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Abstract

Deriving value from a conversational Al sys-
tem depends on the capacity of a user to trans-
late the prior knowledge into a configuration.
In most cases, discovering the set of relevant
turn-level speaker intents is often one of the
key steps. Purely unsupervised algorithms pro-
vide a natural way to tackle discovery problems
but make it difficult to incorporate constraints
and only offer very limited control over the
outcomes. Previous work has shown that semi-
supervised (deep) clustering techniques can al-
low the system to incorporate prior knowledge
and constraints in the intent discovery process.
However they did not address how to allow for
control through human feedback. In our Con-
trollable Discovery of Intents (CDI) framework
domain and prior knowledge are incorporated
using a sequence of unsupervised contrastive
learning on unlabeled data followed by fine-
tuning on partially labeled data, and finally it-
erative refinement of clustering and representa-
tions through repeated clustering and pseudo-
label fine-tuning. In addition, we draw from
continual learning literature and use learning-
without-forgetting to prevent catastrophic for-
getting across those training stages. Finally,
we show how this deep-clustering process can
become part of an incremental discovery strat-
egy with human-in-the-loop. We report results
on both CLINC and BANKING datasets. CDI
outperforms previous works by a significant
margin: 10.26% and 11.72% respectively.

1 Introduction

Conversational Al encompasses human-machine
interactions (e.g. voice assistants, self-service bots,
...), speaker assistance during human-human con-
versations (e.g. customer support agent guidance,
speaker coaching, ...), batch analysis of conversa-
tions, and many more use cases. Most of those
make use of the concept of ‘intent‘ to concep-
tualize the relevant dimensions at the level of a
conversational turn. Getting value out of those sys-
tems rests therefore in finding the intent set, i.e.

Customer: Hello, | recently received
my new credit card, and
I'd like to activate it.
Agent: Hi there! Could you please Known Intents
provide me with your card
number for verification? Pending
Card
Customer: Here's my card number Payment
£ XXXX-XXXX-XXXX-XXXX

Agent: Great, thank you for
providing you details. Your card is
now successfully activated. Is
there anything else | can assist
you with today?

v
-
v

Discovered Intents

Customer: Yes, actually. | was trying to
transfer money to a beneficiary, but

| received a message that the beneficiary
is not allowed. Can you help me
understand why? P
My Card

Beneficiary
Not Allowed

Figure 1: A sample dialogue between an agent and
the customer from the banking domain along with the
demonstration of the intent discovery process (CDI).

Agent : Of course, I'd be happy to
help. To better assist you, could
you please provide me with the
beneficiary's account number and
the error message you received?

Customer: ...

the set of turn-level labels, that best reflects the
practical needs of the business.

Businesses accumulate tacit and explicit knowl-
edge about their processes (Polanyi and Sen, 2009;
Nonaka and Takeuchi, 2007). But those are not
often couched in ways that can be directly trans-
lated into a system’s configuration. To make this
possible, it is first necessary to help the user formal-
ize their prior knowledge and processes in a way
that can make them legible for a conversational Al
system. In business-to-business (B2B) commercial
contexts, in particular, business analysts often have
to spend a large amount of time eliciting require-
ments from the client and compiling information
prior to configuring a system. Importantly, even
when formal knowledge already exists, businesses
look to Al systems to help them "know what they
don’t already know". In the case of intents, this
could take the form of helping them discover new
intents to better understand their customer base, or
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helping them evaluate and reshape their understand-
ing of the intent landscape (that can be sub-optimal
in its current form).

Unsupervised algorithms provide a natural way
to tackle such problems (Chatterjee and Sengupta,
2020; Benayas et al., 2023). Purely unsupervised
algorithms however suffer from the fact that they
lack the capacity to incorporate prior knowledge
and do not offer any control over the outcome (be-
yond the setting of certain hyper-parameters). The
objective therefore is to provide a tool that helps
align an intent set with business needs. This tool
should facilitate at a minimum: (1) the incorpo-
ration of domain knowledge, including the spec-
ification of required intents, and (2) the efficient
intervention of an expert to guide the system toward
relevant solutions.

Previous work has shown how using a combina-
tion of contrastive learning, fine-tuning, and semi-
supervised learning in addition to (deep) cluster-
ing allows the system to learn to incorporate prior
knowledge and constraints (Zhang et al., 2021;
Shen et al., 2021). A parallel line of research has
focused on using human-in-the-loop approaches to
iteratively incorporate human feedback (Williams
et al., 2015). To our knowledge, however, no work
so far has looked into combining all those elements
into a single architecture.

We present a novel approach to intent discovery
that satisfies the 3 requirements mentioned above.

Our contributions can be summarized as follows:

* We show how domain and prior knowledge
can be incorporated using a sequence of
unsupervised contrastive learning on unla-
beled data followed by fine-tuning on par-
tially labeled data, and finally iterative re-
finement of clustering and representations
through repeated clustering and pseudo-label
fine-tuning.

* We show how using the learning-without-
forgetting method from continual learning
prevents catastrophic forgetting across those
training stages, leading to improved clustering
results compared to previous work.

* Finally we show how this deep-clustering pro-
cess can become part of an incremental dis-
covery strategy with human-in-the-loop.

Stage 2: Pseudo Labels
Training

Domain Adaptation
Stage

Stage 1: Fine-tuning

Pseudo Labeled
Data

Unlabeled Data Unlabeled Data

Labeled Data

|

K-means
—
Clustering

#

Pre-trained
MPNet
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MPNet
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Entropy + LwF
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Figure 2: Our proposed architecture. We begin by train-
ing the MPNet model with unsupervised contrastive loss
(UCL) on the unlabeled dataset, followed by a two-stage
training process along with LwF.

{ Unsupervised

Copy Weights

Fine-tuned MPNet

2 Related Work

Earlier works in the field of intent discovery have
predominantly followed an unsupervised approach,
where embeddings for the data are generated and
then clustering is applied to identify new intents.
However, the quality of clustering can be greatly
impacted by the method used for generating in-
put representations. Recent approaches have uti-
lized pre-trained transformers like BERT (Devlin
et al., 2019) for generating sentence embeddings,
either by extracting the [CLS] token embeddings
or by mean-pooling all token embeddings. How-
ever, these methods often yield poor performance
in tasks such as textual similarity and cluster-
ing, whereas sentence transformers (Reimers and
Gurevych, 2019), such as MPNet, which are trained
through Siamese-based training, are more suitable
for such tasks. For clustering, partition-based tech-
niques (MacQueen, 1967) and density-based meth-
ods (Ester et al., 1996) have been proposed, but
they tend to under-perform with high-dimensional
data.

Deep clustering methods overcome this prob-
lem and improve the performance significantly by
jointly optimizing both input representation and
clustering using deep neural networks. DEC (Xie
et al., 2016) trains an autoencoder with reconstruc-
tion loss and iteratively optimizes the networks,
while DCN (Yang et al., 2017) introduces a K-
Means loss as a penalty term to reconstruct the
clustering loss. DeepCluster (Caron et al., 2018)
uses the discriminative power of the convolutional
neural network (CNN) and alternately performs
K-Means and representation learning.

More recently, semi-supervised techniques have
been widely used, such as DAC (Zhang et al., 2021)
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which proposes a two-step training strategy in-
volving supervised training using labeled samples
(stage-1) followed by training samples with pseudo-
labels generated by K-Means (stage-2). Sahay et al.
(2021) extends the DAC work by employing a bet-
ter backbone and interactive labeling. However,
a limitation of such approaches is that the model
may forget the learning that occurred during the
first step while learning the second step, which
is known as catastrophic forgetting (McCloskey
and Cohen, 1989) in literature. To address this
problem (Wei et al., 2022) retrains the model in
stage-2 using the labeled dataset. In our work, we
tackle this problem by incorporating the Learning
without Forgetting (LwF) (Li and Hoiem, 2018) ob-
jective during the training process, which aims to
preserve the learning that occurred during stage-1
while learning stage-2.

In addition, SCL (Shen et al., 2021) has achieved
improved results by leveraging supervised con-
trastive learning and a better backbone, i.e. MP-
Net (Song et al., 2020), in the same experimental
settings. Supervised Contrastive learning (Khosla
et al., 2020) involves optimizing the embedding
space by pulling together the representations of
samples belonging to the same class, while push-
ing apart the representations of dissimilar samples
from other classes. However, both DAC and SCL
primarily focus on labeled datasets and do not con-
sider the use of unlabeled data.

In our work, we overcome this limitation by uti-
lizing the unlabeled dataset and performing unsu-
pervised contrastive learning, where positive sam-
ples are generated by passing the same sentence
through the model multiple times with different
dropout masks (Gao et al., 2021). For positive
data augmentation, other techniques, such as token
shuffling and cutoff (Yan et al., 2021), utilizing
hidden representations of BERT (Kim et al., 2021),
or back-translation (Fang et al., 2020) can also be
used.

3 Methodology

As shown in Figure 2 we begin with a domain
adaptation step, using unsupervised contrastive
learning (UCL) to adapt a sentence transformer
on the unlabeled dataset. This is followed by a
two-stage supervised training approach using the
labeled dataset to cluster the unlabelled data and
identify new intents. To ensure that the model can
continuously learn and adapt to new data, we im-

plement the learning without forgetting technique
(Li and Hoiem, 2018). This allows the model to
incorporate new information while preserving pre-
viously learned knowledge. Further, we study the
impact of enabling the incremental discovery of
novel intents by incorporating human feedback in
an efficient way.

3.1 Domain Adaptation

3.1.1 Unsupervised Contrastive Learning
(UCL)

In Figure 2, we illustrate the first step of our ap-
proach: domain adaptation using unsupervised con-
trastive learning on the unlabeled dataset. Since in
the case of unlabeled data, positive pairs are not
readily available, we use the technique proposed
in SimCSE (Gao et al., 2021). For every input sen-
tence x;, we generate a positive pair x;” by feeding
the same input twice to the encoder with different
dropout masks z;, z;. We note the embeddings h;*
/

and hfl The remaining sentences serve as nega-
tive instances. The learning objective is described
below:
esim(h1hih) /7
Luya=—)Y log — ()

. z.
iEN N _sim(h;'h7)/T
D m

for N sentences mini-batch where 7 is the tem-
perature hyper parameter, and sim(hy, hs) is the
cosine similarity.

3.1.2 Sentence Transformer

We use a sentence transformer version of MPNet
as our backbone model (’paraphrase-mpnet-base-
v2’). The masked and permuted language modeling
approach used to train MPNet has been shown to
result in better language understanding capabili-
ties (Yang et al., 2019). The sentence transformer
version is trained using the Siamese network ap-
proach pioneered by sentence BERT (Reimers and
Gurevych, 2019). Sentence embeddings are gen-
erated by first applying mean-pooling to the token
embeddings extracted from the last hidden layer.

3.2 Stagel: Fine-tuning

In this first stage, we utilize a limited labeled
dataset to fine-tune the model. This step allows the
model to integrate the constraints and task-relevant
dimensions implicitly revealed by the annotations.
This step is similar to the DAC (Zhang et al., 2021),
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with the exception that we replace the BERT back-
bone with the MPNet and incorporate the learning
without forgetting (LwF) approach, as explained
in the next subsection. We train the model using
cross-entropy loss Le

wy, hi

1 e
Lee =—— g log—ge—
1, h'L
N v g€

2

where K is the number of known intents, w
is the classifier weights, h; is the final encoded
representation and Y (y1, yo, ..., yn ) are the labels.

Once the training is complete, we remove the
classifier layer and utilize the rest of the network
as a feature extractor to generate sentence embed-
dings.

3.2.1 Learning without Forgetting (LwF)

As the model learns from the labeled data, we want
to ensure that it does not forget what has been
learned during the domain adaptation phase: dis-
covery of relevant new intent requires the informa-
tion carried by both the domain and the labeled
data to be integrated prior to clustering. The threat
of catastrophic forgetting is a well-known threat
for transfer learning approaches (McCloskey and
Cohen, 1989). To address this problem, Learning
without Forgetting (LwF) (Li and Hoiem, 2018)
was proposed which aims to preserve the previ-
ously learned knowledge while learning new tasks.
It is inspired by KL-divergence which imposes an
additional constraint that the parameters of the net-
work while learning a new task and the parameters
of the old network do not shift significantly. For
our work, we adopt the LwF technique and use the
following objective:

N

1 /
Lrwr = N z; f(h;).logf(h;) (3)
wyih:‘ wy, b
) = g fhi) = e a i
C))

where K is the number of known intents i.e
classes, w is the classifier weights, h; is the model
output after learning and h; is the old model’s out-
put.

Finally, we combine this objective with the clas-
sification objective:

»Csup = [fce + )\ELwF (5)

where A is the hyper-parameter

3.3 Stage2: Deep-Clustering using Pseudo
Labels Training

We use the fine-tuned model to generate embed-
dings for all the turns in the dataset and perform
K-means clustering. We assign pseudo-labels to
each data point based on the K-means output and
use these pseudo-labels for the supervised training
of the model. Here also, to prevent catastrophic
forgetting, we add an LwF objective to the cross-
entropy loss. Furthermore, this stage differs signif-
icantly from the first stage, where the number of
labels or classes also changes which may lead to
catastrophic forgetting. Hence, we incorporate the
LwF objective alongside cross-entropy to mitigate
this issue (see 5).

We repeat this clustering + pseudo-labeling train-
ing step multiple times. To handle the assignment
inconsistency problem - the K-means cluster in-
dices are randomly assigned at each iteration re-
sulting in different labels - we follow the method
proposed in DAC (Li and Hoiem, 2018) and em-
ploy the Hungarian algorithm (Kuhn, 1955) to align
the centroids and obtain the consistent labeling.

3.4 Controllable Intent Discovery (CDI)

In this section, we introduce a novel approach for
allowing the user to control the intent discovery pro-
cess. Discovery is done in an incremental manner
using our in-house developed interactive tool cap-
turing human feedback. Our approach starts with
an empty labeled dataset Dj, = (), the unlabeled
dataset Dy, and an empty set of Intents /. We
perform unsupervised contrastive learning (UCL)
on the unlabeled dataset Dy by employing MPNet
as the backbone, as shown in Figure 3. Next, we
choose the value of K; i.e. number of clusters. In
practice, the value of K is unknown due to the lack
of information about the corpus. There are various
approaches of calculating the optimal value of K
as proposed in previous works (Shen et al., 2021;
Zhang et al., 2021). However, in this work, we
did not investigate in detail to calculate the opti-
mal value of K and used the technique proposed by
DAC.

Estimation of K We initialize K’ with a large
number (e.g. 200 for our experiments which is
approximately twice the largest value of intents in
the datasets). However, in practical scenarios, a
domain expert who uses our tool can set the initial
value of K based on his understanding of the do-
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Our Tool

T Unsupervised
Contrastive Loss

Adapted MPNet :
:

K-means
Clustering

Select/Unselect
Samples

Merge Clusters

Labeled Data

Stage 1 & 2
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Fine-tuned MPNet

|
i Pre-trained
: MPNet

! O ' Label

i w : Prediction
: : A

i Unlabeled Data :

Remaining Unlabeled
Data

Next Iteration

Figure 3: Our proposed architecture for incremental intent discovery via human-in-the-loop involves utilizing
a pre-trained model on a labeled dataset for generating representations using unsupervised contrastive learning
(UCL). Then we perform K-means, and the user is presented with the clusters for input. The user can provide
labeled samples and newly discovered intents by selecting or deselecting samples. Stage-1 and stage-2 training are
performed using the labeled and unlabeled datasets along with LwF, and the process is iterated until no new intents

are discovered.

main. Next, we use the fine-tuned model to extract
intent features and perform K-means clustering.
We hypothesize that real clusters tend to be dense
even with a large K’, and that the size of more
confident clusters is larger than some threshold
t (Zhang et al., 2021). Hence, we drop the low-
confidence cluster which has a size smaller than t,
where t is calculated as the expected cluster mean
size %

3.4.1 Incremental Deep Clustering

Our approach uses an incremental method to dis-
cover new intents and label the data simultaneously.
At each iteration ¢, we use the trained model M;_4
to extract representations of the unlabeled dataset
Dy and perform K-means clustering on these rep-
resentations based on a chosen value of K;. We
want to highlight that at ¢; iteration, we use the
model pre-trained with UCL loss. In the early itera-
tions, the model may not have been fine-tuned suf-
ficiently, leading to wrong cluster assignments for
some samples. To mitigate this problem, we select
only those samples which are closer to their cluster
centroids, based on some threshold . Specifically,
we compute the cosine similarity s; between each
sample and its corresponding cluster centroid C;
and select the sample if s; > . We find that a
threshold value between 0.7 and 0.99 works well

in practice.

We then present the user with the resulting clus-
ters along with the high-confidence samples sorted
by confidence score s; per cluster. Our tool allows
them to interactively select or deselect samples
within each cluster. The user can also merge simi-
lar clusters. At the end of each iteration, we have
a labeled dataset Dy, and a set of newly identified
intents denoted as I; = (i1, i2, ...ix, ). We expand
the labeled dataset as D;, = Dy U D; and intent set
as I = I U I, respectively and use them to perform
the stage 1 and stage 2 training along with the LwF
loss to avoid catastrophic forgetting as described in
above sections. In the next iteration, if the number
of identified intents ||, exceeds the value of K,
we expand and update K to be equal to |I|. Oth-
erwise, we keep Ky the same as K; and continue
this iterative process to discover new intents and
label the data. We terminate this process once the
value of K stops increasing.

4 Experimentation

4.1 Datasets

We conduct our experiments on two public bench-
mark intent datasets and one private dataset. Table
1 shows the dataset statistics.

CLINC is a dataset for intent classification (Lar-
son et al., 2019) that includes 22,500 queries span-
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ning 150 intents in 10 different domains.

BANKING is a detailed dataset in the banking
domain (Casanueva et al., 2020) that consists of
13,083 queries related to customer service and cov-
ers 77 distinct intents.

TELECOM Dataset is our private dataset
which comprises of manually annotated transcripts
of human-human spoken telephone conversations
from the telecom customer support domain. Tran-
scripts were generated by our in-house Kaldi-based
ASR system consisting of several turns between
agent and customer. In total, 1513 transcripts were
collected, and for each one, our annotators iden-
tified the turn in which the caller’s intent was ex-
pressed and assigned it to one of 16 pre-defined
classes. However, this work only considers the
intent turns as the input.

Dataset # Classes # Train # Val # Test
CLINC 150 18000 2250 2250
BANKING 77 9003 1000 3080
TELECOM 16 1013 250 250

Table 1: Statistics of CLINC, BANKING, and TELE-
COM Dataset describing the number of instances used
in train, validation, and test set respectively along with
the number of classes.

4.2 Baselines

In our work, we conducted a direct comparison be-
tween our proposed approach and two other exist-
ing methods, namely Deep Aligned Cluster (DAC)
(Zhang et al., 2021) and Supervised Contrastive
Learning (SCL) (Shen et al., 2021). DAC utilizes
a pre-training strategy on a BERT-based backbone
with limited known intent data, followed by train-
ing on pseudo-labeled data generated through a
clustering algorithm. In contrast, SCL uses MPNet
as the backbone and trains it on limited known
intent data using a Supervised Contrastive loss
(Khosla et al., 2020). To evaluate the performance
of these methods, we ran experiments and reported
the results by running their code if it was available,
and if not, we implemented their methods based on
the description provided in their papers.

4.3 Evaluation Metrics

Following established practices in the field, for
each experiment, we report the normalized mutual
information (NMI), adjusted rand index (ARI), and
accuracy (ACC).

Algorithm 1: Pseudo-code for automatic
incremental discovery evaluation
Input: Unlabeled Dataset Dy;,Model

trained using UCL M, True_Intents
Y

1 I < (; -> Intents

2t 1;

3 Dy, <+ (; -> Labeled Dataset

4 K; + PREDICT_K (M, Dy);

s while |I| # |Y| do

6 Ct <

GET_CLUSTERS(K, M, Dy);

7 foreach c € C; do

8 S+ FILTER_SENTS(vy)
(High confidence samples)
9 S < Selects the top 75 % samples if

all have the same label else selects
the ones having the same label in
the top 20 sentences.

10 L < Provide Labels to the
sentences from Y
1 I < I Uunique(L);
12 DL%DLUD(S,L);
13 Dy <+ Dy — Dy, Remove the
samples selected for Labeled
| Dataset;
14 M < Model after Stage-1 & Stage -2
training
15 Get Metrics on test set;

16 if |1l > K; then
17 L Kt+1 — ‘I‘

18 else
19 L Kt+1 — Kt
20 t++

4.4 Evaluation Setup

We used the same evaluation settings as defined by
DAC (Zhang et al., 2021) and CDAC (Lin et al.,
2020). We also use the same training, validation,
and test set. Our experiments were conducted
with three known intent ratios of 25%, 50%, and
75%. For each split, we randomly selected 10% of
samples for the CLINC and BANKING datasets,
and 20% for the TELECOM dataset, to be used
as the labeled dataset. The remaining samples
were treated as unlabeled data. We used the la-
beled dataset to train the MPnet model for multiple
epochs and select the one that gives the best per-
formance on the validation set. Our results were
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Method CLINC BANKING TELECOM
ACC ARI NMI | ACC ARI NMI | ACC ARI NMI
DAC (Pre-training) 58.8 44.82 80.09 | 43.21 28.82 62.68 | 35.6 17.51 43.22
DAC (Pseudo Training) | 72.04 62.92 88.06 | 46.32 33.75 66.31 | 39.2 2551 46.79
25% SCL 74.49 6777 90.29 | 55.19 4438 74.68 | 41.6 29.99 4698
CDI (Stage-1) 64.31 54.11 8498 | 500 36.7 7023 | 46.4 3851 47.85
CDI (Stage-2) 82.27 75.80 92.97 | 57.31 44.02 75.11 | 46.8 38.82 48.98
DAC (Pre-training) 704 5848 8592|5776 445 73.13 | 448 2735 49.78
DAC (Pseudo Training) | 73.8 643  89.08 | 56.62 44.41 73.68 | 50.0 3585 53.94
50% SCL 7796 70.53 91.26 | 62.63 50.69 78.5 | 56.8 419 56.88
CDI (Stage-1) 77.96 7137 91.46 | 66.27 53.05 7897 | 60.0 4587 58.69
CDI (Stage-2) 86.36 80.97 94.46 | 67.56 56.58 81.06 | 62.0 50.44 60.19
DAC (Pre-training) 77.64 6942 90.29 | 65.84 53.55 7824 |58.8 40.15 612
DAC (Pseudo Training) | 84.62 77.07 93.12 | 65.71 53.77 79.52 | 544 3794 60.22
75% SCL 79.27 72778 92.15 | 6331 50.69 785 | 63.6 4858 6527
CDI (Stage-1) 85.87 79.8 94.12 | 7532 64.02 84.02 | 66.8 55.34 66.26
CDI (Stage-2) 89.87 85.67 95.86 | 75.03 65.55 85.21 | 66.8 54.75 67.86

Table 2: Clustering results on CLINC, BANKING and TELECOM test dataset at known ratio of 25%, 50% and

75%.

- Method
. s | — pac
B e — scL

_________ — col
o= Dataset
_____ =8 | dinc
——————————— ~-- banking
70 PR woe telecom

- .

NMI

03 0.4 0.5 0.6 0.7 0.3 0.4 0.5
Known_Ratio

Known_Ratio

0.6 0.7 0.3 0.4 0.5 0.6 0.7

Figure 4: Effectiveness of Known Ratio on three datasets.

reported on the test set. To ensure a fair compar-
ison, we kept the number of clusters K fixed as
the ground-truth number of intents. We report the
average results over five runs of experiments with
different random seeds.

To evaluate the effectiveness of our incremen-
tal clustering approach, we created an automatic
program that simulates a user providing input by
selecting the correct samples for each cluster since
we already have the ground truth labels. At the
beginning of the process, we set the value of K
for the first iteration based on the approach de-
fined in Section 3.4. Specifically, the values of
K for the CLINC, BANKING, and TELECOM
datasets were estimated as 100, 50, and 10 respec-
tively. At each iteration ¢, based on the value of K,
we perform K-means clustering on the extracted
representations using the pre-trained model. We
then present the clusters to the automatic program
along with high-confidence samples. To determine
the high-confidence samples, we set a confidence
threshold of v = 0.7 for the first iteration and

v = 0.95 for the subsequent iterations. To better
simulate real-world scenarios, for any cluster, we
select the top 75% samples based on the cosine
distance to their cluster centroid, provided all of
them have the same label. Otherwise, we only se-
lect the sentences having the same label in the top
20 sentences. This step is crucial to prevent the
user from being overwhelmed with providing input
in the case of heterogeneous clusters. We finally
perform the stage-1 and stage-2 training and report
the performance for every iteration on the test set
(See Algorithm 1). We repeat this process until we
reach the ground truth value of K.

4.5 Training Details

We utilized the MPNet model (Reimers and
Gurevych, 2019) as the backbone for both stage-
1 and stage-2 and adopted most of its hyper-
parameters for the optimization. We freeze the
initial 11 layers of the model and only perform
learning on the subsequent layers. To improve the
learning capacity of our model, we add a dense
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Iteration | Stage CLINC BANKING TELECOM
ACC ARI NMI %_Labeled K |ACC ARI NMI %_Labeled K | ACC ARI NMI  %_Labeled K
1 - 51.6 3536 7743 0 100 | 46.79 3898 7236 O 50 (336 112 3412 0 10
2 1 51.56 43.71 8281 1397 % 83 146.72 3822 7131 1692 % 44 1 40.0 1793 3314 34% 5
2 520 49.87 858 1397 % 83 4744 38.18 72.84 1692 % 44 | 424 2422 424 34% 5
3 1 652 5793 8774 2673 % 105 | 61.4 5089 79.19 2431 % 60 | 51.2 3517 5145 12.03% 8
2 63.96 59.51 8943 26.73% 105 | 62.66 50.79 78.68 2431 % 60 | 544 36.74 53.87 12.03% 8
4 1 77.11 69.99 91.52 40.51 % 129 | 68.83 57.15 81.62 35.96 % 66 | 63.6 46.53 6141 20.34% 9
2 79.73 74.64 9331 40.51 % 129 | 67.01 56.02 81.64 35.96 % 66 | 65.6 49.07 62.02 20.34% 9
5 1 88.71 84.14 9556 63.75% 143 | 73.57 6321 8456 47.10% 70 | 67.6 52.68 6433 24.22% 10
2 88.58 83.62 9548 63.75% 143 | 73.02 63.08 84.72 47.10 % 70 | 7.6 55.79 67.33 24.22% 10
6 1 92.13 8836 96.72 8278 % 147 | 82.11 7193 87.53 59.12% 731724 59.56 69.75 41.01 % 13
2 93.6 90.18 973 82.78% 147 | 78.73 68.21 86.51 59.12 % 73 | 740 5879 71.17 41.01% 13
7 1 96.76 94.63 9836 91.43% 150 | 84.45 75.07 89.15 70.69 % 76 | 72.8  58.2 70.83 54.71 % 14
2 96.62 94.78 9842 91.43% 150 | 85.29 7556 89.43 70.69 % 76 | 72.8 5589 69.72 5471 % 14
P 1 - - - - - 90.39 81.72 91.18 81.78% 77 | 76.4  60.78 7397 60.17 % 15
2 - - - - - 87.53 7871 9028 81.78 % 77 | 75.6  62.56 72.89 60.17 % 15
9 1 - - - - - - - - - - | 780 68.16 7507 71.81% 16
2 - - - - - - - - - - | 788 68.56 7526 71.81% 16

Table 3: Iteration-wise clustering results for the human-in-the-loop approach on three datasets. K indicates the
number of intents discovered, while %_Labeled indicates the percentage of labeled samples until that iteration. We
stop reporting the results when K reaches the ground truth intent value.

TSNE projection “TSNE projection
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(a) Iteration 1, K=0

(b) Iteration 2, K=5

T-SNE projection

TSNE projection
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(c) Iteration 7, K=14 (d) Iteration 9, K=16

Figure 5: TSNE plots at different iterations for TELECOM dataset.

layer followed by a Tanh activation function. The
dimension of the sentence representation was set to
768, while the learning rate was Se-5, and the batch
size depended on the GPU’s availability. Moreover,
we set v as 0.75 for the first iteration and 0.95 for
the subsequent iterations to select high-confidence
samples. To incorporate the LwF objective, we
set A as 0.5 in both stages. All models were im-
plemented in PyTorch using HuggingFace’s trans-
formers library (Wolf et al., 2019).

5 Results & Discussion

Our evaluation is based on the metrics specified
in Section 4.3 on the test set. Our findings are
presented in two parts: 1) a comparison of our
results with those of the previous state-of-the-art
works, utilizing the same settings as proposed by
them, and 2) an evaluation of our human-in-the-
loop approach.

Table 2 illustrates the key findings from our part-
1 experiments. Our model consistently outperforms
the strongest baseline DAC by a significant margin
on all three datasets. However, there are some
cases, such as the BANKING dataset with a known

labeled ratio of 25%, where SCL performed better
with a very small margin of 0.36%. Notably, on
the CLINC dataset, our model achieves a good
accuracy of 82.27% even with just 25% known
classes ratio, surpassing DAC and SCL by 10.23%
and 7.78% respectively. It is worth noting that
SCL generally performed better than DAC in most
cases, which could be attributed to the choice of
backbone as MPNet, instead of BERT, as MPNet
is fine-tuned on the similarity measure.

Next, we observe that our stage-2 training
demonstrates significant performance improvement
as compared to stage-1 in most cases. This high-
lights the effectiveness of incorporating the Learn-
ing without Forgetting (LWF) objective, as stage-2
involves a different task than stage-1, and LwF pre-
vents forgetting from occurring. Furthermore, we
found that in scenarios where the labeled dataset
was limited, such as the 25% known ratio, super-
vised contrastive learning (SupCon) used in SCL
outperformed our stage-1 in both the CLINC and
BANKING datasets. This indicates that SupCon is
beneficial when dealing with limited labeled data,
as it enhances class separability. However, as more
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intents become known, the additional benefit of
SupCon diminishes and our approach performs sig-
nificantly better.

5.1 Results with Human-in-the-loop

Table 3 presents the results of our incremental in-
tent discovery approach, which incorporates simu-
lated human-in-the-loop feedback. As illustrated in
Table 3, we report the performance in both stages
for each iteration. In the first iteration, we start with
all unlabeled data and set the value of K using the
method described in the previous sections. Subse-
quently, in each iteration, we continue to discover
new intents, label data, and improve the perfor-
mance metrics, including ACC, ARI, and NMI,
on the test set. We terminate the process when K
reaches the ground truth number of intents. Specif-
ically, for the CLINC dataset, it took us 7 iterations
to label 91.43% of the dataset, 8 iterations for the
BANKING dataset to label 81.78 % of the dataset,
and 9 iterations for the TELECOM domain dataset
to label 71.81% of the dataset. Additionally, Figure
5 illustrates the tsne plot for each iteration, show-
casing the separation of samples class-wise and the
addition of new intents in subsequent iterations on
the TELECOM dataset.

6 Conclusion & Future Work

In this work, we present a Controllable Discov-
ery of Intents (CDI) framework where prior knowl-
edge is incorporated using unsupervised contrastive
learning followed by a two-stage fine-tuning strat-
egy. We also propose a novel incremental intent
discovery method that incorporates human-in-the-
loop feedback, while also utilizing the learning
without forgetting (LwF) objective to preserve pre-
viously learned knowledge during new iterations.
Our experimental results demonstrate that our ap-
proach significantly outperforms previous works
by a significant margin. In future work, we plan to
extend our approach to other languages and explore
its applicability to entity discovery.

Limitations

Our work has certain limitations that should be ac-
knowledged. Turn embeddings do not account for
the larger context of the transcript in which the turn
appears. In conversational datasets such as TELE-
COM, incorporating such contextual information
can potentially improve performance. The candi-
date selection method would benefit from being

more thoroughly investigated. Using the distance
to the clusters centroids to select candidates with a
high threshold may result in a reduced number of
sentences selected per cluster, leading to decreased
efficiency. The human-in-the-loop component is
evaluated by simulating the user. We see efficient
and standardized ways of automatically testing sys-
tems that incorporate human feedback as key to
accelerate the development of such architectures.
Future work will however need to focus on running
real user experiments both to validate our current
approach as well as to improve the automatic test-
ing procedure.
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