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Abstract
Deriving value from a conversational AI sys-001
tem depends on the capacity of a user to trans-002
late the prior knowledge into a configuration.003
In most cases, discovering the set of relevant004
turn-level speaker intents is often one of the005
key steps. Purely unsupervised algorithms pro-006
vide a natural way to tackle discovery problems007
but make it difficult to incorporate constraints008
and only offer very limited control over the009
outcomes. Previous work has shown that semi-010
supervised (deep) clustering techniques can al-011
low the system to incorporate prior knowledge012
and constraints in the intent discovery process.013
However they did not address how to allow for014
control through human feedback. In our Con-015
trollable Discovery of Intents (CDI) framework016
domain and prior knowledge are incorporated017
using a sequence of unsupervised contrastive018
learning on unlabeled data followed by fine-019
tuning on partially labeled data, and finally it-020
erative refinement of clustering and representa-021
tions through repeated clustering and pseudo-022
label fine-tuning. In addition, we draw from023
continual learning literature and use learning-024
without-forgetting to prevent catastrophic for-025
getting across those training stages. Finally,026
we show how this deep-clustering process can027
become part of an incremental discovery strat-028
egy with human-in-the-loop. We report results029
on both CLINC and BANKING datasets. CDI030
outperforms previous works by a significant031
margin: 10.26% and 11.72% respectively.032

1 Introduction033

Conversational AI encompasses human-machine034

interactions (e.g. voice assistants, self-service bots,035

...), speaker assistance during human-human con-036

versations (e.g. customer support agent guidance,037

speaker coaching, ...), batch analysis of conversa-038

tions, and many more use cases. Most of those039

make use of the concept of ‘intent‘ to concep-040

tualize the relevant dimensions at the level of a041

conversational turn. Getting value out of those sys-042

tems rests therefore in finding the intent set, i.e.043

Customer: Hello, I recently received 
my new credit card, and 
I'd like to activate it.
        
  Agent: Hi there! Could you please  
  provide me with your card               
  number for verification?

Customer: Here's my card number
: XXXX-XXXX-XXXX-XXXX
  
  Agent: Great, thank you for    
  providing you details. Your card is 
  now successfully activated. Is 
  there anything else I can assist 
  you with today?

Customer: Yes, actually. I was trying to 
transfer money to a beneficiary, but 
I received a message that the beneficiary 
is not allowed. Can you help me 
understand why?
  
  Agent : Of course, I'd be happy to 
  help. To better assist you, could 
  you please provide me with the 
  beneficiary's account number and 
  the error message you received?

Customer:  …..
   
  Agent: …….

Known Intents

Discovered Intents

Pending 
Card 

Payment

Card 
Expired

Activate 
My Card

Beneficiary 
Not Allowed

CDI

Figure 1: A sample dialogue between an agent and
the customer from the banking domain along with the
demonstration of the intent discovery process (CDI).

the set of turn-level labels, that best reflects the 044

practical needs of the business. 045

Businesses accumulate tacit and explicit knowl- 046

edge about their processes (Polanyi and Sen, 2009; 047

Nonaka and Takeuchi, 2007). But those are not 048

often couched in ways that can be directly trans- 049

lated into a system’s configuration. To make this 050

possible, it is first necessary to help the user formal- 051

ize their prior knowledge and processes in a way 052

that can make them legible for a conversational AI 053

system. In business-to-business (B2B) commercial 054

contexts, in particular, business analysts often have 055

to spend a large amount of time eliciting require- 056

ments from the client and compiling information 057

prior to configuring a system. Importantly, even 058

when formal knowledge already exists, businesses 059

look to AI systems to help them "know what they 060

don’t already know". In the case of intents, this 061

could take the form of helping them discover new 062

intents to better understand their customer base, or 063
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helping them evaluate and reshape their understand-064

ing of the intent landscape (that can be sub-optimal065

in its current form).066

Unsupervised algorithms provide a natural way067

to tackle such problems (Chatterjee and Sengupta,068

2020; Benayas et al., 2023). Purely unsupervised069

algorithms however suffer from the fact that they070

lack the capacity to incorporate prior knowledge071

and do not offer any control over the outcome (be-072

yond the setting of certain hyper-parameters). The073

objective therefore is to provide a tool that helps074

align an intent set with business needs. This tool075

should facilitate at a minimum: (1) the incorpo-076

ration of domain knowledge, including the spec-077

ification of required intents, and (2) the efficient078

intervention of an expert to guide the system toward079

relevant solutions.080

Previous work has shown how using a combina-081

tion of contrastive learning, fine-tuning, and semi-082

supervised learning in addition to (deep) cluster-083

ing allows the system to learn to incorporate prior084

knowledge and constraints (Zhang et al., 2021;085

Shen et al., 2021). A parallel line of research has086

focused on using human-in-the-loop approaches to087

iteratively incorporate human feedback (Williams088

et al., 2015). To our knowledge, however, no work089

so far has looked into combining all those elements090

into a single architecture.091

We present a novel approach to intent discovery092

that satisfies the 3 requirements mentioned above.093

Our contributions can be summarized as follows:094

• We show how domain and prior knowledge095

can be incorporated using a sequence of096

unsupervised contrastive learning on unla-097

beled data followed by fine-tuning on par-098

tially labeled data, and finally iterative re-099

finement of clustering and representations100

through repeated clustering and pseudo-label101

fine-tuning.102

• We show how using the learning-without-103

forgetting method from continual learning104

prevents catastrophic forgetting across those105

training stages, leading to improved clustering106

results compared to previous work.107

• Finally we show how this deep-clustering pro-108

cess can become part of an incremental dis-109

covery strategy with human-in-the-loop.110

K-means

Clustering

Unsupervised     
Contrastive Loss

New 
Intents

Domain Adaptation 
Stage

Pre-trained 
MPNet

Adapted MPNet

Stage 1 : Fine-tuning

Fine-tuned MPNet

Cross 
Entropy 
Loss

Stage 2 : Pseudo Labels
Training

+ LwF

Unlabeled Data Labeled Data

Pre-trained 
MPNet

Pre-trained 
MPNet

Unlabeled Data Pseudo Labeled
Data

C
o

p
y

 W
e

ig
h

ts

C
o

p
y

 W
e

ig
h

ts

Fine-tuned MPNet

+ LwF
Cross 
Entropy 
Loss

Figure 2: Our proposed architecture. We begin by train-
ing the MPNet model with unsupervised contrastive loss
(UCL) on the unlabeled dataset, followed by a two-stage
training process along with LwF.

2 Related Work 111

Earlier works in the field of intent discovery have 112

predominantly followed an unsupervised approach, 113

where embeddings for the data are generated and 114

then clustering is applied to identify new intents. 115

However, the quality of clustering can be greatly 116

impacted by the method used for generating in- 117

put representations. Recent approaches have uti- 118

lized pre-trained transformers like BERT (Devlin 119

et al., 2019) for generating sentence embeddings, 120

either by extracting the [CLS] token embeddings 121

or by mean-pooling all token embeddings. How- 122

ever, these methods often yield poor performance 123

in tasks such as textual similarity and cluster- 124

ing, whereas sentence transformers (Reimers and 125

Gurevych, 2019), such as MPNet, which are trained 126

through Siamese-based training, are more suitable 127

for such tasks. For clustering, partition-based tech- 128

niques (MacQueen, 1967) and density-based meth- 129

ods (Ester et al., 1996) have been proposed, but 130

they tend to under-perform with high-dimensional 131

data. 132

Deep clustering methods overcome this prob- 133

lem and improve the performance significantly by 134

jointly optimizing both input representation and 135

clustering using deep neural networks. DEC (Xie 136

et al., 2016) trains an autoencoder with reconstruc- 137

tion loss and iteratively optimizes the networks, 138

while DCN (Yang et al., 2017) introduces a K- 139

Means loss as a penalty term to reconstruct the 140

clustering loss. DeepCluster (Caron et al., 2018) 141

uses the discriminative power of the convolutional 142

neural network (CNN) and alternately performs 143

K-Means and representation learning. 144

More recently, semi-supervised techniques have 145

been widely used, such as DAC (Zhang et al., 2021) 146
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which proposes a two-step training strategy in-147

volving supervised training using labeled samples148

(stage-1) followed by training samples with pseudo-149

labels generated by K-Means (stage-2). Sahay et al.150

(2021) extends the DAC work by employing a bet-151

ter backbone and interactive labeling. However,152

a limitation of such approaches is that the model153

may forget the learning that occurred during the154

first step while learning the second step, which155

is known as catastrophic forgetting (McCloskey156

and Cohen, 1989) in literature. To address this157

problem (Wei et al., 2022) retrains the model in158

stage-2 using the labeled dataset. In our work, we159

tackle this problem by incorporating the Learning160

without Forgetting (LwF) (Li and Hoiem, 2018) ob-161

jective during the training process, which aims to162

preserve the learning that occurred during stage-1163

while learning stage-2.164

In addition, SCL (Shen et al., 2021) has achieved165

improved results by leveraging supervised con-166

trastive learning and a better backbone, i.e. MP-167

Net (Song et al., 2020), in the same experimental168

settings. Supervised Contrastive learning (Khosla169

et al., 2020) involves optimizing the embedding170

space by pulling together the representations of171

samples belonging to the same class, while push-172

ing apart the representations of dissimilar samples173

from other classes. However, both DAC and SCL174

primarily focus on labeled datasets and do not con-175

sider the use of unlabeled data.176

In our work, we overcome this limitation by uti-177

lizing the unlabeled dataset and performing unsu-178

pervised contrastive learning, where positive sam-179

ples are generated by passing the same sentence180

through the model multiple times with different181

dropout masks (Gao et al., 2021). For positive182

data augmentation, other techniques, such as token183

shuffling and cutoff (Yan et al., 2021), utilizing184

hidden representations of BERT (Kim et al., 2021),185

or back-translation (Fang et al., 2020) can also be186

used.187

3 Methodology188

As shown in Figure 2 we begin with a domain189

adaptation step, using unsupervised contrastive190

learning (UCL) to adapt a sentence transformer191

on the unlabeled dataset. This is followed by a192

two-stage supervised training approach using the193

labeled dataset to cluster the unlabelled data and194

identify new intents. To ensure that the model can195

continuously learn and adapt to new data, we im-196

plement the learning without forgetting technique 197

(Li and Hoiem, 2018). This allows the model to 198

incorporate new information while preserving pre- 199

viously learned knowledge. Further, we study the 200

impact of enabling the incremental discovery of 201

novel intents by incorporating human feedback in 202

an efficient way. 203

3.1 Domain Adaptation 204

3.1.1 Unsupervised Contrastive Learning 205

(UCL) 206

In Figure 2, we illustrate the first step of our ap- 207

proach: domain adaptation using unsupervised con- 208

trastive learning on the unlabeled dataset. Since in 209

the case of unlabeled data, positive pairs are not 210

readily available, we use the technique proposed 211

in SimCSE (Gao et al., 2021). For every input sen- 212

tence xi, we generate a positive pair x+i by feeding 213

the same input twice to the encoder with different 214

dropout masks zi, z
′
i. We note the embeddings hzii 215

and h
z
′
i
i . The remaining sentences serve as nega- 216

tive instances. The learning objective is described 217

below: 218

Lucl = −
∑
i∈N

log
esim(h

zi
i ,h

z
′
i

i )/τ

∑N
j ̸=i e

sim(h
zi
i ,h

z
′
j

j )/τ

(1) 219

for N sentences mini-batch where τ is the tem- 220

perature hyper parameter, and sim(h1, h2) is the 221

cosine similarity. 222

3.1.2 Sentence Transformer 223

We use a sentence transformer version of MPNet 224

as our backbone model (’paraphrase-mpnet-base- 225

v2’). The masked and permuted language modeling 226

approach used to train MPNet has been shown to 227

result in better language understanding capabili- 228

ties (Yang et al., 2019). The sentence transformer 229

version is trained using the Siamese network ap- 230

proach pioneered by sentence BERT (Reimers and 231

Gurevych, 2019). Sentence embeddings are gen- 232

erated by first applying mean-pooling to the token 233

embeddings extracted from the last hidden layer. 234

3.2 Stage1: Fine-tuning 235

In this first stage, we utilize a limited labeled 236

dataset to fine-tune the model. This step allows the 237

model to integrate the constraints and task-relevant 238

dimensions implicitly revealed by the annotations. 239

This step is similar to the DAC (Zhang et al., 2021), 240
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with the exception that we replace the BERT back-241

bone with the MPNet and incorporate the learning242

without forgetting (LwF) approach, as explained243

in the next subsection. We train the model using244

cross-entropy loss Lce245

Lce = −
1

N

∑
i∈N

log
ewyihi∑K
k=1 e

wyk
hi

(2)246

where K is the number of known intents, w247

is the classifier weights, hi is the final encoded248

representation and Y (y1, y2, ..., yN ) are the labels.249

Once the training is complete, we remove the250

classifier layer and utilize the rest of the network251

as a feature extractor to generate sentence embed-252

dings.253

3.2.1 Learning without Forgetting (LwF)254

As the model learns from the labeled data, we want255

to ensure that it does not forget what has been256

learned during the domain adaptation phase: dis-257

covery of relevant new intent requires the informa-258

tion carried by both the domain and the labeled259

data to be integrated prior to clustering. The threat260

of catastrophic forgetting is a well-known threat261

for transfer learning approaches (McCloskey and262

Cohen, 1989). To address this problem, Learning263

without Forgetting (LwF) (Li and Hoiem, 2018)264

was proposed which aims to preserve the previ-265

ously learned knowledge while learning new tasks.266

It is inspired by KL-divergence which imposes an267

additional constraint that the parameters of the net-268

work while learning a new task and the parameters269

of the old network do not shift significantly. For270

our work, we adopt the LwF technique and use the271

following objective:272

LLwF = − 1

N

N∑
i=1

f(h
′
i).logf(hi) (3)273

f(h
′
i) =

ewyih
′
i∑K

k=1 e
wyk

h
′
i

, f(hi) =
ewyihi∑K
k=1 e

wyk
hi

(4)

274

where K is the number of known intents i.e275

classes, w is the classifier weights, hi is the model276

output after learning and h
′
i is the old model’s out-277

put.278

Finally, we combine this objective with the clas-279

sification objective:280

Lsup = Lce + λLLwF (5)281

where λ is the hyper-parameter 282

3.3 Stage2: Deep-Clustering using Pseudo 283

Labels Training 284

We use the fine-tuned model to generate embed- 285

dings for all the turns in the dataset and perform 286

K-means clustering. We assign pseudo-labels to 287

each data point based on the K-means output and 288

use these pseudo-labels for the supervised training 289

of the model. Here also, to prevent catastrophic 290

forgetting, we add an LwF objective to the cross- 291

entropy loss. Furthermore, this stage differs signif- 292

icantly from the first stage, where the number of 293

labels or classes also changes which may lead to 294

catastrophic forgetting. Hence, we incorporate the 295

LwF objective alongside cross-entropy to mitigate 296

this issue (see 5). 297

We repeat this clustering + pseudo-labeling train- 298

ing step multiple times. To handle the assignment 299

inconsistency problem - the K-means cluster in- 300

dices are randomly assigned at each iteration re- 301

sulting in different labels - we follow the method 302

proposed in DAC (Li and Hoiem, 2018) and em- 303

ploy the Hungarian algorithm (Kuhn, 1955) to align 304

the centroids and obtain the consistent labeling. 305

3.4 Controllable Intent Discovery (CDI) 306

In this section, we introduce a novel approach for 307

allowing the user to control the intent discovery pro- 308

cess. Discovery is done in an incremental manner 309

using our in-house developed interactive tool cap- 310

turing human feedback. Our approach starts with 311

an empty labeled dataset DL = ∅, the unlabeled 312

dataset DU , and an empty set of Intents I . We 313

perform unsupervised contrastive learning (UCL) 314

on the unlabeled dataset DU by employing MPNet 315

as the backbone, as shown in Figure 3. Next, we 316

choose the value of Kt i.e. number of clusters. In 317

practice, the value of K is unknown due to the lack 318

of information about the corpus. There are various 319

approaches of calculating the optimal value of K 320

as proposed in previous works (Shen et al., 2021; 321

Zhang et al., 2021). However, in this work, we 322

did not investigate in detail to calculate the opti- 323

mal value of K and used the technique proposed by 324

DAC. 325

Estimation of K We initialize K ′ with a large 326

number (e.g. 200 for our experiments which is 327

approximately twice the largest value of intents in 328

the datasets). However, in practical scenarios, a 329

domain expert who uses our tool can set the initial 330

value of K based on his understanding of the do- 331
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Stage 1 & 2
Training

Next Iteration

K-means 
Clustering

Select/Unselect 
Samples

Merge Clusters

Label 
Prediction

Our Tool

Fine-tuned MPNet

Unlabeled Data

Remaining Unlabeled
Data

Pre-trained 
MPNet

Adapted MPNet

Domain Adaptation

Labeled Data

New Intents

Unsupervised     
Contrastive Loss

Figure 3: Our proposed architecture for incremental intent discovery via human-in-the-loop involves utilizing
a pre-trained model on a labeled dataset for generating representations using unsupervised contrastive learning
(UCL). Then we perform K-means, and the user is presented with the clusters for input. The user can provide
labeled samples and newly discovered intents by selecting or deselecting samples. Stage-1 and stage-2 training are
performed using the labeled and unlabeled datasets along with LwF, and the process is iterated until no new intents
are discovered.

main. Next, we use the fine-tuned model to extract332

intent features and perform K-means clustering.333

We hypothesize that real clusters tend to be dense334

even with a large K ′, and that the size of more335

confident clusters is larger than some threshold336

t (Zhang et al., 2021). Hence, we drop the low-337

confidence cluster which has a size smaller than t,338

where t is calculated as the expected cluster mean339

size N
K′340

3.4.1 Incremental Deep Clustering341

Our approach uses an incremental method to dis-342

cover new intents and label the data simultaneously.343

At each iteration t, we use the trained model Mt−1344

to extract representations of the unlabeled dataset345

DU and perform K-means clustering on these rep-346

resentations based on a chosen value of Kt. We347

want to highlight that at t1 iteration, we use the348

model pre-trained with UCL loss. In the early itera-349

tions, the model may not have been fine-tuned suf-350

ficiently, leading to wrong cluster assignments for351

some samples. To mitigate this problem, we select352

only those samples which are closer to their cluster353

centroids, based on some threshold γ. Specifically,354

we compute the cosine similarity si between each355

sample and its corresponding cluster centroid Ci356

and select the sample if si > γ. We find that a357

threshold value between 0.7 and 0.99 works well358

in practice. 359

We then present the user with the resulting clus- 360

ters along with the high-confidence samples sorted 361

by confidence score si per cluster. Our tool allows 362

them to interactively select or deselect samples 363

within each cluster. The user can also merge simi- 364

lar clusters. At the end of each iteration, we have 365

a labeled dataset Dt, and a set of newly identified 366

intents denoted as It = (i1, i2, ...iKt). We expand 367

the labeled dataset as DL = DL∪Dt and intent set 368

as I = I ∪ It respectively and use them to perform 369

the stage 1 and stage 2 training along with the LwF 370

loss to avoid catastrophic forgetting as described in 371

above sections. In the next iteration, if the number 372

of identified intents |I|, exceeds the value of Kt, 373

we expand and update Kt+1 to be equal to |I|. Oth- 374

erwise, we keep Kt+1 the same as Kt and continue 375

this iterative process to discover new intents and 376

label the data. We terminate this process once the 377

value of Kt stops increasing. 378

4 Experimentation 379

4.1 Datasets 380

We conduct our experiments on two public bench- 381

mark intent datasets and one private dataset. Table 382

1 shows the dataset statistics. 383

CLINC is a dataset for intent classification (Lar- 384

son et al., 2019) that includes 22,500 queries span- 385
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ning 150 intents in 10 different domains.386

BANKING is a detailed dataset in the banking387

domain (Casanueva et al., 2020) that consists of388

13,083 queries related to customer service and cov-389

ers 77 distinct intents.390

TELECOM Dataset is our private dataset391

which comprises of manually annotated transcripts392

of human-human spoken telephone conversations393

from the telecom customer support domain. Tran-394

scripts were generated by our in-house Kaldi-based395

ASR system consisting of several turns between396

agent and customer. In total, 1513 transcripts were397

collected, and for each one, our annotators iden-398

tified the turn in which the caller’s intent was ex-399

pressed and assigned it to one of 16 pre-defined400

classes. However, this work only considers the401

intent turns as the input.402

Dataset # Classes # Train # Val # Test
CLINC 150 18000 2250 2250
BANKING 77 9003 1000 3080
TELECOM 16 1013 250 250

Table 1: Statistics of CLINC, BANKING, and TELE-
COM Dataset describing the number of instances used
in train, validation, and test set respectively along with
the number of classes.

4.2 Baselines403

In our work, we conducted a direct comparison be-404

tween our proposed approach and two other exist-405

ing methods, namely Deep Aligned Cluster (DAC)406

(Zhang et al., 2021) and Supervised Contrastive407

Learning (SCL) (Shen et al., 2021). DAC utilizes408

a pre-training strategy on a BERT-based backbone409

with limited known intent data, followed by train-410

ing on pseudo-labeled data generated through a411

clustering algorithm. In contrast, SCL uses MPNet412

as the backbone and trains it on limited known413

intent data using a Supervised Contrastive loss414

(Khosla et al., 2020). To evaluate the performance415

of these methods, we ran experiments and reported416

the results by running their code if it was available,417

and if not, we implemented their methods based on418

the description provided in their papers.419

4.3 Evaluation Metrics420

Following established practices in the field, for421

each experiment, we report the normalized mutual422

information (NMI), adjusted rand index (ARI), and423

accuracy (ACC).424

Algorithm 1: Pseudo-code for automatic
incremental discovery evaluation
Input: Unlabeled Dataset DU ,Model

trained using UCL M , True_Intents
Y

1 I ← ∅; -> Intents
2 t← 1;
3 DL ← ∅; -> Labeled Dataset
4 Kt ← PREDICT_K(M,DU );
5 while |I| ≠ |Y | do
6 Ct ←

GET_CLUSTERS(Kt,M,DU );
7 foreach c ∈ Ct do
8 S ← FILTER_SENTS(γ)

(High confidence samples)
9 S ← Selects the top 75 % samples if

all have the same label else selects
the ones having the same label in
the top 20 sentences.

10 L← Provide Labels to the
sentences from Y

11 I ← I ∪ unique(L);
12 DL ← DL ∪D(S,L);
13 DU ← DU −DL Remove the

samples selected for Labeled
Dataset;

14 M ←Model after Stage-1 & Stage -2
training

15 Get Metrics on test set;
16 if |I| > Kt then
17 Kt+1 ← |I|
18 else
19 Kt+1 ← Kt

20 t++

4.4 Evaluation Setup 425

We used the same evaluation settings as defined by 426

DAC (Zhang et al., 2021) and CDAC (Lin et al., 427

2020). We also use the same training, validation, 428

and test set. Our experiments were conducted 429

with three known intent ratios of 25%, 50%, and 430

75%. For each split, we randomly selected 10% of 431

samples for the CLINC and BANKING datasets, 432

and 20% for the TELECOM dataset, to be used 433

as the labeled dataset. The remaining samples 434

were treated as unlabeled data. We used the la- 435

beled dataset to train the MPnet model for multiple 436

epochs and select the one that gives the best per- 437

formance on the validation set. Our results were 438
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Method
CLINC BANKING TELECOM

ACC ARI NMI ACC ARI NMI ACC ARI NMI

25%

DAC (Pre-training) 58.8 44.82 80.09 43.21 28.82 62.68 35.6 17.51 43.22
DAC (Pseudo Training) 72.04 62.92 88.06 46.32 33.75 66.31 39.2 25.51 46.79
SCL 74.49 67.77 90.29 55.19 44.38 74.68 41.6 29.99 46.98
CDI (Stage-1) 64.31 54.11 84.98 50.0 36.7 70.23 46.4 38.51 47.85
CDI (Stage-2) 82.27 75.80 92.97 57.31 44.02 75.11 46.8 38.82 48.98

50%

DAC (Pre-training) 70.4 58.48 85.92 57.76 44.5 73.13 44.8 27.35 49.78
DAC (Pseudo Training) 73.8 64.3 89.08 56.62 44.41 73.68 50.0 35.85 53.94
SCL 77.96 70.53 91.26 62.63 50.69 78.5 56.8 41.9 56.88
CDI (Stage-1) 77.96 71.37 91.46 66.27 53.05 78.97 60.0 45.87 58.69
CDI (Stage-2) 86.36 80.97 94.46 67.56 56.58 81.06 62.0 50.44 60.19

75%

DAC (Pre-training) 77.64 69.42 90.29 65.84 53.55 78.24 58.8 40.15 61.2
DAC (Pseudo Training) 84.62 77.07 93.12 65.71 53.77 79.52 54.4 37.94 60.22
SCL 79.27 72.78 92.15 63.31 50.69 78.5 63.6 48.58 65.27
CDI (Stage-1) 85.87 79.8 94.12 75.32 64.02 84.02 66.8 55.34 66.26
CDI (Stage-2) 89.87 85.67 95.86 75.03 65.55 85.21 66.8 54.75 67.86

Table 2: Clustering results on CLINC, BANKING and TELECOM test dataset at known ratio of 25%, 50% and
75%.

Figure 4: Effectiveness of Known Ratio on three datasets.

reported on the test set. To ensure a fair compar-439

ison, we kept the number of clusters K fixed as440

the ground-truth number of intents. We report the441

average results over five runs of experiments with442

different random seeds.443

To evaluate the effectiveness of our incremen-444

tal clustering approach, we created an automatic445

program that simulates a user providing input by446

selecting the correct samples for each cluster since447

we already have the ground truth labels. At the448

beginning of the process, we set the value of K449

for the first iteration based on the approach de-450

fined in Section 3.4. Specifically, the values of451

K1 for the CLINC, BANKING, and TELECOM452

datasets were estimated as 100, 50, and 10 respec-453

tively. At each iteration t, based on the value of K,454

we perform K-means clustering on the extracted455

representations using the pre-trained model. We456

then present the clusters to the automatic program457

along with high-confidence samples. To determine458

the high-confidence samples, we set a confidence459

threshold of γ = 0.7 for the first iteration and460

γ = 0.95 for the subsequent iterations. To better 461

simulate real-world scenarios, for any cluster, we 462

select the top 75% samples based on the cosine 463

distance to their cluster centroid, provided all of 464

them have the same label. Otherwise, we only se- 465

lect the sentences having the same label in the top 466

20 sentences. This step is crucial to prevent the 467

user from being overwhelmed with providing input 468

in the case of heterogeneous clusters. We finally 469

perform the stage-1 and stage-2 training and report 470

the performance for every iteration on the test set 471

(See Algorithm 1). We repeat this process until we 472

reach the ground truth value of K. 473

4.5 Training Details 474

We utilized the MPNet model (Reimers and 475

Gurevych, 2019) as the backbone for both stage- 476

1 and stage-2 and adopted most of its hyper- 477

parameters for the optimization. We freeze the 478

initial 11 layers of the model and only perform 479

learning on the subsequent layers. To improve the 480

learning capacity of our model, we add a dense 481

7
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Iteration Stage
CLINC BANKING TELECOM

ACC ARI NMI %_Labeled K ACC ARI NMI %_Labeled K ACC ARI NMI %_Labeled K
1 - 51.6 35.36 77.43 0 100 46.79 38.98 72.36 0 50 33.6 11.2 34.12 0 10

2
1 51.56 43.71 82.81 13.97 % 83 46.72 38.22 71.31 16.92 % 44 40.0 17.93 33.14 3.4 % 5
2 52.0 49.87 85.8 13.97 % 83 47.44 38.18 72.84 16.92 % 44 42.4 24.22 42.4 3.4 % 5

3
1 65.2 57.93 87.74 26.73 % 105 61.4 50.89 79.19 24.31 % 60 51.2 35.17 51.45 12.03 % 8
2 63.96 59.51 89.43 26.73 % 105 62.66 50.79 78.68 24.31 % 60 54.4 36.74 53.87 12.03 % 8

4
1 77.11 69.99 91.52 40.51 % 129 68.83 57.15 81.62 35.96 % 66 63.6 46.53 61.41 20.34 % 9
2 79.73 74.64 93.31 40.51 % 129 67.01 56.02 81.64 35.96 % 66 65.6 49.07 62.02 20.34 % 9

5
1 88.71 84.14 95.56 63.75 % 143 73.57 63.21 84.56 47.10 % 70 67.6 52.68 64.33 24.22 % 10
2 88.58 83.62 95.48 63.75 % 143 73.02 63.08 84.72 47.10 % 70 71.6 55.79 67.33 24.22 % 10

6
1 92.13 88.36 96.72 82.78 % 147 82.11 71.93 87.53 59.12 % 73 72.4 59.56 69.75 41.01 % 13
2 93.6 90.18 97.3 82.78 % 147 78.73 68.21 86.51 59.12 % 73 74.0 58.79 71.17 41.01 % 13

7
1 96.76 94.63 98.36 91.43 % 150 84.45 75.07 89.15 70.69 % 76 72.8 58.2 70.83 54.71 % 14
2 96.62 94.78 98.42 91.43 % 150 85.29 75.56 89.43 70.69 % 76 72.8 55.89 69.72 54.71 % 14

8
1 - - - - - 90.39 81.72 91.18 81.78 % 77 76.4 60.78 73.97 60.17 % 15
2 - - - - - 87.53 78.71 90.28 81.78 % 77 75.6 62.56 72.89 60.17 % 15

9
1 - - - - - - - - - - 78.0 68.16 75.07 71.81 % 16
2 - - - - - - - - - - 78.8 68.56 75.26 71.81 % 16

Table 3: Iteration-wise clustering results for the human-in-the-loop approach on three datasets. K indicates the
number of intents discovered, while %_Labeled indicates the percentage of labeled samples until that iteration. We
stop reporting the results when K reaches the ground truth intent value.

(a) Iteration 1, K=0 (b) Iteration 2, K=5 (c) Iteration 7, K=14 (d) Iteration 9, K=16

Figure 5: TSNE plots at different iterations for TELECOM dataset.

layer followed by a Tanh activation function. The482

dimension of the sentence representation was set to483

768, while the learning rate was 5e-5, and the batch484

size depended on the GPU’s availability. Moreover,485

we set γ as 0.75 for the first iteration and 0.95 for486

the subsequent iterations to select high-confidence487

samples. To incorporate the LwF objective, we488

set λ as 0.5 in both stages. All models were im-489

plemented in PyTorch using HuggingFace’s trans-490

formers library (Wolf et al., 2019).491

5 Results & Discussion492

Our evaluation is based on the metrics specified493

in Section 4.3 on the test set. Our findings are494

presented in two parts: 1) a comparison of our495

results with those of the previous state-of-the-art496

works, utilizing the same settings as proposed by497

them, and 2) an evaluation of our human-in-the-498

loop approach.499

Table 2 illustrates the key findings from our part-500

1 experiments. Our model consistently outperforms501

the strongest baseline DAC by a significant margin502

on all three datasets. However, there are some503

cases, such as the BANKING dataset with a known504

labeled ratio of 25%, where SCL performed better 505

with a very small margin of 0.36%. Notably, on 506

the CLINC dataset, our model achieves a good 507

accuracy of 82.27% even with just 25% known 508

classes ratio, surpassing DAC and SCL by 10.23% 509

and 7.78% respectively. It is worth noting that 510

SCL generally performed better than DAC in most 511

cases, which could be attributed to the choice of 512

backbone as MPNet, instead of BERT, as MPNet 513

is fine-tuned on the similarity measure. 514

Next, we observe that our stage-2 training 515

demonstrates significant performance improvement 516

as compared to stage-1 in most cases. This high- 517

lights the effectiveness of incorporating the Learn- 518

ing without Forgetting (LwF) objective, as stage-2 519

involves a different task than stage-1, and LwF pre- 520

vents forgetting from occurring. Furthermore, we 521

found that in scenarios where the labeled dataset 522

was limited, such as the 25% known ratio, super- 523

vised contrastive learning (SupCon) used in SCL 524

outperformed our stage-1 in both the CLINC and 525

BANKING datasets. This indicates that SupCon is 526

beneficial when dealing with limited labeled data, 527

as it enhances class separability. However, as more 528

8
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intents become known, the additional benefit of529

SupCon diminishes and our approach performs sig-530

nificantly better.531

5.1 Results with Human-in-the-loop532

Table 3 presents the results of our incremental in-533

tent discovery approach, which incorporates simu-534

lated human-in-the-loop feedback. As illustrated in535

Table 3, we report the performance in both stages536

for each iteration. In the first iteration, we start with537

all unlabeled data and set the value of K using the538

method described in the previous sections. Subse-539

quently, in each iteration, we continue to discover540

new intents, label data, and improve the perfor-541

mance metrics, including ACC, ARI, and NMI,542

on the test set. We terminate the process when K543

reaches the ground truth number of intents. Specif-544

ically, for the CLINC dataset, it took us 7 iterations545

to label 91.43% of the dataset, 8 iterations for the546

BANKING dataset to label 81.78% of the dataset,547

and 9 iterations for the TELECOM domain dataset548

to label 71.81% of the dataset. Additionally, Figure549

5 illustrates the tsne plot for each iteration, show-550

casing the separation of samples class-wise and the551

addition of new intents in subsequent iterations on552

the TELECOM dataset.553

6 Conclusion & Future Work554

In this work, we present a Controllable Discov-555

ery of Intents (CDI) framework where prior knowl-556

edge is incorporated using unsupervised contrastive557

learning followed by a two-stage fine-tuning strat-558

egy. We also propose a novel incremental intent559

discovery method that incorporates human-in-the-560

loop feedback, while also utilizing the learning561

without forgetting (LwF) objective to preserve pre-562

viously learned knowledge during new iterations.563

Our experimental results demonstrate that our ap-564

proach significantly outperforms previous works565

by a significant margin. In future work, we plan to566

extend our approach to other languages and explore567

its applicability to entity discovery.568

Limitations569

Our work has certain limitations that should be ac-570

knowledged. Turn embeddings do not account for571

the larger context of the transcript in which the turn572

appears. In conversational datasets such as TELE-573

COM, incorporating such contextual information574

can potentially improve performance. The candi-575

date selection method would benefit from being576

more thoroughly investigated. Using the distance 577

to the clusters centroids to select candidates with a 578

high threshold may result in a reduced number of 579

sentences selected per cluster, leading to decreased 580

efficiency. The human-in-the-loop component is 581

evaluated by simulating the user. We see efficient 582

and standardized ways of automatically testing sys- 583

tems that incorporate human feedback as key to 584

accelerate the development of such architectures. 585

Future work will however need to focus on running 586

real user experiments both to validate our current 587

approach as well as to improve the automatic test- 588

ing procedure. 589
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