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Abstract

We address the task of evidence retrieval for
long document question answering, which in-
volves locating relevant paragraphs within a
document to answer a question. We aim to
assess the applicability of large language mod-
els (LLMs) in the task of zero-shot long docu-
ment evidence retrieval, owing to their unprece-
dented performance across various NLP tasks.
However, currently the LLMs can consume lim-
ited context lengths as input, thus providing
document chunks as inputs might overlook the
global context while missing out on capturing
the inter-segment dependencies. Moreover, di-
rectly feeding the large input sets can incur sig-
nificant computational costs, particularly when
processing the entire document (and potentially
incurring monetary expenses with enterprise
APIs like OpenAI’s GPT variants). To address
these challenges, we propose a suite of tech-
niques that exploit the discourse structure com-
monly found in documents. By utilizing this
structure, we create a condensed representation
of the document, enabling a more comprehen-
sive understanding and analysis of relationships
between different parts. We retain 99.6% of the
best zero-shot approach’s performance, while
processing only 26% of the total tokens used
by the best approach in the information seeking
evidence retrieval setup. We also show how our
approach can be combined with self-ask reason-
ing agent to achieve best zero-shot performance
in complex multi-hop question answering, just
≈ 4% short of zero-shot performance using
gold evidence.

1 Introduction

Long Document Question Answering (LDQA) is
a complex task that involves locating relevant evi-
dence from lengthy documents to provide accurate
answers to specific questions (Dasigi et al., 2021).
LDQA is challenging for the following reasons -

* Equal contribution
1 Work done at Adobe Research, India

a) Long documents often exceed the maximum to-
ken limit of existing transformer-based Pretrained
Language Models (PLMs) (Devlin et al., 2019; Liu
et al., 2019; Lewis et al., 2020; Raffel et al., 2020),
posing a challenge in directly processing their con-
tent to extract pertinent information (Dong et al.,
2023). b) The information required to answer a
question is often dispersed across different sections
or paragraphs within the document which may re-
quire sophisticated reasoning process to identify
and extract the relevant information (Nie et al.,
2022). c) Processing the entire document to find
answers can be computationally expensive and in-
efficient (Dong et al., 2023).

One popular approach for LDQA is the retrieve-
then-read method (Zheng et al., 2020; Gong et al.,
2020; Nie et al., 2022; Ainslie et al., 2020, 2023),
where relevant paragraphs are retrieved from the
document to provide the answer. A major draw-
back of existing works is reliance on supervised
fine-tuning for the evidence selection phase, ex-
hibiting poor generalization on out-of-distribution
data (Thakur et al., 2021).

Given the remarkable few-shot/zero-shot perfor-
mance and enhanced generalization capabilities
demonstrated by Large Language Models (LLMs)
across various Natural Language Generation and
Understanding tasks (Brown et al., 2020; Chen
et al., 2021; Rae et al., 2022; Hoffmann et al., 2022;
Chowdhery et al., 2022), we investigate the poten-
tial of leveraging these LLMs for zero-shot evi-
dence retrieval. Notably, LLMs that have been in-
struction fine-tuned (Wei et al., 2022a; Chung et al.,
2022) or trained using Reinforcement Learning
with Human Feedback (Bai et al., 2022; Ouyang
et al., 2022) exhibit exceptional generalization per-
formance even on unseen tasks (Ouyang et al.,
2022; Min et al., 2022; OpenAI, 2023). Thus, we
explore the feasibility of utilizing LLMs for zero-
shot evidence retrieval. However, LLMs, which
are based on transformer architecture (Vaswani

14593



et al., 2017), are limited by their context length
and suffer from expensive inference times that in-
crease quadratically with the number of tokens
in the input. Additionally, utilizing enterprise
LLM solutions such as OpenAI’s gpt-3.5-turbo,
text-davinci-003, gpt-4, etc.1 to process an en-
tire long document without optimizations would in-
cur significant monetary costs. This highlights the
need for an LLM-based evidence retrieval solution
that can achieve faster and more cost-effective infer-
ence by selectively processing relevant portions of
the document, without compromising downstream
performance.

To overcome these challenges, we harness the
inherent discourse structure commonly present in
long documents. This structure encompasses the or-
ganization of topics, semantic segments, and infor-
mation flow, enabling effective information search
and knowledge acquisition for question answer-
ing. (Guthrie et al., 1991; Meyer et al., 1980; Taylor
and Beach, 1984; Cao and Wang, 2022; Dong et al.,
2023; Nair et al., 2023). Utilizing this valuable
structure, we construct a condensed representation
of the document by replacing the content within
each section with a corresponding summary. This
condensed representation is then fed to the LLM,
enabling efficient processing of tokens while al-
lowing the model to comprehensively analyze the
entire input context for identifying relevant sec-
tions. Thereafter, the content within each relevant
section is further processed by the LLM for fine-
grained evidence retrieval. We call our proposed
approach D3 (Drilling Down into the Discourse)
due to the nature of the solution described above.

Our approach undergoes evaluation in two dis-
tinct settings: Information Seeking and Multi-hop
Reasoning in Question Answering. In the infor-
mation seeking experiments, our approach retains
the best zero-shot state-of-the-art (SoTA) results,
while only utilizing 26% of the tokens employed
by the SoTA approach. Additionally, we exam-
ine the robustness of our model across various
document lengths and analyze the number of to-
kens required and latency for different zero-shot
approaches. Moreover, we explore the integration
of our approach with other zero-shot techniques
within an agent framework designed to break down
intricate queries into a sequence of simpler follow-
up queries.

1https://openai.com/pricing

2 Related Work

2.1 LLMs in Retrieve-Then-Read Approaches
The retrieve-then-read (Green Jr et al., 1961; Chen
et al., 2017; Wang et al., 2018; Das et al., 2019; Guu
et al., 2020) approach is a widely adopted technique
in open-domain (Voorhees et al., 1999; Dunn et al.,
2017; Joshi et al., 2017; Zhu et al., 2021), multi-
document question answering (Yang et al., 2018;
Perez et al., 2020; Ferguson et al., 2020) and long-
document question answering (Pereira et al., 2023).
In this approach, LLMs are utilized specifically for
the reader component, which generates responses
based on the relevant fragments retrieved by the re-
triever (Pereira et al., 2023). Although LLMs have
been utilized as decision-making agents in browser
interactions for document retrieval (Nakano et al.,
2022), their direct application for fine-grained evi-
dence retrieval has not been extensively explored to
the best of our knowledge. On that front, our paper
is the first to evaluate the applicability of LLMs for
evidence retrieval.

2.2 Chaining LLMs Runs for Question
Answering

Chaining in LLMs refers to the task of breaking
complex overarching task into a sequence of fine-
grained targetted sub-tasks where the information
generated by a particular run of the sequence is
passed to the subsequent runs (Wu et al., 2022a,b).
This allows for realizing powerful machine learn-
ing applications without requiring any changes to
the model architecture (Tan et al., 2021; Betz et al.,
2021; Reynolds and McDonell, 2021). LangChain
has implemented procedures using chaining for ev-
idence retrieval and question answering in long
documents. They employ three chaining variants
(map-reduce, map-rerank, and refine) 2, which
processes document chunks individually and ag-
gregate the information from each chunk to derive
the final answer. This implementation, however,
processes the entire document input resulting in
significant compute and monetary cost.

2.3 Evidence Retrieval for LDQA
Prior evidence retrieval approaches typically em-
ploy following two mechanims which are trained
by supervised fine-tuning - local processing to han-
dle individual document chunks with occasional
information flow between them (Gong et al., 2020)

2https://python.langchain.com/docs/modules/
chains/document/

14594

https://openai.com/pricing
https://python.langchain.com/docs/modules/chains/document/
https://python.langchain.com/docs/modules/chains/document/


Relevant Sections
Question: What are the baselines 

outperformed by this work?

STEP 1
Finding relevant sections using the condensed 

discourse-structure aware representation (§3.3.1) of  
the document

Experiments, Results and Analysis

Document section structure:
* Introduction: The study introduces a 
hierarchical intent annotation scheme ...
* Related Work: The study introduces the 
AntiScam dataset, designed ... 

...

Question:
"What are the baselines outperformed by this 

work?”

List all section names that may be relevant for 
answering the question. Respond with comma-
separated section name list. Provide an empty 
response if none of the sections are relevant.

STEP 2
 Selecting relevant paragraphs from all the paragraphs 

in relevant sections (from STEP 1)

[26,27,28,41]

STEP 3
Question answering using relevant paragraphs 

(from STEP 2)

0: The interest in non-collaborative tasks ..
1: To better understand user utterances ...
2: Traditional task-oriented dialog systems 
...

Question:
"What are the baselines outperformed by this 

work?”

Find paragraph ids that contains relevant
information for answering the question. 
Respond with comma-separated id list. Provide 
an empty response if none of the paragraphs 
are relevant.

Using the “Text" as the context, provide a 
very short answer to the text following 
"Question". Answer only "Unanswerable" when 
not enough information is provided in the 
documents. If the question is boolean, 
respond only with "yes" or "no”

Text: We observe that MISSA outperforms two 
baseline models (TransferTransfo and hybrid 
model) ... 

Question: "What are the baselines 
outperformed by this work?”

Answer: 

TransferTransfo and Hybrid 

Relevant Paragraph IDs Answer

A well-structured long document 
with sections, subsections , etc. 

Figure 1: An illustration of the end-end pipeline of D3. Given a question and a long document with discourse
structure that indicates sections, subsections etc., we first identify sections that are relevant for answering the
question. Following this step we select relevant paragraphs from the paragraphs in the relevant sections. In the final
step, we pass these relevant paragraphs to an LLM for question answering.

and global processing to aggregate the informa-
tion from each chunk to identify relevant para-
graphs (Zheng et al., 2020; Ainslie et al., 2020;
Nie et al., 2022; Ainslie et al., 2023). Inspired
by this strategy, our method represent each section
using its corresponding summary in a local process-
ing step and, in the global processing mechanism,
we utilize a suitable verbalizer to concatenate the
summaries from each section.

3 D3: Drilling Down into the Discourse

3.1 Problem Formulation

In LDQA, a question q is asked for a document
D = [p1, p2, . . . , pn], where pi(1 ≤ i ≤ n) is
the ith paragraph in the natural reading order of
D. The task of LDQA is to retrieve a set of rele-
vant paragraphs Eq ⊆ D and generate a free-form
answer a based on q and D (Dasigi et al., 2021;
Nie et al., 2022). Due to the length of the docu-
ments, often exceeding 5K tokens, we employ the
retrieve-then-read strategy. This approach involves
first determining Eq and subsequently generating
a using only q and Eq.

3.2 Motivation

The cognitive strategy employed by humans to
search for relevant information from a document
entails a systematic approach of first categorizing
the information within the document to determine
relevant coarse segments and then conducting a
deeper analysis of the relevant categories to extract
fine-grained segments (Guthrie and Kirsch, 1987;
Guthrie et al., 1991; Guthrie and Mosenthal, 1987).
Long documents often possess a well-structured

discourse that categorizes information coherently
based on topical similarity (Cao and Wang, 2022;
Nair et al., 2023; Dong et al., 2023). This inherent
discourse structure serves as a valuable framework,
enabling effective categorization of information
and facilitating a clear and logical flow of ideas
within the document.

Drawing from these insights, we posit that en-
capsulating the essence of a section through its
name and content summary would yield valuable
cues in determining its relevance for answering spe-
cific questions. Thereafter, we emulate the above-
described cognitive process by fine-grained anal-
ysis of relevant sections to extract evidence para-
graphs. This methodology offers three key advan-
tages:
(1) By condensing each section with its name and
summary, we can effectively reduce the document’s
token count, enabling LLMs to analyze the entire
context and make accurate inferences.
(2) By efficiently filtering out irrelevant sections in
the initial stage, our method reduces the number of
tokens processed.
(3) Our method is applicable for any instruction-
following LLMs (Ouyang et al., 2022; Min et al.,
2022; OpenAI, 2023), enabling zero-shot applica-
tion without the need for architectural modifica-
tions.

3.3 Methodology

Instead of representing a document D as a or-
dered set of constituent paragraphs, we repre-
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sent D = [S1, S2, . . . , Sk]
3, where Si(1 ≤ i ≤

k) denotes ith section, such that, name(Si) and
paragraphs(Si) denotes its name / heading and
the list of constituent paragraphs respectively
(paragraphs(Si) = [pi,j ]

|Si|
j=1 where |Si| denotes

number of constituent paragraphs). Note that,∑k
i=1 |Si| = n. Inspired by the cognitive process

of knowledge acquisition / information search for
question answering, our approach first finds the
relevant sections that may answer the question and
then, analyses the paragraphs from the relevant sec-
tions for fine-grained evidence paragraph retrieval.
(Figure 1)

3.3.1 Finding Relevant Sections
The crux of this step is to represent the con-
tent in each section Si by the summary of
paragraphs(Si). Summarization (El-Kassas et al.,
2021) refers to the task of generating a concise
summary for a given input that captures its main
idea within a limited number of tokens, effectively
conveying its topical essence. We denote the sum-
marization operation by S , for which we have used
bart-large (Lewis et al., 2020) fine-tuned over
CNN/Daily-Mail Corpus (Nallapati et al., 2016).
Thereafter, we represent the entire document as
follows:

* Section: name(S1)
S(paragraphs(S1))
* Section: name(S2)
S(paragraphs(S2))

· · ·
* Section: name(Sk)
S(paragraphs(Sk))

An instruction is passed to an LLM involving the
above representation to identify all the sections that
are relevant to q. Due to this condensed represen-
tation, the LLM can process the entire document
context enabling comprehensive analysis of long
range dependencies for accurate inference. Let the
set of sections identified as relevant be denoted by
Rq ⊆ D.

3.3.2 Fine-Grained Evidence Retrieval
The objective of this step is to infer the set of rele-
vant paragraphs from Rq. Here, we explain mul-

3In practice, documents often have a hierarchical discourse
structure, consisting of multiple levels of sections (Nair et al.,
2023). To handle this, we can flatten the structure using a pre-
order traversal approach. When verbalizing a specific section,
we concatenate the names of all sections along the path from
the root node to that particular node in the discourse structure.
This flattening process allows us to represent the document as a
list of sections while considering the hierarchical relationships
among sections.

tiple zero-shot strategies to achieve this step. We,
first, obtain a set of all paragraphs Pq associated
with Rq.

Pq =
⋃

S∈Rq

paragraphs(S)

Thereafter, one of the following strategy can be
employed for fine-grained retrieval:

1. MONOT5: This employs MonoT5 (Nogueira
et al., 2020), which a sequence-to-sequence
model trained over the task of Document Re-
ranking (Nguyen et al., 2016), to select the
most relevant paragraphs from Pq.

2. BASE: Each paragraph from Pq is marked
with an identifier and then, these identifier
annotated paragraphs are concatenated with
a newline separator. Thereafter, we prompt
the LLM in a zero-shot manner to generate
all paragraph identifiers whose corresponding
paragraph is relevant to q. If the number of
paragraphs in Pq exceeds the maximum con-
text length of LLM, we make multiple LLM
calls. In each call, we fit the maximum num-
ber of paragraphs that can fit into the con-
text length, ensuring that paragraphs are not
‘chopped’.

3. HIERBASE: In our approach, we adopt a two-
step process to capture the essence of each
paragraph. Firstly, we represent paragraphs
using their corresponding summaries obtained
through S. Following that, we employ the
BASE strategy to identify potentially relevant
candidates. In the next stage, we apply the
BASE technique once again, this time consid-
ering the original content of the paragraphs,
to pinpoint the most relevant ones.

In our experimental evaluation, we also ex-
plore the effectiveness of chaining these strategies
in succession. One such method, called BASE

+ MONOT5, combines the BASE strategy with
MONOT5. This approach initially identifies a rel-
evant set of paragraphs using the BASE strategy
and subsequently employs MONOT5 to refine the
selection further, retaining only the most relevant
ones from the initially identified set.

For most of the experiments presented in the
upcoming sections, we use bart-large (Lewis
et al., 2020) trained over the CNN/Daily-Mail Cor-
pus (Nallapati et al., 2016) for S. For retrieval
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Approach Answering Performance Evidence Tokens API
Extractive Abstractive Yes/No Unanswerable Overall F1 Processed Calls

HUMAN (Dasigi et al., 2021) 58.92 39.71 78.98 69.44 60.92 71.62 - -
CGSN (Nie et al., 2022) 34.75 14.39 68.14 71.84 39.44 53.98 - -
LED* (Nie et al., 2022) 52.41 23.44 76.96 77.91 52.87 - - -

gpt-3.5-turbo* 54.86 27.74 81.50 95.76 57.99 - - -

ZERO-SHOT / UNSUPERVISED METHODS

MONOT5 (Nogueira et al., 2020) 42.84 25.84 82.23 69.09 47.21 34.23 - -
DPR (Karpukhin et al., 2020) 31.58 18.57 78.46 84.33 42.11 19.32 - -

cross-encoder-ms-marco-MiniLM-L-12-v2 38.69 23.25 78.04 71.42 43.48 30.76 - -
PARAGRAPH 45.20 26.02 76.13 72.56 47.92 32.02 8519.37 47.24

CHUNK 45.96 29.61 84.30 65.57 49.00 35.59 5411.44 2.44
MAP-REDUCE 21.37 19.65 76.47 90.28 39.26 12.84 12730.13 48.24

MAP-REDUCE OPTIMIZED 47.45 26.05 82.79 71.32 50.13 50.11 7491.97 3.69
D3-BASE 42.90 23.65 74.35 79.61 47.45 49.92 1980.94 1.99

Table 1: Comparison of various zero-shot approaches against SoTA methods for QASPER dataset. The
simplest algorithm from D3 family yields competitive value across several metrics while being zero-shot and
requiring least number of tokens. *: Inference obtained using gold evidence.

and question answering, we utilize the highly ca-
pable gpt-3.5-turbo model, known for its re-
markable performance across a wide range of NLP
tasks, all while being more cost-effective (Ye et al.,
2023) when compared against text-davinci-003.
To identify the most relevant sections§3.3.1, we
prompt the LLM with the following instruction:

Document section structure:
{Condensed representation described in §3.3.1}

Question:
{q}

List all section names that may be relevant for
answering the question. Respond with

comma-separated section name list. Provide an
empty response if none of the sections are

relevant.

For the BASE strategy described in §3.3.2, we em-
ploy the following prompt:

{Paragraphs annotated with identifier (§3.3.2)}
Question:

{q}
Find paragraph ids that contains relevant

information for answering the question. Respond
with comma-separated id list. Provide an empty
response if none of the paragraphs are relevant.

4 Baselines:

We consider the following zero-shot approaches
for performance comparison:
(1) MONOT5: In this approach, MONOT5 is
directly applied to re-rank the paragraphs of
D = [p1, p2, . . . , pn] based on q.
(2) DPR: Dense Passage Retrieval
(DPR) (Karpukhin et al., 2020) is a retrieval
approach that leverages dense representations.
This method utilizes a bi-encoder architecture to
generate embeddings for both the documents and
the query independently which are used for finding
the most relevant documents.

(3) cross-encoder-ms-marco-MiniLM-L-12-v2:
This model is a cross-encoder reranker which
employs Siamese learning and BERT-like
architecture. This model is offered in
the sentence-transformers (Reimers and
Gurevych, 2019) library. While the library pro-
vides many different model checkpoints, we chose
cross-encoder-ms-marco-MiniLM-L-12-v2 as
it yielded highest F1 score for evidence retrieval.
(4) PARAGRAPH: Every paragraph in D is
processed by the LLM independently to assess its
relevance to q through a boolean prompt.
(5) CHUNK: The document is partitioned into
consecutive fragments, aiming to accommodate as
many paragraphs as possible within a predefined
token limit called as chunk size (3500). Subse-
quently,BASE is applied for each fragment.
(6) MAP-REDUCE: This approach, widely
adopted in the literature, involves evaluating the
relevance of each paragraph to q and subsequently
processing the relevant paragraphs together in a
single call to the LLM. However, we observed
that using LangChain’s implementation directly
led to subpar performance in terms of evidence
retrieval F1-score and inference cost. This can
be attributed to the incompatibility of the prompt
with the target domain, resulting in significant
performance degradation due to gpt-3.5-turbo’s
high sensitivity to the prompt (Ye et al., 2023).
(7) MAP-REDUCE OPTIMIZED: For better
alignment with our target task, we made crucial
modifications to the original implementation.
Building upon the observation that CHUNK

outperforms PARAGRAPH in terms of performance,
we decided to process document chunks instead
of individual paragraphs using the BASE tech-
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nique. Following the initial stage, where relevant
paragraphs are identified, we concatenate them
and subject them to the same strategy (BASE) for
further processing.

5 Experiments and Results

We mainly assess the applicability of our method
in two scenarios: (1) §5.1: Information-seeking
setting (Dasigi et al., 2021) and (2) §5.1: Multi-
hop Reasoning in Question Answering (Yang et al.,
2018). Thereafter, we conduct an extensive analy-
sis of our approach’s performance across various
configurations, as discussed in §5.3.1, and exam-
ine its effectiveness in different document length
categories, as outlined in §5.3.2. Thereafter, we
justify the need for the inclusion of global con-
text modeling in §5.3.3, and highlight the signif-
icance of incorporating discourse information in
§5.3.4. Finally, §5.3.5 we compare our methods
performance with the best performing zero-shot ap-
proach for different categories and identify scope
for improvement. In our analyses, we will also
include insights into the inference cost and latency
associated with utilizing large language models
(LLMs) for the evidence retrieval stage. This will
encompass the monetary cost and the processing ef-
ficiency measured in terms of the number of tokens
processed and the number of LLM inferences. It is
important to note that these measurements pertain
exclusively to LLMs and do not encompass smaller
fine-tuned models. Unless otherwise specified, we
would be using BASE approach for fine-grained
retrieval and the overall approach would be called
D3-BASE. Due to the monetary cost associated
with gpt-based LLMs, we experiment with 150
randomly sampled documents for all the experi-
ments.

5.1 Performance for Information-Seeking
Setting

We assess the performance of the models on the
QASPER dataset (Dasigi et al., 2021), which com-
prises information-seeking questions designed for
lengthy research papers. The dataset includes a set
of ground truth evidence paragraphs and answers.
The questions are categorized as extractive, abstrac-
tive, yes/no, and unanswerable, and our proposed
method must accurately discern the question’s in-
tent to generate a relevant response.

Table 1 presents the results of various ap-
proaches, including a fine-tuned state-of-the-art

S1: Understanding text and voice
questions from users...
S2: BIBREF0 introduced the task of
identifying well-formed...
S3: Our dataset enables us to...

Unanswerable. The text does not
mention a specific baseline method

Retrieval

QA

Tokens used: 563

S1: To evaluate model
performance, we apply our trained
models to...

The baseline method is evaluating
the original ill-formed question using

the automatic metrics.

Retrieval

QA

Tokens used: 1896

S1: To evaluate model
performance, we apply our trained
models to...

The baseline method is evaluating
the original ill-formed question using

the automatic metrics.

Retrieval

QA

Tokens used: 7561

What is the baseline method?

Total OpenAI calls: 1 Total OpenAI calls: 3 Total OpenAI calls: 5

(A) Embedding-based retriever (MonoT5) (B) D3 (Ours) (C) Langchain Map-Reduce

Figure 2: Qualitative comparison of D3-BASE with
publicly available Zero-shot Approaches such as
MONOT5 and Langchain’s MAP-REDUCE: "Tokens
used" refers to the total number of tokens processed
by the evidence retrieval and question answering stage
to generate the final answer. Similarly "Total OpenAI
Calls" also computes the number of API calls over both
the tasks.

(SoTA) model (Nie et al., 2022), fine-tuned LED
model evaluated on gold evidence, and zero-shot
gpt-3.5-turbo model evaluated on gold evidence.
Among them, our simplest approach, D3-BASE,
achieves competitive performance in terms of Ev-
idence F1 score. Notably, it retains 99.6% of the
performance of the best zero-shot approach, MAP-
REDUCE OPTIMIZED, while processing only 26%
of the tokens required by the latter.

The original implementation of MAP-REDUCE

suffers from two main limitations. Firstly, it pro-
cesses each paragraph independently, overlooking
the effectiveness of chunk-level processing over
paragraph-level processing. Secondly, it employs
suboptimal few-shot prompting to retrieve relevant
sources, resulting in increased processing costs and
poor performance when the few-shot prompting
is not well-aligned with the domain. Due to these
significant processing costs and the underper-
formance of PARAGRAPH and MAP-REDUCE,
we exclude their evaluations from subsequent
analyses. Similarly, among the non-LLM base-
lines, we exclude the evaluations of DPR and
cross-encoder-ms-marco-MiniLM-L-12-v2
due to their poor performance.

While it is possible to enhance the performance
of our approach, D3, with alternative configura-
tions (as shown in Section 5.3.1), it remains an
excellent choice for rapid testing in different do-
mains. Its cost-effectiveness and minimal latency
in terms of API calls make it highly suitable for
such purposes.
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Approach Evidence Answer Tokens API
F1 F1 Processed Calls

CGSN (Nie et al., 2022) 92.02 57.80 - -
LED* (Nie et al., 2022) - 58.94

gpt-3.5-turbo* - 47.01 - -

ZERO-SHOT APPROACHES

MONOT5 62.33 37.91 - -
CHUNK 40.79 36.81 6702.78 2.45

MAP-REDUCE OPTIMIZED 39.52 37.93 8329.81 3.58
D3 -BASE 31.05 23.55 3141.29 2.10

ZERO-SHOT APPROACHES AUGMENTED WITH SELF-ASK

MONOT5 33.56 40.36 719.54 1.62
CHUNK 20.66 39.59 9822.49 5.0

MAP-REDUCE OPTIMIZED 30.19 38.32 12253.42 6.83
D3 -BASE 26.87 43.45 5376.29 5.17

Table 2: Comparison of various zero-shot approaches
for HOTPOTQA-Doc Dataset. While directly apply-
ing D3-BASE leads to poor performance, combining
this with self-ask prompting methodology yields best
performance while processing least number of tokens
when compared against other zero-shot LLM-based
methods. *: Inference obtained using gold evidence.

5.2 Performance for Questions Requiring
Multi-Hop Reasoning

Here, we use HOTPOTQA-Doc dataset (Yang et al.,
2018; Nie et al., 2022), where the objective is to
answer a complex query involving multi-hop rea-
soning given two long documents. We have in-
vestigated the performance of different zero-shot
approaches using two schemes: (a) Direct Pro-
cessing: Queries are directly fed to the Zero-Shot
retrievers to get the relevant evidences. (b) self-ask
based Processing: By leveraging the power of elic-
itive prompting (Yao et al., 2022; Press et al., 2022;
Wei et al., 2022b), we employ the technique of
self-ask (Press et al., 2022). This approach entails
decomposing a complex query into a series of sim-
pler questions, which collectively form the basis
for the final answer. Through iterative questioning,
the agent analyzes prior answers and previously
posed questions to generate subsequent inquiries.
Leveraging the zero-shot retrieval approach, the
agent obtains relevant answers for each question.

The results for this experiment are tabulated at
Table 2. We note the following observations:

• Evidence F1 poorly correlated with Answer
F1: Considering same question answering
model were used (gpt-3.5-turbo) for each
of the zero-shot approaches, we find that the
answer performance of MAP-REDUCE OPTI-
MIZED aligns with that of MONOT5, albeit
with noticeably lower evidence retrieval effi-
cacy. It’s worth noting that during dataset con-
struction, only the paragraphs utilized for gen-

erating answers were preserved, which does
not imply the irrelevance of other paragraphs
in addressing the question. This observation
highlights the presence of this artifact.

• Augmenting with self-ask boosts perfor-
mance: This highlights the fact that zero-shot
retrievers are better positioned to retrieve frag-
ments for simpler queries and self-ask effec-
tively uses them to get better performance. In
fact, our approach D3−BASE is very close in
performance to zero-shot question answering
with gold evidence.

5.3 Ablations & Analyses
5.3.1 Performance of different configurations

of D3

We investigated several configurations to determine
possible directions to improve the performance.
Following explorations were performed (Table 3):

• Variations in fine-grained retrieval: Al-
though employing MonoT5 can reduce infer-
ence costs, it also adversely affects evidence
retrieval performance, as evidenced by the
table. Conversely, D3−HIERBASE demon-
strates a enhancement in performance with
only a marginal increase in inference cost.

• Using LLMs for summarization: We re-
placed fine-tuned summarizer with enter-
prise LLMs such as gpt-3.5-turbo4 and
text-davinci-003 (Ouyang et al., 2022) and
an open-source LLM, vicuna-13b (Chiang
et al., 2023). While the performance increased
along several metrics, there is additional pro-
cessing cost to get the condensed represen-
tation of the document (very minimal when
smaller bart-large based summarizer was
used).

• Exploring alternative LLMs for retrieval:
In this analysis, we observe a decline in per-
formance when utilizing other LLMs, high-
lighting the superiority of gpt-3.5-turbo as
the optimal choice for retrieval tasks.

• Investigating alternative LLMs for ques-
tion answering: We observe a performance
boost when employing text-davinci-003.
However, it is important to consider the higher
monetary cost associated with using this API
compared to gpt-3.5-turbo.

4https://openai.com/blog/chatgpt
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Approach Answering Performance Evidence Tokens API
Extractive Abstractive Yes/No Unanswerable Overall F1 Processed Calls

OUR PRIMARY APPROACH

D3-BASE 42.90 23.65 74.35 79.61 47.45 49.92 1980.94 1.99

VARIATIONS IN FINE-GRAINED EVIDENCE RETRIEVAL

MONOT5 34.86 20.47 67.59 88.64 43.33 32.73 844.09 1.0
MONOT5+BASE 39.61 22.31 74.32 87.35 47.19 44.39 1520.35 1.95
BASE+MONOT5 39.62 23.66 74.54 82.33 46.42 40.23 1980.94 1.99

HIERBASE 45.48 24.14 71.55 86.18 49.48 50.09 2125.67 2.85

REPLACING FINE-TUNED SUMMARIZATION MODEL WITH INSTRUCTION ALIGNED LLM

gpt-3.5-turbo 43.89 27.31 79.81 75.55 49.28 51.19 2106.57 2.0
text-davinci-003 43.04 27.04 79.28 76.32 48.61 50.37 2239.97 2.03

vicuna-13b 43.03 27.70 75.16 79.55 49.09 50.09 2208.63 2.14

VARYING LLMS FOR RETRIEVAL

text-davinci-003 41.45 24.12 79.08 77.72 47.11 37.53 2673.26 2.0
vicuna-13b 23.35 15.38 74.07 86.88 36.52 28.10 1810.48 1.85

VARYING LLMS FOR QUESTION ANSWERING

text-davinci-003 49.99 20.33 77.86 90.82 52.51 49.92 1980.94 1.99
vicuna-13b 31.71 21.34 62.29 60.43 37.06 49.92 1980.94 1.99

Table 3: Performance for different D3 configurations for QASPER dataset.

5.3.2 Performance across Different Document
Length categories

We divided the test set into different categories
based on their respective lengths. We notice the
advantage of our method along three aspects:

• Evidence F1: Our approach consistently
achieves competitive performance in evidence
retrieval across various document length cate-
gories (Figure 3 (a)).

• Evidence Retrieval Cost: Our approach sig-
nificantly reduces the number of processed
tokens compared to other methods in all doc-
ument length categories (Figure 3 (b)). This
cost-efficient characteristic makes it an excel-
lent choice for minimizing both inference and
monetary costs, regardless of the document’s
length .

• Latency: Irrespective of the document’s
length, our approach maintains a minimal la-
tency by making approximately 2 API calls to
the LLM (Figure 3 (c)). This efficient perfor-
mance further highlights its desirability and
suitability for various applications.

5.3.3 Need for Global Context Modeling
In this section, we investigate the effect of chang-
ing the chunk size of the baseline CHUNK in terms
of evidence precision, recall and F1-score. As we
see from Figure 4, the precision and F1-score in-
creases at the cost of modest decrease in recall as

the chunk-size increasing. This observation under-
scores the fact that larger chunk sizes enable the
model to capture longer-range relationships and
contextual information, resulting in improved per-
formance. By processing the entire document in a
single pass, D3 benefits from accessing the global
context and long-range relationships, leading to
enhanced performance.

5.3.4 Role of Discourse Headings and
Sub-headings

Approach Evidence Tokens API
F1 Processed Calls

D3-BASE 49.92 1980.94 1.99
D3-BASE × 43.11 2183.55 1.88

Table 4: Performance of different methods with
and without section information (denoted by ×) for
QASPER dataset.

To assess the importance of section headings /
sub-headings in the discourse structure for retrieval,
we replaced them with randomly initialized Univer-
sally Unique Identifiers (UUIDs) and test evidence
retrieval performance over the QASPER dataset
(Table 4). The significant decrease in the perfor-
mance shows that section headings / sub-headings
are crucial in conveying the topical essence of a
section, which is needed for accurate retrieval.
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(a) Evidence F1 across different docu-
ment length categories

(b) Tokens Processed for retrieval across
different document length categories

(c) API calls for retrieval across different
document length categories

Figure 3: Analysing the performance of different approaches across different length categories along three
metrics for QASPER Dataset

Figure 4: Evidence Precision, Recall and F1 over
different chunk lengths for QASPER Dataset

5.3.5 Evidence Retrieval Performance over
Question Categories

In this section, we compare D3-BASE with the best
performing zero-shot baseline MAP-REDUCE OPTI-
MIZED (MRO) over different question categories
in QASPER to identify differences in model perfor-
mance (Table 5). While our approach is precise in
identifying the evidence paragraphs, it occasionally
falls short in identifying all pertinent evidence (i.e.
lower recall). This indicates that representing a sec-
tion with a summary leads to loss of information
and the LLM may miscategorize its relevancy to a
question due to this loss of information. Designing
an effective strategy to prevent loss of vital infor-
mation for a particular question may be a future
research direction.

Question Evidence Evidence Evidence
Category Precision Recall F1

(D3 / MRO) (D3 / MRO) (D3 / MRO)

Extractive 52.63 / 52.19 71.9 / 81.49 56.39 / 57.46
Abstractive 41.25 / 45.1 52.51 / 71.57 41.78 / 50.12

Yes/No 43.6 / 38.79 59.6 / 55.31 45.53 / 40.18
Unanswerable 42.94 / 25.74 44.4 / 25.46 43.43 / 25.10

Table 5: Comparison of evidence retrieval perfor-
mance of D3-BASE with the best performing zero-
shot baseline MAP-REDUCE OPTIMIZED (MRO)

6 Conclusion

We demonstrated a zero-shot approach for evidence
retrieval which leverages the discourse structure of
the document for information categorization which
not only yielded competitive performance for infor-
mation seeking and question answering with multi-
hop reasoning setting, but also processed lowest
number of tokens resulting in significant compute
and cost savings. This approach demonstrates sev-
eral desirable characteristics such as robustness in
evidence retrieval performance, lower latency, etc.
all across different document length ranges.

7 Limitations

• Although our approach demonstrated compet-
itive performance in the information seeking
setup, there is room for improvement, partic-
ularly when confronted with questions that
require intricate multi-hop reasoning. Since
we represent the document by summarizing
each section, there is a potential loss of criti-
cal information that is essential for addressing
complex queries necessitating multi-hop rea-
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soning. Moving forward, we aim to explore
methods that allow for accurate section se-
lection while minimizing inference costs and
mitigating information loss.

• Our experimental analyses primarily focus on
enterprise-level language models, which re-
quire enterprise compute credits. In the future,
we plan to explore the capabilities of more
advanced open-source models as they become
available, which may offer enhanced perfor-
mance and accessibility.

• While our experiments have primarily cen-
tered around single-document use cases, we
have yet to delve into the realm of retrieval
involving multiple documents or collections.
This area remains unexplored, and we antici-
pate investigating strategies and techniques to
effectively handle such scenarios.

• Although our evaluations provided insight into
how various summarizers impacted the final
downstream performance, the current study
did not inherently assess the quality of sum-
marization. In future work, we aim to assess
the summarization’s faithfulness to the origi-
nal content and its impact on end-to-end per-
formance.
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