with the same setup as PEACH. Also,
we fine-tune a Transformer model with randomly
initialized weights on downstream tasks.

4.2 Results

This section evaluates PEACH in various trans-
lation scenarios, including supervised, zero- and
few-shot. We also evaluate PEACH’s ability for
cross-lingual knowledge transfer in translation and
natural language inference tasks.

Supervised Translation In order to evaluate
PEACH on translation tasks, we fine-tune it on the
EN-DE and EN-FR parts of the WMT14 dataset
(Bojar et al., 2014). Additionally, we fine-tune our
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Model WMT14 WMT19
FR←→EN DE←→EN DE←→FR

MLM 21.38←→ 21.64 17.88←→ 19.54 16.59←→ 16.54

MLM with Reordering 29.02←→ 28.71 22.80←→ 25.53 21.39←→ 22.45

Transformer 9.15←→ 9.17 10.02←→ 9.79 9.16←→ 10.31

PEACH 31.25←→ 29.98 23.61←→ 26.97 23.13←→ 25.25

Table 1: The supervised translation results evaluated with BLEU score.

Model
WMT14 WMT19

FR←→EN DE←→EN DE←→FR
SPDGEN ←→ FR (200k steps) 25.98←→ 25.42 − −
SPDGEN ←→ DE (200k steps) − 17.75←→ 22.97 −
SPDGFR←→ DE (200k steps) − − 16.24←→ 18.77

SPDGEN ←→ FR←→ DE (100k steps) 27.40←→ 26.60 21.21←→ 23.89 20.49←→ 22.32

SPDGEN ←→ FR←→ DE (200k steps) 29.04←→ 28.08 22.33←→ 25.29 21.67←→ 23.29

Table 2: Results of different models trained with SPDG on either two or three indicated languages. The number of
pre-training steps is shown in parenthesis.

Figure 3: PEACH’s performance in pre-training steps
on WMT14’s EN-FR section. Results for EN-DE and
DE-FR are reported in Table 14 in Appendix E.

model on the FR-DE part of the WMT19 dataset
(Barrault et al., 2019) in the same setup. Since the
test set of WMT19 DE-FR datasets is not avail-
able publicly to the best of our knowledge, we
evaluated the models on its validation set. The
model is fine-tuned for 50K steps with a batch size
of 96, a learning rate of 5 × 10−5, and the same
optimizer as pre-training. We use 10K warmup
steps for fine-tuning. More information about the
experiments’ setup is reported in Appendix D. It
should be noted that while translation downstream
datasets usually have millions of samples, we at
most use 50000 × 96 samples of them due to the
lack of computing power. To support the selected
number of samples for the downstream task, we re-
port pre-training and fine-tuning time on the whole
datasets for an epoch in Appendix D. This sample
count is less than 15% of samples for the WMT14

English-French dataset. Additionally, since the pri-
mary purpose of this paper is to introduce a new
method for pre-training multilingual models and
the comparisons happen in the same setup for all
objectives, the results are fair and valid.

The results of our model and other trained mod-
els on translation tasks are reported in Table 1. Ad-
ditionally, the results of our model on EN-FR down-
stream dataset in some pre-training steps are shown
in Figure 3. Also, the results for other downstream
datasets are reported in Table 14 in Appendix E.
The presented results show that PEACH outper-
forms other models, not only with 500K steps
of pre-training but also even with its 200K steps
pre-training checkpoint. Furthermore, the MLM
method used in mT5 achieves worse results than
MLM with Reordering objective that mBART used.
We believe this is because the MLM objective of
mT5 just asks the model to generate the masked
spans in the output, while mBART’s objective asks
the model to reorder and predict the masked spans
of the input document simultaneously. Indeed, the
objective of mBART asks the model to generate
complete sentences in its output, and that is why
it can generate better translations. On the other
hand, mT5 just predicts spans of text, which are
not complete sentences in many cases.

We believe that the better results of our model
stem from its pre-training objective which is similar
to translation tasks. Indeed, we pre-trained our
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model on a massive amount of pre-training data
with a task similar to translation, which increases
the model’s ability in translation when it is fine-
tuned with a smaller amount of translation samples.

To investigate the effect of pre-training on more
than two languages on the performance of our
model on translation tasks, we pre-train a model
based on SPDG for 200K steps for each pair of
languages, and fine-tune them for 50k steps, with
the same setup as PEACH. The results are reported
in Table 2. We show that our multilingual model
with three languages outperforms other models not
only with full pre-training for 200K steps but also
with 100K steps of pre-training. We believe this is
because we perform the SPDG objective between
each pair of languages in its pre-training. Indeed,
this approach for pre-training multilingual models
helps the model simultaneously gain knowledge
about other languages than the pair of languages in
each pre-training example because it observes the
same input with different outputs for each language.
These results support our claim in section 3.2.

Zero- and Few-Shot Translation We evaluate
the pre-trained models in a zero-shot setting to
investigate our model’s ability in low-resource sce-
narios. Each pre-trained model is evaluated on the
test set of WMT14 EN-FR dataset without fine-
tuning. The results of this experiment are reported
in Figure 4. The results for EN-DE and DE-FR sec-
tion of WMT14 and WMT19 are reported in Table
15 in Appendix E. The results in Figure 4 and Ta-
ble 15 show that our model, PEACH, outperforms
other models in zero-shot translation. We believe
this stems from the similarity of its pre-training
objective with actual translation tasks.

Figure 4: Comparing the pre-trained models in zero-shot
setting on WMT14 EN-FR section. Results for EN-DE
and DE-FR are reported in Table 15 in Appendix E.

For few-shot experiments, we fine-tuned
PEACH on 50K samples from the English-French
section of the WMT14 dataset at a maximum of
50K steps. The results are shown in Figure 5.

Accordingly, PEACH outperforms MLM with Re-
ordering model trained in the same setup. Addi-
tionally, PEACH surpasses MLM and MLM with
Reordeing models’ checkpoints in 50K fine-tuning
steps on around 5M samples, after only 10K and
25K steps of fine-tuning on 50K samples. We con-
clude that PEACH performs well in low-resource
scenarios because it is trained on a massive amount
of psuedo-translation data.

Figure 5: Results of fine-tuning PEACH with 50K sam-
ples of WMT14 EN-FR dataset for 0 to 50k steps, and
its comparison with MLM and MLM with Reordering
objectives on 50000× 96 data points. PEACH outper-
forms the fully-trained MLM models after only 25K
fine-tuning steps.

Cross-Lingual Transfer for Translation Here
we evaluate each fine-tuned model on a language
pair on how it performs for other pairs and direc-
tions. We use the fine-tuned models in Table 1 for
these experiments.

The experimental results in Table 3 demonstrate
that PEACH can transfer the knowledge learned
from one language pair to another better than MLM
with Reordering model. We believe this stems from
our pre-training method in which we ask the model
to generate pseudo-translations between each pair
of languages. Furthermore, the results confirm Liu
et al. (2020)’s experiments and show that when-
ever a model fine-tuned on a dataset from A to B
is evaluated on A to C or C to B or B to A, the
results on the evaluation dataset increase more than
other combinations. Additionally, because the in-
puts of PEACH’s encoder are human-generated
texts while the decoder’s expected outputs are the
outputs of the denoising models, fine-tuning from
A to B increases the performance of C to B more
than A to C. Indeed, fine-tuning from A to B helps
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Fine-Tuned / Evaluated
PEACH MLM with Reordering

WMT14 WMT19 WMT14 WMT19
FR←→EN DE←→EN DE←→FR FR←→EN DE←→EN DE←→FR

EN −→ FR − ←→ 11.38 12.35←→ 16.57 12.38←→ 21.91 − ←→ 11.25 11.52←→ 12.51 11.65←→ 11.70

FR −→ EN 11.30←→ − 14.62←→ 21.35 15.05←→ 17.28 11.27←→ − 12.88←→ 12.99 12.68←→ 11.28

EN −→ DE 20.63←→ 11.99 − ←→ 12.70 19.88←→ 13.84 10.80←→ 11.29 − ←→ 12.64 12.89←→ 11.07

DE −→ EN 18.97←→ 24.54 13.39←→ − 14.99←→ 18.85 10.99←→ 13.85 12.71←→ − 11.23←→ 11.09

FR −→ DE 23.64←→ 24.69 18.59←→ 22.69 − ←→ 23.35 12.07←→ 11.43 12.81←→ 11.54 − ←→ 20.65

DE −→ FR 24.88←→ 24.94 20.12←→ 20.74 23.03←→ − 14.72←→ 11.57 12.86←→ 11.92 21.56←→ −

Table 3: The results of experiments on cross-lingual knowledge transfer for translation. We fine-tune the model on
one language and evaluate it on other languages. The results are reported using BLEU score.

Model XNLI
EN FR DE

MLM .676 .480 .463
MLM with Reordering .710 .603 .527

PEACH .745 .637 .636

Table 4: The accuracy results on the XNLI benchmark.

the decoder of our model learn to generate better
outputs by observing human-generated texts in its
decoder. This is because our model did not en-
counter human-generated texts as gold labels in
its output during pre-training. On the other hand,
observing more human-generated inputs is not as
helpful as human-generated outputs since the in-
puts of the model’s encoder were human-generated
text in its pre-training.

In support of the previous point, the results in
Table 3 show that PEACH fine-tuned on the DE-EN
dataset achieves better results than MLM fine-tuned
on the FR-EN dataset, when evaluated on the FR-
EN dataset. Additionally, PEACH fine-tuned on the
EN-FR dataset achieves a comparable result with
MLM with Reordering fine-tuned on the DE-FR
dataset, when evaluated on the DE-FR dataset (0.54
difference in BLEU). We believe this experiment
shows PEACH’s ability to transfer the knowledge
learned from a language to another effectively.

Cross-Lingual Transfer for natural language
inference We focus on translation in this pa-
per. However, we expect that PEACH’s ability
to transfer knowledge between languages is suit-
able for other cross-lingual scenarios as well. To
test this hypothesis, we evaluate PEACH on the
XNLI benchmark (Conneau et al., 2018). We fine-
tune our model for 50K steps with a batch size of
256, a learning rate of 10−3, and a maximum out-
put length of 16 on the MultiNLI English dataset
(Williams et al., 2018) and apply it to the XNLI
benchmark. The results of this experiment are re-
ported in Table 4.

According to Table 4, PEACH outperforms other
models in transferring knowledge from English to
German and French. Considering our pre-training
objective, in which we ask the model to generate
pseudo-translations for each pair of pre-training
languages, we believe this objective helps PEACH
to transfer the knowledge about the English dataset
to other languages better than other pre-trained
models.

5 Conclusion

We introduced SPDG, a semi-supervised method
for pre-training multilingual seq2seq models, to ad-
dress the lack of parallel data between different lan-
guages. In this new method, we use bilingual dictio-
naries and denoising models trained with reorder-
ing, adding, substituting, and removing words to
generate a pseudo-translation for each pre-training
document. We use this generated data to train our
multilingual model, PEACH, for English, French,
and German languages. Our results show that
PEACH outperforms the common pre-training ob-
jectives for training multilingual models. Further-
more, PEACH shows a remarkable ability in zero-
and few-shot translation and knowledge transfer
between languages.

Limitations

The main limitations of our work can be classi-
fied into two types: 1) SPDG’s limitations and 2)
Computational limitations.

SPDG’s Limitations Although our method can
address the issue of limited parallel data between
different languages, it does not solve the problem
completely. First, our method uses bilingual dictio-
naries to translate each pre-training document from
one language to another, which is not always avail-
able for low-resource languages. Furthermore, the
available dictionaries for low-resource languages
do not have a high quality and are not comparable
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with high-resource languages. Additionally, we use
Named Entity Recognition (NER) models to trans-
fer named entities of each pre-training document
into its pseudo-translation, which is unavailable for
some low-resource languages. Therefore, using un-
supervised methods for NER can be a solution for
the mentioned problem, which is not investigated
in this work.

Computational limitations We did not have ac-
cess to clusters of GPU or TPU to train our models
on a large scale and compare them with the results
reported in other papers about multilingual models.
However, we tried to provide a realistic setting for
our experiments. Further investigation into training
models on a larger scale, same as standard multi-
lingual models, can improve this work.
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A Pre-Training and Downstream
Datasets’ Information

We use the CC100 corpus (Wenzek et al., 2020;
Conneau et al., 2020) for pre-training all models in
this work. More specifically, we used the English
(EN), French (FR), and German (DE) parts of the
mentioned corpus. Due to the lack of computing
power and the massive amount of paragraphs in
this corpus, we use around 3GB of the text of each
language, approximately 550M words from each
language and a total of 1.6B words, to pre-train
our models. For more reproducibility, we select
500000×96, the total pre-training steps multiplied

by the used batch size, first paragraphs of each
mentioned language in the corpus as pre-training
samples.

In order to evaluate the models for translation
tasks, we use English to French and English to
German sections of the WMT14 (Bojar et al., 2014)
and the French to German part of the WMT19
dataset (Barrault et al., 2019). The total number of
samples in each set of each pre-training dataset is
reported in Table 5. We do not use all the samples
in all datasets due to the lack of computing power.
We use at most 50000 × 96, the total fine-tuning
steps multiplied by the batch size, unique samples
of each dataset. We use all the samples for datasets
with fewer samples than the mentioned number.
To the best of our knowledge, the test set of the
WMT19 FR-DE dataset is not publicly available.
Therefore, we report the results on the validation
set instead of the test set.

For the experiment on transferring knowledge
from one language to another, we fine-tune PEACH
on the MultiNLI dataset (Williams et al., 2018),
consisting of natural language inference samples
for the English language. Then, we evaluate the
model on English, French, and German samples in
test set in the XNLI dataset (Conneau et al., 2018),
consisting of natural language inference samples
for the mentioned languages. The number of sam-
ples for each dataset is reported in Table 6. Both
mentioned datasets use three labels; neutral, entail-
ment, and contradiction.

Dataset Language Train Dev Test
WMT14 EN←→FR 40836715 3000 3003
WMT14 EN←→DE 4508785 3000 3003
WMT19 EN←→FR 9824476 1512 -

Table 5: Number of Samples in supervised stranslation
datasets.

Dataset Language Train Test
MultiNLI EN 392702 -

XNLI EN - 5010
XNLI DE - 5010
XNLI FR - 5010

Table 6: Number of Samples in natural language infer-
ence datasets.
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B Word-by-Word Translation
Implementation Details

The word-by-word translation was performed in
batches of 1K documents. The batch size does not
affect the algorithm’s performance and should be
chosen based on the available resources.

After lower casing the documents in a batch,
named entities are extracted using the spaCy toolkit.
The identified entities should be divided by white
space characters since the named entities some-
times consist of multiple words. Since the spaCy
toolkit for named entity recognition sometimes
chooses definite articles as a part of named enti-
ties, we filter out definite articles such as "the,"
"le," "la," "les," "der," "die," and "das" and trans-
late them using dictionaries in following steps.

In order to perform word-by-word translation,
we first tokenize the document. We search for the
translation of each token from the source language
to the destination language using the appropriate
dictionary. If we found more than one possible
translation for a token, we uniformly select one of
them. Suppose we can not find any translations for
a token in the source to the destination language
dictionary. In that case, we use source to English
and English to destination dictionary to find a trans-
lation for the mentioned token. First, we search for
a translation from the source language to English
using the source to English dictionary. Next, we
search for a translation from English to the desti-
nation language in the English to the destination
dictionary. This technique is just helpful when
there is a translation from the source token to En-
glish. If we can not find any translations for a token,
we mark it as unknown to decide about it later.

For the terms that were marked as unknown, if
the token contains numbers or punctuations, we
transfer it without any change to the output as a
translated word. Otherwise, we check if the word
is in the extracted named entities. In this case, we
transliterate the word into the destination language
using polyglot library 4 and put it in the output
as a translated word. For complex words such as
"high-end," we break the word into its alphabetical
components and search them in the dictionary. If
we could find a translation for all components, we
would translate each component and concatenate
them using the proper separator. In the case that
none of the aforementioned scenarios happens, we

4https://polyglot.readthedocs.io/en/latest/
Transliteration.html

omit the word and hope the denoising pre-trained
model can find a proper translation for it.

C Denoising Models Pre-Training and
Corruption Rate Details

Language Removing Addition Substitution
EN .066/.061 .01-.03 .05-.07
FR .152/.087 .01-.03 .05-.07
DE .137/.085 .01-.03 .05-.07

Table 7: Rates used for pre-training objectives of De-
noising models. For removing, we report mean/std.

The procedure for generating pre-training data
for training the denoising model is shown in Figure
1. This procedure consists of sentence shuffling,
word removing, addition, and substitution.

The first step for generating pre-training data is
loading a batch of pre-training documents into the
memory as the current batch. We used a batch size
of 1K for generating pre-training data for training
denoising models. The batch size plays an essential
role in this procedure because our algorithm selects
candidates for replacing some words in a sample
from the words available in other sample in the
current batch. We did not investigate the effect of
batch size due to the lack of computing power.

After tokenizing the separated sentences using
the NLTK toolkit, we shuffle the words in each
sentence but keep the relative order of sentences. It
helps the denoising model learn the relative order of
sentences, which is crucial since the word-by-word
translation algorithm might face documents with
multiple sentences. Therefore, this will teach the
denoising model how to figure out the boundaries
of different sentences.

Next, for each sentence, we select m× c words
to be replaced, in which m is the length of the sen-
tence and c is a random number from a uniform
distribution between the reported rates in Table 7.
The algorithm selects m × c unique words from
other samples in the current batch uniformly to be
substituted with the selected words of the current
document. The word addition objective works the
same way as the substitution, but the algorithm
does not replace any words. The word removing
objective works the same, but it uses a normal dis-
tribution for generating the random number, and it
just omits some words from each sentence without
replacing them with other words.

The word substitution and addition rates in Ta-
ble 7 were selected based on observation of the
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outputs of the word-by-word translation algorithm.
On the other hand, we computed the mean and stan-
dard deviation for the proportion of words that the
word-by-word translation algorithm could not find
any translation for them on the pre-training corpus.
The main purpose of the word removing objective
is to find a translation for the words that the word-
by-word translation algorithm could not find any
translation for them by considering the context of
the sentence. Therefore, computing this number on
the pre-training corpus that the final multilingual
model will be trained on will improve the denois-
ing model’s ability to denoise the word-by-word
translation algorithm’s outputs. This decreases the
number of words that the word-by-word translation
algorithm or the denoising model could not find a
translation for them.

D Experiment Details and Setup

It takes six days to pre-train PEACH on 500000×
96 pre-training documents for 500K steps and a
batch size of 96. However, the downstream dataset
for English-French translation consists of almost
40M samples, which is only 8M less than our pre-
training documents and takes five days to fine-tune
for just one epoch. Therefore, choosing 50000×96
samples for fine-tuning is plausible due to the num-
ber of total pre-training documents and steps of
the model’s pre-training. The setup for training
denoising models is reported in Table 8. The exper-
iment setups for pre-training multilingual models
on English, French, and German are reported in Ta-
ble 9. The setups for pre-training bilingual models
used in different experiments are reported in Table
10. Table 11 reports the details of experiments on
fine-tuning models on supervised translation tasks.
The experiment setup for the few-shot scenario is
reported in Table 12. The experiment setup for
the fine-tuning on the XNLI (Conneau et al., 2018)
task is reported in Table 13.

E Figures’ Details and Information

The reported numbers in Figures 3, 4, and 5 are
reported in Tables 14, 15, and 16 for better read-
ability.
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Language Learning rate Steps Batch Size Max Input Length Max Output Length
English .01 500K 96 512 512
German .01 500K 96 512 512
French .01 500K 96 512 512

Table 8: Pre-training settings for denoising models.

Objective Learning rate Steps Batch Size Language Max Input Length Max Output Length
Multilingual SPDG .01 500K 96 EN-FR-DE 512 512

MLM with Reordering .01 500K 96 EN-FR-DE 512 512
MLM .01 500K 96 EN-FR-DE 512 512

Table 9: Pre-training settings for multilingual models trained on English, German, and French.

Objective Learning rate Steps Batch Size Language Max Input Length Max Output Length
SPDG .01 200K 96 EN-FR 512 512
SPDG .01 200K 96 EN-DE 512 512
SPDG .01 200K 96 DE-FR 512 512

Table 10: Pre-training settings for bilingual models.

Dataset Learning rate Steps Batch Size Beam Size Beam alpha Max Input Max Output
WMT14 EN-FR 5× 10−5 50K 96 1 .6 512 512
WMT14 EN-DE 5× 10−5 50K 96 1 .6 512 512
WMT19 DE-FR 5× 10−5 50K 96 1 .6 512 512

Table 11: Fine-tuning settings for models used in supervised translation experiments.

Dataset Learning rate Sample count Steps Batch Size Beam Size Beam alpha Max Input Max Output
WMT14 EN-FR 5× 10−5 50K 1K-50K 96 1 .6 512 512

Table 12: Fine-tuning settings for the few-shot supervised translation experiment.

Dataset Learning rate Steps Batch Size Beam Size Beam alpha Max Input Max Output Language
XNLI 1× 10−3 50K 256 1 .6 512 16 EN-FR-DE

Table 13: Fine-tuning settings for knowledge transfer experiment on natural language inference.

Dataset // Pre-Training steps 100K steps 200K steps 300K steps 400K steps 500K steps
WMT14 FR←→ EN 27.40←→ 26.60 29.04←→ 28.08 30.04←→ 29.01 30.86←→ 29.35 31.25←→ 29.98

WMT14 DE←→ EN 21.21←→ 23.89 22.33←→ 25.29 22.87←→ 26.07 23.25←→ 26.52 23.61←→ 26.97

WMT19 DE←→ FR 20.49←→ 22.32 21.67←→ 23.29 22.12←→ 24.07 22.65←→ 24.70 23.13←→ 25.25

Table 14: PEACH’s performance in different pre-training steps on downstream tasks evaluated with BLEU score.
The fine-tuning setup is reported in Table 11. These numbers are reported in Figure 3.

Model WMT14 WMT19
FR←→EN DE←→EN DE←→FR

MLM 4.33←→ 5.64 6.40←→ 5.69 6.39←→ 4.56

MLM with Reordering 7.42←→ 6.63 7.73←→ 7.96 7.17←→ 7.71

PEACH 12.89←→ 12.98 11.75←→ 14.05 11.83←→ 13.11

Table 15: The zero-shot translation results of the models evaluated with BLEU score. These numbers are reported
in Figure 4
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Fine-tuning steps PEACH MLM MLM with Reordering Sample count

0 12.895563 - 7.420614 50K

1K 13.166867 - 8.080425 50K

3K 15.16206 - 14.288106 50K

5K 20.924359 - 17.13509 50K

10K 26.17157 - 21.928285 50K

15K 27.991698 - 24.24655 50K

20K 28.940293 - 25.608678 50K

25K 29.325823 - 26.304938 50K

30K 29.727194 - 26.939679 50K

35K 30.017766 - 27.462619 50K

40K 30.122644 - 27.770637 50K

45K 30.228142 - 28.110951 50K

50K 30.491127 - 28.309444 50K

50K 31.251482 21.384103 29.029701 5M

Table 16: The zero- and few-shot translation results of the models evaluated with BLEU score on EN-FR section of
WMT 14. These numbers are reported in Figure 5
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Abstract
Training neural MT systems for low-resource
language pairs or in unsupervised settings (i.e.
with no parallel data) often involves a large
number of auxiliary systems. These may in-
clude parent systems trained on higher-resource
pairs and used for initializing the parameters of
child systems, multilingual systems for neigh-
boring languages, and several stages of sys-
tems trained on pseudo-parallel data obtained
through back-translation. We propose here a
simplified pipeline, which we compare to the
best submissions to the WMT 2021 Shared
Task on Unsupervised MT and Very Low Re-
source Supervised MT. Our pipeline only needs
two parents, two children, one round of back-
translation for low-resource directions and two
for unsupervised ones and obtains better or sim-
ilar scores when compared to more complex
alternatives.

1 Introduction

Several known techniques enable the design of neu-
ral MT systems with little or no parallel data for
the source and target languages. Among them are
the initialization with a parent model trained on
parallel data from related languages (Zoph et al.,
2016; Kocmi and Bojar, 2018) and repeated cy-
cles of back-translation of monolingual data that
create pseudo-parallel corpora used for training
(Sennrich et al., 2016a; Hoang et al., 2018). When
designing a very low-resource or unsupervised sys-
tem, many practitioners rightfully consider as a
guideline the best-performing systems found in
several shared tasks, such as WMT Shared Task
on Unsupervised MT and Very Low Resource Su-
pervised MT (Fraser, 2020; Libovický and Fraser,
2021a; Weller-Di Marco and Fraser, 2022), where
teams compete in order to obtain the highest scores
among them. While these systems typically do ob-
tain very high scores, in this paper we show that the
pipelines of the highest-scoring systems in this task
may be unnecessarily complex, and they can be

substantially simplified while still achieving com-
parable results.

To solve this shared task, high-resource parent
models have been leveraged to initialize child mod-
els for low-resource languages, which in turn have
been used to warm-start the training for unsuper-
vised directions. However, the submissions to the
above-mentioned shared task typically developed
several dozen models, with numerous parent/child
models in both directions as well as increasingly
better models trained on several rounds of back-
translated data. These models were finally ensem-
bled for best results.

For the 2021 edition of the task, the unsuper-
vised language pair was Lower Sorbian / German
(DSB/DE), with parallel data only available for
testing, while the low-resource pair was Upper Sor-
bian / German (HSB/DE). A large amount of Ger-
man / Czech (DE/CS) parallel or monolingual data
is available to train parent models, due to the sim-
ilarity of Sorbian dialects to Czech. Moreover,
given the similarity of the two Sorbian dialects,
child low-resource models can become parents of
“grandchild” systems for the unsupervised task. As
a result, these systems are quite complex, which
raises the question: up to which point can these
architectures be simplified with virtually no loss of
performance?

Our study answers this question by presenting
a simpler pipeline than the ones submitted to the
shared task, which reaches superior or compara-
ble scores to the ones from the highest-scoring
teams. In our pipeline, we apply the same selec-
tion and filtering of data as the best-performing
team for comparability. We train high-resource
parent models on authentic parallel data in two
directions (CS↔DE), and then use them to initial-
ize child low-resource models (HSB↔DE). We
improve these systems with one round of back-
translated monolingual data, and finally use them
to initialize systems and to produce back-translated
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data for the unsupervised pair (DSB↔DE). More
specifically, our simplifications are the following:

1. only training from one initialization per
parent-child-grandchild;

2. no multitasking and no multilingual models;

3. length-based filtering of back-translated data
instead of language model-based one;

4. no monolingual data and only moderate
amount of authentic parallel data for high-
resource parent models;

5. a single round of back-translation for low-
resource directions and two for unsupervised
directions;

6. same subword vocabulary for all translation
directions;

7. moderately-sized Transformer-Base instead
of Big;

8. unique set of values for hyper-parameters such
as learning rate and label smoothing.

We make public the configuration files that cre-
ate these systems in the OpenNMT-py framework.1

2 Related Work

2.1 Techniques for Low-Resource and
Unsupervised MT

Transfer learning consists in training a model on a
high-resource pair (parent) that initializes a model
trained on a lower-resource one (child). Initially,
Zoph et al. (2016) kept the same target language
between parent and child. Kocmi and Bojar (2018),
however, showed that the identity or relatedness of
the target languages is not essential, and that all of
the weights of the child systems can be initialized
with those of the parent model without changing
the training routine.

Back-translation consists in automatically trans-
lating monolingual data in the target language, in
order to create a synthetic parallel corpus which
can be used for training (Sennrich et al., 2016a).
Edunov et al. (2018) showed that the benefits of
back-translated data depend on the decoding algo-
rithms used to generate it, and that beam search is
not the best-performing option unless the amount
of data to back-translate is small. This, however,
can be mitigated by differentiating authentic and
synthetic data with tags (Caswell et al., 2019). This
process can also be performed iteratively, as shown

1github.com/AlexRAtrio/simplified-pipeline

by Hoang et al. (2018), with either the same model
generating initial back-translated data, improving
its performance, and re-generating the data, or
by training a new model for each round of back-
translation, which improves the quality of the syn-
thetic data.

When large monolingual corpora are available,
fully unsupervised NMT can be achieved by using
masked language modeling, denoising, or trans-
lation language modeling (Lample et al., 2017,
2018; Conneau and Lample, 2019). This results in
cross-lingual language models (Conneau and Lam-
ple, 2019), which can further be trained on back-
translated data. Such systems perform best when
jointly trained on very large monolingual datasets
and when a small amount of parallel data is avail-
able (Song et al., 2019; Liu et al., 2020). However,
this is not the case for some of the datasets of the
WMT shared task considered here.

2.2 Submissions to the WMT21 Shared Task

Six teams competed for the highest scores in the
low-resource Upper Sorbian / German and the un-
supervised Lower Sorbian / German translation
tasks at the WMT 2021 Shared Tasks on Unsu-
pervised MT and Very Low Resource Supervised
MT (Libovický and Fraser, 2021a). The datasets
used in the tasks are presented in Section 4.1 be-
low. The organizers scored the submissions using
automatic metrics over held-out test sets. NRC-
CNRC (Knowles and Larkin, 2021) and LMU (Li-
bovický and Fraser, 2021b) achieved some of the
highest scores in both tasks. Other competitive
scores were achieved by CL_RUG (Edman et al.,
2021) and NoahNMT (Zhang et al., 2021), fol-
lowed at some distance by IICT-Yverdon (Atrio
et al., 2021). Since no team participated in both
tasks, and NoahNMT used a particularly complex
pipeline with very large amounts of training data
and a pre-trained BERT encoder, we decided to
work towards the simplification of the NRC-CNRC
and LMU 2021 pipelines.

The NRC-CNRC submission (Knowles and
Larkin, 2021) experimented with various numbers
of BPE merges (Sennrich et al., 2016b) for differ-
ent translation directions and for generating syn-
thetic data for training. Their final vocabularies
contain 25k and 20k subwords for the supervised
and unsupervised models, respectively. They built
the BPE tokenizer from upscaled HSB, CS and
DE data, but without DSB. The architecture is
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based on Transformer-Base (Vaswani et al., 2017),
with frequent ensembling throughout the pipeline.
They use Moore-Lewis filtering (Moore and Lewis,
2010) of back-translated sentences. They train par-
ent CS↔DE models on the entire parallel CS-DE
data in Table 1, with BPE-dropout (Provilkov et al.,
2020). From them, they initialize child HSB↔DE
models, which are further fine-tuned into grandchil-
dren DSB↔DE.

The final HSB→DE system from NRC-CNRC
is an ensemble of eight different models. Six of
them are children and grandchildren of CS-DE
models, and two are multilingual CS-DE and HSB-
DE models (with no transfer learning). Among
the other six, there are different values for hyper-
parameters like learning rate or label smoothing.
After training with various filtering strategies for
back-translated sentences, Moore-Lewis filtering
was found to perform best, although differences are
generally smaller than 1 BLEU point. Some models
are fine-tuned only with back-translations, or only
authentic data, or both. For DE→HSB translation,
the translation is generated with an ensemble of
seven systems. The final NRC-CNRC submission
to the DSB→DE unsupervised task is an ensemble
of two grandchild systems trained with different
back-translated corpora, and for DE→DSB it is
an ensemble of four grandchildren, with different
rounds of back-translation, different learning rates,
and at least one different CS-DE parent model.

The LMU submission (Libovický and Fraser,
2021b) starts with a BPE tokenizer with 16k
merges, on the entire HSB, DE, CS and DSB
data. Parent Transformer-Base CS↔DE models
are trained on the entire CS-DE parallel data, which
is filtered by length and language identity. To this
authentic data, they add 20M lines of monolin-
gual CS and DE respectively for back-translation,
which they use to train another set of parent mod-
els with Transformer-Big, sampling and tagged
back-translation. Child HSB→DE and DE→HSB
models (also Transformer-Big) are trained from CS-
DE parents, first on authentic parallel data. Then,
they are used to iteratively back-translate 15M lines
of DE and the entire HSB monolingual data for
four rounds, with a new model initialization for
each round. To obtain DSB→DE and DE→DSB
grandchildren systems, iterative back-translation is
performed for eight rounds, initialized from the re-
spective HSB/DE Transformer-Big child systems.

A similar shared task was again organized at

WMT 2022, including HSB↔DE and DSB↔DE
translation (Weller-Di Marco and Fraser, 2022).
Additional parallel HSB-DE data was provided, in-
creasing the total to about 0.5 million lines, which
likely increased scores for the low-resource su-
pervised tasks HSB↔DE. Moreover, an unsuper-
vised HSB↔DE and a low-resource supervised
DSB↔HSB translation tasks were introduced.

Four teams participated in the low-resource
supervised tasks, and three in the unsupervised
ones. In most tasks, HuaweiTSC (Li et al., 2022)
achieved by far the highest scores, thanks to a deep
35-layer encoder, 6-layer decoder Transformer
(Wei et al., 2021) and a parent multilingual model
trained on vast amounts of data (including 55M
lines of DE-CS, 66M lines of DE-PL, and 20M
of monolingual DE). In addition to the techniques
we study in this paper, Li et al. (2022) used reg-
ularized dropout (Liang et al., 2021) to improve
consistency while training. Their setup thus also
consisted of numerous and expensive training steps,
just as the NRC-CNRC and LMU systems to which
we compare our proposal.

3 Proposed Pipeline

We propose a simplified training pipeline repre-
sented in Figure 1, which reaches comparable or
better results than the above systems. The pipeline
is minimal, in the sense that only eight systems
are trained for HSB↔DE and DSB↔DE transla-
tion, including parent systems for initialization. We
show that one round of back-translation for low-
resource directions and two for unsupervised ones
are sufficient. In comparison with the numerous
rounds and checkpoints of the NRC-CNRC and
LMU systems, our pipeline is an order of magni-
tude smaller.

We start by training from scratch parent mod-
els DE→CSparent and CS→DEparent on authentic
parallel data. From their best-performing check-
point, we respectively initialize DE→HSBauthentic
and HSB→DEauthentic models, which we train only
on authentic parallel data. We then use their best-
performing checkpoints to generate synthetic par-
allel data (back-translations) by translating mono-
lingual target data (resulting in synthetic datasets
HSBBT-DEmono and DEBT-HSBmono). We initial-
ize from the best-performing checkpoints of the
previous systems new models DE→HSBauthentic+BT
and HSB→DEauthentic+BT which we train on up-
scaled authentic parallel data and back-translated
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Figure 1: Pipeline of implemented systems. Solid arrows represent the parent systems used, and dashed arrows
represent creation of synthetic data through back-translation. The datasets in color are those presented in Table 1.
The datasets in white, to the right of dashed lines, are the back-translations (BT) generated by our systems. The
unsupervised models are trained with two rounds of back-translation.

data.
Finally, with the best-performing checkpoint

of system HSB→DEauthentic+BT, we perform back-
translation of monolingual DSB data (resulting
in DEBT1-DSBmono), and train with this first
round of synthetic parallel data the unsupervised
DE→DSBunsupervised(a) model. We use this sys-
tem for the first round of back-translation in
the opposite direction, of the DE part of the
HSB-DE authentic data and monolingual DE
(resulting in DSBBT1-DE and DSBBT2-DEmono)
into DSB, on which we train the unsupervised
DSB→DEunsupervised(a) model. We then use this
system for the second round of back-translation
of monolingual DSB data and train another unsu-
pervised DE→DSBunsupervised(b) model, and with
it we perform a second round of back-translation
of monolingual DE to train a final unsupervised
DSB→DSBunsupervised(b) model.

4 Data, Preprocessing and Systems

4.1 Corpora

The datasets we use are listed in Table 1, and
the identifiers correspond to those in Figure 1.
They encode the language and index number for
authentic parallel DE-CS, authentic parallel DE-
HSB, and monolingual HSB, DSB, and DE. For
the CS↔DE parent models we use parallel data
from DGT (Tiedemann, 2012; Steinberger et al.,

ID - Dataset Size
Language name (sentences)

DE-CS

DGT v8 4,894

Europarl v8 569

JW300 1,039

News Comm. v16 197

OpenSubtitles 16,358

WMT-News 20

DE-HSB
WMT 2020 Train 60

WMT 2021 Train 88

HSBmono

WMT20 Sorbian Inst. 340

WMT20 Web 133

WMT20 Witaj 222

DSBmono WMT21 Mono. 145

DEmono WMT21 News Crawl 19 1,500

Table 1: Monolingual and parallel corpora with their
languages as presented in Figure 1. We provide the
number of lines (sentences) after filtering, in thousands.

2012), Europarl (Koehn, 2005), JW300 (Agić and
Vulić, 2019), OpenSubtitles (Lison and Tiedemann,
2016), News Commentary, and WMT-News.2 Our
HSB↔DE models use datasets from the 2020 edi-
tion of the task, with monolingual HSB data from
three sources: (a) the Sorbian Institute provided a
mix of high- and medium-quality HSB data; (b) the
Witaj Sprachzentrum provided high-quality HSB

2statmt.org/wmt20/translation-task.html
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data; (c) the Web data consists of web-scraped
noisier HSB data gathered by the Center for Infor-
mation and Language Processing at LMU Munich
(Fraser, 2020). Our DSB↔DE models use only the
monolingual Lower Sorbian (DSB) dataset from
the 2021 shared task.

To evaluate our systems, we use the
‘Newstest2019-csde’ as a test set for our CS↔DE
models. For our HSB↔DE and DSB↔DE models
we use the ‘devel’ set from the WMT20 task
during development, and ‘devel_test’ for final
evaluations. Since the official scores of the task are
calculated on an undisclosed subset of the blind
test set, we cannot compare our results with the
final official ones. We will thus compare them with
the scores on ‘devel_test’ reported by each team in
their articles. Our two evaluation metrics are the
same as in the shared task. We use the SacreBLEU
library (Post, 2018) to compute BLEU (Papineni
et al., 2002).3 We also use BERTScore4(Zhang
et al., 2019), with the XLM-RoBERTa-Large
model (Conneau et al., 2020) for translations into
German, as provided with the BERTScore toolkit.
We test the statistical significance of differences
in scores at the 95% confidence level using paired
bootstrap resampling from SacreBLEU.

4.2 Data Filtering

For comparison purposes, we follow closely the
data preparation procedure of the NRC-CNRC
team (Knowles and Larkin, 2021). We first
clean the training data with the clean_utf8.py
script from PortageTextProcessing.5 Subse-
quently, parallel training data is filtered with the
clean-corpus-n.perl script from Moses (Koehn
et al., 2007) to remove sentence pairs with a length
ratio larger than 15. Punctuation is then nor-
malized using the normalize-punctuation.perl
script from Moses. Finally, non-breaking spaces
(Unicode U+00A0 or ‘\xa0’) and empty lines are
deleted.

For all DE-CS parallel data and all monolingual
DE and CS data, lines that contain characters which
have not been observed in DE-HSB training data,
WMT-News, or Europarl corpora are deleted. This
is done to eliminate encoding issues and text that

3github.com/mjpost/sacrebleu, signature: nrefs:1|case:
mixed|eff:no|tok:13a|smooth:exp|version:2.3.1.

4github.com/Tiiiger/bert_score, signature: xlm-roberta
-large_L17_no-idf_version=0.3.12(hug_trans=4.26.0)
_fast-tokenizer

5github.com/nrc-cnrc/PortageTextProcessing

is clearly in other languages. The DE monolingual
dataset consists of a likewise cleaned random sam-
ple of the full WMT21 News Crawl 19 corpus. The
numbers of lines after filtering are shown in the
two rightmost columns of Table 1.

4.3 Tokenization

We start tokenizing sentences into words with the
Moses tokenizer: tokenizer.perl -a -l $LNG,
where $LNG is cs or de, using the cs code also
for HSB and DSB data. Then, we use Byte Pair
Encoding (BPE) (Sennrich et al., 2016b)6 to build a
vocabulary of 20k subwords. For building the BPE
models, we used all HSB-DE data, the Sorbian
Institute and Witaj monolingual HSB data (but not
the Web-crawled HSB data, which is too noisy),
both sides of CS-DE data, and News-Commentary
(DE) data. The HSB data was upscaled twice. The
same datasets were used for extracting the joint
vocabulary, which was then used to tokenize the
source and target sides with a BPE-Dropout rate of
0.1 (Provilkov et al., 2020).

In post-processing, we detokenize BPE sub-
words with the BPE toolkit and then with a script
from Moses: detokenizer.perl -a -l $LNG,
where $LNG is cs or de, using the cs code also for
HSB and DSB data.

4.4 System Architecture

We use Transformer models (Vaswani et al., 2017)
from the OpenNMT-py library (Klein et al., 2017)
version 2.3.0.7 We use the following default values
of hyper-parameters from Transformer-Base: 6 en-
coder/decoder layers, 8 attention heads, Adam opti-
mizer (Kingma and Ba, 2014), label smoothing of
0.1, dropout of 0.1, hidden layer of 512 units, and
FFN of 2,048 units. We share the vocabulary and
use the same embedding matrix for both input and
output languages. The batch size is 8,192 tokens,
and the maximum sequence length for both source
and target is 501 tokens. We keep OpenNMT-py’s
scaling factor of 2 over the learning rate. We use
standard values for hyper-parameters in order to
maintain a simplified pipeline, although it is likely
that a more regularized system could further im-
prove scores (Atrio and Popescu-Belis, 2022).

We do not use any early stopping measure and
train for a sufficiently large amount of steps to en-
sure convergence. We train the parent CS↔DE

6github.com/rsennrich/subword-nmt
7github.com/OpenNMT/OpenNMT-py
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models for 500,000 steps, and the children and
grand-children ones for 100,000 steps. To train
our models we use between one and four Nvidia
RTX 2080 Ti with 11 GB RAM which amounts
to around 80 hours for parent models, 30 hours
for children models (systems 3/4 and 5/6), and 15
hours for grandchildren models. As better parent
systems lead to better children, we trained the par-
ents for a longer time, given also the larger parallel
data available.

We save checkpoints every 4,000 steps during
training, and obtain the testing scores from an en-
semble of the four best checkpoints in terms of
BLEU scores on the validation data. When testing,
we use a beam size of 5 for all systems, except
when indicated otherwise for back-translation.

5 Results of the Proposed Pipeline

5.1 Parent DE↔CS Systems

We first train the DE→CSparent and CS→DEparent
models (see Figure 1) on the authentic parallel CS-
DE data presented in Table 1. The BLEU and
BERTScore of these systems, shown in Table 2,
are respectively 20.2 and 22.1. These are compara-
ble with the ones reported by NRC-CNRC (22–25
BLEU points) and with those with the same archi-
tecture appearing in the Opus-MT leaderboard8,
trained on OPUS parallel data (Tiedemann, 2012)
using Opus-MT-Train (Tiedemann and Thottingal,
2020).

Choosing Czech for the parent model is reason-
able due to its similarity with Upper and Lower
Sorbian, but we have found that this similarity is
not crucial (Atrio et al., 2021). Using a similar
setup, we observed almost identical results with a
Polish↔German parent model, and a loss of only
1.3 BLEU points with a French↔German one.

5.2 Child DE↔HSB Systems

We initialize the child systems DE→HSBauthentic
and HSB→DEauthentic models from the highest-
scoring checkpoint of the respective parent, and
trained them on authentic parallel HSB-DE data.
The systems reached BLEU scores of 56.7 and 56.1
respectively (see Table 2).

One round of back-translation. We hypoth-
esize that due to the already existing authentic
parallel data, one round of back-translation (BT)
could be sufficient. We use the above systems

8opus.nlpl.eu/leaderboard/DE→CS and CS→DE

System BLEU BERTScore
DE→CSparent 20.2 .936
CS→DEparent 22.1 .938
DE→HSBauthentic 56.7 -
HSB→DEauthentic 56.1 .975

Table 2: BLEU and BERTScore on newstest2019 for
CS-DE parent models and devel_test for HSB-DE
models trained only on authentic data.

to generate synthetic parallel data from monolin-
gual DE and HSB corpora. To generate it, we
decode by sampling from the entire model distri-
bution rather than applying beam search, follow-
ing Edunov et al. (2018). As shown in Figure 1,
with the HSB→DEauthentic and DE→HSBauthentic
systems we translate the DEmono data into HSBBT.
Similarly, we translate the HSBmono data into
DEBT. Therefore, we obtain two pseudo-parallel
datasets with authentic target sides. We apply
to them the same filtering process as in Sec-
tion 4.2, except for a more restrictive cut-off for
clean-corpus-n.perl, using a maximum ratio of
1.5 between sentences instead of 15. This filter-
ing results in the deletion of respectively 5% and
11% of the HSB-DE and DE-HSB pseudo-parallel
datasets.

We continue training the HSB→DEauthentic and
DE→HSBauthentic systems with authentic paral-
lel HSB-DE data and the back-translated data,
with the former being upscaled to match the num-
ber of lines of the latter. We obtain respec-
tively the systems noted HSB→DEauthentic+BT and
DE→HSBauthentic+BT. The improvements brought
by this round of back-translation are only of
about 1 BLEU point (see Table 5). Our scores
are similar to those reported by NRC-CNRC
without inter-model ensembling (57-58 BLEU).
With the highest-scoring checkpoint for each of
HSB→DEauthentic+BT and DE→HSBauthentic+BT we
generate synthetic data for the unsupervised case
by translating monolingual DSB and DE.

Iterative back-translation. We found that our
pipeline does not benefit from multiple rounds
of back-translation thanks to an additional exper-
iment, not included in the final pipeline. Follow-
ing Libovický and Fraser (2021b), for each round
of back-translation i (with i = a, b, c), systems
HSB→DEauthentic+BT(i) and DE→HSBauthentic+BT(i)
are respectively initialized from the parent mod-
els CS→DEparent and DE→CSparent trained on
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CS-DE data, instead of child systems trained
on only authentic data HSB→DEauthentic and
DE→HSBauthentic as performed above. Decod-
ing and filtering remain as described above as
well. Otherwise, the first round of back-translation
remains as above, and the second round results
in new pseudo-parallel datasets on which we
train new systems in both directions (also in-
cluding upscaled authentic parallel data HSB-
DE), resulting in systems HSB→DEauthentic+BT(b)
and DE→HSBauthentic+BT(b). We perform a third
round to obtain systems HSB→DEauthentic+BT(c)
and DE→HSBauthentic+BT(c). Hence, this method
differs from our main proposed pipeline in the us-
age of three rounds versus one, and the initializa-
tion of models from CS-DE parents instead of the
child HSB-DE systems trained on authentic parallel
data.

While several studies have suggested that mul-
tiple back-translation rounds are beneficial, our
findings are more nuanced. As we observe in Ta-
ble 3, for the direction DE→HSB, the first round
of back-translation improves BLEU by 1.2 points,
but afterwards scores decrease. For the direction
HSB→DE, on the contrary, BLEU scores continue
to improve with more iterations, although with di-
minishing returns, with a final improvement of 0.7
points. We hypothesize that this is due to the mono-
lingual DE dataset being larger than the HSB one.

Direction System BLEU

DE→HSB

DE→HSBauthentic 56.7
DE→HSBauthentic+BT(a) 57.9⋆
DE→HSBauthentic+BT(b) 57.6⋆
DE→HSBauthentic+BT(c) 57.4

HSB→DE

HSB→DEauthentic 56.1*
HSB→DEauthentic+BT(a) 56.5*
HSB→DEauthentic+BT(b) 56.5*
HSB→DEauthentic+BT(c) 56.8

Table 3: BLEU scores for only authentic parallel data,
and three rounds of back-translation: DE→HSB sys-
tems are trained with DEBT(i)-HSBmono and HSB→DE
systems are trained with HSBBT(i)-DEmono. We note
in bold the highest score in each direction. We denote
scores that are not significantly different per direction
with the same symbol.

In contrast, Libovický and Fraser (2021b) ob-
served more significant improvements over four
rounds of iterative back-translation, although also
with diminishing returns. For HSB→DE, their im-
provement was 2.7 (up to 56.1 BLEU), starting

however from a lower score than ours (53.4) and
getting half of the improvement in the first iteration.
For the DE→HSB, they achieve a smaller improve-
ment of 1.6, up to 56.5 overall, starting from 54.9.
Their highest scores are obtained after two rounds.
We hypothesize that the difference between our re-
sults and theirs regarding the HSB→DE direction
is explained by their use of ten times more mono-
lingual DE data, coupled with a larger architecture.

Following Edunov et al. (2018) we experi-
mented with various decoding methods for the
back-translation stage. As a comparison to the
full unrestricted sampling we use in all systems,
we studied restricted sampling of the top 10 candi-
dates, as well as the dropout of 10% of the words
after standard decoding, and their combination. For
DE→HSBauthentic+BT(a) the three methods obtained
nearly identical scores (57.54, 57.54, and 57.51),
and none of them substantially deviated from our
original method. This supports previous observa-
tions by Edunov et al. (2018) showing that dif-
ferences between decoding algorithms for back-
translation are only noticeable when the monolin-
gual data size is large (e.g. more than 8M lines).

5.3 Grandchild DE↔DSB Systems

In contrast with the DE↔HSB low-resource case,
we hypothesize that more than one round of back-
translation may be useful in the unsupervised case.
We used system HSB→DEauthentic+BT to create
the pseudo-parallel dataset DEBT-DSBmono, with
which we trained system DE→DSBunsupervised(a).
With this system, we generated synthetic DSB
data from the DE part of the HSB-DE authen-
tic data as well as monolingual DE, resulting in
DSBBT1-DE and DSBBT2-DEmono. For rounds b
and c we repeated the process as with HSB-DE,
initializing system DE→DSBunsupervised(b), (and
then c) and system DSB→DEunsupervised(b) (and
then c), respectively from the highest-scoring
checkpoint from systems DE→HSBauthentic+BT and
HSB→DEauthentic+BT, and generating synthetic
data with each other. Filtering removed between 6-
9% of the lines. The scores of the resulting systems
are shown in Table 4.

For DE→DSB, the second round of back-
translation produced a large improvement of
3.3 BLEU points over the first round, but the
third round resulted in a minimal improvement
of 0.1. The large improvement of system
DE→DSBunsupervised(b) may be explained by the
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Direction System BLEU

DE→DSB

DE→DSBunsupervised(a) 26.1
DE→DSBunsupervised(b) 29.4⋆
DE→DSBunsupervised(c) 29.5⋆

DSB→DE

DSB→DEunsupervised(a) 36.5
DSB→DEunsupervised(b) 38.1*
DSB→DEunsupervised(c) 38.4*

Table 4: BLEU scores for three rounds of back-
translation: DE→DSB systems are trained with DEBT(i)-
DSBmono and DSB→DE systems are trained with
DSBBT(i)-DEmono and DSBBT(i)-DE (the DE part of the
authentic HSB-DE data). The highest score in each
direction is in bold. Scores that are not significantly dif-
ferent per direction are marked with the same symbol.

fact that the synthetic data used to train it is
the first DE set translated by a true DSB system
(DSB→DEunsupervised(a)). For DSB→DE we also
observe improvements from several rounds of back-
translation, with the second one improving BLEU

by 1.6 points and the third round improving only
minimally by 0.3 points. We hypothesize that this
difference is due to the lower amount of DSB mono-
lingual data versus DE, and the back-translation
of the DSB data being generated by a model that
had not been trained on DSB. For both directions
(DE→DSB and DSB→DE) the difference between
systems a and b was significant, but not between
b and c. As a result, we excluded extra rounds of
back-translation for low-resource HSB-DE from
our simplified pipeline, and only performed two
rounds for unsupervised DSB-DE.

6 Discussion and Conclusion

We show in Table 5 the final results of our pipeline,
compared to the highest scores for each direction
obtained in the WMT 2021 shared task (Libovický
and Fraser, 2021a). Scores from CFILT (Khatri
et al., 2021) are not shown because we do not have
access to their ‘devel_test’ scores. HSB-DE scores
from CL_RUG are intermediate scores for their
unsupervised DSB-DE systems.

On both low-resource directions (HSB↔DE)
our simpler pipeline obtains comparable results
to the three highest-scoring teams (NRC-CNRC,
LMU and NoahNMT systems). Our scores on
one unsupervised direction (DSB→DE) surpass
those of the three participants, while on the other
(DE→DSB) our scores are comparable to those of
the two highest-scoring teams (NRC-CNRC and
LMU). To explain the latter result, we hypothesize

that our simplified pipeline is more sensitive to
weight initialization, and therefore is less robust
across all directions than a more complex pipeline.

Compared to the NRC-CNRC submission, our
pipeline uses the same data selection and filter-
ing, a single vocabulary for the tokenizer, trains
from a single random initialization for each of the
translation direction, does not train multitask or
multilingual models, uses a much simpler filtering
for back-translated sentence pairs, and sets a single
set of values for hyper-parameters such as learning
rate and label smoothing.

Compared to LMU, our pipeline uses a smaller
amount of authentic parallel data for the par-
ent CS↔DE models, does not use monolin-
gual data back-translated for these parent models,
and uses an architecture with fewer parameters
(Transformer-Base instead of Big). Moreover, we
use only one round of back-translation instead of
four for the child HSB↔DE systems and two in-
stead of eight for the grandchild DSB↔DE systems
submitted by LMU.

NoahNMT also produced high scores on the
supervised tasks, although with the use of a pre-
trained BERT model (Devlin et al., 2019), vast
amounts of monolingual data (100M lines), and
dual parent transfer. CL_RUG scored well in
the unsupervised tasks, but made use of sequence
masking, denoising auto-encoding, cross-lingual
back-translation, and vocabulary alignment be-
tween HSB and DSB with VecMap (Artetxe et al.,
2018). IICT-Yverdon applied a scheduled multi-
task training to both the supervised and unsuper-
vised directions, which appeared to be particularly
ineffective for the unsupervised task.

We now provide some hypotheses on why our
simplified pipeline produces scores that are compa-
rable with those from more complex ones. Firstly,
a much better trained parent model does not nec-
essarily result in noticeable better child models.
Whatever the cause of the improvement of the par-
ent models (additional parent training data, parent
back-translation, or additional parent pairs), when
several stages in the training pipeline can be found
afterwards (such as training on authentic data, then
children back-translation, then grandchildren back-
translation, etc.), the initial benefit may be lost later
in the pipeline. This is particularly exacerbated
when child systems are later trained with data of
dubious quality, such as back-translations. Artetxe
et al. (2020), for instance, showed that when per-
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System DE→HSB HSB→DE DE→DSB DSB→DE
BLEU BLEU BERTScore BLEU BLEU BERTScore

NRC-CNRC 59.9 60.0 - 31.0 34.9 -
LMU 56.5 56.2 .938 30.1 33.8 .874
NoahNMT 58.3 58.5 - - - -
CL_RUG 52.1 51.6 - 24.9 32.1 -
IICT-Yverdon 54.6 53.2 - 9.62 - -
Ours 57.4 57.0 .976 29.4 38.1 .958

Table 5: BLEU and BERTScore on the ‘devel_test’ set of the best-performing system of each team, with our
proposals at the bottom. The highest score per direction is in bold. The systems are referenced in Section 2.2 above,
and ‘-’ indicates that the score is not available.

forming iterative back-translation, the quality of
the initial system has minimal effect on the final
performance, as systems tend to converge to scores
dictated by the monolingual data.

This first hypothesis feeds into a second hypoth-
esis: large amounts of parent parallel or monolin-
gual data make it reasonable for practitioners to
choose larger architectures, which must then be
carried over to the lower-resource children, since
pruning rarely happens mid-pipeline. Although
there is evidence that fitting large models to very
small amounts of data is not necessarily detrimen-
tal (Belkin et al., 2019) and can even be beneficial
(Li et al., 2020), it is unclear if this still holds with
a more complex training pipeline. In any case, a
smaller architecture in a low-resource setting, while
still over-parameterized, can perform as well as a
larger one.

As a third hypothesis, and on a more practical
note, since it is necessary to carry out the full
pipeline to obtain the final results, some practi-
tioners may choose to introduce elements into the
pipeline without empirically measuring the extent
to which they improve the scores, since that some-
times may require re-training the entire pipeline.

Finally, modern Transformer-based systems are
robust, and there seems to be a large area of “ac-
ceptable results" which is relatively easy to access,
as we have empirically shown with our comparison
to five different submissions to the WMT shared
task. However, our pipeline is only trained on a
group of similar languages (Czech, Upper Sorbian,
and Lower Sorbian) to and from German, which
may not generalize in the same manner to other
languages or domains.

To sum up, although the competition to achieve
first place in shared tasks such as the one discussed
here leads participants towards increasingly com-

plex pipelines, we have shown that competitive or
even better results can be achieved with a much sim-
pler training pipeline. We hope this will encourage
practitioners to further participate in shared tasks
such as these, while minimizing entry constraints
regarding time, training strategy, or computing re-
sources.

Limitations

The simplified pipeline put forward in this paper
has demonstrated its merits in one specific context,
but should also be tested with different data sizes
and differences in language similarity. Although
we compared with the main techniques used by
the participants, it is possible that other techniques
for unsupervised translation based on vector space
alignment are also competitive, though this is less
likely here given the scarcity of monolingual data
for Sorbian.

Ethics Statement

This study does not process personal or sensitive
data. While MT in general may facilitate disclosure
or cross-referencing of personal information, which
may pose threats to minorities, the community ap-
pears to consider that the potential benefits far out-
weigh the risks, judging from the large number of
studies for low-resource and unsupervised MT.
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Abstract

Large multilingual models trained with self-
supervision achieve state-of-the-art results in a
wide range of natural language processing tasks.
Self-supervised pretrained models are often
fine-tuned on parallel data from one or multiple
language pairs for machine translation. Multi-
lingual fine-tuning improves performance on
low-resource languages but requires modifying
the entire model and can be prohibitively expen-
sive. Training a new adapter on each language
pair or training a single adapter on all language
pairs without updating the pretrained model
has been proposed as a parameter-efficient al-
ternative. However, the former does not permit
any sharing between languages, while the latter
shares parameters for all languages and is sus-
ceptible to negative interference. In this paper,
we propose training language-family adapters
on top of mBART-50 to facilitate cross-lingual
transfer. Our approach outperforms related
baselines, yielding higher translation scores on
average when translating from English to 17 dif-
ferent low-resource languages. We also show
that language-family adapters provide an effec-
tive method to translate to languages unseen
during pretraining.

1 Introduction

Recent work in multilingual natural language pro-
cessing (NLP) has created models that reach com-
petitive performance, while incorporating many
languages into a single architecture (Devlin et al.,
2019; Conneau et al., 2020). Because of its abil-
ity to share cross-lingual representations, which
largely benefits lower-resource languages, multi-
lingual neural machine translation (NMT) is an
attractive research field (Firat et al., 2016; Zoph
et al., 2016; Johnson et al., 2017; Ha et al., 2016;
Zhang et al., 2020; Fan et al., 2021). Multilingual
models are also appealing because they are more ef-
ficient in terms of the number of model parameters,

†Work done prior to joining Microsoft

enabling simple deployment (Arivazhagan et al.,
2019; Aharoni et al., 2019). Massively multilin-
gual pretrained models can be used for multilingual
NMT, if they are fine-tuned in a many-to-one (to
map any of the source languages into a target lan-
guage, which is usually English) or one-to-many (to
translate a single source language into multiple tar-
get languages) fashion (Aharoni et al., 2019; Tang
et al., 2020). Training a many-to-many (multiple
source to multiple target languages) NMT model
(Fan et al., 2021) has also been proposed.

Multilingual pretrained models generally permit
improving translation on low-resource language
pairs. Specializing the model to a specific lan-
guage pair further boosts performance, but is com-
putationally expensive. For example, mBART-50
(Tang et al., 2020), a model pretrained on mono-
lingual data of 50 languages using denoising auto-
encoding with the BART objective (Lewis et al.,
2020) still has to be fully fine-tuned for NMT.

To avoid fine-tuning large models, previous
work has focused on efficiently building multi-
lingual NMT models. Adapters (Rebuffi et al.,
2017; Houlsby et al., 2019), which are lightweight
feedforward layers added in each Transformer
(Vaswani et al., 2017) layer, have been proposed
as a parameter-efficient fine-tuning method. In ma-
chine translation, training a different adapter on
each language pair on top of a frozen pretrained
multilingual NMT model, has shown to improve
results for high-resource languages (Bapna and Fi-
rat, 2019). Low-resource languages do not benefit
from this approach though, as adapters are trained
with limited data. In a similar vein, Cooper Stick-
land et al. (2021) fine-tune a pretrained model for
multilingual NMT using a single set of adapters,
trained on all languages. Their approach manages
to narrow the gap but still does not perform on par
with multilingual fine-tuning.

Many-to-one and one-to-many NMT force lan-
guages into a joint space (in the encoder or decoder

59



side) and neglect diversity. One-to-many NMT
faces the difficulty of learning a conditional lan-
guage model and decoding into multiple languages
(Arivazhagan et al., 2019; Tang et al., 2020). To bet-
ter model target languages, recent approaches pro-
pose exploiting both the unique and the shared fea-
tures (Wang et al., 2018), reorganizing parameter-
sharing (Sachan and Neubig, 2018), decoupling
multilingual word encodings (Wang et al., 2019a),
training NMT models from scratch after creating
groups of languages (Tan et al., 2019), or inserting
language-specific layers (Fan et al., 2021).

In this work, we propose using language-family
adapters that enable efficient low-resource mul-
tilingual NMT. We train adapters for NMT on
top of mBART-50 (Tang et al., 2020). The
adapters are trained using bi-text from each lan-
guage family, while the pretrained model is not
updated. Groups of languages are formed based
on linguistic knowledge bases. Our approach im-
proves positive cross-lingual transfer, compared to
language-pair adapters (Bapna and Firat, 2019),
which do not leverage cross-lingual information be-
tween languages, and language-agnostic adapters
(Cooper Stickland et al., 2021), which are trained
on all languages and can suffer from negative in-
terference (Wang et al., 2020). Our approach not
only yields better translation scores in the majority
of languages examined, but also requires less than
20% of trainable parameters compared to language-
pair adapters, i.e., the most competitive baseline.

Our main contributions are:

1. A novel, effective approach for low-resource
multilingual translation which trains adapters
on top of mBART-50 for each language fam-
ily. In the English-to-many setting which we
examine, language-family adapters achieve
a +1 BLEU improvement over language-
pair adapters and +2.7 BLEU improvement
over language-agnostic adapters on 16 low-
resource language pairs from OPUS-100.

2. We propose inserting embedding-layer
adapters into the Transformer to encode
lexical information and conduct an ablation
study to assess their utility.

3. We contrast grouping languages based on lin-
guistic knowledge to grouping them based
on the representations of a multilingual pre-
trained language model (PLM) with a Gaus-
sian Mixture Model (GMM).

4. We analyze the effect of our approach when
evaluating on languages that are new to
mBART-50.

2 Background

Massively Multilingual Models. Multilingual
masked language models have pushed the state-
of-the-art on cross-lingual language understanding
by training a single model for many languages (De-
vlin et al., 2019; Conneau and Lample, 2019; Con-
neau et al., 2020). Encoder-decoder Transformer
(Vaswani et al., 2017) models that are pretrained us-
ing monolingual corpora from multiple languages,
such as mBART (Liu et al., 2020), outperform
strong baselines in medium- and low-resource
NMT. mBART-50 (Tang et al., 2020) is an exten-
sion of mBART, pretrained in 50 languages and
multilingually fine-tuned for NMT. However, while
multilingual NMT models are known to outperform
strong baselines and simplify model deployment,
they are susceptible to negative interference/trans-
fer (McCann et al., 2018; Arivazhagan et al., 2019;
Wang et al., 2019b; Conneau et al., 2020) and catas-
trophic forgetting (Goodfellow et al., 2014) when
the parameters are shared across a large number of
languages. Negative transfer affects the translation
quality of high-resource (Conneau et al., 2020), but
also low-resource languages (Wang et al., 2020).
As a remedy, providing extra capacity to a multi-
lingual model using language-specific modules has
been proposed (Sachan and Neubig, 2018; Wang
et al., 2019a; Fan et al., 2021; Pfeiffer et al., 2022).
We take a step forward in this direction and train
language-family adapters on top of a pretrained
model. Our approach introduces modular compo-
nents which leverage the similarities of languages
and can better decode into multiple directions, im-
proving results compared to baselines.
Adapters for NMT. Swietojanski and Renals
(2014) and Vilar (2018) initially suggested learning
additional weights that rescale the hidden units for
domain adaptation. Adapter layers (Rebuffi et al.,
2017; Houlsby et al., 2019) are small modules that
are typically added to a pretrained Transformer and
are fine-tuned on a downstream task, while the pre-
trained model is frozen. Bapna and Firat (2019)
add language-pair adapters to a pretrained mul-
tilingual NMT model (one set for each language
pair), to recover performance for high-resource lan-
guage pairs. Cooper Stickland et al. (2021) start
from an unsupervised pretrained model and train
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language-agnostic adapters (one set for all lan-
guage pairs) for multilingual NMT. Philip et al.
(2020) train monolingual adapters for zero-shot
translation, while Üstün et al. (2021) propose de-
noising adapters, i.e., adapters trained using mono-
lingual data, for unsupervised multilingual NMT.
Baziotis et al. (2022) inject language-specific pa-
rameters in MNMT using adapters, by generating
them from a hyper-network, while Lai et al. (2022)
adapt a model for both a new domain and a new lan-
guage pair at the same time by combining domain
and language representations using meta-learning
with adapters.

We identify some challenges in previous works
(Bapna and Firat, 2019; Cooper Stickland et al.,
2021). Scaling language-agnostic adapters to a
large number of languages is problematic, as when
they are updated with data from multiple languages,
negative transfer occurs. In contrast, language-pair
adapters do not face this problem, but at the same
time do not allow any sharing between languages,
therefore provide poor translation to low-resource
language pairs. Language-family adapters arguably
strike a balance, providing a trade-off between the
two approaches, and our experiments show that
they lead to higher translation quality.

Language Families. Extensive work on cross-
lingual transfer has demonstrated that jointly train-
ing a model using similar languages can improve
low-resource results in several NLP tasks, such
as part-of-speech or morphological tagging (Täck-
ström et al., 2013; Straka et al., 2019), entity link-
ing (Tsai and Roth, 2016; Rijhwani et al., 2019),
and machine translation (Zoph et al., 2016; John-
son et al., 2017; Neubig and Hu, 2018; Oncevay
et al., 2020). Linguistic knowledge bases (Littell
et al., 2017; Dryer and Haspelmath, 2013) study
language variation and can provide insights to phe-
nomena such as negative interference. Languages
can be organized together using linguistic informa-
tion, forming language families. Tan et al. (2019)
and Kong et al. (2021) leverage families for mul-
tilingual NMT, the former by training language-
family NMT models from scratch, the latter by
training a separate shallow decoder for each fam-
ily. Instead, our approach keeps a pretrained model
frozen and only trains language-family adapters,
which is parameter-efficient. Compared to fine-
tuning the entire model (ML-FT), our approach re-
quires less than 12.5% of the trainable parameters,
as is shown in Table 3.

Self-Attention

Adapter Layer

Feed Forward

Self-Attention

Encoder-decoder Attention

Feed Forward

Adapter Layer

Embed Adapter Layer Embed Adapter Layer

Input Embedding Output Embedding

Output SentenceSource Sentence

Positional 
Encoding

Positional 
Encoding

Nx Nx

Figure 1: Proposed adapter architecture inside a Trans-
former model. Adapter layers, shown in green, are
trained for NMT. Figure best viewed in color.

3 Language-Family Adapters for
Low-Resource NMT

Fine-tuning a pretrained model for multilingual
NMT provides a competitive performance, yet is
computationally expensive, as all layers of the
model need to be updated. A parameter-efficient
alternative is to fine-tune a pretrained multilingual
model for NMT with data from all languages of
interest using adapters while keeping the pretrained
model unchanged. However, as multiple language
representations are encoded in the same parameters,
capacity issues arise. Languages are also grouped
together, even though they might be different in
terms of geographic location, script, syntax, typol-
ogy, etc. As a result, linguistic diversity is not mod-
eled adequately and translation quality degrades.

We address the limitations of previous methods
by proposing language-family adapters for low-
resource multilingual NMT. An illustration of our
approach is depicted in Figure 1. We exploit lin-
guistic knowledge to selectively share parameters
between related languages and avoid negative in-
terference. Our approach is to train adapters using
language pairs of a linguistic family on top of a
pretrained model, which is not updated.

3.1 Adapter Architecture

Adapters are usually added to each Transformer
layer. An adapter uses as input the output of the
previous layer. Formally: Let zi be the output
of the i-th layer, of dimension h. We apply a
layer-normalization (Ba et al., 2016), followed by
a down-projection D ∈ Rh×d, a ReLU activation
and an up-projection U ∈ Rd×h, where d is the
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bottleneck dimension and the only tunable hyper-
parameter. The up-projection is combined with
a residual connection (He et al., 2016) with zi ac-
cording to the following equation: Adapteri(zi) =
U ReLU(D LN(zi)) + zi. This follows Bapna and
Firat (2019). Adapters are randomly initialized.

3.2 Embedding-layer Adapter
Because we keep the token embeddings of mBART-
50 frozen, adding flexibility to the model to encode
lexical information of the languages of interest is
crucial, especially for unseen languages (not part
of its pretraining corpus). Lexical cross-lingual
information could be encoded by learning new em-
beddings for the unseen languages (Artetxe et al.,
2020) but this would be computationally expen-
sive. We instead add an adapter after the embed-
ding layer, in both the encoder and the decoder,
which receives as input the lexical representation
of each sequence and aims to capture token-level
cross-lingual transformations.

Our approach draws inspiration from Pfeiffer
et al. (2020) and simplifies the invertible adapters
structure. We use the large vocabulary of mBART-
50 to extend the model to unseen languages. We
note that adding scripts that do not exist in the
vocabulary of mBART-50 is not possible with
our approach. We point out that Chronopoulou
et al. (2020); Pfeiffer et al. (2021); Vernikos and
Popescu-Belis (2021) have proposed approaches
to permit fine-tuning to unseen languages/scripts
when using PLMs and we leave further exploration
to future work.

3.3 Model Architecture
To train a model for multilingual NMT, we lever-
age mBART-50, a sequence-to-sequence generative
model pretrained on monolingual data from 50 lan-
guages using a denoising auto-encoding objective.
The model has essentially been trained by trying to
predict the original text X, given g(X), where g is
a noising function that corrupts text.

We want to fine-tune this model on a variety of
language pairs, by leveraging similarities between
languages. Our model aims to provide a parameter-
efficient alternative to traditional fine-tuning of the
entire pretrained model. We note that the pretrained
mBART-50 model cannot be used as is for MT, as
it has never been trained on the task.

To this end, we insert adapters after each feed-
forward layer both in the encoder and in the de-
coder and we also add embedding-layer adapters.

Language (code) Family Train Set
TED OPUS-100

⋆Bulgarian (bg) BS 174k 1M
Persian (fa) I 151k 1M

⋆Serbian (sr) BS 137k 1M
Croatian (hr) BS 122k 1M
Ukrainian (uk) BS 108k 1M
Indonesian (id) A 87k 1M

⋆Slovak (sk) BS 61k 1M
Macedonian (mk) BS 25k 1M
Slovenian (sl) BS 20k 1M
Hindi (hi) I 19k 534k
Marathi (mr) I 10k 27k

⋆Kurdish (ku) I 10k 45k
⋆Bosnian (bs) BS 6k 1M
⋆Malay (ms) A 5k 1M

Bengali (bn) I 5k 1M
⋆Belarusian (be) BS 5k 67k
⋆Filipino (fil) A 3k -

Table 1: Languages used in the experiments. ⋆ indicates
languages that are unseen from mBART-50, i.e., they
do not belong to the pretraining corpus. BS stands for
Balto-Slavic, I for Indo-Iranian, A for Austronesian.

We freeze the pretrained encoder-decoder Trans-
former and fine-tune only the adapters on NMT. We
leverage the knowledge of the pretrained model,
but encode additional cross-lingual information on
each language family using adapters. We fine-tune
a new set of adapters multilingually on each lan-
guage family and evaluate the performance on and
low-resource language pairs.

4 Experimental Setup

Data. We initially fine-tune the model on TED
talks (Qi et al., 2018), using data from 17 languages
paired to English. We then scale to a larger paral-
lel dataset, using OPUS-100 (Zhang et al., 2020)
for the same languages paired to English (with
the only exception being English-Filipino, which
does not appear in OPUS-100). For the TED ex-
periments, we choose 17 languages, 9 of which
were present during pretraining, while 8 are new
to mBART-50. For OPUS-100, we use the same
16 languages (without Filipino), 9 of which were
present during pretraining and 7 are new. In both
sets of experiments, the languages belong to 3 lan-
guage families, namely Balto-Slavic, Austronesian
and Indo-Iranian. Balto-Slavic and Indo-Iranian
are actually distinct branches of the same language
family (Indo-European). The parallel data details
are reported in Table 1.
Baselines. We compare the proposed language-
family adapters with 1) language-agnostic
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(LANG-AGNOSTIC) and 2) language-pair
adapters (LANG-PAIR). While the adapters are
trained using parallel data, mBART-50 (pretrained
on monolingual data) is not updated. Moreover, we
compare our approach to multilingual fine-tuning
(ML-FT), although it requires fine-tuning the entire
model and is thus not directly comparable to the
parameter-efficient approaches we study. We show
this result in the Appendix.

The first baseline, LANG-AGNOSTIC adapters,
fine-tunes a set of adapters using data from all lan-
guages (similar to Cooper Stickland et al., 2021).
The second baseline, LANG-PAIR adapters, fol-
lows Bapna and Firat (2019): a new set of adapters
is trained for each language pair, so no parameters
are shared between different language pairs.
Training details. We start from the mBART-50
checkpoint.* We extend its embedding layer with
randomly initialized vectors to account for the new
languages. We reuse the 250k sentencepiece (Kudo
and Richardson, 2018) model of mBART-50. We
use the fairseq (Ott et al., 2019) library for all ex-
periments. We select the final models using valida-
tion perplexity. If the model is trained on multiple
languages (using mixed mini-batches), we use the
overall perplexity. We use beam search with size
5 for decoding and evaluate BLEU scores using
SacreBLEU† for OPUS-100 and SacreBLEU with-
out tokenization for TED (Post, 2018). We also
compute COMET (Rei et al., 2020) scores using
the wmt-large-da-estimator-1719 pretrained model.
Results are reported in the Appendix.

To train the models, we freeze mBART-50. We
fine-tune the LANG-FAMILY, LANG-AGNOSTIC

adapters in a multilingual, one-to-many setup, us-
ing English as the source language. LANG-PAIR

adapters are fine-tuned for each language pair. All
models have a bottleneck dimension of 512. We
otherwise use the same hyperparameters as Tang
et al. (2020) and report them in the Appendix.

5 Results and Discussion

5.1 Main results

Table 2 shows translation results for a subset of lan-
guages of OPUS-100 and TED in terms of BLEU

using parallel data to fine-tune mBART-50 in the
en→ xx direction. We also report COMET scores

*https://dl.fbaipublicfiles.com/
fairseq/models/mbart50/mbart50.
pretrained.tar.gz

†Signature “BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.5.1”

in the Appendix.
Our approach (LANG-FAMILY) consistently im-

proves results on the OPUS-100 dataset, with an
average +1 BLEU performance boost across all lan-
guages compared to fine-tuning with LANG-PAIR

adapters and +2.7 improvement compared to
LANG-AGNOSTIC adapters. We believe that this
shows that representations from similar languages
are beneficial to a multilingual model in a low-
resource setup. However, training a single adapter
over all languages (LANG-AGNOSTIC) is detri-
mental in terms of translation quality. Moreover,
LANG-PAIR trains a different adapter on each lan-
guage pair and does not permit sharing cross-
lingual information. As a result, it obtains worse
results compared to our approach; it is also signifi-
cantly more computationally expensive, requiring
5× parameters of LANG-FAMILY adapters.

Our approach similarly outperforms both base-
lines on TED. It yields a +1.5 improvement com-
pared to LANG-AGNOSTIC and +0.4 BLEU com-
pared to LANG-PAIR. These results confirm our
main finding, which is that selectively sharing pa-
rameters of related languages with adapters is use-
ful for low-resource NMT.

5.2 Computational cost
We show in Table 3 the number of trainable param-
eters used for each approach. We note that our ex-
periments were conducted using 8 NVIDIA-V100
GPUs. The mBART-50 model has 680M parame-
ters. Our approach trains parameters that add up
to just 11.9% of the full model. LANG-AGNOSTIC

is the most efficient approach, requiring just 8.4%
trainable parameters. However, there is a cost in
terms of performance compared to our model. Fi-
nally, training LANG-PAIR adapters is relatively
expensive (52.2% of the trainable parameters of
mBART-50). All in all, our LANG-FAMILY ap-
proach provides a trade-off between performance
and efficiency in terms of model parameters and is
an effective method of adapting pretrained multi-
lingual models to low-resource languages.

5.3 Embedding-layer adapter
Our approach keeps the encoder and decoder em-
beddings frozen during fine-tuning. Because of
that, the lexical representations of the model are
not updated to model the languages of interest. To
overcome this issue, we introduce an adapter af-
ter the encoder embedding layer, as well as after
the decoder embedding layer. We do not tie these
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Model
BALTO- AUSTRO- INDO-
SLAVIC NESIAN IRANIAN

bg⋆ sr⋆ hr uk sk⋆ mk sl bs⋆ be⋆ id ms⋆ fil⋆ fa hi mr ku⋆ bn AVG

OPUS-100
Lang-pair 27.8 17.5 23.7 17.7 25.0 35.0 24.1 21.0 10.1 28.0 24.5 - 10.5 15.6 17.0 14.1 13.0 20.3
Lang-agnostic 21.6 19.7 21.4 13.8 24.1 28.9 19.6 19.5 11.3 28.6 21.8 - 8.1 16.9 17.8 12.8 11.2 18.6
Lang-family 25.4 20.9 23.7 15.1 27.7 31.9 22.6 20.3 15.2 31.3 25.4 - 9.8 18.7 25.0 15.3 12.9 21.3

TED
Lang-pair 35.7 21.1 30.5 21.1 24.2 27.0 21.4 28.6 12.5 35.4 23.4 12.2 14.0 14.1 10.0 4.9 9.0 20.3
Lang-agnostic 31.7 24.0 29.7 21.9 20.6 26.5 20.2 27.8 7.7 33.8 22.1 11.6 17.0 15.5 7.0 3.3 6.0 19.2
Lang-family 33.8 25.1 30.5 22.2 22.8 28.0 21.5 27.8 9.5 34.7 22.0 11.5 17.5 19.8 10.3 4.1 11.6 20.7

Table 2: Test set BLEU scores when translating out of English (en→ xx) on OPUS-100 and TED. LANG-PAIR stands
for language-pair, LANG-AGNOSTIC for language-agnostic, and LANG-FAMILY for language-family adapters.
Languages denoted with ⋆ are new to mBART-50. Results in bold are significantly different (p < 0.01) from the best
adapter baseline.

Parameters Runtime GPUs

LANG-AGNOSTIC 27M 35h 8
LANG-FAMILY 81M 78h 8
LANG-PAIR 432M 192h 8
ML-FT 680M 310h 8

Table 3: Parameters used by our approach and the base-
lines to train on OPUS-100. We note that the GPUs
used are NVIDIA-V100. For completeness, we also
include the parameters used for multilingual fine-tuning
(ML-FT) of the pre-trained model.

adapter layers, since they only add up a small num-
ber of parameters (1M each, i.e., 0.1% of mBART-
50 parameters).

As we can see in Table 4, we get consis-
tent gains across almost all language pairs by
adding these adapters, for both our model and the
LANG-AGNOSTIC baseline. The former yields a
+0.5 performance boost, while the latter a +0.7
improvement in terms of BLEU. While the gains
are modest, they are consistent and come at a
very small computational overhead. For some lan-
guages, such as Kurdish (which is an unseen lan-
guage for mBART-50), results improve by +1.6
when using embedding-layer adapters. Since Kur-
dish is not part of mBART-50 pretraining corpus,
encoding token-level representations is in this case
more challenging and embedding-layer adapters
allows the model to specialize in this language.

5.4 Automatic clustering of languages
Gaussian Mixture Model. For our main set of ex-
periments, we used language families from WALS.
However, it might be that not all languages within
a language family share the same linguistic prop-
erties (Ahmad et al., 2019). Therefore, we wanted
to explore a data-driven approach to induce simi-
larities between languages. To this end, we group

languages together using Gaussian Mixture Model
(GMM) clustering of text representations obtained
from a PLM (Aharoni and Goldberg, 2020). We
used released code by the authors of the paper.‡

We use XLM-R (Conneau et al., 2020), a multi-
lingual PLM and specifically the xlmr-roberta-base
HuggingFace (Wolf et al., 2020) checkpoint. We
encode 500 sequences of 512 tokens from each
language (using OPUS-100) to create sentence rep-
resentations, by performing average pooling of the
last hidden state. We then use PCA projection of
dimension 100 and fit the sentence representations
to a GMM with 3 components (3 Gaussian distri-
butions, i.e., clusters). As this is a soft assignment,
every language belongs with some probability to
one or more clusters. For simplicity, we map each
language to just one cluster based on where the
majority of its samples are assigned to.
Results. Table 5 shows an evaluation of our ap-
proach, where we select the language family based
on linguistic similarities (ling. family, first row),
GMM clustering (second row), and random sam-
pling (third row).

The main observation is that training adapters
using language groups computed by GMM clus-
tering yields worse translation scores compared to
language groups based on linguistic similarities
(ling. family). We believe that this is the case be-
cause some languages were clustered together with
linguistically distant languages (e.g., Belarusian
is assigned to the same group as Persian, Hindi,
Marathi, and Bengali according to GMM cluster-
ing). This might be because of a domain mismatch
between the English-Belarusian parallel dataset and
the datasets of the rest of the languages in the group.
Based on our experiments, training adapters on lin-

‡https://github.com/roeeaharoni/
unsupervised-domain-clusters
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BALTO- AUSTRO- INDO-
SLAVIC NESIAN IRANIAN

bg hr mk be id ms fa ku bn AVG-16

LANG-AGNOSTIC w/o emb adapter 21.3 21.5 28.3 10.5 28.7 21.5 7.6 12.4 10.9 18.1
LANG-AGNOSTIC with emb adapter (BASELINE) 21.6 21.4 28.9 11.3 28.6 21.8 8.1 12.8 11.2 18.6
LANG-FAMILY w/o emb adapter 24.3 22.6 31.2 13.4 31.4 25.2 9.0 13.7 12.2 20.6
LANG-FAMILY with emb adapter (OURS) 25.4 23.7 31.9 15.2 31.3 25.4 9.8 15.3 12.9 21.3

Table 4: Ablation of the proposed architecture for en→ xx (BLEU scores) on OPUS-100. We present results only
for a subset of languages per language family. Full results can be found in the Appendix.

Language Groups id fa ku AVG

ling. family (ours) <be, bg, sr, hr, uk, sk, mk, sl, bs> <id, ms> <ku, fa, hi, mr, bn> 31.3 9.8 15.3 21.3
GMM <bg, sr, hr, uk, sk, mk, sl, bs> <ku, id, ms> <be, fa, hi, mr, bn> 29.7 9.2 14.3 19.4
random <bg, hr, mk, bs, be, ms, hi, mr, ku> <sl, id> <sr, uk, sk, fa, bn> 27.8 7.0 15.0 18.4

Table 5: Evaluation of different methods to form language families for en→ xx on OPUS-100. We present results
only for a subset of languages and the overall average BLEU scores. Full results are shown in the Appendix.

guistic families provides better translation scores
and should therefore be preferred, if these exist. As
expected, randomly clustering languages together
performs worse than all approaches, showing that
taking into account similarities between languages
is beneficial when training a multilingual model for
low-resource NMT.

6 Analysis

6.1 Performance according to language family

To evaluate the contribution of grouping languages
based on linguistic information, we present the
BLEU scores of the LANG-FAMILY adapters com-
pared to the baselines per language family. We
show the results in Figure 2.

Compared to the LANG-AGNOSTIC baseline,
LANG-FAMILY adapters perform better in all lan-
guage families. On Balto-Slavic, our approach is
on par with LANG-PAIR adapters (<0.5 BLEU dif-
ference). On both Austronesian and Indo-Iranian,
our approach largely outperforms (more than +2
BLEU) both baselines. This is arguably the case
because LANG-AGNOSTIC adapters, trained using
parallel data from all languages, group dissimilar
languages together and do not take into account
language variation. We instead train adapters on
languages with common linguistic properties and
obtain consistently improved translations.

LANG-AGNOSTIC adapters perform worse than
LANG-PAIR adapters on all language families.
This is mostly evident for Balto-Slavic. We believe
that this happens because Balto-Slavic languages
are more similar to English compared to Austrone-
sian or Indo-Iranian. This means that translating be-
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slavic
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lang-pair lang-family lang-agnostic

Figure 2: Grouping based on language family using
OPUS-100. Translation scores (measured with BLEU)
are shown for the our method (LANG-FAMILY), as well
as the LANG-PAIR and LANG-AGNOSTIC baselines.

tween Balto-Slavic and English is relatively easier,
especially since mBART-50 has been trained with
a large Indo-European bias and it already encodes
cross-lingual information for most of the languages
in this group. As a result, LANG-PAIR adapters
create in this case a very competitive baseline.

6.2 Performance on seen vs unseen languages

We also evaluate the performance of language-
family adapters and the baselines on languages that
are not included in the mBART-50 pretraining data
(unseen), compared to languages that belong to its
pretraining corpus (seen). We present the results in
Figure 3.

On unseen languages, LANG-FAMILY adapters
improve the translation quality compared to the
LANG-PAIR adapter baseline. As the pretrained
model has no knowledge of these languages,
LANG-FAMILY adapters provide useful cross-
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Figure 3: Grouping based on “seen” (existing in
the pretraining corpus), or “unseen” language using
OPUS-100. BLEU scores are shown for our method
(LANG-FAMILY) and the baselines.

lingual signal. This makes our approach suitable
for extending an already trained multilingual model
to new languages in a scalable way. The improve-
ment is, as expected, smaller for the seen lan-
guages.

LANG-AGNOSTIC adapters perform signifi-
cantly worse than both our approach and the
LANG-PAIR baseline. This might be the case be-
cause of negative transfer between unrelated lan-
guages, that are clustered and trained together using
the LANG-AGNOSTIC model. This issue is preva-
lent for both seen and unseen languages.

7 Conclusion

We presented a novel approach for fine-tuning
a pretrained multilingual model for NMT using
language-family adapters. Our approach can be
used for low-resource multilingual NMT, com-
bining the modularity of adapters with effective
cross-lingual transfer between related languages.
We showed that language-family adapters perform
better than both language-agnostic and language-
pair adapters, while being computationally effi-
cient. Finally, for languages new to mBART-50, we
showed that our approach provides an effective way
of leveraging shared cross-lingual information be-
tween similar languages, considerably improving
translations compared to the baselines.

In the future, a more elaborate approach to en-
code lexical-level representations could further
boost the performance of language-family adapters.
We also hypothesize that the effectiveness of our
model could be leveraged for other cross-lingual
tasks, such as natural language inference, document

classification and question-answering.

Limitations

Our work uses a large seq2seq multilingual pre-
trained model, mBART-50. This model has been
pretrained on large chunks of monolingual data
from Common Crawl (Wenzek et al., 2020), but we
do not have evaluations of generated text (e.g., on
fluency, factuality, or other common metrics used to
evaluate generated language). Therefore, this pre-
trained model can encode biases that could harm
marginalized populations (Bender et al., 2021) and
could also be used to translate harmful text.
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A Appendix

A.1 Dataset statistics

First, we show the script and language family (ac-
cording to linguistic information) of each language
used in our set of experiments in Table 6. We also
present in detail the statistics of all parallel data
used in our set of experiments in Table 8. We note
that the number of train, validation and test set
presented refers to sentences.

The TED dataset can be downloaded from phon-
tron.com/data/ted_talks.tar.gz while OPUS-100
can be downloaded from object.pouta.csc.fi/OPUS-
100/v1.0/opus-100-corpus-v1.0.tar.gz.

A.2 Training details

We train each model for 130k updates with a batch
size of 900 tokens per GPU for OPUS-100 and
1024 tokens per GPU for TED. We use 8 NVIDIA-
V100 GPUs for OPUS-100 and 2 GPUs for TED
(much smaller dataset). We evaluate models after
5k training steps. We use early stopping with a
patience of 5. To balance high and low-resource
language pairs, we use temperature-based sampling
(Arivazhagan et al., 2019) with T = 1.5.

A.3 Evaluation of main results using 2 metrics

We evaluate the translations of our model
(LANG-FAMILY adapters) and all the baselines

Language (code) Family Script

⋆Bulgarian (bg) Balto-Slavic Cyrillic
Persian (fa) Indo-Iranian Arabic

⋆Serbian (sr) Balto-Slavic Cyrillic
Croatian (hr) Balto-Slavic Latin
Ukrainian (uk) Balto-Slavic Cyrillic
Indonesian (id) Austronesian Latin

⋆Slovak (sk) Balto-Slavic Latin
Macedonian (mk) Balto-Slavic Cyrillic
Slovenian (sl) Balto-Slavic Latin
Hindi (hi) Indo-Iranian Devanagari
Marathi (mr) Indo-Iranian Devanagari

⋆Kurdish (ku) Indo-Iranian Arabic
⋆Bosnian (bs) Balto-Slavic Cyrillic
⋆Malay (ms) Austronesian Latin

Bengali (bn) Indo-Iranian Bengali
⋆Belarusian (be) Balto-Slavic Cyrillic
⋆Filipino (fil) Austronesian Latin

Table 6: Languages that are used in the experiments.
⋆ indicates languages that are unseen from mBART-
50, i.e., they do not belong to the pretraining corpus.
Filipino is only used in the TED experiments.

Adapter size Dropout Lang-Family Lang-Agnostic

128 0.1 16.8 10.1
128 0.3 16.4 9.5
256 0.1 19.0 14.9
256 0.3 18.6 14.0
512 0.1 20.7 19.2
512 0.3 19.9 18.5

Table 7: Hyperparameter tuning for dropout, adapter
bottleneck size on TED. Average performance (on all
language pairs using TED) per model. We chose the
best-performing combination of dropout and bottleneck
size for our experiments.

trained on OPUS-100 using COMET (Rei et al.,
2020). COMET leverages progress in cross-lingual
language modeling, creating a multilingual ma-
chine translation evaluation model that takes into
account both the source input and a reference
translation in the target language. We rely on
wmt-large-da-estimator-1719. COMET

scores are not bounded between 0 and 1; higher
scores signify better translations. Our results are
summarized in Table 10. We see that COMET cor-
relates with BLEU in our experiments.

A.4 Hyperparameters

We tune the dropout and the adapter bottleneck size
on TED. We use values 0.1, 0.3 for the dropout and
128, 256, 512 for the bottleneck size. We list the
hyperparameters we used to train both our proposed
model and the baselines in Table 9.
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Language Source Train Valid Test Source Train Valid Test

Bulgarian (bg) TED 174k 4082 5060 OPUS-100 1M 2k 2k
Persian (fa) TED 151k 3930 4490 OPUS-100 1M 2k 2k
Serbian (sr) TED 137k 3798 4634 OPUS-100 1M 2k 2k
Croatian (hr) TED 122k 3333 4881 OPUS-100 1M 2k 2k
Ukrainian (uk) TED 108k 3060 3751 OPUS-100 1M 2k 2k
Indonesian (id) TED 87k 2677 3179 OPUS-100 1M 2k 2k
Slovak (sk) TED 61k 2271 2445 OPUS-100 1M 2k 2k
Macedonian (mk) TED 25k 640 438 OPUS-100 1M 2k 2k
Slovenian (sl) TED 20k 1068 1251 OPUS-100 1M 2k 2k
Hindi (hi) TED 19k 854 1243 OPUS-100 534k 2k 2k
Marathi (mr) TED 10k 767 1090 OPUS-100 27k 2k 2k
Kurdish (ku) TED 10k 265 766 OPUS-100 45k 2k 2k
Bosnian (bs) TED 6k 474 463 OPUS-100 1M 2k 2k
Malay (ms) TED 5k 539 260 OPUS-100 1M 2k 2k
Bengali (bn) TED 5k 896 216 OPUS-100 1M 2k 2k
Belarusian (be) TED 5k 248 664 OPUS-100 67k 2k 2k
Filipino (fil) TED2020 3k 338 338 OPUS-100 - - -

Table 8: Dataset details for TED (Qi et al., 2018; Reimers and Gurevych, 2020) and OPUS-100 (Zhang et al., 2020).

Hyperparameter Value

Checkpoint mbart50.pretrained
Architecture mbart_large
Optimizer Adam
β1, β2 0.9, 0.98
Weight decay 0.0
Label smoothing 0.2
Dropout 0.1
Attention dropout 0.1
Batch size 1024 tokens
Update frequency 2
Warmup updates 4k
Total number of updates 130k
Max learning rate 1e-04
Temperature sampling 5
Adapter dim. 512

Table 9: Fairseq hyperparameters used for our set of
experiments.

A.5 Embedding-layer results
We report in Table 11 the results of the abla-
tion study concerning the use of embedding-layer
adapters on all languages.

A.6 Results using GMM, random clustering
and language families

Full results of Table 5 can be seen in Table 12.
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LANG-FAMILY LANG-PAIR LANG-AGNOSTIC ML-FT
Lang BLEU COMET BLEU COMET BLEU COMET BLEU COMET

bg 25.4 67.2 27.8 72.1 21.6 44.6 28.0 76.5
sr 20.9 44.3 17.5 38.2 19.7 41.1 21.1 48.4
hr 23.7 55.0 23.7 53.1 21.4 43.4 24.5 55.1
uk 15.1 -17.0 17.7 14.4 13.8 -18.5 17.1 35.9
sk 27.7 54.3 25.0 50.1 24.1 57.0 30.5 64.9
mk 31.9 62.9 35.0 64.1 28.9 65.2 35.6 62.1
sl 22.6 48.9 24.1 65.8 19.6 42.3 24.5 64.3
bs 20.3 44.1 21.0 37.1 19.5 43.9 22.1 50.8
be 15.2 -10.2 10.1 -21.6 11.3 -13.9 17.9 36.6
id 31.3 60.1 28.0 64.0 28.6 77.0 31.5 60.1
ms 25.4 53.5 24.5 66.1 21.8 49.8 25.5 68.0
fa 9.8 -23.5 10.5 -22.1 8.1 -24.4 9.5 -15.0
hi 18.7 39.1 15.6 -19.1 16.9 10.1 18.4 36.4
mr 25.0 67.0 17.0 9.0 17.8 19.5 24.7 58.1
ku 15.3 -18.5 14.1 -12.9 12.8 -11.5 15.6 -9.1
bn 12.9 -16.0 13.0 -24.1 11.2 -18.1 14.1 -8.5

avg 21.3 32.0 20.3 27.1 18.6 25.5 22.5 42.8

Table 10: Test set BLEU and COMET scores when translating out of English using OPUS-100. Languages are
presented by decreasing amount of parallel data per language family. LANG-PAIR stands for language-pair adapters,
LANG-AGNOSTIC for language-agnostic, while LANG-FAMILY for language-family adapters. ML-FT stands for
multilingual fine-tuning of the entire mBART-50 model.

bg⋆ sr⋆ hr uk sk⋆ mk sl bs⋆ be⋆ id ms⋆ fa hi mr ku⋆ bn AVG

Lang-agnostic w/o emb 21.3 19.0 21.5 13.9 23.6 28.3 19.1 18.9 10.5 28.7 21.5 7.6 16.1 16.9 12.4 10.9 18.1
Lang-agnostic with emb 21.6 19.7 21.4 13.8 24.1 28.9 19.6 19.5 11.3 28.6 21.8 8.1 16.9 17.8 12.8 11.2 18.6
Lang-family w/o emb 24.3 20.4 22.6 14.8 26.3 31.2 21.9 20.6 13.4 31.4 25.2 9.0 18.3 23.7 13.7 12.2 20.6
Lang-family with emb 25.4 20.9 23.7 15.1 27.7 31.9 22.6 20.3 15.2 31.3 25.4 9.8 18.7 25.0 15.3 12.9 21.3

Table 11: Full results of the ablation of the proposed architecture for en→ xx (BLEU scores) on OPUS-100. Bold
results indicate best performance on average.

bg sr hr uk sk mk sl bs be id ms fil fa hi mr ku bn AVG

GMM 23.9 17.7 24.4 11.0 19.3 22.9 19.0 23.6 14.9 29.7 23.4 - 9.2 18.8 25.5 14.3 13.2 19.4
random 22.9 18.8 23.5 10.0 22.5 31.9 21.1 20.1 12.1 25.8 24.9 - 5.0 18.6 22.9 15.0 8.1 18.4

Table 12: Evaluation of different methods to form language families for en→ xx (BLEU) on OPUS-100.
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Abstract

Machine translation (MT) involving Indige-
nous languages, including endangered ones, is
challenging primarily due to lack of sufficient
parallel data. We describe an approach exploit-
ing bilingual and multilingual pretrained MT
models in a transfer learning setting to translate
from Spanish into ten South American Indige-
nous languages. Our models set new SOTA on
five out of the ten language pairs we consider,
even doubling performance on one of these
five pairs. Unlike previous SOTA that perform
data augmentation to enlarge the train sets, we
retain the low-resource setting to test the effec-
tiveness of our models under such a constraint.
In spite of the rarity of linguistic information
available about the Indigenous languages, we
offer a number of quantitative and qualitative
analyses (e.g., as to morphology, tokenization,
and orthography) to contextualize our results.

1 Introduction

Artificial intelligence (AI) is being widely in-
tegrated into many natural language processing
(NLP) applications in our daily lives. However,
these language technologies have focused almost
exclusively on widely-spoken languages (Choud-
hury and Deshpande, 2021). Under-represented
languages such as endangered languages are thus
left out. For example, the Google machine transla-
tion (MT) system does not support any of the lan-
guages included in our current study.1 Our objec-
tive in this work is hence to build machine transla-
tion (MT) models for Indigenous languages, which
are by definition low-resource and possibly endan-
gered. More specifically, we focus on South Ameri-
can Indigenous languages. In a MT scenario, a lan-
guage pair is considered ‘low-resource’ if the paral-
lel corpora consists of less than 0.5 million of par-
allel sentences and ‘extremely low-resource’ if less
than 0.1 million of parallel sentences (Ranathunga

1https://translate.google.com/about/languages/

et al., 2021). In this work, nine out of ten lan-
guages pairs we consider have under 0.1 million
pairs of sentences (with only one language pair
having roughly 0.1 million pairs of sentences). De-
veloping MT systems for endangered languages
can help preserve these languages.

Neural Machine Translation (NMT) is a branch
of MT that leverages neural networks to build trans-
lation systems. Despite that NMT is able to pro-
duce powerful MT systems, it is data-hungry. That
is, it requires large amounts of data to train a quality
NMT model (Koehn and Knowles, 2017). Contem-
porary machine translation systems are oftentimes
trained on over a million of parallel sentences (Fan
et al., 2021; Tang et al., 2020) for high-resource lan-
guage pairs. In contrast, the size of the dataset we
have is limited. Transfer learning has been shown
to help mitigate this issue by porting knowledge
e.g. from a parent model to a child model (Zoph
et al., 2016a). We leverage two types of pretrained
MT models: bilingual models and a multilingual
model. The overall training approach is illustrated
in Figure 1. Our datasets are provided by Americ-
asNLP2021 (Mager et al., 2021) shared task. We
compare our performance to the winner of the
shared task (Vázquez et al., 2021).

The rest of this study is organized as follows:
Section 2 is a literature review on Indigenous MT,
transfer learning, the application of transfer learn-
ing to NMT, and the challenge of cross-lingual
transfer. In Section 3, we describe our experimen-
tal settings. We present our results in Section 4,
and provide discussions in Section 5. We conclude
in Section 6.

2 Background

2.1 MT on Indigenous Languages

Languages are diverse. For example, in South
America, there are 108 language families, 55 of
which are in a language family with one single
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Figure 1: Model Training in (a) bilingual setting and (b) multilingual setting for one es-xx language pair. For both
(a) and (b), child models are those being used for prediction. xx represents arbitrary one of the ten South American
Indigenous languages. For (b), the blue es-xx mBART50 child model represents the model directly fine-tuned
with es-xx data. The purple es-xx mBART50curr child model represents the model that is first being fine-tuned
with es-en data to produce an intermediate model, indicated as (1). Afterwards, it is fine-tuned with es-xx data,
indicated as (2).

member (i.e., language isolates) (Campbell et al.,
2012). Due to this linguistic diversity, to the best
of our knowledge, there is no single MT method
that fits all Indigenous languages. However, since
many Indigenous languages suffer the low-resource
issue (Mager et al., 2018a), many researchers bor-
row ideas from low-resource MT to tackle the task
of MT of Indigenous languages. We survey some
approaches here.

Nagoudi et al. (2021) create models based on
the T5 architecture (Raffel et al., 2019) and train
it with monolingual Indigenous data before fine-
tuning on parallel data, thus attempting to acquire
knowledge of the Indigenous languages to benefit
MT. Ngoc Le and Sadat (2020) focus on data pre-
processing, and build a morphological segmenter
for the source language Inuktitut to achieve better
performance in Inuktitut-English translation. These
aforementioned works all adopt methods invented
to tackle the task of MT on low-resource languages.

2.2 Transfer Learning and NMT

It can sometimes be very expensive to collect data
for MT. This is true especially for endangered lan-
guages when the number of speakers is decreasing.
Therefore, many endangered languages suffer from
the the low-resource issue. This motivates meth-
ods that can help port knowledge from existing
resources to a down-stream task of interest with
low-resources employing transfer learning meth-
ods. An additional motivation for studying and
applying transfer learning is that human beings are
able to apply knowledge/skills they acquired earlier
from some jobs to better perform new related jobs
with less efforts. An analogy is this: a person who
has learned a music instrument may be able to pick

up another instrument easier and quicker (Zhuang
et al., 2020). When applying transfer learning in
the context of NMT, a scenario can be as follows: a
model previously trained on parent language pair(s)
(called parent model) is further fine-tuned on child
language pair(s) to form a child model. Under such
a scenario, a parent language pair is one of the lan-
guage pairs whose bilingual data is used to train
a model from scratch and produce a parent model.
A child language pair is one of the language pairs
whose bilingual data is used to fine-tune a parent
model and produce a child model. Again, the in-
tuition here is that an experienced translator (pre-
trained MT model) on one language pair may be
able to translate into another language pair with
shorter time and less effort compared to a unexpe-
rienced person (new randomly-initialized model).
The core idea is to retain the parameters of parent
model as the starting point for the child model, in-
stead of training from scratch where the parameters
are randomly initialized (Zoph et al., 2016a; Kocmi
and Bojar, 2018; Nguyen and Chiang, 2017).

2.3 Cross-lingual Transfer

One of the challenges of transfer learning in MT
is the mismatch in parent and child vocabularies.
Only when the parent language pair and child lan-
guage pair are identical can there be no such is-
sue. Otherwise, when at least one of the languages
in child language pair is distinct from parent lan-
guages, such an issue would arise. This is the
case since vocabulary is language-specific and dis-
crete (Kim et al., 2019). For example, if a par-
ent model has its vocabulary built upon Spanish-
English text, the vocabulary will contain only Span-
ish and English tokens. It can be unpredictable
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Figure 2: A map of the ten South American Indigenous
languages in our data. The color for each country and
each language is arbitrarily assigned.

when tokenizing French text with such a vocabu-
lary.

Zoph et al. (2016b) tackle this challenge by re-
taining the token embeddings for their target lan-
guage since the parent target language and child
target language are the same in their work. For par-
ent and child source languages, they randomly map
tokens of parent source language to tokens of child
source language. Kocmi and Bojar (2018) take an-
other approach of vocabulary building: the vocabu-
lary is built upon 50% of parallel sentences of the
parent language pair and 50% of those of the child
language pair, so the vocabulary will contain tokens
of both parent and child language pairs. Kocmi and
Bojar (2020) introduce yet another simpler idea
named ‘Direct Transfer’ where the parent vocabu-
lary is used to train a child model. Although the
parent vocabulary is not optimized for child lan-
guage pair and can oversegment words in child lan-
guage pair to smaller pieces than necessary, such
a method still shows significant improvement in
many language pairs. Kocmi and Bojar (2020) sus-
pect that this could be due to good generalization
of the transformer architecture to short subwords.

3 Experiments

3.1 Dataset
Our dataset is from AmericasNLP 2021 Shared
Task on Open Machine Translation, which was
co-located with the 2021 Annual Conference
of the North American Chapter of the Associa-
tion for Computational Linguistics (NAACL-HLT
2021) (Mager et al., 2021). The dataset contains

Language ISO Major location Speakers
Aymara aym Bolivia 1,677,100
Bribri bzd Costa Rica 7,000
Asháninka cni Peru 35,200
Guarani gn Paraguay 6,652,790
Wixarika hch Mexico 52,500
Nahuatl nah Mexico 410,000
Hñähñu oto Mexico 88,500
Quechua quy Peru 7,384,920
Shipibo-Konibo shp Peru 22,500
Rarámuri tar Mexico 9,230

Table 1: Overview of the ten Indigenous languages
(Eberhard et al., 2021).

Language Pair Train Dev Test
es-aym 6, 531 996 1, 003
es-bzd 7, 506 996 1, 003
es-cni 3, 883 883 1, 003
es-gn 26, 032 995 1, 003
es-hch 8, 966 994 1, 003
es-nah 16, 145 672 996
es-oto 4, 889 599 1, 001
es-quy 125, 008 996 1, 003
es-shp 14, 592 996 1, 003
es-tar 14, 720 995 1, 003

Table 2: Number of parallel sentences

parallel data of 10 language pairs: from Spanish
to Aymara, Asháninka, Bribri, Guarani, Hñähñu,
Nahuatl, Quechua, Rarámuri, Shipibo-Konibo, and
Wixarika. An overview of these 10 Indigenous
languages is shown in Table 1. The geographical
distribution of the languages is depicted in Figure 2.
We offer information about the dataset splits as dis-
tributed by the shared task organizers in Table 2.
The shared task has two tracks: Track One, where
the training split (Train) involves an arbitrary por-
tion of development set, and Track Two, where
Train involves no development data. In this work,
we take Track One as our main focus and concate-
nate 90% of Dev split to Train to acquire a bigger
training set. We also conduct experiments for Track
Two, and we put the results in Appendix.

3.2 Baselines

We compare our results with the winner of the
shared task Vázquez et al. (2021) who achieve
highest performance in evaluation metrics for all
language pairs in Track One (and winning 9 out
of 10 language pairs in Track Two). They aug-
ment the training data by (1) gathering external
parallel data, e.g. Bibles and Constitutions (2) col-
lecting monolingual data of Indigenous languages
and adopt back-translation method to generate syn-
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Pair Source Target

es-aym
Los artistas de IRT ayudan a los niños en las escuelas. IRT artistanakax jisk’a yatiqañ utankir wawanakaruw yanapapxi.

Los artistas de I RT ayudan a los niños en las escuelas . I RT artist ana ka x ji sk ’ a y ati qa ñ u tank ir wa wan aka ru w ya nap ap xi .

es-bzd
Fui a un seminario que se hizo vía satélite. Ye’ dë’rö seminario ã wéx yö’ satélite kı̃.

Fui a un seminario que se hizo vía satélite . Ye ’ d ë ’ r ö seminar io ã w é x y ö ’ sat éli te k ı̃ .

es-cni
Pensé que habías ido al campamento. Nokenkeshireashitaka pijaiti imabeyetinta.

Pensé que había s ido al campamento. No ken ke shire ashi t aka p ija iti im ab eye tin ta .

es-gn
Veía a su hermana todos los días. Ko’êko’êre ohecha heindýpe.

Ve ía a su hermana todos los días . Ko ’ ê ko ’ ê re oh e cha he in d ý pe .

es-hch
Era una selva tropical. pe h+k+t+kai metsi+ra+ ye tsie nieka ti+x+kat+.

Era una selva tropical . pe h + k + t + ka i met si + ra + ye t s ie nie ka ti + x + ka t + .

es-nah
Santo trabajó para Disney y operó las tazas de té. zanto quitequitilih Disney huan quinpexontih in cafen caxitl

Santo trabajó para Disney y o per ó las taza s de té . zan to quite qui til ih Disney h uan quin pex on t ih in cafe n ca xi t l

es-oto
Otros continúan reconociendo nuestro éxito. ymana ditantho anumahditho goma npâgu

Otros continúan reconociendo nuestro éxito . y man a di tant ho an um ah di th o go ma n p â gu

es-quy
De vez en cuando me gusta comer ensalada. Yananpiqa ensaladatam mikuytam munani

De vez en cuando me gusta comer ensalada . Yan an pi qa en s ala data m m iku y tam mun ani

es-shp
El Museo se ve afectado por las inversiones. Ja Museora en oinai inversionesbaon afectana.

El Museo se ve afectado por las inversiones . Ja Museo ra en o ina i in version es ba on a fect ana .

es-tar
Es un hombre griego. Bilé rejói Griego ju

Es un hombre griego . Bil é re j ó i Gri ego ju

Table 3: Example sentences tokenized by es-en tokenizer. Light blue : Original sentences (source or tar-

get). Light green : tokenized sentenses with tokens separated by whitespace.

thetic parallel data. They build a 6-layered trans-
former (Vaswani et al., 2017) with 8 heads by first
pretrain it with es-en parallel data and then fine-
tune it with both internal dataset provided by the
organizer and external augmented datasets of all
10 language pairs to produce a multilingual MT
model. In this work, we leverage solely the dataset
provided by the shared task organizer to test if our
method works with scarce data.

3.3 Data Preprocessing

As mentioned in section 2.3, the cross-lingual chal-
lenge exists when one or both sides of child lan-
guage pair is distinct from the parent languages
which is the case to all of the our 10 language pairs.
To tackle this, we opt for ‘direct transfer’ method,
due to its simplicity, to exploit parent vocabulary
for child model. As Kocmi and Bojar (2020) find
that the words of child language are oversegmented
with direct transfer, similar to their finding, we ob-
serve that the words of Indigenous language words
can be oversegmented. As shown in Table 3, it
can be seen that the source sentences are tokenized
reasonably well with mostly one token per word.
By contrast, the words of child target language are
generally oversegmented into short subwords. The
statistics of the tokenization is shown in Table 8.
An analysis of oversegmentation phenomenon is

given in section 5.3.

3.4 Parent Models

We offer two types of parent models, bilingual mod-
els and multilingual models.
Bilingual Models. For bilingual models, we
leverage publicly accessible pretrained models
from Huggingface (Wolf et al., 2020) as pro-
vided by Helsinki-NLP (Tiedemann and Thottin-
gal, 2020). The pretrained MT models released by
Helsinki-NLP are trained on OPUS, an open source
parallel corpus (Tiedemann, 2012). Underlying
these models is the Transformer architecture of
Marian-NMT framework implementation (Junczys-
Dowmunt et al., 2018). Each model has six self-
attention layers in encoder and decoder parts, and
each layer has eight attention heads. The three bilin-
gual models we specifically use are each pretrained
with OPUS Spanish-Catalan, Spanish-English, and
Spanish-Romanian data.2

We choose these models because their source
language is Spanish so they may have good Span-
ish subword embeddings. In this regard, as Adelaar
(2012) point out, during the colonial period, Span-
ish grammatical concepts were introduced to some

2Tiedemann and Thottingal (2020) do not provide infor-
mation about the size of OPUS data exploited in each of these
models.
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South American Indigenous languages. In addition,
we pick Spanish-Catalan and Spanish-Romanian
MT models because Catalan and Romanian are two
languages in the same Romance language family
as Spanish, and we suspect our ten Indigenous lan-
guages of South America may have some affinity
to Spanish. We also choose Spanish-English as a
contrastive model because English is in the Ger-
manic language family rather than Romance and
that the MT models built around English usually
are well-performing due to its rich resource of par-
allel data.
Multilingual Models. For our multilingual mod-
els, we exploit mBART50 (Tang et al., 2020).
mBART50 can be seen as an extension of
mBART (Liu et al., 2020). mBART (or more specif-
ically mBART25) is a multilingual sequence-to-
sequence generative model pretrained on 25 mono-
lingual datasets and fine-tuned on 24 bilingual
datasets which cover all 25 languages used in pre-
training. mBART50 takes mBART as a starting
point and enlarges its embedding layers to accom-
modate tokens of 25 new languages to support 50
languages. mBART50 adopts multilingual fine-
tuning under three scenarios: one-to-many, many-
to-one, and many-to-many where ‘one’ represents
English. We choose the one that is trained under
many-to-many scenario to ensure (1) Spanish is
fine-tuned as a source language so it may main-
tain a good representation for Spanish tokens (2)
es-en language pair is covered so we can produce
an intermediate model with es-en fine-tuning to
test the effectiveness of curriculum learning.

3.5 Training Approach

Bilingual Model Training. We fine-tune each of
our three bilingual models for 60, 000 steps with
Spanish-Indigenous data, acquiring performance
on Dev every 1, 000 steps. The final model is the
checkpoint that has the lowest validation/Dev loss,
and it is what we use for predicting on Test. Our
beam size (for beam search) (Reddy et al., 1977;
Graves, 2012) is 6. We use a batch size 3 of 15 for
our bilingual models. It takes ∼ 6 hours to train
on four Nvidia V100-SXM2-16GB GPUs for each
model per language pair.
Multilingual Model Training. For our multi-
lingual setting, we train a model for each of the
Spanish→Indigenous language pairs and it takes

3The batch sizes are small so the data can be loaded in the
GPU memory.

Model Target Our BLEU Our chrF SOTA
BLEU

SOTA
chrF

es-ca 1.445 0.2344
es-en

aym
2.432 0.277

2.8 0.31es-ro 2.009 0.2705
mBart50 2.017 0.2672

mBART50curr 2.23 0.2725
es-ca 7.242 0.2378
es-en

bzd
9.952 0.2753

5.18 0.213es-ro 10.278 0.2867
mBart50 12.898 0.3082

mBART50curr 12.495 0.3036
es-ca 4.742 0.2984
es-en

cni
5.973 0.3367

6.09 0.332es-ro 5.21 0.3229
mBart50 5.632 0.3183

mBART50curr 6.255 0.3432
es-ca 4.395 0.2909
es-en

gn
5.918 0.3341

8.92 0.376es-ro 5.853 0.3279
mBart50 6.329 0.3367

mBART50curr 6.449 0.3387
es-ca 13.375 0.3061
es-en

hch
15.922 0.3461

15.67 0.36es-ro 15.298 0.3444
mBart50 16.731 0.3397

mBART50curr 16.659 0.3391
es-ca 1.95 0.2763
es-en

nah
2.045 0.2913

3.25 0.301es-ro 1.734 0.2929
mBart50 2.422 0.2969

mBART50curr 2.947 0.3015
es-ca 4.344 0.2268
es-en oto 6.414 0.2522

5.59 0.228es-ro 4.14 0.2315
mBart50 7.504 0.265

mBART50curr 7.489 0.2617
es-ca 2.817 0.3449
es-en

quy
4.149 0.3788

5.38 0.394es-ro 3.192 0.3718
mBart50 4.689 0.3928

mBART50curr 4.95 0.3881
es-ca 5.184 0.2627
es-en

shp
7.664 0.3326

10.49 0.399es-ro 6.663 0.32
mBart50 10.022 0.3556

mBART50curr 9.702 0.349
es-ca 1.724 0.217
es-en

tar
2.432 0.248

3.56 0.258es-ro 2.034 0.2358
mBart50 2.433 0.2396

mBART50curr 2.261 0.2362

Table 4: Modeling results (of Track One). The bold-
faced numeric values are the best performances. Source
language is always Spanish so it is ignored. SOTA val-
ues represent the state-of-the-art performance which are
all from Vázquez et al. (2021)

∼ 12 hours to train on four NVIDIA Tesla V100
32GB NVLink GPUs for each model per language
pair. We have two scenarios: mBART50 and
mBART50curr. Both of them have batch size 3 to
be 5, and the beam size to be 6.

mBART50. For our first multilingual scenario, we
fine-tune mBART50 on Spanish-Indigenous data
immediately after tokenization. Similar to our bilin-
gual models, we fine-tune the mBART50 model for
60, 000 steps, measuring performance on Dev ev-
ery 1, 000 steps, and taking the checkpoint with
the best validation loss as our final model used for
prediction on Test.

mBART50curr. For the second scenario,
mBART50curr is first fine-tuned on es-en data
for 300 steps. The validation is done every 20
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Pair Sentence

es-aym
nanakan utaxax khaysa Concord uksanx kimsatunka waranqa acres ukhamarac walja uywanakarakiw utjaraki.

Concord markan nanakan utanx 30000 acre ukhamarak walja uywanaka utji.

es-bzd
Sa’ ù Concord wã 30000 acres tã’ nã tãîx íyiwak.

Sa’ ù ã Concord e’ kı̃ káx dör 20.000 acres tãîx íyiwak tãîx.

es-cni
Abanko Concordki otimi 30000 acres jeri osheki birantsipee.

Ashi pankotsi Concordi timatsi 30000 acres aisati osheki piratsipee.

es-gn
Ore róga Concord-pe otroko 30000 acres ha hetaiterei orerymba.

Ñane óga Concord-pe oreko 30000 acre ha hetaiterei mymba.

es-hch
ta kí wana Concord pe xeiya 30000 acres tsiere y+ wa+kawa yeuta meteu uwa.

ta ki wana Concord pexeiya xeiya xeitewiyari acre meta wa+kawa te+teri.

es-nah
tochan Concord quipiya miyac tlalli nohiya miyac tlapiyalli.

Tehuancalco Concord quipiah macualli tlatqui ihuan miyac yolcameh.

es-oto
mangû game ane Concord phodi 30000 yñi xi nā hmudi on yzuî

Goma na madoongû ane Concord phodi 30000 yqhēya xi na ngû on ybaoni

es-quy
Corcord nisqapi wasiykum kimsa chunka waranqa acres nisqan kan hinataq achkallaña uywa.

Concordpi wasiykuqa 30000 acres hinaspa achka uywakunam

es-shp
Non xobo Concordainra 30000 acresya iki itan kikin icha yoinabo.

Concordainra non xoboa riki 30000 acres itan kikin icha yoinabo.

es-tar
Tamó e’perélachi Concord anelíachi besá makói acres nirú a’lí weká namúti jákami shi.

Concord anelíachi benéalachi, bilé mili akí weká nirú, wekabé namuti nirú.

Table 5: Example of ground truth and prediction of the Spanish sentence “Nuestra casa en Concord tiene 30000
acres y un montón de animales." (Eng. Our home in Concord has 30,000 acres and lots of animals.) by mBART50.
The ‘z’ in ‘yzuî’ of es-oto is actually a Unicode character of code point U+0225 which is a ‘z’ with hook.
Light blue: Ground Truth . Light green: Prediction .

steps where the checkpoint with lowest loss will
be fine-tuned on Spanish-Indigenous language pair
for 60, 000 steps, validated every 1, 000 steps to
pick the best checkpoint with lowest validation
loss. Our mBART50curr is inspired by the con-
cept of curriculum learning (Soviany et al., 2021)
where a model can possibly be improved when first
trained on an easier task and followed by train-
ing on a harder task. In our case here, translat-
ing Spanish to English is considered an easier task
because mBART50 is pretrained with es-en lan-
guage pair; whereas Spanish to South American
Indigenous languages is considered a more diffi-
cult job since mBART50 has not seen any of the
10 Indigenous languages before.

4 Results

We evaluate the translation performance with two
automatic MT evaluation metrics: BLEU (Papineni
et al., 2002) and chrF (Popović, 2015). chrF is
an automatic evaluation metric for MT task which
can be seen as a F-score for text and has value
between 0 and 1. BLEU and chrF are the two

metrics adopted by AmericasNLP 2021 Shared
Task. We surpassed the winner of Americas-
NLP2021 (Vázquez et al., 2021), in either or both
metrics, for 5 language pairs with the following
languages as target: Bribri (bzd), Asháninka (cni),
Wixarika (hch), Nahuatl (nah), and Hñähñu (oto).
Notably, we double the performance in BLEU
score for es-bzd, increasing by about 7.7 BLEU
scores and 0.1 chrF. We increase ∼ 2 BLEU points
in es-oto and ∼ 1 BLEU points in es-hch. For
both es-cni and es-nah, we slightly surpass
their performance in both metrics. The perfor-
mance of experiments are shown in Table 4. We
also offer example predictions in Table 5.

All surpassing results are achieved by mBART50
or mBART50curr. Surprisingly, mBART50curr does
not consistently improve the performance if com-
pared to mBART50; some of the best performances
are achieved by mBART50 (es-bzd, es-hch,
es-oto). Nevertheless, mBART50curr performs
slightly better than mBART50 on average by 0.076
BLEU and 0.0034 chrF. Averagely, mBART50curr
achieves 7.143 BLEU score and 0.3134 chrF while
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mBART50 achieves 7.068 BLEU score and 0.31
chrF. Generally, multilingual models perform better
than bilingual model despite that in some language
pairs, es-en model performs nearly as good as
multilingual models and outperform multilingual
models in es-aym and es-tar. For 3 bilingual
models, es-en model generally outperforms the
other two es-ca and es-ro models.

5 Discussion

5.1 Comparisons to SOTA

We are able to surpass previous SOTA in five
language pairs and mBART50curr achieves 7.143
BLEU and 0.3134 chrF on average, comparing to
previous SOTA having 6.693 BLEU and 0.3171
chrF on average. It can be hypothesized that the
reason why we are able to improve average BLEU
score by 0.45, accomplish comparable average
chrF, and surpass in five language pairs is because
we use an MT model pretrained on 50 languages,
while Vázquez et al. (2021) pretrain their model
only on es-en. We suspect that there could be
some languages, other than Spanish and English,
which contribute to positive transfer to Indigenous
languages. Unlike Vázquez et al. (2021), we do
not leverage external data to build a larger train
set. Nor do we build a single multilingual model
for all 10 language pairs, but we rather train one
model for each language pair (where every single
language pair is independent from the other pairs).
The approach of Vázquez et al. (2021) may be able
to afford some positive transfer between different
Indigenous languages, and hence can be one of our
future directions.

5.2 Fusional to Polysynthetic Translation

There is literature showing that when translating
between a polynthetic4 and a fusional language,
some morphological information of the polysyn-
thetic language is ‘lost’. This is especially relevant
to our work since Spanish is a fusional language
and many Indigenous languages in our work are
polysynthetic (Mager et al., 2021). Mager et al.
(2018b) carry out a morpheme-to-morpheme align-
ment between Spanish and polynthetic Indigenous
languages, including Nahuatl (nah) and Wixarika
(hch) which are both in our data and show that

4Polysynthetic languages generally have a more complex
morphological system, possibly each word consisting of sev-
eral morphemes (Haspelmath and Sims, 2013; Campbell et al.,
2012).

the meanings carried by some polysynthetic mor-
phemes have no Spanish counterpart. This makes it
difficult to translate from polysynthetic languages
to fusional Spanish without losing some morpho-
logical information. This is also a challenge to
translate from fusional Spanish to polysynthetic
languages, as there may be no contexts provided to
infer the missing parts. This is particularly the case
for sentence-level (vs. document level) translation.

We hypothesize that if there is loss in morpholog-
ical information when translating from a fusional
to polysynthetic languages, either or both the sen-
tence length and word length of prediction will
be shorter than the gold standard because some
parts in the prediction are left out while the ground
truth may contain them. We therefore compare
average sentence length and average word length
between our gold standard and prediction as shown
in Table 6. However, we find that this hypothesis
does not hold for most language pairs as most of
them are having similar average sentence and word
lengths in gold standard and predictions. We sus-
pect that this is because the test sets are translated
from Spanish to Indigenous languages by human
translators in a sentence-level fashion, the trans-
lators may leave out the missing morphological
information when translating Spanish into Indige-
nous languages due to inability to infer the missing
information. As Mager et al. (2018b) state:

The important Wixarika independent as-
serters “p+” and “p” are the most fre-
quent morphemes in this language. How-
ever, as they have no direct equivalent
in Spanish, their translation is mostly ig-
nored. . . . This is particularly problem-
atic for the translation in the other direc-
tion, i.e., from Spanish into Wixarika,
as a translator has no information about
how the target language should realize
such constructions. Human translators
can, in some cases, infer the missing in-
formation. However, without context it
is generally complicated to get the right
translation.

As this is a sentence-level translation task where
contexts can be hard to infer, the gold standard
may not contain these parts at the first place. How-
ever, a further qualitative linguistic investigation is
required to spot the cause of this phenomenon.
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Target Sent (Gold) Sent (Pred) Word (Gold) Word (Pred)

aym 6.71 7.97 7.83 5.88
bzd 11.66 10.83 3.79 3.86
cni 6.41 6.1 8.57 8.17
gn 6.46 6.66 6.5 6.46
hch 9.97 8.55 5.35 5.61
nah 6.7 6.9 7.11 7.16
oto 10.38 9.69 4.47 4.01
quy 6.73 6.04 7.71 8.19
shp 8.82 7.77 5.95 5.98
tar 9.36 8.75 5.15 4.86

Table 6: The averages of sentence and word length of
test set. The predictions are produced by mBART50.
Sent (Gold) and Sent (Pred) are the average sentence
length of gold standard and prediction, respectively.
Word (Gold) and Word (Pred) are the average word
length of gold standard and prediction, respectively.
Sentence length is calculated as number of words in
each sentence (by splitting sentence with whitespace).
Word length is calculated as number of characters in
each word.

5.3 Tokenization with Parent Vocabulary

As discussed in Section 3.3, we re-use the tokenizer
of parent models without building new ones for
child language pairs. We observe that the tokens
in target sentences tend to be very short. That is,
tokens in these target sentences often consist of
one or two characters as can be seen in Table 3.
Hence, target sentences do seem to be encounter-
ing oversegmentation. This could be causing loss
of meaning as these smaller segments differ from
what would be suited for a given Indigenous lan-
guage.

We further offer statistics related to tokeniza-
tion with the calculation details provided in Ap-
pendix A.2, and results shown in Table 8 (in Ap-
pendix). The difference between the average length
of tokens in source and target languages is quite
large. For example, for the language pair es-bzd,
when tokenized with the es-en tokenizer, aver-
age token length for the source language is 3.43
while that for the target language is 1.21. This
indicates that tokens in source data consist aver-
agely of ∼ 3.5 characters while tokens in target
data consist averagely of ∼ 1.2 characters. For this
particular es-bzd language pair whose words in
target sentences are on average oversegmented into
nearly one character per token, the performance is
surprisingly better than the previous SOTA. For the
other nine language pairs whose words in target
sentences are segmented into tokens consisting of
∼ 1 to ∼ 2 characters, the models are still capa-
ble of reasonably carrying out the translation task.
As Kocmi and Bojar (2020) conjecture, this may

be a case in point where a model is able to simply
generalize well to short subwords.

5.4 Non-Standard Orthography

Based on a pilot investigation, we find the lack
of orthographic standardization to be potentially
problematic. We place relevant sample predic-
tions in Table 5. For example, for the prediction
of es-aym pair, we find that a word is predicted
nearly correctly with just a difference in one char-
acter: ground truth ‘ukhamarac’ is predicted to be
‘ukhamarak’. As Coler (2014) point out, this may
be an issue of non-standard orthography since some
Aymara speakers do not consistently differentiate
between ‘c’ and ‘k’. It can be hypothesized that the
model generalizes to the ‘ukhamarak’ as a transla-
tion of a phrase/word because of potentially rela-
tively higher number of occurrences of ‘ukhama-
rak’ than ‘ukhamarac’ in training data. In fact,
’ukhamarak’ (including its variants with characters
following such as in ’ukhamaraki’ and ‘ukhama-
rakiw’) appears 489 times in the training set while
‘ukhamarac’ appears zero time (it only exist in test
set). Although ’ukhamarac’ and ’ukhamarak’ can
be viewed as the same word, these are still not
counted as a match by some automatic evaluation
metrics (including metrics based on BLEU, which
we adopt in this work). Interestingly, cases such as
the current one illustrates a challenge for automatic
MT metrics when evaluating on languages without
standard orthography.

6 Conclusion

In this paper, we describe how we apply transfer
learning to MT from Spanish to ten low-resource
South American Indigenous languages. We fine-
tune pretrained bilingual and multilingual MT mod-
els on downstream Spanish to Indigenous language
pairs and show the utility of these models. We are
able to surpass SOTA in five language pairs using
multilingual pretrained MT models without lever-
aging any external data. Empirically, our results
show that this method performs robustly even with
an oversegmentation issue on the target side. We
also discuss multiple issues that interact with our
task, including translating between languages of
different morphological structures, effect of tok-
enization, and non-standard orthography.
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Limitations

One challenge for working on a wide host of In-
digenous languages is insufficient knowledge of
these languages, which also applies to us: We re-
port models on ten different Indigenous languages
none of which is the native tongue of us. In spite
of this limitation, we strive to acquire linguistic
knowledge about the languages we work on so that
our arguments are informed. Regardless, we be-
lieve that lack of native knowledge of the languages
remains a limitation at our side.

In section 5.3, our claim of potential overseg-
mentation is based on an assumption that human
languages tend to not have morphemes with just
a single character. That is, we assume that these
languages should have longer morphemes in gen-
eral. However, again, a more definitive approach
to the problem would perhaps require expert lin-
guistic knowledge of the languages under study.
In absence of (detailed) linguistic analyses of the
Indigenous language we treat, this again remains a
constraint.

Ethics Statement

We develop methods for low-resource machine
translation. Because our models are trained on
limited amounts of data, and hence make frequent
errors, they may not be immediately useful for the
general public. However, our hope is that our work
will propel MT progress on the ten Indigenous lan-
guages we tackle.

There are also some biases in the models and
the textual data we use to train them. The datasets
we use to train our models (Mager et al., 2021)
is a translations of XNLI (Conneau et al., 2018),
which itself is derived from MultiNLI (Williams
et al., 2018). Our bilingual model for each pair is
trained on OPUS corpus that is derived from differ-
ent sources. The multilingual model mBART50 is
also trained on multiple datasets, including IWSLT,
WMT, and TED. Due to the complexity of neu-
ral models, it is hard to explicitly state how these
biases can contribute to the failure modes. How-
ever, we explicitly state the existence of sources
of potential biases to raise the awareness of the
readers.
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A Appendix

A.1 Additional Experiments
We conduct additional experiments for Track Two
as mentioned in Section 3.1. This additional ex-
periment have identical settings as Track One ex-
cept that the train set does not involve sentences
in development set. We surpass the state-of-the-art
performance in 4 out of 10 language pairs in either
or both BLEU and chrF. Similar to the results in

Track One, multilingual MT models perform better
than bilingual ones while there are no consistent
winner between mBART50 and mBART50curr.

A.2 Tokenization Output
As mentioned in Section 5.3, we calculate statistics
related to tokenization on training data as shown
in Table 8. To calculate these statistics, padding
tokens, end of sentence tokens and the underscore
(or more precisely, U+2581) prepended due to sen-
tencePiece technique (Kudo and Richardson, 2018)
are removed from the tokenized sentences. Sen-
tence length is calculated as number of tokens in a
sentence. Token length is calculated as the number
of characters in a token. Average sentence length
is calculated by averaging the sentence lengths of
all sentences. Average token length is calculated as

∑N
i=1

∑ni
j=1 |sij |∑N

i=1 ni

where ni denotes the number of tokens in ith sen-
tence and N denotes the number of sentences in
training data. |sij | denotes the length (number of
characters) of jth token in ith sentence.
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Model Target Dev
BLEU

Dev
chrF

Test
BLEU

Test
chrF

SOTA
BLEU

SOTA
chrF

es-ca 2.415 0.227 1.0 0.197
es-en

aym
2.503 0.261 1.253 0.22

2.29 0.283es-ro 2.642 0.2666 1.369 0.2273
mBART50 3.105 0.275 1.38 0.236

mBART50curr 3.034 0.2679 1.37 0.2291
es-ca 2.033 0.15 2.217 0.153
es-en

bzd
2.987 0.168 3.437 0.178

2.39 0.165es-ro 2.803 0.1709 3.308 0.1816
mBART50 4.205 0.188 4.272 0.197

mBART50curr 4.072 0.1871 4.438 0.1911
es-ca 2.628 0.212 2.429 0.201
es-en

cni
1.671 0.212 1.623 0.208

3.05 0.258es-ro 1.639 0.2225 1.829 0.209
mBART50 3.074 0.26 3.539 0.25

mBART50curr 3.404 0.2573 3.537 0.2491
es-ca 3.637 0.245 3.523 0.254
es-en

gn
4.206 0.282 4.217 0.297

6.13 0.336es-ro 3.784 0.2771 4.699 0.291
mBART50 4.911 0.287 4.801 0.304

mBART50curr 4.496 0.2795 4.702 0.2918
es-ca 5.618 0.191 7.595 0.197
es-en

hch
6.578 0.234 8.995 0.245

9.63 0.304es-ro 7.536 0.2594 10.123 0.2732
mBART50 8.617 0.254 11.526 0.272

mBART50curr 9.067 0.2582 11.539 0.2731
es-ca 0.753 0.239 0.705 0.222
es-en

nah
0.73 0.25 0.772 0.22

2.38 0.266es-ro 1.06 0.2619 0.6983 0.2363
mBART50 1.69 0.281 1.497 0.255

mBART50curr 1.704 0.2731 1.78 0.2412
es-ca 0.536 0.122 0.86 0.12
es-en

oto
0.745 0.124 1.039 0.121

1.69 0.147es-ro 0.5125 0.1198 0.8811 0.1226
mBART50 0.816 0.133 1.354 0.132

mBART50curr 0.8851 0.1348 1.338 0.1331
es-ca 2.199 0.322 2.191 0.328
es-en

quy
2.217 0.337 2.892 0.347

2.91 0.346es-ro 2.081 0.3416 2.094 0.3539
mBART50 2.242 0.356 3.167 0.366

mBART50curr 2.516 0.355 3.038 0.3659
es-ca 1.511 0.178 1.234 0.168
es-en

shp
2.134 0.21 2.017 0.196

5.43 0.329es-ro 1.964 0.2205 1.43 0.2048
mBART50 2.131 0.194 2.013 0.185

mBART50curr 2.067 0.1947 1.809 0.1856
es-ca 0.256 0.095 0.047 0.084
es-en

tar
0.034 0.057 0.023 0.05

1.07 0.184es-ro 0.1583 0.094,38 0.2985 0.089,32
mBART50 0.09 0.093 0.073 0.101

mBART50curr 0.1212 0.094,63 0.090,13 0.1007

Table 7: Modeling results of Track Two. The boldfaced numeric values are the best performances. SOTA values
represent the state-of-the-art performance which are all from Vázquez et al. (2021) except that the es-quy SOTA
chrF value is from (Moreno, 2021). Source language is always Spanish so it is ignored.
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model Target
Lang

source
avg

sentence
length

target
avg

sentence
length

source
avg

token
length

target
avg

token
length

es-ca 26.37 49.1 3.61 1.81
es-en aym 24.55 45.07 3.88 1.99
es-ro 25.74 47.9 3.71 1.91

mBART50 27.4 37.85 3.66 2.53
es-ca 9.42 22.42 3.24 1.28
es-en bzd 8.9 21.43 3.43 1.21
es-ro 9.13 21.52 3.34 1.23

mBART50 10.75 19.67 3.3 1.54
es-ca 17.6 30.56 3.33 1.92
es-en cni 16.72 27.78 3.51 2.12
es-ro 17.31 29.17 3.44 2.04

mBART50 19.38 23.9 3.27 2.69
es-ca 31.89 50.6 3.69 2.01
es-en gn 30.15 50.77 3.9 2.0
es-ro 31.92 52.45 3.73 1.97

mBART50 33.79 41.34 3.63 2.6
es-ca 11.15 23.01 3.24 1.68
es-en hch 10.49 21.56 3.44 1.79
es-ro 10.76 22.27 3.35 1.73

mBART50 13.34 20.14 3.08 2.17
es-ca 33.7 51.39 3.03 1.83
es-en nah 34.36 49.58 2.96 1.94
es-ro 34.44 51.52 2.95 1.83

mBART50 36.78 45.54 2.87 2.32
es-ca 18.0 37.72 3.14 1.64
es-en oto 18.2 36.06 3.1 1.51
es-ro 18.49 37.58 3.07 1.7

mBART50 20.62 32.91 2.98 1.82
es-ca 20.16 42.8 3.65 1.83
es-en quy 19.26 37.68 3.82 2.08
es-ro 20.16 41.45 3.73 1.92

mBART50 22.96 31.47 3.42 2.65
es-ca 9.71 16.53 3.19 1.75
es-en shp 9.06 15.56 3.41 1.85
es-ro 9.42 15.84 3.28 1.82

mBART50 11.12 13.54 3.23 2.5
es-ca 12.48 19.4 2.97 1.48
es-en tar 12.83 18.32 2.89 1.57
es-ro 13.08 19.33 2.84 1.5

mBART50 14.15 15.64 2.98 2.16

Table 8: Token statistics for our Train set. The way of calculating these figures is presented in Appendix A.2.
Since mBART50 and mBART50curr are having exactly same statistics as they use same tokenizer, the statistics of
mBART50curr are ignored.
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Abstract

Data sparsity is a main problem hindering the
development of code-switching (CS) NLP sys-
tems. In this paper, we investigate data aug-
mentation techniques for synthesizing dialec-
tal Arabic-English CS text. We perform lexi-
cal replacements using word-aligned parallel
corpora where CS points are either randomly
chosen or learnt using a sequence-to-sequence
model. We compare these approaches against
dictionary-based replacements. We assess the
quality of the generated sentences through hu-
man evaluation and evaluate the effectiveness
of data augmentation on machine translation
(MT), automatic speech recognition (ASR),
and speech translation (ST) tasks. Results
show that using a predictive model results in
more natural CS sentences compared to the
random approach, as reported in human judge-
ments. In the downstream tasks, despite the
random approach generating more data, both
approaches perform equally (outperforming
dictionary-based replacements). Overall, data
augmentation achieves 34% improvement in
perplexity, 5.2% relative improvement on WER
for ASR task, +4.0-5.1 BLEU points on MT
task, and +2.1-2.2 BLEU points on ST over a
baseline trained on available data without aug-
mentation.

1 Introduction

Code-switching (CS) is the alternation of language
in text or speech. CS can occur at the levels
of sentences (inter-sentential CS), words (intra-
sentential CS/code-mixing), and morphemes (intra-
word CS/morphological CS). Given that CS data
is scarce and that collecting such data is expensive
and time-consuming, data augmentation serves as
a successful solution for alleviating data sparsity.

In this paper, we investigate lexical replace-
ments for augmenting CS dialectal Arabic-English
data. Researchers have investigated approaches
that do not require parallel data, including trans-
lating source words into target language with the

use of dictionaries (Tarunesh et al., 2021), ma-
chine translation (Li and Vu, 2020), and word em-
beddings (Sabty et al., 2021), as well as relying
on parallel data and performing substitutions of
words/phrases using alignments (Menacer et al.,
2019; Appicharla et al., 2021; Gupta et al., 2021).
As will be discussed in Section 2, most of the pre-
vious studies on this front have focused on one aug-
mentation technique without exploring others, or
reported results using only one type of word align-
ments configuration, or evaluated effectiveness of
augmentation on only one downstream task.

We attempt to provide a comprehensive study
where we systematically explore the use of neural-
based models to decide on CS points for perform-
ing replacements using word-aligned parallel cor-
pora versus randomly-chosen CS points, along
with the interaction of different alignment config-
urations. We compare these approaches against
dictionary-based replacements. We provide a rigor-
ous evaluation of the different settings, where we
assess the quality of the generated CS sentences
through human evaluation as well as the impact
on language modeling (LM), automatic speech
recognition (ASR), machine translation (MT), and
speech translation (ST) tasks.

Our human evaluation study shows that for the
purpose of generating high-quality CS sentences,
learning to predict CS points and integrating this
information in the augmentation process improves
the quality of generated sentences. On the down-
stream tasks, we report that performing alignment-
based replacement outperforms dictionary-based
replacement. For alignment-based replacement, uti-
lizing a predictive model to decide on where CS
points should occur as opposed to replacing at ran-
dom positions both lead to similar results for ASR,
MT, and ST tasks. For both approaches, we in-
vestigate different word alignment configurations,
and we report that performing segment replace-
ments using symmetrized alignments outperforms
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word-replacements using intersection alignments
on both human evaluation and extrinsic evaluation.
We also investigate controlling the amount of gen-
erated data, to eliminate the effect of random pro-
ducing more data over the predictive model. Under
the constrained condition, using a predictive model
outperforms the random approach on the MT task.

In this work, we tackle the following research
questions (RQs):

• RQ1: Can a model learn to predict CS points
using limited amount of CS data?

• RQ2: Can this information be used to gener-
ate more natural synthetic CS data?

• RQ3: Would higher quality of synthesized
CS data necessarily reflect in performance im-
provements in downstream tasks?

2 Related Work

Most of the work done for CS data augmentation
has been focused on LM, mostly for ASR. Several
techniques have been proposed based on linguis-
tic theories (Pratapa et al., 2018; Lee et al., 2019;
Hussein et al., 2023), heuristics (Shen et al., 2011;
Vu et al., 2012; Kuwanto et al., 2021a), neural
networks (Chang et al., 2018; Winata et al., 2018,
2019; Li and Vu, 2020), and MT (Tarunesh et al.,
2021). CS data augmentation has been less investi-
gated for MT. Previous work has mainly involved
lexical replacements (Menacer et al., 2019; Song
et al., 2019; Appicharla et al., 2021; Gupta et al.,
2021; Xu and Yvon, 2021) and back translation
(Kuwanto et al., 2021b). In this section, we discuss
previous work that we find closest to ours.

Hussein et al. (2023) generated synthetic CS
Arabic-English text based on the equivalence con-
straint (EC) theory (Poplack, 1980) using the GCM
tool (Rizvi et al., 2021), as well as random lexi-
cal replacements. It was shown that while relying
on the EC theory generates more natural CS sen-
tences, as shown in human evaluation, using lexical
replacements outperforms the linguistic-based ap-
proach on LM and ASR tasks.

In the direction of lexical replacements, Ap-
picharla et al. (2021) generated synthetic CS Hindi-
English sentences by replacing all source words
(except for stopwords) by the corresponding target
words using 1-1 alignments, achieving improve-
ments on MT task. Gupta et al. (2021) trained a
neural-based model to predict CS points on mono-
lingual source text. Using 1-n alignments, the

Predictive Model

yes have an international

اهليه :Srcرخصةدولية

Tgt:

مش

license

Aug:

you

انت عندك

 اه ليه انت مش عندك

0 0 0 1 10

international license

yes have an international licenseyou

Figure 1: Data augmentation process.

source word is replaced by the aligned word(s).
They evaluate their approach against unigram and
bigram random replacements, and test its effec-
tiveness on MT task for CS Hindi-English. Xu
and Yvon (2021) use data augmentation for MT
task for CS Spanish-English and French-English.
Symmetrized alignments are used to identify small
aligned phrases (minimal alignment units) and
phrase replacements are performed randomly. We
also notice that in literature, human evaluation of
generated CS data is mainly used to evaluate the
synthetic data produced by the best model, rather
than comparing different techniques. Such a com-
parison was provided by Pratapa and Choudhury
(2021), where a large-scale human evaluation was
presented comparing different linguistic-driven and
lexical replacement techniques. However, the study
was focused on human evaluation without explor-
ing the effectiveness of those techniques on down-
stream tasks.

3 Data Augmentation

For generating synthetic CS data, we investigate
the use of word-aligned parallel sentences as well
as dictionary-based replacements. In the latter
approach, monolingual Arabic sentences are aug-
mented by replacing words at random locations
with their English glossary entry. In the former
approach, utilizing monolingual Arabic-English
parallel corpora, we inject words from the target
side to the source side, where replacements are per-
formed at random locations or using a CS point
predictive model. As shown in Figure 1, the aug-
mentation process consists of two main steps: (1)
CS point prediction: identifying the target words
to be borrowed, and (2) CS generation: performing
the replacements. In Sections 3.1 and 3.2, we will
elaborate on the methodology for both steps.
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Examples
Src . �éK
ñ �� academic life È@ i love

	¬ ¨ñ 	�ñÖÏ @ �IK. Qm.
	̄ �èQ�� 	̄ ú


	̄ i was a junior ta ð←
Tgt and i was a junior ta for a period of time so i have tried this and i love the academic life a bit .
Output 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0
Src A�A�@ ø
 X ø
 	P city

	¬ñ ��@ ú

	G @ expect Ð ���� 	J» AÓ←

Tgt i wasn ’t expecting to see such a city in the first place .
Output 0 0 0 1 0 0 0 0 1 0 0 0 0 0

Table 1: Example showing the matching algorithm output for given source and target sentences. The matched words
on the target side are underlined. The arrows show the sentence starting direction, as Arabic is read right to left.

3.1 CS Point Prediction

Similar to Gupta et al. (2021), we model the task
of CS point prediction as a sequence-to-sequence
classification task. The neural network takes as in-
put the word sequence x = {x1, x2, .., xN}, where
N is the length of the input sentence. The network
outputs a sequence y = {y1, y2, .., yN}, where
yn ∈ {1,0} represents whether the word xn is to
be code-switched or not. We learn CS points using
ArzEn-ST corpus (Hamed et al., 2022b), which con-
tains CS Egyptian Arabic-English sentences and
their English translations. We then utilize the learnt
CS model to augment a large number of monolin-
gual Arabic-English parallel sentences by inserting
the tagged words on the (English) target side into
the (Egyptian Arabic) source side.

In order to learn CS points, the neural network
needs to take as input monolingual sentences from
either the source or target sides, along with tags
representing whether this word should be code-
switched or not. In Gupta et al. (2021), the authors
generated synthetic monolingual sentences from
CS sentences by translating CS segments to the
source language, and then learning CS points on
the source side. While this approach seems more
intuitive, CS segments abide by the grammatical
rules of the embedded language, thus direct transla-
tion of embedded words would result in sentences
having incorrect structures in the matrix language
in case of syntactic divergence, which is present be-
tween Arabic and English. Instead, we opt to learn
CS points on the target side. This approach pro-
vides another advantage, as English is commonly
used in CS, having the predictive model trained
on English as opposed to the primary language
(which could be low-resourced) allows for the use
of available resources such as pretrained LMs.

The challenge in this approach is identifying the
words on the target side which correspond to the

CS words on the source side. Relying on the trans-
lators to perform this annotation task is costly, time
consuming, and error-prone.1 Relying on word
alignments is also not optimal, where only 83%
of CS words in ArzEn-ST train set were matched
using intersection alignment. Recall could increase
using a less strict alignment approach, but would
be at the risk of less accurate matches. Therefore,
we develop a matching algorithm that is based on
the following idea: if a CS segment occurs x times
in the source and target sentences, then we iden-
tify these segments as matching segments. We
match segments starting with the longest segments
(and sub-segments) first. When matching words,
we check their categorial variation (Habash and
Dorr, 2003) as well as stems to match words having
slight modifications in translation.2 This matching
algorithm provides a language-agnostic approach
to identify words on the target side that are code-
switched segments on the source side.3 Examples
of algorithm output are shown in Table 1, where it
is seen that expect and expecting are matched as a
result of the categorial variation check.

3.2 CS Generation

After identifying the target words to be embedded
into the source side, we rely on alignments using
GIZA++ (Casacuberta and Vidal, 2007) to perform
the replacements. While direct replacements can
be performed in the case of single word switches,
in the case of replacing multiple consecutive words,
direct word replacements would produce incorrect
CS structures in the case of syntactic divergence.

1We have tried this annotation task for ArzEn-ST and only
72% of the CS words got annotated.

2In case |matchestgt| > |matchessrc|, we first rely on
alignments to make the decision, achieving 99.6% matches
on ArzEn-ST train set, then we randomly pick matched target
segments to cover the number of matches on the source side
in order to increase recall.

3Code available: http://arzen.camel-lab.com/
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In the case of Arabic-English, this is particularly
evident for adjectival phrases. Accordingly, when
performing word replacements, we maintain the
same order of consecutive English words, which
we refer to as the “Continuity Constraint”. In Fig-
ure 2, the importance of applying this constraint
is illustrated. Without such a constraint, the gen-
erated sentence outlined in Figure 2 would follow
the Arabic syntactic structure resulting in “ èX topic
important very” (this [is a] topic important very).

When performing replacements, we investigate
the use of intersection alignments as well as grow-
diag-final alignments.4 While intersection align-
ment provides high precision, relying on 1-1 align-
ments is not always correct, as an Arabic word
can map to multiple English words and vice versa.
Therefore, we investigate the use of grow-diag-final
(symmetrized) alignments to identify aligned seg-
ments. The aligned segments consist of pairs of the
minimal number of consecutive words (S,T) where
all words in source segment (S) are aligned to one
or more words in target segment (T) and are not
aligned to any other words outside (T), with the
same constraints applying in the opposite (target-
source) direction. Afterwards, for each English
word receiving a positive CS tag, the whole target
segment containing this word replaces the aligned
source segment. Throughout the paper, we will
refer to the two approaches as using 1-1 and n-n
alignments. In Figure 3, we present an example
showing the results of augmentation using predic-
tive CS models versus random CS point prediction
along with using 1-1 or n-n alignments.

3.3 Augmentation Approaches

We investigate the following approaches:

DICTIONARY: We randomly pick x source words
and replace them with an English glossary entry
using MADAMIRA (Pasha et al., 2014). We set x
to 19% of the source words, where this number is
chosen based on the percentage of English words
in CS sentences in ArzEn-ST train set, given that
we would like to mimic natural CS behaviour.

4We experiment with relying on alignments trained on
word space only, stem space only, and the merge of both align-
ments, where for intersection alignments, we first rely on the
alignments obtained in stem space, and add remaining align-
ments obtained from word space, such that 1-1 alignments
are retained, and for grow-diag-final alignments, we take the
union of alignments in both spaces. We find that merging
alignments in both spaces achieves higher alignment coverage
as well as better results in extrinsic tasks. Therefore, we will
only be presenting the results using the merged alignments.

 جدا

topic

 ده  موضوع  مهم

this is a very important

Incorrect: → ده topic important very
Correct: very important topic ده →

src:

tgt:

tags: 10 0 1 10

Figure 2: Data augmentation under the Continuity Con-
straint.

.   اᇋຎ٤ڑ ֿՔռ   ռة  ٲԸՔك  ٲԸՔد  Ը๎وز

i
'd x
like
an
appointment x
with x
you
tomorrow x
afternoon x
. x

Rand . afternoon َة ؋ףଋ૰ׇوز ܁ףׇد ܁ףׇك ؋ໝ ←
(1-1) I'd like an appointment with you tomorrow after afternoon
Rand . afternoon ةଋ૰ׇوز ܁ףׇد ܁ףׇك ؋ໝ ←
(n-n) I'd like an appointment with you tomorrow afternoon
Pred → i 'd appointment ܠቚ༝۳ة ؋ףَ اଋ૰܁ףׇك ؋ .
(1-1) I'd appointment with you tomorrow afternoon
Pred → i 'd like an appointment ܠቚ༝۳ة ؋ףَ اଋ૰܁ףׇك ؋ .
(n-n) I'd like an appointment with you tomorrow afternoon

Figure 3: Example showing 1-1 and n-n alignments.
The intersection alignments are marked with ‘x’ and the
grow-diag-final alignments are highlighted. We show
the generated sentences with translations for each setup.

MAPRAND: We randomly pick x target words
having source-target intersection alignments. We
set x to 19% of the source words. We use word
and segment replacements, where the models are
referred to as MAPRAND1−1 and MAPRANDn−n.

MAPPRED: We fine-tune pretrained mBERT
model using NERDA framework (Kjeldgaard and
Nielsen, 2021) to predict the target words to be
injected into the source side.5 We use 1-1 and
n-n alignments to perform replacements, where
the models are referred to as MAPPRED1−1 and
MAPPREDn−n.6 For finetuning mBERT, we set the
epochs to 5, drop-out rate to 0.1, warmup steps to
500, batch size to 13, and learning rate to 0.0001.

5We maintain the original tokenization of the input text,
where we project further tokenization performed on the output
into the original tokenization.

6For training the predictive models, we also tried using
BERT models, which gave slightly lower results.
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4 Experiments

4.1 Data

We use ArzEn-ST corpus (Hamed et al., 2022b)
as our CS corpus. The corpus contains English
translations of an Egyptian Arabic-English code-
switched speech corpus (Hamed et al., 2020) that
is gathered through informal interviews with bilin-
gual speakers. The corpus is divided into train, dev,
and test sets having 3.3k, 1.4k, and 1.4k sentences
(containing 2.2k, 0.9k, and 0.9k CS sentences),
respectively. We follow the same data splits. In
Appendix A, we provide an overview of ArzEn-ST
corpus.

We also utilize the following Egyptian Arabic-
English parallel corpora: Callhome Egyp-
tian Arabic-English Speech Translation Corpus
(Gadalla et al., 1997; LDC, 2002b,a; Kumar
et al., 2014), LDC2012T09 (Zbib et al., 2012),
LDC2017T07 (Chen et al., 2017), LDC2019T01
(Chen et al., 2019), LDC2021T15 (Tracey et al.,
2021), and MADAR (Bouamor et al., 2018). The
corpora contain 308k monolingual parallel sen-
tences as well as 15k CS parallel sentences. We
use the same data splits as defined for each corpus.
For corpora with no defined data splits, we use the
guidelines provided in (Diab et al., 2013). Data pre-
processing for ArzEn-ST and the parallel corpora
is discussed in Appendix C.

Data Augmentation: For data augmentation, we
use the monolingual parallel sentences and aug-
ment them into CS parallel sentences. For the CS
point predictive model, we use the CS sentences
in ArzEn-ST train and dev sets for training and
development, respectively.

MT: The MT baseline system is trained on
ArzEn-ST train set, in addition to the 308k mono-
lingual parallel sentences. In the augmentation
experiments, we add the augmented sentences to
the baseline training data. For development and
testing, we use ArzEn-ST dev and test sets.

ASR: The ASR baseline system is trained on the
following Egyptian Arabic data: ArzEn speech cor-
pus (Hamed et al., 2020), Callhome (Gadalla et al.,
1997), and MGB-3 (Ali et al., 2017). A subset of
5-hours was used from each of Librispeech (Panay-
otov et al., 2015) (English) and MGB-2 (Ali et al.,
2016) (MSA), where adding more data from these
corpora deteriorated the ASR performance (Hamed
et al., 2022a). The LM baseline model is trained on

corpora transcriptions. For the LM models using
augmented data, we append the augmented data to
those transcriptions. For development and testing,
we use ArzEn-ST dev and test sets.

As an extra experiment, we compare the perfor-
mance of the systems relying on synthetic CS data
versus using available real CS data. For MT, we
use the 15k CS parallel sentences in addition to
the baseline data. For ASR rescoring, we train the
LM on the baseline data in addition to 117,844
code-switched sentences collected from social me-
dia platforms (Hamed et al., 2019). We denote
these experiments as ExtraCS in the results.

4.2 Machine Translation System

We train a Transformer model using Fairseq (Ott
et al., 2019) on a single GeForce RTX 3090
GPU. We use the hyperparameters from the FLO-
RES benchmark for low-resource machine trans-
lation (Guzmán et al., 2019).7 The hyperparam-
eters are given in Appendix D. We use a BPE
model trained jointly on source and target sides
with a vocabulary size of 16k (which outperforms
1, 3, 5, 8, 32, 64k).8 The BPE model is trained us-
ing Fairseq with character_coverage set to 1.0.

4.3 Automatic Speech Recognition System

We train a joint CTC/attention based E2E ASR sys-
tem using ESPnet (Watanabe et al., 2018). The
encoder and decoder consist of 12 and 6 Trans-
former blocks with 4 heads, feed-forward inner
dimension 2048 and attention dimension 256. The
CTC/attention weight (λ1) is set to 0.3. SpecAug-
ment (Park et al., 2019) is applied for data augmen-
tation. For LM, the RNNLM consists of 1 LSTM
layer with 1000 hidden units and is trained for 20
epochs. For decoding, the beam size is 20 and the
CTC weight is 0.2.

4.4 Speech Translation System

We build a cascaded ST system using the ASR
and MT models. We opt for a cascaded system
over an end-to-end system due to the limitation of
available resources to build an end-to-end system,
in addition to the fact that cascaded systems have
shown to outperform end-to-end systems in low-
resource settings (Denisov et al., 2021).

7We follow (Gaser et al., 2022), where it was shown that
FLORES hyperparameters outperform Vaswani et al. (2017)
using the same datasets.

8For the ExtraCS experiment, we use a vocabulary size of
8k, which outperforms 16k and 32k.
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5 Results

In order to evaluate our augmentation techniques,
we provide intrinsic evaluation, extrinsic evalua-
tion, as well as human evaluation.9 According to
human evaluation, the synthetic data generated us-
ing a CS predictive model is perceived as more nat-
ural. However, our extrinsic evaluation shows that
both aligned-based approaches (random replace-
ments and relying on a predictive model) perform
equally on downstream tasks. We observe that us-
ing a predictive model generates less data than the
random approach. When controlling for size, we
observe that using a predictive model brings im-
provements on the MT task. Both aligned-based
approaches outperform dictionary-based replace-
ments on human evaluation and extrinsic evalua-
tion. Regarding the effect of word alignment con-
figurations, the improvements of using n-n align-
ments versus 1-1 alignments is confirmed in both
human evaluation and extrinsic evaluation.

5.1 Intrinsic Evaluation

Predictive Model Evaluation We compare the
CS point predictions provided by the predictive
model against the actual CS points in the CS sen-
tences in ArzEn-ST dev set. We present accuracy,
precision, recall, and F1 scores in Table 2. While
these figures give us an intuition on the perfor-
mance of the predictive models, it is to be noted
that false positives are not necessarily incorrect. It
is also to be noted that the high accuracy values are
due to the high rate of true negative predictions.

As another evaluation, we check the POS distri-
bution of the words predicted as CS by both the
random and predictive models, against that of CS
words in ArzEn-ST dev set. The predictive model
shows a higher correlation (0.984) versus random
approach (0.938). The POS distribution of the top
frequent tags is shown in Appendix B. The predic-
tions of the learnt model are dominated by nouns,
followed by verbs and adjectives, where other POS
tags have lower frequencies than in ArzEn-ST. The
random approach gives better coverage for POS
tags, however, introduces higher frequencies for
low-frequent POS tags of CS words in ArzEn-ST.

CS Synthetic Data Analysis We look into how
similar the synthetic data is to naturally occurring

9The MT models require around 4 hours for training. The
ASR system required around 48 hours for training, as well as
6 hours for ASR rescoring. The CS predictive model using
mBERT required around 10 hours for inference.

Model Accuracy Precision Recall F1
Random 77.1 18.8 21.0 0.198
Predictive 91.9 76.6 57.4 0.656

Table 2: Evaluating the performance of the predictive
model on the code-switched sentences in ArzEn-ST dev
set.

%En %En
Model (words) CMI av.|CS| (sent.)

DICTIONARY 21.1 0.23 1.2 0.0
MAPRAND1−1 19.9 0.22 1.14 0.0
MAPPRED1−1 16.7 0.22 1.23 6.3
MAPRANDn−n 27.7 0.25 2.26 6.8
MAPPREDn−n 28.9 0.26 2.84 18.3
ArzEn-ST 18.6 0.19 1.88 3.7

Table 3: Evaluating augmented sentences in terms of
CS metrics against ArzEn-ST train set.

CS sentences. In Table 3, we evaluate the synthetic
data in terms of the percentage of English words,
the Code-Mixing Index (CMI) (Das and Gambäck,
2014), the average length of CS segments, as well
as the percentage of monolingual English sentences
generated. We observe that using 1-1 alignments,
the generated CS sentences are close to natural
occurring CS sentences in ArzEn-ST in terms of
CS metrics. Using n-n alignments, the amount of
CS in the synthetic data increases considerably.

5.2 Extrinsic Evaluation

We evaluate the improvements achieved through
data augmentation on LM, ASR, MT, and ST tasks.
Results are shown in Table 4. We present perplex-
ity (PPL) for LM and Word Error Rate (WER) and
Character Error Rate (CER) for ASR. For MT and
ST, we use BLEU (Papineni et al., 2002), chrF,
chrF++ (Popović, 2017), and BERTScore (F1)
(Zhang et al., 2019). BLEU, chrF and chrF++ are
calculated using SacrebleuBLEU (Post, 2018). In
Table 4, we present the chrF++ scores. We present
the results for all metrics in Appendix E.

Language Modeling PPL reductions are
observed when using n-n over 1-1 align-
ments for random-based replacements. While
MAPRANDn−n generates more data than
MAPPREDn−n, both approaches achieve similar
PPL, outperforming DICTIONARY. Overall, we
achieve a 34% reduction in PPL over baseline.
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LM ASR MT ST
Model |Train| PPLAll WERAll CERAll chrF++All chrF++CS chrF++All chrF++CS

Baseline 415.1 34.7 20.0 53.0 54.0 39.4 40.4
+DICTIONARY +240,678 313.3 33.2 19.1 52.6 53.5 40.1 41.0
+MAPRAND1−1 +240,869 306.1 32.9 19.0 55.2∗ 57.0∗ 41.0∗ 42.1∗

+MAPPRED1−1 +177,633 273.4 33.2 19.1 55.5† 57.4† 40.9† 42.2†

+MAPRANDn−n +207,026 273.8 32.9 18.9 56.0∗ 57.9∗ 41.4∗ 42.7∗

+MAPPREDn−n +138,544 274.5 33.0 18.9 56.0† 57.8† 41.5† 42.8†
+ExtraCS 228.1 33.3 19.0 55.7 57.6 41.6 42.9

Constrained Experiments
+c[DICTIONARY] +99,725 324.2 33.5 19.3 52.3 53.3 39.4 40.1
+c[MAPRANDn−n] +99,725 293.4 33.1 19.0 55.6⋆ 57.3⋆ 41.2 42.6
+c[MAPPREDn−n] +99,725 270.4 33.0 18.9 56.0⋆ 57.9⋆ 41.2 42.6

Table 4: We report the results of the extrinsic tasks on ArzEn-ST test set. For language modeling, we report PPL
on all sentences. For ASR, we report WER and CER on all sentences. For MT and ST, we report chrF++ on all
and CS sentences. We report the results of using all augmentations (non-constrained), followed by the constrained
experiments. The best performing approach in the non-constrained setting is bolded. The best performing approach
in the constrained setting is underlined. We run statistical significance tests between MAPRAND and MAPPRED as
well as 1-1 and n-n experiments, and mark models that are statistically significant (p-values< 0.05) with superscript
symbols (∗, †, ⋆).

ASR All models utilizing augmented data outper-
form the baseline. The best results are achieved us-
ing MAPPREDn−n and MAPRANDn−n, which per-
form equally well, achieving 5.2% absolute WER
reduction over baseline. We observe that these
models slightly outperform those trained on extra
real CS data.10

Machine Translation Evaluation Results show
that using n-n alignments outperforms 1-1 align-
ments on all settings. However, using a predictive
model does not outperform random replacements.
We observe that dictionary-based replacement neg-
atively affects the MT systems. We also observe
that our top two models perform equally well as
the model utilizing real CS data, confirming the ef-
fectiveness of data augmentation, achieving 3-3.9
chrF++ points over the baseline.

MT Qualitative Analysis When looking into the
translations provided by the baseline model, we
observe that many CS words get dropped in transla-
tion or get mistranslated. When checking the trans-
lations provided by the MT systems trained using
augmentations, we observe that the majority of the
CS words are retained through translation. We also
observe that these MT systems are able to retain
CS OOV words, where the words are not available

10It is to be noted that the data collected from social media
platforms is noisy, however, it still brings improvements in
LM and ASR tasks.
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Figure 4: The chrF++ scores reported on ArzEn-ST test
set when adding: (1) 25% of the sentences in the con-
strained experiment (=24.9k), (2) 50% of the sentences
in the constrained experiment (=49.8k), (3) 100% of the
sentences in the constrained experiment (=99.7k), (4) all
sentences generated by MAPPREDn−n (=138.5k), and
(5) all sentences generated by MAPRANDn−n (=207k).

in the baseline training data, nor introduced in the
synthetic data. This shows that by adding CS syn-
thetic sentences to the training set, the models learn
to retain English words in translation. Examples
are shown in Appendix F.

Speech Translation Evaluation Similar to pre-
vious results, both MAPPRED and MAPRAND out-
perform DICTIONARY. We observe improvements
for using n-n alignments over using 1-1 alignments.
However, no improvements are achieved by using
predictive model over random predictions.
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Understandability
1 No, this sentence doesn’t make sense.
2 Not sure, but I can guess the meaning of this sentence.
3 Certainly, I get the meaning of this sentence.

Naturalness
1 Unnatural, and I can’t imagine people using this style of code-mixed Arabic-English.
2 Weird, but who knows, it could be some style of code-mixed Arabic-English.
3 Quite natural, but I think this style of code-mixed Arabic-English is rare.
4 Natural, and I think this style of code-mixed Arabic-English is used in real life.
5 Perfectly natural, and I think this style of code-mixed Arabic-English is very frequently used.

Table 5: The evaluation dimensions for human evaluation, following (Pratapa and Choudhury, 2021).

Constrained Experiments In order to control
existing variables, such as the number of gener-
ated sentences, and how similar they are to the test
set, we conduct further experiments where we re-
strict the augmented sentences in each approach
to the CS sentences that are generated across the
three techniques: DICTIONARY, MAPRANDn−n,
and MAPPREDn−n. We report results by train-
ing our models using these restricted augmenta-
tions (99.7k sentences) in addition to the base-
line training data in Table 4. We find that, un-
der this condition, for the MT task, the predic-
tive model outperforms random, where the im-
provements are statistically significant on BLEU,
chrF, and chrF++, as shown in Table 10. For the
ASR task, while MAPPREDn−n achieves lower
PPL over MAPRANDn−n, both models perform
equally. In Figure 4, we show the learning curves
for MAPRANDn−n and MAPPREDn−n MT scores
when including 25%, 50%, and 100% of the gen-
erated sentences in the constrained setting, in ad-
dition to the scores of the non-constrained setting.
We see that MAPPREDn−n achieves overall the
same performance as MAPRANDn−n with half the
amount of generated sentences.

5.3 Human Evaluation

We perform a human evaluation study to assess the
quality of sentences generated by the five models:
MAPRAND1−1, MAPPRED1−1, MAPRANDn−n,
MAPPREDn−n, and DICTIONARY. Out of the sen-
tences that get augmented in all five techniques, we
randomly sample 150 sentences, and ask human an-
notators to judge the synthetic sentences generated
by each model, giving a total of 750 sentences to be
evaluated.11 We also include 150 random CS sen-

11The sentences are sampled uniformly across the 6 corpora
used in data augmentation to have equal representation of the

RAND PRED RAND PRED
MOS ArzEn DICT (1-1) (1-1) (n-n) (n-n)

Understandability
1≤*< 2 2.7 62.0 32.7 32.0 21.3 16.7
2≤*< 3 97.3 38.0 67.3 68.0 78.7 83.3

Naturalness
1≤*< 2 0.7 82.7 70.7 50.0 46.7 30.0
2≤*< 3 6.0 8.7 12.7 18.0 26.0 25.3
3≤*< 4 11.3 6.0 8.0 20.0 14.0 26.0
4≤*≤ 5 82.0 2.7 8.7 12.0 13.3 18.7

Table 6: The mean opinion score (MOS) distribution
for synthetic sentences, showing the percentage of sen-
tences falling in each evaluation range.

tences from ArzEn-ST to act as control sentences.
These 900 sentences were judged by three bilin-
gual Egyptian Arabic-English speakers. Following
(Pratapa and Choudhury, 2021), the sentences are
evaluated against understandability and naturalness,
where the rubrics are outlined in Table 5.

For each synthetic/real sentence, we calculate
the mean opinion score (MOS), which is the av-
erage of the three annotators’ scores for that sen-
tence. In Table 6, we present the MOS distribution
for each augmentation approach, presenting the
percentage of sentences falling in each evaluation
range. We observe that the annotators prefer the
synthetic data generated using segment replace-
ments (n-n alignments) over those using word re-
placements (1-1 alignments). The annotators also
prefer the synthetic data generated using trained
predictive models over those using random CS
point prediction. The highest scores are achieved
by MAPRANDn−n, where 44% of the synthetic
sentences are perceived as natural.

different data sources (web/chat/conversational).
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6 Discussion

In this section, we revisit our RQs:

RQ1 - Can a model learn to predict CS points
using limited amount of CS data? As shown in
the intrinsic evaluation, the model learns to predict
CS points to some extent, as shown in the improve-
ments in accuracy, precision, and F1 scores over
random predictions. This is also observed where
the POS distribution of the CS predictions using a
predictive model has higher correlation to the dis-
tribution found in natural CS sentences compared
to random predictions.

RQ2 - Can this information be used to generate
more natural synthetic CS data? Yes, this was
confirmed though human evaluation, where anno-
tators reported higher scores for understandability
and naturalness using the predictive model over
using random replacements.

RQ3 - Would higher quality of synthesized CS
data necessarily reflect in performance improve-
ments in downstream tasks? In the scope of
our experiments, such an entailment does not nec-
essarily hold. We believe two limitations are af-
fecting the performance of the predictive model.
First of all, the MAPPRED approach is based on
the assumption that the data provided to the pre-
dictive model is representative enough of the CS
phenomenon and includes all CS patterns. Due
to the scarcity of CS corpora and the dynamic be-
haviour of CS (El Bolock et al., 2020), this point
presents a challenge and could be restricting the
potential power of this model, and it could be the
case that MAPRAND is able to cover more CS pat-
terns. This is supported by the POS distribution
analysis in Section 5.1. Secondly, random has the
power of generating more data as opposed to using
a predictive model. When we control for size, we
observe improvements in MT using the predictive
model. In the future, we plan to work on improving
the predictive approach to generate more CS sen-
tences. For ASR, both approaches perform equally.
It was also shown in (Hussein et al., 2023) that
random lexical replacement outperforms the use of
Equivalence Constraint linguistic theorem for ASR.
Therefore, we believe further research is needed
to draw strong conclusions about the relation be-
tween the quality of generated CS data and the
improvements on different downstream tasks.

7 Conclusion and Future Work

In this paper, we investigate data augmentation for
CS Egyptian Arabic-English. We utilize parallel
corpora to perform lexical replacements, where CS
points are either selected randomly or based on pre-
dictions of a neural-based model that is trained on
a limited amount of CS data. We investigate word
replacements using intersection alignments as well
as segment replacements using symmetrized align-
ments. We compare both aligned-based replace-
ments with dictionary-based replacements. We
evaluate the effectiveness of data augmentation on
LM, MT, ASR, and ST tasks, as well as assess
the quality through human evaluation. Across all
evaluations, we report that segment replacements
outperform word replacements, and aligned-based
replacements outperform dictionary-based replace-
ments. The human evaluation study shows that uti-
lizing predictive models produces augmented data
of highest quality. For the downstream tasks, ran-
dom and predictive techniques achieve similar re-
sults, both outperforming dictionary-based replace-
ments. We observe that random has the advantage
of generating more data. When controlling for the
amount of generated data, the predictive technique
outperforms random on the MT task. Our best
models achieve 34% improvement in perplexity,
5.2% relative improvement on WER for ASR task,
+4.0-5.1 BLEU points on MT task, and +2.1-2.2
BLEU points on ST task.
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Limitations

To the best of our knowledge, this paper presents
the first comparison for the mentioned lexical
replacement techniques, covering human evalu-
ation as well as three downstream tasks; auto-
matic speech recognition, machine translation, and
speech translation. However, the study is focused
on the Egyptian Arabic-English language pair, and
we make no assumptions on the generalizability of
results to other language pairs, nor other domains.
Further investigations are needed to assess how
the results would differ, especially in the case of
languages with less syntactic divergence. We also
note another limitation in the human evaluation,
which is that code-switching is a user-dependent be-
haviour, that differs across different users, and thus
the evaluation of the naturalness of a code-switched
sentence is very subjective. We have taken this into
account in our human evaluation study by having
each sentence evaluated by three annotators and
taking the average across the three ratings.

Ethics Statement

We could not identify potential harm from using
the provided models in this work. However, one
concern is that code-switched ST is yet a challeng-
ing task, and the ST models trained in this work
provide low performance, and thus should not be
deployed as it can mislead the users.

A ArzEn-ST Corpus

In Table 7, we provide an overview on ArzEn-ST
corpus. In Table 8, we show examples from the
corpus.

ArzEn-ST Speech Corpus
Duration 12h
#Speakers 40
# Sentences 6,216
% CS sentences 63.7%
% Arabic sentences 33.2%
% English sentences 3.1%

Table 7: ArzEn-ST corpus overview.

# Example
project code È@ �I�. �J» A 	K @←

1 AnA ktbt Al project code
I wrote the project code

internship @ 	Y» �IÊÔ«←
2 Emlt k*A internship

I did several internships
AK
AªÓ úÎË@ �A 	JË @ overload H. �I	J»←

3 knt b overload AlnAs Ally mEAyA
I was overloading my teammates�é 	JJ
ªÓ traffic within period È@ detect 	à←

4 n detect Al traffic within period mEynp
to detect the traffic within a certain period

Table 8: ArzEn-ST corpus examples, showing source
text, its transliteration (Habash et al., 2007), and transla-
tion. The arrows beside the sentences show the sentence
starting direction, as Arabic is read right to left.

B POS Intrinsic Evaluation

As an intrinsic evaluation of the CS predictive
model, we check the POS distribution of the words
predicted as CS words by both the random and
predictive approaches, against that of CS words in
ArzEn-ST dev set. We report that the natural POS
distribution is in-line with the distributions reported
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POS ArzEn Random Predictive
NN 48.4 33.2 67.0
VB 14.5 22.9 13.6
JJ 13.1 9.3 13.6
RB 7.6 6.5 1.7
IN 5.0 8.9 0.9
PRP 3.8 4.7 0.6
DT 2.2 3.7 0.2
CC 0.9 3.8 0.1
Total 94.7 89.3 97.6

Table 9: The POS distribution (%) of the words pre-
dicted as CS words by both the random and predictive
models, against that of CS words in ArzEn-ST dev set.

for CS Egyptian Arabic-English (Hamed et al.,
2018; Balabel et al., 2020), where the dominating
POS tags are nouns, verbs, and adjectives, followed
by adverbs, pronouns, and prepositions. We report
that the predictive model gives a higher correla-
tion (0.984) versus random approach (0.938). We
present the POS distribution of the top frequent
tags in Table 9. We observe that the predictive
model provides a percentage of nouns that is sig-
nificantly higher than that occurring in ArzEn-ST.
It also provides less coverage to the tags occurring
less frequently in ArzEn-ST. We believe this can
be due to the predictive model being trained on lim-
ited data. The random approach on the other hand,
provides higher counts for less frequent POS tags,
as seen in the total, where 11% of the words identi-
fied by the random prediction to be code-switched
belong to POS tags that are infrequent in natural
CS data.

C Data Preprocessing

Data preprocessing involved removing corpus-
specific annotations, removing URLs and emoti-
cons through tweet-preprocessor,12 tokenizing
numbers, lowercasing, running Moses’ (Koehn
et al., 2007) tokenizer as well as MADAMIRA
(Pasha et al., 2014) simple tokenization (D0),
and performing Alef/Ya normalization. For
LDC2017T07 (Chen et al., 2017), LDC2019T01
(Chen et al., 2019), and LDC2021T15 (Tracey
et al., 2021), some words have literal and intended
translations. We opt for one translation having all
literal translations and another having all intended
translations. For LDC2017T07, we utilize the work
by Shazal et al. (2020), where the authors used

12https://pypi.org/project/tweet-preprocessor/

a sequence-to-sequence deep learning model to
transliterate SMS/chat text in LDC2017T07 from
Arabizi (where Arabic words are written in Roman
script) to Arabic orthography.

D MT Hyperparameters

The following is the train command:
python3 fairseq_cli/train.py $DATA_DIR –source-
lang src –target-lang tgt –arch transformer –share-
all-embeddings –encoder-layers 5 –decoder-layers
5 –encoder-embed-dim 512 –decoder-embed-dim
512 –encoder-ffn-embed-dim 2048 –decoder-ffn-
embed-dim 2048 –encoder-attention-heads 2 –
decoder-attention-heads 2 –encoder-normalize-
before –decoder-normalize-before –dropout 0.4 –
attention-dropout 0.2 –relu-dropout 0.2 –weight-
decay 0.0001 –label-smoothing 0.2 –criterion la-
bel_smoothed_cross_entropy –optimizer adam –
adam-betas ’(0.9, 0.98)’ –clip-norm 0 –lr-scheduler
inverse_sqrt –warmup-updates 4000 –warmup-
init-lr 1e-7 –lr 1e-3 –stop-min-lr 1e-9 –max-
tokens 4000 –update-freq 4 –max-epoch 100 –save-
interval 10 –ddp-backend=no_c10d

E MT Results

In Table 10, we present the MT and ST results of
the non-constrained and constrained experiments.
We report the scores on BLEU, chrF, chrF++, and
BERTScore(F1). Given that each metric has its
strengths and weaknesses, we also report the aver-
age of the four metrics (AvgMT ).

F Translation Examples

In Table 11, we show examples of source-target
pairs with their translations obtained from different
MT models. We observe that the models trained
using augmented sentences are better than the base-
line MT model at retaining CS words in the source
sentence in the translations.

98

https://pypi.org/project/tweet-preprocessor/


All Sentences CS Sentences
Model BLEU chrF chrF++ FBERT AvgMT BLEU chrF chrF++ FBERT AvgMT

Non-constrained Experiments
MT

Baseline 31.0 54.2 53.0 0.519 47.5 31.4 55.3 54.0 0.501 47.7
+DICTIONARY 30.9 53.8 52.6 0.516 47.2 31.5 54.7 53.5 0.498 47.4
+MAPRAND1−1 34.4‡ 56.6∗ 55.2∗ 0.545 50.2 35.9‡ 58.5∗,‡ 57.0∗ 0.543 51.4
+MAPPRED1−1 33.7‡,† 56.9† 55.5† 0.548 50.2 35.2‡,† 58.9†,‡ 57.4† 0.549 51.6
+MAPRANDn−n 34.7 57.2∗ 56.0∗ 0.552 50.8 36.2 59.2∗ 57.9∗ 0.552 52.1
+MAPPREDn−n 35.0† 57.3† 56.0† 0.550 50.8 36.5† 59.2† 57.8† 0.552 52.1
+ExtraCS 34.8 57.2 55.7 0.547 50.6 36.2 59.1 57.6 0.546 51.9

ST
Baseline 15.3 41.2 39.4 0.335 32.4 15.8 42.4 40.4 0.317324 32.6
+DICTIONARY 16.3 41.9 40.1 0.344 33.2 16.8 42.8 41.0 0.324 33.2
+MAPRAND1−1 16.5‡,∗ 42.8∗ 41.0∗ 0.347 33.8 17.0∗ 44.1∗ 42.1∗ 0.329 34.0
+MAPPRED1−1 16.1‡,† 42.8† 40.9† 0.348 33.6 16.9† 44.2† 42.2† 0.331 34.1
+MAPRANDn−n 17.0∗ 43.3∗ 41.4∗ 0.349 34.2 17.7∗ 44.7∗ 42.7∗ 0.332 34.6
+MAPPREDn−n 16.9† 43.4† 41.5† 0.352 34.2 17.4† 44.8† 42.8† 0.335 34.6
+ExtraCS 17.4 43.4 41.6 0.353 34.4 18.0 44.7 42.9 0.336 34.8

Constrained Experiments
MT

+c[DICTIONARY] 30.3 53.6 52.3 0.517 47.0 31.0 54.6 53.3 0.499 47.2
+c[MAPRANDn−n] 33.8⋆ 56.9⋆ 55.6⋆ 0.553 50.4 35.1⋆ 58.7⋆ 57.3⋆ 0.555 51.7
+c[MAPPREDn−n] 35.0⋆ 57.4⋆ 56.0⋆ 0.551 50.9 36.8⋆ 59.5⋆ 57.9⋆ 0.554 52.4

ST
+c[DICTIONARY] 15.2 41.2 39.4 0.341 32.5 15.5 42.1 40.1 0.319 32.4
+c[MAPRANDn−n] 16.4 43.1 41.2 0.350 33.9 17.0 44.7 42.6 0.335 34.5
+c[MAPPREDn−n] 16.6 43.1 41.2 0.353 34.0 17.2 44.6 42.6 0.337 34.5

Table 10: MT and ST evaluation on ArzEn-ST test set for the non-constrained (using all augmentations) and
constrained experiments. We report BLEU, chrF, chrF++, F1 BERTScore (FBERT ), and their average (AvgMT ),
on all sentences as well as code-switched sentences only. The best performing data augmentation approach in the
non-constrained setting is bolded. The best performing approach in the constrained setting is underlined. We run
statistical significance tests between pairs of models to compare the effect of using MAPRAND vs. MAPPRED and
1-1 vs. n-n alignments, and mark models that are statistically significant (p-values< 0.05) with superscript symbols
(∗, †, ‡,⋆).
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Model Example
Src ñê 	̄ poker face @ñ�®J. �. K
 adjudicate �IK. ú
ÎË @ �A 	JË @ . . È@ . . È@ 	�ðQ 	®ÖÏ @ ñë AÓ

��. , ù
 ¢Ê
	« 	¬QªK. ú


	æªK
 ù

�®J. �
K. AîE
YªK. ��. �ék. Ag ø
 @ ú


	æÒê 	®K
 ��ª 	® 	JK
AÓ
Tgt-Ref those one who adjudicate should have a poker face, so i can’t get any signal

from them, but afterwards i know my mistake, that’s all
Baseline it’s supposed to be the. the. people who are a rijudi could be powder face so it

can’t explain anything but after that i mean i know my mistake, that’s it
DICTIONARY the.. the. the.. the people who are hurt should be thinking about face, so it can’t

explain anything to me, but after that, i mean, i know my mistake, that’s it
MAPRAND1−1 the.. the.. the.. the.. the people who adjudicate become a poker of face, so he

can’t explain anything to me, but after that i know my mistake, that’s it
MAPPRED1−1 the.. the. the.. the people that adjudicate become the poker face, so he can’t

understand anything but after that i mean i know my mistake, that’s it
MAPRANDn−n the.. the.. the.. the people who are adjudicate, they become poker face, so it

can’t explain anything to me after that, i mean, i know my mistake, that’s it
MAPPREDn−n the.. the. the.. the people who are adjudicate should be poker face, so he can’t

explain anything to me but after that, i mean, i know my mistake, that’s it
Src multi-robot system task allocation éÖÞ� @ ¨ðQå��Ó ÉÒªK. A 	K @
Tgt-Ref i’m working on a project called multi-robot system task allocation.
Baseline i make a project called multi-robot system and allocation
DICTIONARY i’m making a project called al-gamalt system for the task of allocation
MAPRAND1−1 i make a project called multi-robot system and allocation
MAPPRED1−1 i am making a project called multi-robot system and allocation task
MAPRANDn−n i am making a project called multi-robot system allocation
MAPPREDn−n i am doing a project called multi-robot system task allocation

Table 11: Examples of translation outputs obtained from the MT models. The words in the translations that
correspond to the CS words in the input source sentence are underlined.
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Abstract 

Data augmentation (DA) is a popular 
strategy to boost performance on neural 
machine translation tasks. The impact of 
data augmentation in low-resource 
environments, particularly for diverse and 
scarce languages, is understudied. In this 
paper, we introduce a simple yet novel 
metric to measure the impact of several 
different data augmentation strategies. This 
metric, which we call Data Augmentation 
Advantage (DAA), quantifies how many 
true data pairs a synthetic data pair is worth 
in a particular experimental context. We 
demonstrate the utility of this metric by 
training models for several linguistically-
varied datasets using the data augmentation 
methods of back-translation, SwitchOut, 
and sentence concatenation. In lower-
resource tasks, DAA is an especially 
valuable metric for comparing DA 
performance as it provides a more effective 
way to quantify gains when BLEU scores 
are especially small and results across 
diverse languages are more divergent and 
difficult to assess. 

1 Introduction 

Neural Machine Translation (NMT) has been 
established as the dominant approach for 
developing state-of-the-art Machine Translation 
(MT) systems. The neural network-based 
architecture enables effective translation without 
expert linguistic knowledge while better capturing 
contextual information. However, many NMT 
systems are data-inefficient and are dependent on 
large amounts of parallel data pairs in order to 
attain reliable performance, limiting their 
applicability in low-resource tasks. This paper is 

particularly interested in applicability of DA 
methods in the preservation of low-resource and 
scarce languages. There is therefore a significant 
performance gap in NMT for low-resource 
language pairs (Zoph et al., 2016).  
 
One way that this gap is addressed is the generation 
of synthetic data through unsupervised Data 
Augmentation (DA). DA has been largely used in 
other deep learning modalities like image- and 
tabular-based data (Yang et al., 2022; Shorten et al., 
2021). Multilingual text DA, in particular, has been 
the frontier of DA research. Sennrich et al. (2016a) 
proposed the backtranslation of sentences from 
monolingual data to generate bitext for a pseudo-
parallel corpora. Recently, many more new DA 
approaches have been presented in order to 
improve NMT systems. 
 
As opposed to approaches for low-resource NMT 
exploiting auxiliary languages through transfer 
learning, which rely heavily on the availability of 
data on a rich-resourced and linguistically similar 
language, DA in particular has potential to expand 
language technologies further by addressing that 
many low-resource and indigenous languages tend 
to be the most specialized and idiosyncratic, and 
are often part of smaller language families that are 
endangered as a whole (Sennrich et al. (2016a)). 
DA thus is especially relevant in the  preservation 
of low-resource and scarce languages.  
 
However, DA methods often do not exhibit 
consistent improvement across translation tasks (Li 
et al., 2019). In the case of low-resource languages, 
the effectiveness of DA may be even more 
irregular. Synthetic pairs based on very limited 
amounts of data may have compromised quality, 
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and the generalizability of these methods for scarce 
and orthographically diverse languages is 
understudied.   
 
In this paper, we propose a method to measure the 
impact of DA on machine translation tasks in a 
low-resource environment. We then use this metric 
to assess the performance of three DA methods–
back translation, switch-out, and sentence 
concatenation–on a machine translation task. We 
first measure the impact of DA on variously-sized 
subsets of high-resource language datasets, 
including English-Italian, English-Turkish, and 
German-English, to assess the generalizability and 
consistency of the selected DA methods. We then 
demonstrate how DA methods can be employed 
and measured in truly scarce linguistic 
environments by measuring the impact of DA on a 
machine translation task for the language pairs 
English-Romany, English-Māori, English-Uyghur, 
and English-Kabyle. 

2 Background 

We implement and investigate three multilingual 
DA approaches in our analyses. Each of these 
approaches have been shown to improve 
performance in high-resource environments, 
underscoring the importance of measuring the 
impact of such approaches in low-resource settings 
as well. 

2.1 DA Methods for NMT 

Back-translation: The augmentation procedure of 
back-translation (Sennrich et al., 2016a) uses 
monolingual data to generate more training data for 
a machine translation task.  A backward 
intermediate model is trained on the available  
parallel corpora and then used to generate synthetic 
source-side translations  from a target-side 
monolingual language corpus. Synthetic and true 
pairs are mixed together in the training data and not 
distinguished during model training.  
 
Back-translation has shown promising results for 
neural machine translation tasks, particularly for 
large datasets. Sugiyama and Yoshinaga (2019) 
show that back translation has a significant positive 
impact on context-aware large-scale NMT tasks. 
Several iterations of previous work (Jin et al. 2022, 
Aji & Heafield 2020, Li & Specia 2019) show that 
back-translation can supplement other data 
augmentation techniques to improve performance 

in neural translation tasks. Such work emphasizes 
the need to better understand the impact of back-
translation in low-resource environments so that 
such work can keep pace with work in high-
resource settings. 
 
SwitchOut: SwitchOut (Wang et al., 2018) 
independently replaces words in both the source 
and target sentences with words randomly sampled 
from their respective vocabularies to encourage 
smoothness and diversity.  Wang et al. treat DA as 
an optimization problem and use hamming 
distance sampling to sample data pairs. Wang et al. 
find that these ‘switches’ in combination with their 
sampling strategy yield an improvement of 0.5 
BLEU on multilingual datasets. They also find that 
the performance gain from SwitchOut is more 
significant than the gain from back translation. 
Notably, all the datasets used by Wang et al. are 
high-resource languages, including English, 
German, and Vietnamese.  

 
SwitchOut has been used in combination with other 
DA methods in other low-resource investigations, 
namely that of Maimaiti et al. (2021). Maimaiti et 
al. compare their own, novel method of constrained 
sampling for machine translation to the results 
achieved by other DA methods, including 
SwitchOut, and conclude that their method is state-
of-the-art. As above, such work emphasizes the 
need for a straightforward evaluation framework 
for foundational DA methods. 
 
Sentence Concatenation: The sentence 
concatenation (Kondo et al., 2021) method is 
straightforward: sentence pairs are selected at 
random from the parallel corpora and concatenated 
with a separator token, <SEP>, in between. 
Notably, this method was developed with low-
resource datasets in mind. Konda et al.’s method 
prioritizes performance on longer sentences, which 
are more common in low-resource datasets. 
Notably, Konda et al. find that their method is even 
more effective when combined with back-
translation. For the purposes of our study, we do not 
combine the two methods. 

2.2 Low-Resource and Scarce Languages 

To evaluate the utility of the DA methods in low-
resource language pairs across linguistically 
diverse languages from various regions, we 
perform our experiments on a range of low-
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resource languages from the Tatoeba Dataset 
(Tiedemann, 2020), which contains parallel data 
for translation systems of ranging sizes. We test DA 
methods for four language pairs, including 
English-Romany, English-Māori, English-Uyghur, 
and English-Kabyle. 
 
Romany is a Balkan language classified as 
“definitely endangered” of the Indo-Aryan 
language family (New et al., 2017). It is spoken by 
small groups in various countries but is stateless 
and a minority, with a history of persecution and 
suppression. Availability of Romany resources is 
very small, with limited access to books and 
computers. Projects to support and Romany have 
arisen to help preserve the language and prevent its 
loss. The dataset contains English-Romany pairs, 
with 24K parallel sentences.   
 
Māori, spoken in the indigenous population of New 
Zealand, is an endangered Eastern Polynesian 
language (Love, 1983). Māori is an analytical 
language and marks many grammatical categories. 
It became a minority language and English became 
increasingly powerful, and has since had several 
movements towards its revitalization. The dataset 
contains English-Māori pairs, with 221K parallel 
sentences.  
 
Uyghur is the Turkic language spoken in the 
Xinjiang region of Western China (Imin et al., 
2021). Primarily Muslim, the Uyghur people have 
been targeted by the Chinese on the basis of ethnic 
and religious identity. With ongoing crimes against 
the minority community, recognised as a genocide, 
teaching of the Uighur language has been banned 
in schools and the culture suppressed. The dataset 
contains English-Uyghur pairs, with 143K parallel 
sentences. 
 
Kabyle in the Afro-Asiatic language of the Berbers 
(Rousan et al., 2018), the indigenous people of 
north Africa. The language has a history of brutal 
suppression, and today, most Berber varieties are 
endangered or extinct. It has limited official status, 
as French and Arabic are primarily used. The 
dataset contains English-Kabyle pairs, with 84K 
parallel sentences.   
 
These languages are a selection of  extremely low-
resource languages from around the world with 
diverse linguistic features. For these languages, the 

development of effective NMT systems have 
potential to support both preservation and 
promotion. They are only a sample of the 
languages that could benefit from such 
technologies, and demonstrate the implications of 
DA towards advancing linguistic vitality and 
cultural preservation. 

3 Datasets 

In this paper, we use two groups of data. Both 
groups of data are from the Tatoeba Dataset 
(Tiedemann, 2020). The training data for the 
Tatoeba Dataset was obtained from OPUS’ parallel 
corpora (Tiedemann, 2012), which is made up of 
translated texts from the web. First, we determine 
the generalizability and consistency of different 
DA algorithms by measuring their performance in 
a simulated low-resource environment, that is, 
using small samples of high-resource languages. 

Second, we measure the efficacy of DA algorithms 
for true low-resource environments using scarce 
language datasets.  
 
To simulate a low-resource setting we randomly 
sample 1M pairs each from the English-Italian, 
English-Turkish, and German-English Tatoeba 
Dataset training data. We train multiple models by 
sampling the data in increments of 5%, 10%, 20%, 
50%, and 100%. We sample from the unused 
portions of the dataset for use in the augmentation 
methods requiring monolingual data. We report 
results on the 2021 test sets.  Second, we test DA 
methods for four truly scarce language pairs, 
including English-Romany (24K pairs), English-

Dataset 5% 10% 20% 50% 100% 
English-
Italian 

50K 100K 200K 500K 1M 

English-
Turkish 

50K 100K 200K 500K 1M 

German-
English 

50K 100K 200K 500K 1M 

  25% 50% 75% 100% 
English-
Romany 

6K 12K 18K 24K 

English- 
Māori 

55K 111K 166K 221K 

English-
Uyghur 

36K 72K 107K 143K 

English-
Kabyle 

21K 42K 63K 84K 

Table 1: Datasets and sampling sizes for simulated 
and true low-resource experiments. 
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Māori (221K pairs), English-Uyghur (143K pairs), 
and English-Kabyle (84K pairs) (see section 2.2 
above). We train multiple models by sampling the 
data in increments of 25%, 50%, 75%, and 100%. 

4 Data Augmentation Advantage 

Across DA methods, synthetic pairs contribute 
different amounts of value to the training data. In 
some cases, synthetic pairs have the same impact 
as a true pair in the training pair, while in other 
cases, synthetic pairs seem to have no value or even 
negative value within the training dataset. In this 
section, we offer a simple yet novel metric to 
quantify how many true data pairs a synthetic data 
pair is worth. We call this metric Data 
Augmentation Advantage (DAA). We calculate 
DAA as follows. 
 
First, we perform linear interpolation for the 
baseline model, where x is the number of training 
pairs and y is a BLEU score. Then for a point y we 
calculate the interpolant as in Equation 1 below. 
Note that 𝑦𝑦𝑎𝑎 < 𝑦𝑦 <  𝑦𝑦𝑏𝑏 and 𝑥𝑥𝑎𝑎 < 𝑥𝑥 <  𝑥𝑥𝑏𝑏. 

 𝑦𝑦 =  𝑦𝑦𝑎𝑎 + (𝑦𝑦𝑏𝑏 −  𝑦𝑦𝑎𝑎) 𝑥𝑥− 𝑥𝑥𝑎𝑎
𝑥𝑥𝑏𝑏−𝑥𝑥𝑎𝑎

 (1) 

For a specified target BLEU score b on the linear 
interpolation described above, let xt be the number 
of training pairs needed to achieve b in the current 
experiment, and let xb be the number of training 
pairs needed to achieve b in the baseline model. We 
can then calculate xadv as in Equation 1 below.  

 𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑥𝑥𝑏𝑏 −  𝑥𝑥𝑡𝑡  (2) 

Using xadv, we calculate Data Augmentation 
Advantage (DAA) as in Equation 3. This process is 
summarized in Figure 1.  

𝐷𝐷𝐷𝐷𝐷𝐷 =  𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎
𝑥𝑥𝑡𝑡

  (3) 

DAA represents the number of true data points that 
each synthetic data point is worth. For example, if 
DAA is 0.5, then the addition of DA is comparable 
to having 50% more data and a synthetic data point 
is worth 0.5 true data points. In the results section 
below, the overall DAA values of a DA method are 
obtained by averaging the values across the 
language tasks. 

5 Experiments 

For all the experiments, we use the OpenNMT-py 
toolkit (Klein et al., 2017) for the translation 
models. The NMT system is a 4-layer attention-

based encoder-decoder model (Luong et al., 2015). 
This system estimates the probability distribution 
of a sentence in the target languages given a 
sentence in the source language. An encoder 
recurrent neural network (RNN) maps each source 
word to a word vector; the word vectors are then 
mapped to a set of hidden vectors. The decoder 
RNN decodes the source-side hidden vectors to 
predict the next word in the target languages. Note 
that target-side decoder used is aware of the 
previously generated words.  We train the model 
with hidden dimension 1024 and batch size 64. We 
use a dropout probability of 0.3. We employ early 
stopping to train until convergence in order to 
control for the role of training time in performance 
changes. The settings used in training the models 
are the same for each language pair. 
 
Across the experiments we process the source and 
target language sentences with Byte-pair encoding 
(BPE)  (Sennrich et al., 2016b) based on the 
SentencePiece subword model (Kudo & 
Richardson, 2018) with a vocabulary size of 8K. 
BPE is a method for segmenting words into 
subword units based on their frequency of 
occurrence. It enables better coverage and 
generalization in handling rare and out-of-
vocabulary words by breaking them down, and is 
especially relevant in languages with complex 
morphology such as Turkish. SentencePiece is a 
powerful and flexible method for unsupervised 
tokenization and subword segmentation, and 
provides an implementation of the BPE algorithm. 
For models with augmentation, BPE is applied 
after DA, and for augmentation methods with an 
intermediate model, BPE is applied for each. For 

 

Figure 1 
 

104



5 
 
 

all DA methods, we generate synthetic data with a 
1:1 ratio.   
 
In the experiments, we compare a baseline model 
with no augmentation to models trained with the 
original training data in addition to the synthetic 
data obtained through each DA method. We 
additionally ran control experiments by simply 
duplicating the data to verify that any results were 
due to DA, and observed no improvement from the 
baselines. We run a model for each of the subsets 
of data and report our final results for each. The 
translation quality is measured by a single 
reference BLEU score (Papineni et al., 2002). 
Three language pairs, English-Italian, English-
Turkish, and German-English, are used to assess 
the generalizability and consistency of the 
methods. 

6 Results & Discussion 

6.1 Simulated Low-Resource Environment 

DA can obtain different benefits across different 
sizes of available data and examine the trends and 
limits as data grows smaller. In this section, we 
examine the trends in the performance of the three 
DA methods across decreasing amounts of initial 
language pairs on multiple translation tasks. Table 
2 shows the BLEU scores achieved by the various 
models demonstrating the performance of the 

various DA methods across dataset sizes and 
languages. Table 3 shows the calculated DAA for 
each DA method and dataset size. 

 
As expected, baseline model performance 
increases significantly with greater data sizes, and 
as the number of language pairs is less, its impact 
on model performance is greater. Although 
intuitively, DA performance might be expected to 
decrease with less available data with the limited 
quality of the generated synthetic data,  it is 
observed that the improvement from DA increases 
with fewer initial pairs. DA thus shows potential 
and value for the development of low-resource 
NMT systems. 
 
There is no single consistently best DA method 
across the configurations. SC shows improvement 
in nearly all runs. However, while BT primarily 
shows the best improvement, its gains are not 
always consistent. SO follows a similar trend, 
harming performance in larger data sizes, but 
providing near the highest gains in smaller data 
sizes. In multiple cases, such as in both the 200K 
and 500K data size models, application of SC and 
BT attain results that can exceed or perform 
competitively with the results of baseline models 
trained on datasets with up to over twice as many 
pairs. Here, synthetic data provides as much value 
to the models as a true pair. 
The most effective methods are based on 
introducing lexical and syntactic diversity to the 
datasets, presenting potentially important 

Training 
Pairs 

50K 100K 200K 500K 1M 

eng → ita 
Baseline 11.1 23.9 27.8 29.6 30.4 
Ba-Trans 19.9 ↑ 20.9 28.4 28.4 29.0 
Sw-Out 12.1 24.8 27.5 27.6 28.2 
Sen-Con 13.6 24.8 ↑ 28.8 ↑ 30.7 ↑ 31.0 ↑ 

eng → tur 
Baseline 5.5 9.8 14.4 15.7 16.5 
Ba-Trans 7.1 ↑ 13.2↑ 15.6↑ 16.4 17.0 
Sw-Out 6.1 10.4 13.0 14.1 14.2 
Sen-Con 5.6 9.8 14.5 16.7 ↑ 17.6 ↑ 

deu → eng 
Baseline 11.1 17.7 21.0 21.5 23.1 
Ba-Trans 15.1↑ 19.3 ↑ 20.7 20.9 21.1 
Sw-Out 13.0 18.1 20.4 20.8 21.6 
Sen-Con 11.8 18.2 21.0 23.3↑ 23.0 

Table 2: BLEU scores for three datasets (English-
Italian, English-Turkish, and German-English) for 
a baseline model, back-translation (Ba-Trans), 
SwitchOut (Sw-Out) and sentence concatenation 
(Sen-Con). 
 

Training 
Pairs 

50K 100K 200K 500K 1M 

eng → ita 
Ba-Trans 0.69 -0.12 0.50 -0.40 -0.60 
Sw-Out 0.08 0.23 -0.04 -0.61 -0.75 
Sen-Con 0.20 0.23 0.83 1.38 0.38 

eng → tur 
Ba-Trans 0.37 0.74 1.38 0.87 0.31 
Sw-Out 0.14 0.13 -0.15 -0.61 -0.80 
Sen-Con 0.02 0.0 0.12 1.25 0.69 

deu → eng 
Ba-Trans 0.60 0.48 -0.05 -0.61 -0.74 
Sw-Out 0.29 0.12 -0.09 -0.61 -0.47 
Sen-Con 0.11 0.15 0.0 1.12 -0.03 

Table 3: DAA scores for three datasets (English-
Italian, English-Turkish, and German-English) for 
back-translation (Ba-Trans), SwitchOut (Sw-Out) 
and sentence concatenation (Sen-Con). 
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characteristics of effective DA methods and 
opening paths for future development. Overall, the 
results demonstrate trends that present the limits of 
DA and show surprising potential for its 
application in low-resource conditions. 

6.2 True Low-Resource Environment  

Many methods presenting studies on DA and low-
resource NMT have often applied methods to 
simulated low-resource settings, like in the 
previous section, to enable certain analyses 
(Fadaee et al., 2017; Li et al., 2020). However, with 
the unique linguistic characteristics of truly low-
resource languages as well as the varying quality of 
the sentences available in such data, it is also 
important to understand the effectiveness of the 
application of DA methods in a true low-resource 
environment. In this section, we assess the 
capabilities of DA methods in developing 
translation systems for truly low-resource 
languages and demonstrate the potential of such 
methods in advancing language technologies for 

 
1 Note that for back-translation, we sample from the 
monolingual data presented in the Tatoeba dataset. 

supporting these communities. We evaluate the 
performance of the NMT systems with and without 
the generated augmentations on the low-resource 
languages. The models used follow the architecture 
of those described in the simulated low-resource 
conditions in the Experiments section.1 
 
Overall, BLEU scores (Table 4) are, as expected, 
lower than those in the simulated low-resource 
conditions, even comparing datasets of similar 
sizes. One reason for this may be because of the 
lower quality of the data. The training data for 
the Tatoeba Dataset was obtained from OPUS’ 
parallel corpora (Tiedemann, 2012), which is 
made up of translated texts from the web. The 
resources on these languages are limited, and 
therefore not only is there less data, but also the 
sentences are potentially less diverse and clean. 
Another reason is that many of these languages 
that are low-resource are indigenous languages, 
which often have more unique linguistic 
characteristics. Linguistic similarity between the 
source and target is an influential factor in the 
performance of NMT systems (Subramanian & 
Sundararaman, 2021).  
 
These differences also create some shifts in the 
performance of the DA methods. As in Section 2, 
the best augmentation methods are also not 
consistent, yet here SO seems to perform better 
with respect to the other augmentation methods 
than it did in the simulated low-resource. SC also 
continues to show gains in the BLEU scores as 
well. Across the tasks, DA was able to considerably 
improve results, even with extremely limited 
available data, establishing the value DA. In fact, 
comparing our models’ performances to the results 
reported on the OPUS-MT leaderboard 2  for the 
2021 Tatoeba test sets shows that in two of the 
tasks, eng→uig and eng→mri, the top DA 
methods’ performances surpassed the previous best 
OPUS-MT scores by 0.4 BLEU points each. The 
previous best OPUS-MT model was trained with 
multilingual training, and our models’ comparably 
better performance may demonstrate that DA is 
more suitable in low-resource NMT to address the 
differences that the condition presents. This is 
consistent with previous findings demonstrating 
the limitations of utilizing auxiliary languages in 
low-resource NMT (Eo et al., 2021). The results 

2 https://opus.nlpl.eu/leaderboard/ 

Training 
Pairs 

25% 50% 75% 100% 

eng → rom 
Baseline 0.4 0.5 0.5 0.7 
Ba-Trans 0.4 0.5 0.6 1.0↑ 
Sw-Out 0.7↑ 0.7↑ 0.9↑ 0.6 
Sen-Con 0.6 0.5 0.5 0.6 

eng → mri 
Baseline 5.5 10.2 10.8 12.0 
Ba-Trans 8.5↑ 6.4 10.0 12.4 
Sw-Out 7.1 10.4↑ 11.4 12.6↑ 
Sen-Con 5.3 9.0 11.5↑ 12.4 

eng → uig 
Baseline 0.5 0.6 0.5 0.6 
Ba-Trans 0.4 0.4 0.6 0.4 
Sw-Out 0.7↑ 0.5 0.7↑ 0.6 
Sen-Con 0.6 0.6 0.6  0.7↑ 

eng → kab 
Baseline 1.3 1.5 1.4 1.6 
Ba-Trans 1.0 1.2 1.3 1.4 
Sw-Out 1.1 1.5 1.7 1.4 
Sen-Con 1.1 1.3 1.8↑ 1.5 

Table 4: BLEU scores for four datasets (English-
Romany, English-Māori, English-Uyghur, and 
English-Kabyle) for a baseline model, back-
translation (Ba-Trans), SwitchOut (Sw-Out) and 
sentence concatenation (Sen-Con). 
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show the potential of DA to be furthered towards 
multilingual NLP systems and language 
technologies enabling inclusivity. 
 
The advantage provided by DA is especially 
significant in lower-resource settings, and 
generated synthetic data can provide up to as much 
value as a true source-target pair. Comparing the 
DA methods, BT provides the most considerable 
value, and SC is the most consistently beneficial. 
The DAA values for BT show a greater advantage 
in the eng→tur task, and SC is more effective in the 
eng→ita, while SO has less variation across 
languages. These analyses of the generalizability of 
the methods go beyond the information presented 
by the BLEU scores, where the greatest net gains 
are not consistent with these trends.    
 
DAA enables further insights into the performance 
of DA methods that BLEU scores do not capture. 
The absolute gains are not comparable across 
languages and dataset sizes. Observing the BLEU 
scores of the SO method in the 11K and 221K 
eng→mri datasets, while there are greater net gains 
in the larger of the two, the DAA values show that 
DA has a far greater impact in the smaller dataset. 
DAA accounts for the non-linear variation in the 
worth of true data with larger corpora. DAA shows 
the performance of BLEU gains between language 

tasks; for instance, the 11K eng→mri task and the 
12K eng→rom task, although shows having 
similar dataset sizes and BLEU gains with SO, 
eng→rom experiences a greater impact.  

7 Conclusion & Future Work    

Data augmentation (DA) is a popular strategy to 
boost performance on neural machine translation 
tasks. The impact of data augmentation in low-
resource environments, particularly for diverse and 
scarce languages, is understudied. In this paper, we 
introduce a simple yet novel metric to measure the 
impact of several different data augmentation 
strategies. This metric, which we call Data 
Augmentation Advantage (DAA), quantifies how 
many true data pairs a synthetic data pair is worth 
in a particular experimental context. 
 
Because DAA provides a consistent measure 
comparable across the results, we are able to 
determine that SwitchOut and sentence 
concatenation show the greatest language task 
generalizability, providing more consistent DAA. 
In general, SwitchOut is especially advantageous 
with less available data, most evident in the 
increasing DAA in eng→mri and eng→rom, while 
back-translation has more limitations with regards 
to the minimum amount of data required for best 
performance.  In particular, in lower-resource 
tasks, DAA is an especially valuable metric for 
comparing DA performance as it provides a more 
effective way to quantify gains when BLEU scores 
are especially small and results across diverse 
languages are more divergent and difficult to 
assess. 

Limitations 
DA demonstrates promising gains in low-resource 
NMT. However, in the current exploration there are 
certain limitations. Our experiments use the 
Tatoeba Dataset, which contains varying, and 
sometimes quite high,  levels of noise; this can 
impact the quality of translations, the extent of 
overfitting, and the effectiveness of generated 
synthetic data. Furthermore, such data can also 
affect the sensitivity of evaluations to minor 
changes in outputs, affecting the significance of 
performance changes.  
 
Additionally, DA has limitations in its 
effectiveness. The quality of the data generated by 

Training 
Pairs 

25% 50% 75% 100% 

eng → rom 
Ba-Trans 0.0 0.0 0.17 0.38 
Sw-Out 3.0 1.0 0.67 -0.13 
Sen-Con 2.5 0.0 0.0 -0.13 

eng → mri 
Ba-Trans 0.64 -0.40 -0.35 0.08 
Sw-Out 0.34 0.17 0.17 0.13 
Sen-Con -0.04 -0.13 0.19 0.08 

eng → uig 
Ba-Trans -0.2 -0.6 0.33 -0.8 
Sw-Out 1.0  -0.5 0.33  0.0 
Sen-Con 1.0 0.0 0.33 1.0 

eng → kab 
Ba-Trans -0.23 -0.54 -0.67 -0.25 
Sw-Out -0.15 0.0 1.0 -0.5 
Sen-Con -0.15 -0.5 1.66 -0.5 

Table 5: DAA scores for four datasets (English-
Romany, English-Māori, English-Uyghur, and 
English-Kabyle) for a baseline model, back-
translation (Ba-Trans), SwitchOut (Sw-Out) and 
sentence concatenation (Sen-Con). 
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augmentation is inconsistent, and can degrade 
model performance. DA is a tradeoff between noise 
vs. knowledge injection (Li et al., 2019), so it is 
important to understand the effects that DA can 
have.  Although we experiment with a diverse 
range of languages and DA methods, the study is a 
limited yet promising analysis of the impact of DA 
for low-resource NMT. 
 
Finally, this paper does not engage in discussion 
regarding the value of experiments performed with 
true low-resource datasets vs. simulated ones. This 
issue is topical and requires further investigation in 
an expanded work. 

Ethics Statement 
Global linguistic diversity is currently fragile with 
the rapid loss of languages. The current overlap 
between these fading languages and emerging 
technologies, natural language processing tools are 
especially critical towards supporting diverse 
languages. However, globalization has only 
furthered English domination across the web and 
available language resources as NLP 
advancements grow in high-data tasks, and 
minority languages have been unrepresented in 
NLP literature and technologies, leaving many 
behind. Language technologies are a valuable 
aspect of supporting minority languages, yet the 
low-data setting has made it difficult to fully take 
advantage of this critical era. The application of 
effective multilingual DA methods in NMT 
systems for these languages is valuable for greater 
materials in accessibility, promotion, education, 
and connection. 
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Abstract

Orange Silicon Valley hosted a low-resource
machine translation (MT) competition with
monetary prizes. The goals of the competi-
tion were to raise awareness of the challenges
in the low-resource MT domain, improve MT
algorithms and data strategies, and support MT
expertise development in the regions where
people speak Bambara and other low-resource
languages. The participants built Bambara to
French and French to Bambara machine trans-
lation systems using data provided by the or-
ganizers and additional data resources shared
amongst the competitors. This paper details
each team’s different approaches and motiva-
tion for ongoing work in Bambara and the
broader low-resource machine translation do-
main.

1 BFMT 2023 - Competition Introduction

Orange Silicon Valley, hosted the “Bambara-
French Machine Translation Competition 2023”
(BFMT 2023) a low-resource machine translation
(MT) competition that ended on February 15, 2023.
The competition was launched on December 15,
2022. Participants had access to a Github repos-
itory with a training dataset of parallel French-
Bambara aligned sentences1. The participants were
also invited into a Slack community to share their
approaches and data. An additional development
dataset was provided to the teams and fewer than 48
hours before the submission deadline, a test dataset
was released for generating text output to be sent to
the competition organizers to evaluate translation
performance using BLEU scores (Post, 2018).

1The dataset is available to share on request through the
corresponding author.

The goals of the competition were to improve not
only French to Bambara and Bambara to French
automated translation systems, but also support a
transparent and collaborative community to work
on these and other language pairs, especially those
(low-resource) languages spoken by West Africans.
50 people joined the online community and four-
teen people competed in 6 teams. The teams con-
tained participants from Mali, Senegal, Namibia,
Nigeria, Ireland, Germany, Russia, Spain, France,
the US, and the UK. Many of the participants speak
or have working knowledge of a "low-resource lan-
guage" or a language that does not have the digital
resources that support highly accurate Natural Lan-
guage Processing tool development.

Bambara is a tonal language with a rich mor-
phology spoken by five million people as a first
language and approximately 15 million people as
a second language. Approximately 30–40 million
people speak a language in the Mande language
family, to which Bambara belongs (Lewis et al.,
2014).

A predominately oral language, several compet-
ing writing systems have developed. A majority of
Bambara speakers have not been taught to read or
write in a standard format. Bambara’s standardiza-
tion is evolving and this poses challenges to auto-
mated text processing such as machine translation
(Vydrin et al., 2022).

Additional contest information may be found
in both French and English on the Orange Silicon
Valley website2.

2https://siliconvalley.orange.com/en/
bambara-french-machine-translation-competition/
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2 Background

Current state-of-the-art low-resource MT is sur-
veyed in Haddow et al. (2022). Google Translate
has integrated more low-resource languages into
their language library sharing innovations as de-
tailed in blog posts (Venugopal, 2010; Benjamin,
2019).

MT for the Bambara - French language pair has
been explored in recent years in Akhbardeh et al.
(2021); Tapo et al. (2020); Leventhal et al. (2020).
This work is in part motivated by an increased fi-
nancial and cultural focus on bringing machine
learning to the Sahel region (Diarra and Leventhal,
2020).

2.1 Evaluation

MT can be evaluated by automated and manual
methods. In this competition, we used automated
tools to evaluate the closeness of translations to a
gold standard. We use BLEU scores with sacre-
BLEU (Papineni et al., 2002; Post, 2018) for auto-
mated evaluation. Human evaluation would have
been performed if the difference between the Team
scores was less than 1 point in BLEU scale. The
results were not close. Thus, we proceeded with
using BLEU scores with sacreBLEU.

2.2 Datasets

The organizers provided a training dataset of
aligned parallel Bambara - French sentences from
the medical and dictionary domains as described
in the original data collection (Akhbardeh et al.,
2021). Each line in the dataset corresponds to a
single sentence. The characteristics of the dataset
provided by the organizers is shown in Table 1. In
addition to the competition data, all participants
were encouraged to gather, utilize, and share addi-
tional resources with other members of the com-
petition community. The additional datasets used
in the competition are shown in Table 2, with the
Bayelemabaga (Vydrin et al., 2022) dataset being
notable for the amount of additional data it gave to
participants.

2.3 Baseline

The competition guidelines did not provide any
baseline models nor baseline scores for the com-
petition participants. The closest baseline to com-
pare for this competition was from the findings
of WMT21 (Akhbardeh et al., 2021), with BLEU
scores of 1.32 for French to Bambara, and 3.62

Data Split Number of Sentences
Train 3,150
Dev 460
Test 460

Table 1: The characteristics of the dataset provided by
the competition organizers.

Dataset Teams
MAFAND (Adelani et al., 2022) All Teams
NLLB-SEED (Team et al., 2022) All Teams
FLORES (Goyal et al., 2022) All Teams
BAYELEMABAGA (Vydrin et al., 2022) All Teams
XP3 (Muennighoff et al., 2022a) Yacine Zahidi
Wikipedia Team Alpha

Table 2: Additional Bambara datasets used by the teams.
Team Alpha use the Wikipedia dataset that is available
through Wikimedia.org 3.

Technique Reference
BART (Lewis et al., 2019)
BLOOM-z 560M, mt0-
small

(Muennighoff et al., 2022b)

byt5 (Xue et al., 2021a)
DeltaLM (Ma et al., 2021)
HuggingFace (Wolf et al., 2020)
LION optimizer (Chen et al., 2023)
LoRA (Hu et al., 2021)
M2M100 model (Fan et al., 2020)
MarianNMT/Opus-MT (Junczys-Dowmunt et al.,

2018)
mt5 (Xue et al., 2021b)
NLLB model Team et al., 2022
PEFT library (Mangrulkar et al., 2022)
Sockeye (Hieber et al., 2020)

Table 3: Techniques and models used by the teams.

for Bambara to French, using the Marian NMT
(Junczys-Dowmunt et al., 2018) pre-trained model.

2.4 Machine Translation Systems

Table 3 shows the different techniques and mod-
els used by the teams with transformer (Vaswani
et al., 2017) and BERT models (Mishra et al., 2022;
Sheshadri et al., 2023) inspiring much of the devel-
opment.

3 Team-by-Team Machine Translation
Findings from BFMT 2023

Six teams submitted system output that could be
evaluated using sacreBLEU. Team Peter-Sokhar
(Section 3.7) built an MT system but did not submit
an output for scoring. Nonetheless, their findings
from training and error analysis are included in this
paper. In the following sections, each team first
describes their methodology, then they describe
their error analysis. See Table 2 for the datasets
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used by each team.

3.1 Team Alpha

We used an additional dataset from Wikipedia4

which provided us with an extra 892 lines of data.
Next, we made a list of MT models that contained
Bambara and French in their dataset during pre-
training. As a result, we started with the NLLB-
200 (Team et al., 2022) pre-trained model. We fine-
tuned both the 600M and the 1.3B (in order to test
the impact of scaling on model capacity) parameter
versions, from the Huggingface Hub. We found
the NLLB model to be under-performing. Next,
we switched to an M2M-100 (Fan et al., 2020)
model after we discovered it had fine-tuned mul-
tilingual MT models separately for each language
direction, which outperformed NLLB-200 (Ade-
lani et al., 2022)

Figure 1: Scatterplot showing length of predicted sen-
tences against sentence BLEU scores for FR→ BAM.

To gain further insight into the challenges
posed by certain sentence characteristics in our
MT model, we conducted an analysis of the per-
sentence BLEU scores plotted against the length
of the predicted sentences. Initially, we postu-
lated that our MT model would perform better with
shorter sentences and perform worse with longer
sentences. However, as illustrated in Figure 1,
which presents a scatterplot of the lengths of the
predicted sentence against their sentence BLEU
scores, our model struggled even with shorter sen-
tences. This led us to reconsider our hypothesis and
explore the possibility that our model was underfit-
ting. Next, we decided to investigate the potential
benefits of implementing backtranslation.

4https://dumps.wikimedia.org

Algorithm 1 Team Alpha’s Backtranslation Ap-
proach

n_epochs← number of fine-tuning epochs
Dtrain ← training dataset of French- Bambara
parallel sentences
Dwiki

bam ← 892 monolingual cleaned sentences
from Wikipedia.
Dfr ← dataset of French sentences only. For
our case it was gathered by taking the French
instances of Dtrain

Dbam ← dataset of Bambara sentences only. For
our case it was gathered by taking the Bambara
instances of Dtrain and additional monolingual
sentences from Dwiki

bam

M0
fr−→bam ← fine-tuned MT model of (Adelani

et al., 2022) for French −→ Bambara

M0
bam−→fr ← fine-tuned MT model of (Adelani

et al., 2022) for Bambara −→ French.

D0
train ← Dtrain.

for k ← [0, 1, 2...n] do
Mk+1

fr−→bam ← fine-tune Mk
fr−→bam on

Dk
train for n_epochs epochs.

Mk+1
bam−→fr ← fine-tune Mk

bam−→fr on
Dk

train for n_epochs epochs.

Dk
bam ← generated synthetic translations to

Bambara from Dfr using Mk+1
fr−→bam.

Dk
fr ← generated synthetic translations to

French from Dbam using Mk+1
bam−→fr.

Dk+1
train ← concatenated training dataset got-

ten from D0
train ∪ {Dk

bam ↔ Dfr} ∪ {Dk
fr ↔

Dbam}
end for

3.1.1 Team Alpha’s Backtranslation
Approach

Several papers have highlighted the positive effect
of backtranslation (Sennrich et al., 2016a; Ponce-
las et al., 2018; Zhang et al., 2020; Dossou and
Emezue, 2020; Fan et al., 2020; Emezue and Dos-
sou, 2021; Adelani et al., 2022; Team et al., 2022).
Inspired by random online backtranslation (Zhang
et al., 2020), we created our version, explained in
Algorithm 1, to help our model better utilize the
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training dataset, and the 892 monolingual Bam-
bara sentences from Wikipedia. Our approach,
dubbed Cyclic backtranslation (Lam et al., 2021),
would theoretically enable the model to leverage
the available training and monolingual dataset by
compelling the MT model for each direction, at
each step k, to learn from a concatenation of the
original training dataset, its synthetically generated
sentences, and those generated by the MT model
of the opposite direction in the previous step.

Despite its potential benefits, implementing
backtranslation presented several challenges. First,
it was a difficult process to set up, particularly in
achieving a high degree of automation and reducing
the need for human intervention. Secondly, it was
computationally expensive and time-consuming,
as each iteration of the backtranslation process in-
volved working with three times more data than
the previous iteration. Consequently, we were only
able to complete one backtranslation successfully.
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Figure 2: Timeline of Team Alpha efforts and BLEU
score on dev set. The chart begins with our use of NLLB,
switches to fine-tuned M2M, incorporates NLLB Seed
dataset, then includes the BAYELEMABAGA dataset,
and ends in our hypothetical performance using our
cyclic backtranslation approach. The scores reported
are for doing French→ Bambara translation.

We included a potential impact in Figure 2 which
shows the timeline of our activities and their corre-
sponding evaluation results on the French→ Bam-
bara direction.

One of the major challenges facing machine
translation for African languages is the limited
availability of high-quality datasets (Nekoto et al.,

2020; Caswell et al., 2021; Adelani et al., 2022).
This became apparent in our study, where the use of
the BAYELEMABAGA dataset resulted in a signif-
icant increase in the performance of our MT model.
The scarcity of such resources highlights the need
for continued efforts to develop and curate datasets
for African languages, which could significantly
improve the performance of machine translation
models for African languages.

3.2 Team Most-Pham

We used a pre-trained MarianMT transformer
model (Junczys-Dowmunt et al., 2018) which was
pre-trained for Romance languages to English
due to the non-existence of Bambara-French pre-
trained weights for the MarianMT model. The
model was then trained using a set of hyperparam-
eters which were inspired by findings from Araabi
and Monz (2020); Van Biljon et al. (2020) where
the authors found the hyperparameters that would
achieve the highest BLEU scores when dealing
with low-resource languages. Our implementation
was limited due to insufficient computing power
(we were not able to increase attention heads with-
out the GPU crashing during training).

We use the following set of hyperparameters;
optimizer: adam, learning rate: 2e−5, beta 1:0.9,
beta 2: 0.999, epsilon: 1e7, batch size: 64, and
attention heads: 8.

3.2.1 Error analysis
Due to limited computing power, we were not able
to fully train our MT model until convergence. It
is plausible our model could have achieved higher
accuracy or lower bias with more iterations of gra-
dient descent. We also were not able to fine-tune
our hyper-parameters as much as we would have
liked.

In the seq2seq translation output, one word
would get repeated multiple times back-to-back.
This hallucination could be reduced by using a
model that was pre-trained in French, so it would
know from experience that French sentences do not
normally include back-to-back repeated words.

There were words that appeared infrequently in
the training set and were frequently mistranslated.
With more time in this competition, this could have
been alleviated with Byte Pair Encoding (BPE).

3.2.2 Discussion
While the existing literature suggests that Trans-
former models typically need a large training cor-
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pus to do well, our model suggests otherwise. With
minor (out-of-the-box) modifications made to the
architecture, the Transformer seq2seq model was
still able to achieve a BLEU of 14.81 despite a lim-
ited training corpus, lack of a pre-trained Bambara
model, computing power, and hyper-parameter tun-
ing. In hindsight, we should have used a model that
was pre-trained for Bambara to any Romance lan-
guage, because it would be easier to learn Bambara
to French if it had been pre-trained in Bambara to
English, for example. We hypothesize that the dif-
ference between Bambara and the pre-trained data
is very large, thereby making the model struggle to
learn a different language with such a small dataset.

3.3 Team JYN

Our team had previously worked on MT tasks
on languages such as French, Reunionese Creole,
Portuguese, Umbundu, and Kimbundu, where we
observed sub-optimal outcomes when training an
autoregressive generative transformer model, ei-
ther encoder-only or decoder-only, starting from
scratch. Hence, for the given task, we wanted to
use a Sequence to Sequence (seq2seq) model with
prior training on the Bambara language. We eval-
uated different models of different sizes and with
different number of training steps. We evaluated
the following models on the development datasets:
mt0-small, BLOOM-z 560M (Muennighoff et al.,
2022b), NLLB 600M distilled, NLLB 1.3B, NLLB
1.3B distilled, and NLLB 3.3B (Team et al., 2022).

Upon evaluating the dev dataset, NLLB 600M
distilled and NLLB 1.3B distilled exhibited supe-
rior performance. However, due to computational
limitations even with our optimizations, training
the NLLB 3B version would have been impossible.
For an auto-regressive/instruction model, BLOOM-
z exhibited more potential than mt0-small, and after
two epochs, it produced acceptable scores. Never-
theless, it appears that general-purpose models of
such small sizes do not rival specialized seq2seq
models of similar dimensions, especially in a low-
resource scenario.

We focused our scarce GPU hours to the two
most promising models (NLLB 600M and NLLB
1.3B, which are both distilled models) and fine-tune
them until the competition deadline. This provided
an avenue to utilize and fine-tune distilled models.
1.3B distilled was better than not distilled models.
Without fine-tuning, by using the default Hugging-
Face generate method, the 600M distilled model

Model size/Training steps BAM → FR FR → BAM
600M/3000 steps 21.7641 18.8674
600M/6000 steps 21.5270 21.3773
600M/9000 steps 21.3773 17.8374
1.3B/1500 steps 20.3349 17.8032
1.3B/3000 steps 18.6542 17.6243
1.3B/4500 steps 24.2556 19.3324
1.3B/6000 steps 25.3816 18.7743
1.3B/7500 steps 26.0991 18.1205

Table 4: BLEU Scores on development set (Team JYN),
with increasing training steps showing a constant in-
crease in translation for Bambara to French.

had a BLEU score of 19.8157 and 17.9217 for
BAM to FR and FR to BAM, respectively. And the
non-fine-tuned distilled 1.3B model had 24.5496
and 25.5610 for BAM to FR and FR to BAM, re-
spectively. Both were tested on the dev corpus
provided by the competition organizers. Table 4
shows the BLEU scores using different models and
training steps, the latter indicating the amount of
training a model should undergo.

The hyperparameters used for fine-tuning the
NLLB models are: Optimizer: Adafactor; Learning
rate: 1e−04; Batch size (1.3B model): 4; Batch size
(600M model): 10; Gradient acc. (1.3B model):
16; and Gradient acc. (600M model): 10.

3.3.1 Error Analysis

We made a challenging discovery during this com-
petition. In the NLLB paper, the source and
target sequences are fed to the model with this
scheme: (src_sequence, src_lang) for the source
sequence and (tgt_lang, tgt_sequence) for the tar-
get sequence. On the other hand, the NLLB tok-
enizer in the HuggingFace transformer tokenizes
the pair of sequences as (src_squence, src_lang)
and (tgt_sequence, tgt_lang). Once we fixed this is-
sue, the sacreBLEU scores of our finetuned NLLB
models started to improve, consistently with the de-
crease of the loss, and with the quality differences
that we could observe. However, we discovered
and fixed this issue less than 24 hours before the
deadline, and we had lost quite a bit of time by
trying other fixes. Considering French is our native
language, and a member of our group has some un-
derstanding of Bambara, we were able to compare
the outputs of the model to the targets of the devel-
opment set. Prior this discovery, the BLEU scores
of our fine-tuned models were not impressive and
inconsistent with the steadily decreasing loss on
the dev set, and our observations of the outputs.
After this fix, the BLEU scores showed improve-
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ments, even when we did not resolve the difference
in behaviour between the two translation directions.
The Bambara to French translations got marginally
better in terms of BLEU scores compared to the
French to Bambara, which was dramatically worse
than the base performance.

3.3.2 Discussion
For our next MT project, we would explore large
language models (LLM). We believe it would be
a good idea to investigate the performance of few-
shot prompting on these LLMs, because we have
seen that the most promising model is still very
limited for languages like Bambara.

Since Bambara, like many languages, is primar-
ily spoken, we will try speech-based approaches
in future work. These approaches will potentially
have more impact and be more useful to these com-
munities, especially to those who cannot write in
their languages.

3.4 Yacine Zahidi

For pre-trained models, we explored several mod-
els available on the HuggingFace Hub, including
M2M-100 (Fan et al., 2020), NLLB (Team et al.,
2022), mT5 (Xue et al., 2021b) and byt5 (Xue et al.,
2021a) models each pre-trained by the Masakhane
Organization (Nekoto et al., 2020). Each model
was evaluated on the dev set provided by the orga-
nizers with respect to the BLEU score. The M2M-
100 (Fan et al., 2020) was chosen as a starting point
since it scored the highest. It is a 483 million pa-
rameters distilled version of the original 1.2 billion
parameters encoder-decoder transformer model.

Fine-tuning on the challenge dataset was promis-
ing, but the model validation loss curves showed
overfitting despite fine-tuning for weight decay,
small learning rate with decreasing linear sched-
ule, warmup, and dropout. In addition, the BLEU
score would not exceed 15 on the dev dataset, but
upon manual investigation, the produced transla-
tions were shallow and sometimes semantically
unrelated to the ground truth.

3.4.1 Error analysis
We examined the generated translations for com-
mon issues such as mistranslations, omissions, and
word order errors. The resulting training process
consisted of two steps: fine-tuning on the addi-
tional dataset in Table 2 and a step involving the
challenge data. Yielding a BLEU score of 27 on
the dev set, this approach produced a better result

than fine-tuning on a mix of both extended and
challenge data. The challenge data would then be
under-represented, which would allow for a low
BLEU score since the model is evaluated on a dev
set from the challenge data distribution and not the
additional data in Table 2.

The score was further improved by changing
the generation algorithm and number of beams,
resulting in the final dev BLEU score of 28.93 seen
in Figure 3. This improved the score by 2 points.

Error analysis showed the gap in BLEU score
between the dev set medical data and dictionary
data. An average of 10 points difference was re-
ported from one distribution to the other, which
could be explained by two main differences: that
in sequence length (the dictionary data was notably
shorter) and in vocabulary distribution (the medical
data was more domain-specific).
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Figure 3: BLEU as a function of the number of beams.
A value of one implies greedy decoding while bigger
values correspond to the beam-search algorithm. Not
surprisingly, the score dramatically improves before
plateauing around 10 and reaching diminishing returns.
Notably, the optimum is reached at 15 and increasing
the number of beams further has a negative impact on
the score.

3.4.2 Discussion
In addition to the data in Table 2, we extended our
training data by processing a many-to-Bambara
dataset from BigScience: the Bambara split of
XP3-all (Muennighoff et al., 2022a). XP3-all con-
tains 265,180 many-to-Bambara lines, but we only
included the French-to-Bambara subset, and en-
riched it with the English-to-Bambara subset that
was translated with the opus-mt-en-fr model from
Helsinki-NLP (Tiedemann and Thottingal, 2020)
resulting in 8,377 additional lines of training data.
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In the future, we would spend more time au-
tomating tasks, including hyper-parameter tuning,
to improve the efficiency of the system. Notably,
the cross-entropy loss function is only a differen-
tiable proxy for the metric we are trying to optimize
i.e. the BLEU score (which is not differentiable).
With the recent success of Reinforcement Learn-
ing techniques in natural language generation tasks
(Stiennon et al., 2020), we plan to further fine-tune
the model using the BLEU metric as a task reward,
similar to Pinto et al. (2023).

In the future we will explore techniques, such as
the recently introduced PEFT (Mangrulkar et al.,
2022), which allows for fine-tuning of LLM on
very small datasets using parameter efficient fine-
tuning methods. IA3 (Liu et al., 2022), Prompt-
Tuning (Lester et al., 2021), Prefix-Tuning (Liu
et al., 2021), and Low Rank Adaptation (LoRA)
(Hu et al., 2021) methods are currently leveraged
to train large models efficiently on as few as 10
examples. In comparison to classic fine-tuning that
involves training all the weigths of the model, these
methods have the added advantage of achieving
similar (sometimes even better) results by training
only a small subset of the weights (by freezing the
pre-trained weights and adding trainable adapter
weights as seen in the case of LoRA and IA3). We
therefore expect these methods to be increasingly
used for any low-resource task in the near future.

Moreover, it seems that the Adam optimizer has
finally found a worthy, artificially evolved rival
(Chen et al., 2023). We look forward to testing it
using the parameters of this task.

Finally, we would suggest the use of learned met-
rics for the evaluation of the translations instead
of the BLEU metric (that ignores synonyms and
idioms) building on the works of (Zhang* et al.,
2020). Although such models are not yet trained on
Bambara, Eddine et al. (2021) seems to offer part
of the solution, and an alternative would simply
be computing the cosine-distance between the em-
bedding representation of the produced translation
and that of the reference (Reimers and Gurevych,
2020).

3.5 Alexander Antonov

All of our models were trained using Sockeye
(Hieber et al., 2020). In this task, we focused on
building models from scratch and utilized 4 check-
points averaging model parameters in our system.
We averaged the parameters of the best 4 check-

points, which helped to improve results. In addi-
tion we used BPE for word segmentation (Sennrich
et al., 2016b).

3.5.1 Error analysis
We performed error analysis based on the BLEU
metric, and used it as an optimized metric while
training. We also used the sacreBLEU (Post, 2018).

3.5.2 Discussion
There are other extended techniques, such as back
translation and pre-trained models that we intend
to explore in future research. In addition, we also
plan to add additional training datasets that were
provided and used by the other teams.

3.6 Team Mali

The team attempted multiple approaches con-
currently, first pre-training a bilingual Bambara-
French denoising Seq2Seq-based foundational
model with a lower quality dataset, inspired by
Lewis et al. (2019), then fine-tuning it with a higher-
quality dataset. This approach yielded non-optimal
translations and performance, with all the scores
being sub-8 BLEU (it was also resource-heavy and
time-consuming). We fine-tuned with DeltaLM
(Ma et al., 2021), the training failed to converge
with both the base checkpoint and large checkpoint.
The problem could be attributed primarily to lim-
ited compute resources.

We were able to double our performance from
the previous approaches when we re-trained with
the NLLB-200 (Team et al., 2022) 600M param-
eters pre-trained model, with a learning rate of 2,
batch size of 512, and training steps of 20k with the
lower-quality dataset. Using both DABA-assisted
and non-Daba-assited pre-processing5.

Furthermore, we obtained another peak in perfor-
mance when we unfreeze the model and then tuned
it with the competition dataset with the same con-
figuration, for an understanding of the type of text
used for the competition (although we suspected
over-fitting). We have seen similar results from
both directions, Bambara to French and French to
Bambara.

3.6.1 Error analysis
We knew that Bambara is a complex and morpho-
logically sophisticated language. Bambara and
French have a one sentence to many translation

5https://github.com/maslinych/daba
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scheme, where one sentence can have multiple in-
terpretations in the other language, in a polysemous
phrasal relationship. Additionally, with Bambara
being predominantly a spoken language, there are
many fluidities that only native speakers can pick
up from translations, compared to a more structured
language. We chose to weigh human evaluation
higher than automated metrics. Both evaluation
techniques gave an insight into the overall perfor-
mance of our models.

Human Evaluation We came up with our own
defined method for manual evaluation, described
as follows: For every model trained, we sampled
50 lines from our test set and classified each line
into three classes manually BAD, ACCEPTABLE,
and GOOD. Where BAD was given a value of 0; it
is chosen when the hypothesis does not relay any
information from the source or is a bad translation.
ACCEPTABLE was given a value of 1; it is chosen
when the hypothesis is a literal translation of the
source without context. GOOD was given a value
of 2; it is chosen when the hypothesis is an accurate
translation of the source with context.

Figure 4: Example model score card analysis compar-
ing human-evaluation vs BLEU. where b2f: Bambara-
French, f2b: French to Bambara. BAG: Bad, Accept-
able, Good

Each member of the team evaluated a batch of
50 lines per model trained, given the source text, a
reference translation, and the hypothesis generated
by the model. They were tasked to evaluate the
manual score and to compute the BLEU score of
the batch, for a comparative analysis of the two

results, an example evaluation is shown in Figure
4.

Acknowledging the subjective nature of human
evaluation, we should state that while the human
evaluations was used to guide our analysis of the
performance of our models for the competition,
further investigations are needed to validate its via-
bility.

3.6.2 Discussion

Bambara’s complexity made it challenging
to find the best possible approach, as each
aspect of the training required analysis. From
pre-processing to evaluation, we found that
fine-tuning with the NLLB200 600M model
to be more performant. The most significant
aspect in our method was the human-in-the loop
approach, where coupling human annotation and
automated metrics was the primary indicator
that informed our decisions during the competition.

3.7 Team Peter-Sokhar

We experimented with transformer-based models
and utilized the attention mechanism, which en-
ables one component of the model to concentrate
on another part of the model. Due to the issue
of vanishing gradient and the weakness of limited
levels of parallelization, respectively, both recur-
rent neural networks (RNNs) and Long Short Term
Memory (LSTM) were not considered (Vaswani
et al., 2017). The selected transformer model was
Facebook/nllb-200-distilled-600M (Team et al.,
2022), which was fine-tuned on the training dataset,
which allowed for the design of the encoder, la-
tent representation, and decoder. By using semi-
supervised learning, the decoder fed features to the
model. The team explored training the model for
100 epochs.

3.7.1 Error Analysis

By using Google Translate, the team was able to
avoid having a native speaker as a teammate. In the
future, a native speaker will be a part of the team.

3.7.2 Discussion

Beyond needing additional compute and a powerful
internet connection, we would like to consider other
alternative models for cross-validation.
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Team Name BLEU Score BLEU Score
(BAM to FR) (FR to BAM)

Team Alpha 16.31 17.45
Team JYN 13.12 11.1
Yacine Zahidi 19.05 N/A
Alexander Antonov 7.54 8.06
Team Most-Pham 14.81 N/A
Team Mali 5.82 N/A

Table 5: BLEU score results by team for Bambara -
French and French - Bambara, with placement ordering.

4 BFMT 2023 Results and Discussion

Table 5 shows the BLEU scores for both Bambara
to French and French to Bambara translations. Not
all of the teams attempted both translation direc-
tions and the scores were averaged across both
language pairs to determine the winners.

The BFMT 2023 competition aimed to increase
research in low-resource language machine transla-
tion by providing training and evaluation data and
supporting community-building around scientific
transparency. Community-building included teams
being constructed from individuals with comple-
mentary skills and all relevant training data discov-
ered by one team being shared amongst the teams.

Nonetheless, there were key themes to the sub-
missions. All of the teams used the same core
datasets, with two teams bootstrapping alternatives
as shown in Table 2. Additional data provided a
significant advantage in this low-resource situation.
From a machine learning perspective, many of the
teams shared similar approaches with effectively
utilizing the M2M-100 model (Fan et al., 2020)
as the differentiator between the top performing
teams. Notably, the NLLB-200 (Adelani et al.,
2022) model comparatively under-performed. We
believe this is because the M2M-100 model had
fine-tuned MT models separately for each language
direction.

Subsequent insights were that the winning team
used a backtranslation approach, cyclic backtrans-
lation, and another successful team used a beam
search optimization. Also, we learned that smaller
distilled models could beat larger models with lim-
ited amounts of data (i.e., fine-tuning distilled mod-
els yields more accurate results).

Only one team had members that spoke Bam-
bara but many participants are speakers of other
low-resource languages and hope to extend their
experience with MT system development to lan-
guages that their families and friends speak.

5 Conclusion and Future Work

Because of BFMT 2023, researchers have suc-
cessfully implemented innovative low-resource ma-
chine translation systems. These implementations
are extensible to other language pairs, which is
helpful since low-resource languages continue to
face numerous challenges in terms of research fo-
cus and funding. We believe BFMT 2023 has not
only supported increased visibility of the Bambara
language, but it has also showcased the talent that
is working on using creative techniques to address
these technical challenges globally.

The BFMT 2023 competition community would
like to extend this work by holding other compe-
titions. Ideally, the next competition will utilize
automatic speech recognition data. Including spo-
ken data in MT might circumvent a challenge in
low-resource language, where only a few online
datasets support predominately oral language text
processing.

The output of BFMT 2023 is a viable baseline for
French - Bambara and Bambara - French machine
translation. In addition, the competition dataset
is now available to researchers seeking to exceed
this baseline or evaluate their translation systems.
Similar to the practice in some Kaggle competi-
tions, we can also provide a baseline model in the
next competition iteration that is based on the top
scoring competition submission 6.

Finally, we would like to provide greater finan-
cial support to the participating teams by sponsor-
ing equal and standard access to computational
resources. This could better illuminate which ma-
chine learning models are the highest performers.

Limitations

There are several limitations we observed during
the BFMT 2023 competition. We hope these limi-
tations and findings help researchers to understand
the challenges of organizing an MT shared task and
use them to improve their competitions.

1. Bambara is a low-resource language and the
amount of data needed to significantly im-
prove MT is very large. Inconsistent Bam-
bara orthographies might mitigate translation
quality improvement even with additional data
collection. There are very high rates of illit-
eracy for Malians (35%, the 5th highest in
the world (Diarra and Leventhal, 2020)) and

6https://www.kaggle.com/competitions
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Bambara speakers. We would like to gather
and translate spoken Bambara audio data to
counter these challenges.

2. The test set used for BLEU score evalua-
tion was data previously used in WMT21
(Akhbardeh et al., 2021). It contained tran-
scripts of conversations between translators
and Bambara speakers, and translations of
medical information7. Nonetheless, this
dataset was extensively re-aligned and post-
processed to remove encoding errors. Due to
this additional data cleaning, the processed,
competition dataset is of higher quality and
thus has no exact baseline for comparison.
Further, many competitors trained models
with additional data, potentially leading to
over-fitting of models to a different format of
Bambara-French translations, rather than the
original dataset.

3. BLEU has known limitations for meaningful
evaluation including how well it corresponds
to human evaluation of language correctness
and naturalness. In the future we would like
to conduct human evaluation of the MT com-
petition output. Many of the diverse compe-
tition participants speak other low-resource
languages, but only Team Mali had Bambara
speakers. Team Mali performed human eval-
uation and gave human results more weight
than automated ones. Human evaluation was
used to guide the analysis of the performance
of their models. They would like to extend
this work but were limited due to the time con-
straints required for a competition. Finally,
the participants’ BLEU scores did not meet
the closeness threshold (within 1 point) the
judges deemed necessary for supplementary
human evaluation.

4. We understand human evaluation of the trans-
lation predictions can be a strategic piece for
judging translation quality and naturalness.
Human evaluation can give insight on how
systems actually perform and direct focus for
improvement based on linguistic analysis. As
a low-resource language, it is difficult to find
human evaluators with translator-level written
French and Bambara skills on the data anno-
tation platforms used in conducting and col-

7The dataset is available to share on request through the
corresponding author.

lecting supplemental human evaluation. We
hope these observations will help future MT
competition organizers to plan and allocate
resources for human evaluation for judging.

5. The importance of compute power was also
evident in this competition but the MT sys-
tems were not compared in regards to com-
putational resources. In future work we will
support equal computational resources for all
teams.

Ethics Statement

Any evaluation system that incorporates human
workers motivates reflection on the ethical implica-
tions of their contribution. Two of the teams com-
peting in the competition had members that were
able to annotate their system’s output for transla-
tion quality due to their Bambara knowledge. This
was part of their team’s evaluation efforts and all
the team members had already consented to partic-
ipate in the competition.

In addition to considering how participating in
the competition affected the team members, this
work also affects the many millions of Bambara
speakers who have not historically had access to
technology. A recent focus on Machine Learn-
ing by the Malian government aims to change that
(Diarra and Leventhal, 2020). As a consequence,
increasing awareness and access to MT data, tasks,
and their applications has wide global impact.

Finally, due to the BLEU scores the competing
teams produced, these current translation systems
should not be used in critical situations where inac-
curate translations could lead to harm.
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Abstract

Parallel corpora are still crucial to train ef-
fective Machine Translation systems. This
is even more true for low-resource language
pairs, for which Neural Machine Translation
has been shown to be less robust to domain
mismatch and noise. Due to time and resource
constraints, parallel corpora are mostly created
with sentence alignment methods which auto-
matically infer alignments. Recent work fo-
cused on state-of-the-art pre-trained sentence
embeddings-based methods which are avail-
able only for a tiny fraction of the world’s
languages. In this paper, we evaluate the per-
formance of four widely used algorithms on
the low-resource English-Yorùbá language pair
against a multidomain benchmark parallel cor-
pus on two experiments involving 1-to-1 align-
ments with and without reordering. We find
that, at least for this language pair, earlier and
simpler methods are more suited to the task,
all the while not requiring additional data or
resources. We also report that the methods we
evaluated perform differently across distinct
domains, thus indicating that some approach
may be better for a specific domain or textual
structure.

1 Introduction

Parallel corpora are vital training data for Ma-
chine Translation (MT) systems, especially for
low-resource languages where data is scarce (Ste-
ingrímsson et al., 2020). While unsupervised meth-
ods trained only on monolingual data have been
proposed for Neural MT, they are still sensitive
to noise and domain mismatch (Khayrallah and
Koehn, 2018), and are outperformed by supervised
and semi-supervised systems trained on relatively
small parallel corpora (Kim et al., 2020). Collect-
ing and curating data for the creation of a paral-
lel corpus manually is a costly and time consum-
ing task that requires expertise in the languages
involved. It is even more difficult for low to no-

resource languages, for which the number of speak-
ers and research may be lower.

Thus, today parallel corpora are mostly cre-
ated by employing automatic methods for sentence
alignment. Sentence alignment is the task of taking
parallel documents split into sentences and finding
a bipartite graph which matches minimal groups of
sentences that are translation of each other (Thomp-
son and Koehn, 2019). In other words, to find tar-
get sentences with the same meaning to that of the
source segments in multilingual texts (Steingríms-
son et al., 2020). Several approaches have been pro-
posed, from simple length-based algorithms (Gale
and Church, 1993), to more complex methods em-
ploying multilingual sentence embeddings (Thomp-
son and Koehn, 2019).

Our work evaluates four commonly used sen-
tence alignment methods using Menyo20k (Ade-
lani et al., 2021), a high-quality benchmark English-
Yorùbá1 parallel corpus, as reference. We experi-
ment with 1-to-1 alignments with and without re-
ordering. Our results show that, at least for this lan-
guage pair, earlier, simpler systems may be more
suited, as they perform better and do not require
other data than the documents to be aligned, al-
lowing them to be employed even when no other
text or knowledge of the languages is available.
Moreover, we leverage the domain annotation of
the Menyo20k corpus to observe that the align-
ment methods in our evaluation perform differently
across various domains. This indicates that some
approach may be better suited to a specific domain
or textual structure.

After this Introduction, we report on some re-
cent work aimed at evaluating and improving sen-
tence alignment for low-resource language pairs in
Section 2. Then, in Section 3 we describe briefly

1Yorùbá is the third most spoken language in Africa, with
40 million native speakers. It is native to south-western Nige-
ria and the Republic of Benin and belongs to the Niger-Congo
family.
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the alignment methods in our evaluation, which
methodology is outlined in Section 4. Section 5
reports the results of our experiments and Section
6 draws some conclusions.

2 Related Work

Some recent work deals with sentence alignment
in a low-resource setting, focusing on evaluating
and improving modern sentence embedding-based
methods.

Tien et al. (2021) finds that Vecaling has sev-
eral limitations: it performs poorly in aligning sen-
tences which are located far apart in source and tar-
get documents, or it may align sentences which are
not translations of one another, but have a high sim-
ilarity score. Moreover, the error can be propagated
to from one pair to another, since the sentence that
should be in one alignment is moved to a further
one. They propose a new method that overcomes
these limitations by firstly aligning paragraphs and
generating candidate sentence pairs only among
the aligned paragraph’s sentences. They work with
the Vietnamese-Lao low-resource language pair by
translating the Lao documents to Vietnamese, on
which LASER has been trained. Then they find the
sentence pairs with cosine similarity weighted for
the ratio of text length and then retrieve the target
sentence in the original language. They report sig-
nificant improvements in precision and recall over
Vecaling on their test set.

Chimoto and Bassett (2022) experiment with
LASER and LaBSE (Feng et al., 2021) to extract
bitext for two unseen low-resource African lan-
guages, Luhya and Swahili. They find that both
pre-trained models perform poorly at zero-shot
alignment on Luhya. They thus fine-tune the em-
beddings on a small set of parallel Luhya sentences
and report significant gains, with the accuracy of
LaBSE increasing from 22% to 53.3%. This is
further improved to over 85% by restricting the
datastet to sentence embedding pairs with cosine
similarity above 0.7.

Fernando et al. (2022) evaluates the effectiveness
of pre-trained language models such as LASER,
XLM-R (Conneau et al., 2020), and LaBSE on
document and sentence alignment in the context
of the low-resource languages of Sinhala, Tamil,
and English. They introduce a weighting mecha-
nism based on small-scale bilingual lexicons to im-
prove the semantic similarity measure used by the
methods they evaluate, thus improving the resulting

alignments. Contrarily to our work, they find that
the multilingual sentence embeddings-based meth-
ods significantly outperform the Hunalign base-
line on their test language pairs. This discrepancy
should be investigated in future work.

3 Baselines

The works introduced in Section 2 deal mostly
with sentence embeddings-based methods.2 While
these methods were shown to be effective and
able to generalize to unseen languages in some
instances (Thompson and Koehn, 2019; Conneau
et al., 2020), this did not hold in other low-resource
test cases, for which further work on both the sys-
tem and the model was needed to reach a satis-
factory performance (Chimoto and Bassett, 2022).
Moreover, they are still not free from issues in
handling sentences which are found far apart in
the documents and employ non-optimal scoring
functions, such as raw sentence embedding cosine
similarity (Tien et al., 2021). Lastly, they still re-
quire resource-heavy pre-trained models which are
available only for a tiny fraction of the world’s lan-
guages. Thus, we also include earlier methods in
our evaluation. Table 1 summarizes the methods
we have taken into account.

The earliest widely documented statistical-based
methods were explored by Gale and Church (1993)
on the assumption that the length of a sentence
is highly correlated with the length of its trans-
lation. Moreover, they concluded that there is a
stable ratio between the sentence lengths in any
two language. Their method assigns a probabilistic
score to each correspondence of sentences, based
on the scaled difference of lengths, in number of
characters, of the two sentences and the variance
of this difference. The score is used in a dynamic
programming framework to find the maximum like-
lihood alignment of sentences. They worked on
a trilingual corpus of economic reports issued by
the Union Bank of Switzerland (UBS) in English,
French, and German, and a bilingual sample of 90
million words from proceedings of the Parliament
of Canada in English and French.

Varga et al. (2007) describe Hunalign, a hy-
brid method, combining a dictionary with a length-
based approach. Hunalign starts by producing a
crude word to word translation for each word token
in the dictionary according to the token with the

2Fernando et al. (2022) cites Hunaling as one of their
baselines, however.
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Baselines Scoring Function Reference
Gale-Church Sentence length Gale and Church (1993)
Hunaling Sentence length + dictionary Varga et al. (2007)
Bleualign Machine translation metric (BLEU) Sennrich and Volk (2010, 2011)
Vecalign Sentence embedding cosine similarity Thompson and Koehn (2019)

Table 1: Summary of the sentence alignment methods in our evaluation.

highest frequency in the target corpus. The pseudo
target language is then compared to the actual target
text on a sentence to sentence basis with a similarity
score based on the number of shared words, which
is the heaviest component of the scoring, and the
sentence length in characters based on the ratio of
longer to shorter. Once the similarity matrix is ob-
tained for the relevant pairs, dynamic programming
is used to find the optimal alignment with penalties
for skipping and coalescing sentences. The algo-
rithm works even in the absence of a dictionary
in which case the texts are first aligned with the
source text as the crude translation of itself and then
a simple dictionary can be bootstrapped by collect-
ing source-target token pairs with an association
score higher than 0.5. They mainly experiment on
Hungarian, but cite also Romanian and Slovenian,
motivated by the need to build parallel corpora for
"medium density languages".

Sennrich and Volk (2010) presents Bleualign, an
automatic alignment method based on MT. They
propose to use automatically translated text and a
measure of the quality of this translation, in this
case BLEU (Papineni et al., 2002), as a similar-
ity score to find reliable alignments to be used as
anchor points. Sennrich and Volk (2011) details
an iterative approach for Bleualign. They build a
rough alignment using the Gale-Church algorithm
and then train a first MT system on these aligned
data. They then use the generated translations to
compute the sentence level BLEU score and em-
ploy it as a measure of alignment. They work on
a corpus of French and German text obtained by
OCR from the yearbooks of the Swiss Alpine Club
between 1864-1982. They claim the system to be
more resilient to noise and fairly language indepen-
dent, despite depending heavily on the provided
translation, and thus on a MT system with reason-
able performance for their language pair. This is
problematic in resource-poor conditions due to the
need for enough data to train the MT system and
it is computationally more demanding due to the
need of an automatic translation.

Thompson and Koehn (2019) presents Vecalign.
They propose a sentence alignment scoring func-
tion based on the similarity of bilingual sentence
embeddings, which has been shown to be effec-
tive in related tasks such as filtering non-parallel
sentences and locating parallel sentences in compa-
rable corpora. Moreover, blocks of sentences can
be represented as the average of their embeddings,
which does not depend on the number of sentences
being compared, thus reducing the computational
complexity. They use the LASER multilingual
sentence embeddings (Artetxe and Schwenk, 2019)
and compute similarity as cosine similarity, normal-
ized with randomly selected embeddings to avoid
hubness (Radovanovic et al., 2010; Lazaridou et al.,
2015), i.e. the tendency of some vectors (“hubs”)
to appear in the top neighbour lists of many items.
To align the text, they start by creating an approx-
imate sentence alignment using the average em-
beddings of adjacent sentences. Then they refine
this alignment with the original sentence vectors,
limiting the search in a small window around the
approximate alignment. They claim state-of-the-art
results on the Bleualign dataset and on Bible test
sets (Christodouloupoulos and Steedman, 2015).
In this low-resource setting, they work on Arabic,
Turkish, Somali, Afrikaans, Tagalog, and Norwe-
gian. All these languages but Norwegian appear
in the training data for LASER, albeit in differ-
ent sizes. They consider verse-alignments as their
gold-standard, for which they report an average im-
provement of 28 verse-level F1 score on Hunalign
in bootstrap mode. As we will show in Section 5,
this improvement in performance does not hold in
our experiments on English-Yorùbá.

4 Methodology

The objective of our work is to evaluate the
widespread sentence alignment methods briefly
described in Section 3 in a low-resource setting.
To achieve this, we carry out two experiments on
Menyo20k (Adelani et al., 2021), a high quality
English-Yorùbá multidomain parallel corpus. Over-

125



Shorthand N of sentences Data source
book 2014 "Out of His Mind" Book
cc 193 Creative Commons license
digital 941 ICT/digital & Kolibri Tech sentences
jw 3508 JW news
misc 687 Short text from various domains
movie 774 Movie transcript
news 5980 News articles
proverbs 2700 Yoruba proverbs
radio 258 Radio transcripts
tedTalks 2945 Ted Talks transcripts
udhr 100 Universal Declaration of Human Rights
menyo 20100 TOTAL

Table 2: Domains of the Menyo20k corpus and their
sizes in number of sentences.

all the dataset contains 20.100 sentences gathered
from various domains such as news articles, TED
talks, movie and radio transcripts, science and tech-
nology text, Yorùbá proverbs, books, and short
articles curated from the web. Monolingual text
crawled from the web were professionally trans-
lated and verified by native speakers. We thus as-
sume the corpus as a a gold-standard for our exper-
iments.

For our purposes we concatenate the train, dev,
and test splits in which the corpus is divided into
one text file containing 1-to-1 alignments. Table
2 gives the sizes of the corpus and its different
domain splits.3

The first experiment, dubbed NATURAL-
ORDER, is straightforward: we apply the align-
ment methods mentioned in Section 3 to each sec-
tion of the corpus and on the corpus as a whole.
We then evaluate the resulting alignments against
the reference with an algorithm that iterates over
both the proposed alignments and the reference to
return a pair as correct only when the candidate
alignment is identical to the one in the reference.

The second experiment, SHUFFLED-ORDER,
is similar to NATURAL-ORDER, with the addition
of reordering: we artificially shuffle the target side
by randomly scrambling the sentences in a window
of 3. More precisely, we start from sentences at
lines 1 to 3 and we randomly shuffle them in this
group; we then move on to sentences at lines 4 to
6, and scramble them as well. We continue in this
manner until the end of the document is reached.
This is done to avoid creating unrealistic data, since
it is not usual for sentences that should be aligned to
be very far apart in the translation of same text. We
then proceed as in NATURAL-ORDER, by applying
the alignment methods and evaluating their outputs

3For a full breakdown on the sources and data collection
of the Menyo20k corpus, we defer to their paper.

against the gold standard.
Whenever possible, we used the implementa-

tions available online4 with the configuration that
required the least amount of pre-existing resources
or further work, such as fine-tuning. For the Gale-
Church method we employed the implementation
provided with Bleualign. We use LASER (Artetxe
and Schwenk, 2019) to compute the sentence em-
beddings for Vecalign. While the encoder for
Yorùbá was provided in the library as part of the
LASER3 extension (NLLB Team, 2022), we had
to train our own sentencepiece (Kudo, 2018)
model.5 Hunalign was run without a precompiled
dictionary. Since no end-to-end iterative imple-
mentation of Bleualign was found, we applied
the method without a reference translation. We
also attempted to train a NMT model only on the
Menyo20k corpus aligned with the Gale-Church
algorithm, as the Bleualign authors suggest in their
second paper. For this, we trained a standard trans-
former (Vaswani et al., 2017) using fairseq (Ott
et al., 2019) with the following parameters: vocab-
ulary size 2000, adam optimizer, dropout 0.1, label
smoothing 0.1, max tokens 4096, and optimizing
for BLEU. After 60 epochs, however, the model
failed to reach more than 5 BLEU in both trans-
lation directions, with its output hallucinated and
noisy, and was thus deemed not useful to further
alignment steps with Bleualign.

5 Results

Table 3 summarize the results of our evaluation.
The upper rows of the table report the results for

NATURAL-ORDER, the simple 1-to-1 alignment
without reordering. The Gale-Church baseline per-
form best in 8 out of 12 domains, with the percent-
age of correct alignments between 82.95% for the
radio domain, and the 100% of udhr. It scores
99.96% on menyo-all.

Bleualign is the least performing method in 9 out
of 12 domains, sharing its only 100% on udhr with
all the other methods. It fares particularly badly for
the literary domain, getting just 37.87% of align-
ments correctly for book and 56.07% on proverbs.
On menyo-all, it returns 79.16% of correct align-

4Hunalign: https://github.com/danielvarga/hunalign;
Bleualign: https://github.com/rsennrich/Bleualign;
Vecalign: https://github.com/thompsonb/vecalign

5We used the Yorùbá Wikipedia as training data and the
same parameters for the other models in LASER3. Limiting
the training data to the Menyo20k corpus failed to achieve the
necessary vocabulary size needed by LASER3.

126



Split book cc digital jw misc movie news proverbs radio tedTalks udhr menyo-all avg
bleu 37.87% 85.49% 91.73% 86.55% 84.86% 66.54% 90.72% 56.07% 80.23% 92.87% 100.0% 79.16% 79.34%
ga 99.6% 100.0% 100.0% 99.43% 99.71% 100.0% 99.92% 99.93% 82.95% 99.29% 100.0% 99.96% 98.40%

hun 99.85% 100.0% 99.36% 97.86% 90.6% 97.67% 99.31% 35.83% 100.0% 99.56% 100.0% 90.6% 92.55%

N
A
T vec 97.72% 95.85% 94.17% 96.29% 97.82% 99.1% 97.98% 89.12% 78.68% 98.64% 100.0% 94.4% 94.99%

bleu 11.07% 35.75% 28.21% 38.0% 27.07% 22.09% 41.94% 18.84% 35.27% 31.23% 21.0% 31.36% 28.48%
ga 24.22% 33.68% 25.77% 24.2% 30.28% 32.04% 24.52% 25.24% 21.71% 25.7% 21.0% 25.26% 26.15%

hun 34.99% 47.15% 36.9% 42.76% 38.86% 35.01% 45.95% 9.88% 39.92% 39.88% 48.0% 38.53% 38.15%

Score
S
H
F vec 26.1% 32.12% 25.66% 28.56% 29.69% 32.04% 29.07% 24.02% 21.71% 31.4% 41.0% 28.63% 29.17%

Table 3: Percentage of correct 1-to-1 alignments for each method and domain in NORMAL-ORDER (NAT) and
SHUFFLED-ORDER (SHF). The abbreviations for the alignment methods are the following: bleu : Bleualign, ga :
Gale-Church, hun : Hunalign, vec : Vecalign. The last column reports the average score for each method.

ments.
Hunalign and Vecalign perform similarly, with

scores over 90% for most domains, and 90.6% for
menyo-all. Hunalign fails for proverbs, correctly
aligning only 35.83% of the sentences. The lowest
score for Vecalign is on radio, with 78.68%.

It is apparent that the structured nature of the
Universal Human Rights Declaration generally
favours alignment. Conversely, the more fluid na-
ture of proverbs may hamper methods such as Hu-
nalign, which rely on lexical information for align-
ment. This domain, however, seems to be better
handled using just length information.

The lower half of Table 3 reports the results for
SHUFFLED-ORDER, 1-to-1 alignments with re-
ordering. All methods fail to reach 50% of found
correct alignments. Hunalign scores highest in 11
domains out of 12, achieving its best score of 48.0%
on udhr. It also detains the lowest score of the ex-
periment, 9.88% on proverbs. Hunalign correctly
aligns 38.53% of menyo-all. The other methods all
perform inadequately, with values close to random
for the window of 3 chosen for reordering. Apart
from the aforementioned Hunalign on proverbs
other low outliers are the Bleualign scores on book
and proverbs. Again, these domains seem to be
more problematic, significantly hampering the sys-
tems. Moreover, reordering appears to invalidate
the accuracy even on the highly structured text in
udhr.

6 Conclusions

In this paper we presented an evaluation of four
commonly used sentence alignment methods when
applied to a low-resource language pair, such as
English-Yorùbá.

While working well for high resource languages
and domains, more recent sentence embedding-
based alignment methods do not perform similarly
for a low-resource pair such as the one in our study.
Earlier methods, based on sentence length statis-

tics and bootstrapped dictionaries, returned better
alignments on the Menyo20k corpus. All of these
methods, however, do not seem suitable when sen-
tence reordering is involved. Some methods appear
to perform better for specific domains, as shown
by the difference in scores for the literary domain,
such as with the book and proverbs splits where text
is less structured and translations may not be literal.
Conversely, all methods return perfect alignments
on the highly structured text of the udhr.

Even without these results, one may argue that
simpler methods, which do not require a huge
amount of resources, both in term of computation
and data, and are mostly language-independent, are
better suited to the low-resource setting. Bleualign
assumes the use of machine translated data, and
thus a MT system, which has to be trained to satis-
factory quality. This is usually not possible in a low-
and no resource settings. Vecalign requires multi-
lingual sentence embeddings, in our case LASER,
which in turn need language specific encoders and
a sentencepiece model. In turn, these components
need further data than simply the documents to be
aligned.

Limitations and Future Work

One obvious limitation of the present work is given
by its testing dataset, which includes just one cor-
pus and one low-resource language pair. Future
work may expand the study to further language
pairs, leveraging other benchmark parallel corpora
such as FLORES (Goyal et al., 2022), which would
allow to explore other variables, e.g. the effect of
typological differences.

Another limitation is that the experiments and
their evaluation is currently confined to 1-to-1 align-
ments. Moving to more complex combinations
would require costly manual intervention. How-
ever, a qualitative analysis of peculiar cases could
be undertaken.
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