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Abstract

Recently, prompt-based fine-tuning has gar-
nered considerable interest as a core technique
for few-shot text classification task. This ap-
proach reformulates the fine-tuning objective
to align with the Masked Language Modeling
(MLM) objective. Leveraging unlabeled data,
prompt-based self-training has shown greater
effectiveness in binary and three-class classi-
fication. However, prompt-based self-training
for multi-class classification has not been ade-
quately investigated, despite its significant ap-
plicability to real-world scenarios. Moreover,
extending current methods to multi-class classi-
fication suffers from the verbalizer that extracts
the predicted value of manually pre-defined sin-
gle label word for each class from MLM pre-
dictions. Consequently, we introduce a novel,
efficient verbalizer structure, named Mapping-
free Automatic Verbalizer (MAV). Compris-
ing two fully connected layers, MAV serves
as a trainable verbalizer that automatically ex-
tracts the requisite word features for classifica-
tion by capitalizing on all available information
from MLM predictions. Experimental results
on five multi-class classification datasets indi-
cate MAV’s superior self-training efficacy.1

1 Introduction

The language model has demonstrated impressive
results in numerous practical applications by under-
going extensive pre-training using objectives such
as masked language modeling and autoregressive
language modeling (Peters et al., 2018; Radford
and Narasimhan, 2018; Devlin et al., 2019). Re-
cently, the prompting approach, as proposed by
Radford et al. (2019) and Brown et al. (2020),
has played a critical role in addressing the few-
shot scenario in various natural language process-
ing tasks (Chen et al., 2022; Ma et al., 2022; Liu
et al., 2023). Schick and Schütze (2021) and Gao

1Our code is publicly available at https://github.com/
yookyungkho/MAV.

et al. (2021a) introduced a novel prompt-based
fine-tuning methodology, known as PET2 and LM-
BFF3, which applied prompting to encoder-only
models such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019). Their research demon-
strated the efficacy of prompt-based fine-tuning in
few-shot text classification tasks, as it significantly
outperformed standard fine-tuning methods.

To address the scarcity of labeled data, semi-
supervised learning approaches have also been ex-
tensively researched by leveraging unlabeled data,
which often contain sufficient contextual informa-
tion (Xie et al., 2020; Chen et al., 2020; Li et al.,
2021). Recent studies (Schick and Schütze, 2021;
Chen et al., 2021; Zhao and Yao, 2022; Wang
et al., 2022b) have experimentally demonstrated
the efficacy of combining prompt-based fine-tuning
with self-training. However, existing research on
prompt-based self-training has focused on address-
ing binary classification (e.g., Sentiment Analy-
sis) or three-class classification (e.g., Natural Lan-
guage Inference) tasks (Chen et al., 2021; Wang
et al., 2022b). Although leveraging unlabeled data
has been a crucial aspect of multi-class classifica-
tion (Song et al., 2011; Li et al., 2019; Tang et al.,
2022), prompt-based self-training approaches for
multi-class classification remain under-explored.

The challenge in applying conventional prompt-
based self-training approaches to multi-class clas-
sification arises from the verbalizer. In prompt-
based fine-tuning, a given input sentence x (e.g.,
“I am happy.”) is wrapped with a pre-defined nat-
ural language sequence including [MASK] token,
called template (e.g., “x: It is [MASK].”). Subse-
quently, verbalizer, a mapping from a label word
(e.g., “good”) to a specific class (e.g., positive), ex-
tracts predicted value of the label word from the
MLM prediction to generate the final predictive
probability distribution. That is, the probability
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3Better Few-shot Fine-tuning of Language Models
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that the label word is predicted at the masked posi-
tion is regarded as the prediction probability of the
class.

The main problem is that most of self-training
studies construct verbalizers using manually se-
lected single label words. Creating such a man-
ual verbalizer necessitates domain knowledge (Gao
et al., 2021a), which causes the high cost asso-
ciated with manually selecting label words for
numerous classes under the constraint of choos-
ing a label word as a single token. Furthermore,
extracting only a small amount of limited infor-
mation corresponding to label words from high-
dimensional MLM predictions can result in infor-
mation loss (Hu et al., 2022), leading to consid-
erable performance disparities depending on the
selected label word (Gao et al., 2021a; Webson and
Pavlick, 2022).

To address the limitations of current verbalizers,
we propose a novel Mapping-free Automatic Ver-
balizer (MAV) that consists of two fully connected
layers (FCLs) to automatically extract the neces-
sary vocabulary information for classification by
leveraging entire MLM predictions without speci-
fying explicit label words. The proposed method-
ology MAV has the following advantages: (1) It
eliminates the need for manual selection of label
words. (2) It leverages the entire MLM predictions
without information loss. (3) It circumvents the
cost issue associated with searching for optimal
label words. (4) It can be applied to any multi-class
datasets, irrespective of the number of classes.

In this study, we conducted few-shot text clas-
sification on five multi-class datasets, achieving
an average performance improvement of 12.8%
over existing self-training methodology. Quantita-
tive metrics demonstrated that the proposed MAV
benefits most from self-training. Further analysis
revealed that MAV is proficient in extracting vocab-
ulary features representative of each class, thereby
enhancing the efficacy of prompt-based learning
without manual manipulation of the verbalizer.

2 Related Work

2.1 Prompt-based fine-tuning

Prompt-based fine-tuning reformulates the fine-
tuning objective to MLM objective. This approach
ensures that pre-trained knowledge is fully lever-
aged in the fine-tuning process (Gao et al., 2021a;
Han et al., 2022; Liu et al., 2023), while also
incorporating task-specific information through

prompts (Schick and Schütze, 2021). Various stud-
ies have aimed to answer to a critical research ques-
tion regarding verbalizer, which significantly in-
fluences prompt-based learning performance (Gao
et al., 2021a; Webson and Pavlick, 2022): How to
identify suitable label words for a given class?

Manual verbalizer Schick and Schütze (2021)
manually chose a single label word for each class.
Selecting a single label word can encompass vari-
ous heuristic methods, including utilizing the class
name itself or relying on an expert with specialized
knowledge.

Automatic verbalizer Gao et al. (2021a) high-
lighted the sub-optimality of manual approach and
proposed an automatic search method to determine
the optimal single label word combination by eval-
uating candidates generated through MLM infer-
ence. Shin et al. (2020) and Schick et al. (2020)
introduced multiple label words search strategy
based on gradient and loss. Wang et al. (2022a)
performed MLM inference before fine-tuning and
designated the top-k tokens as label words. Addi-
tionally, Hu et al. (2022) proposed a hybrid man-
ual and automatic verbalizer that expands the la-
bel word space by leveraging external knowledge
bases.

Verbalizer-free methods The cost of label engi-
neering is a main challenge in prompt-based fine-
tuning. Thus, verbalizer-free methodologies em-
phasize the importance of exploiting the [MASK]
representation rather than the MLM prediction it-
self (Cui et al., 2022; Karimi Mahabadi et al., 2022;
Xu et al., 2023). These approaches rely solely on
the [MASK] representation and employ distance-
based learning to bring instances of the same class
closer in the representation space.

2.2 Prompt-based self-training
Contrary to widely studied prompt-based fine-
tuning, prompt-based self-training has received
relatively less attention. Chen et al. (2021) intro-
duced SFLM4, a method combining manual label
words from Gao et al. (2021a) with pseudo-labeling
and consistency regularization algorithms from Fix-
Match (Sohn et al., 2020) for self-training. Zhao
and Yao (2022) incorporated the consistency reg-
ularization loss term from Xie et al. (2020) into
the self-training process of SFLM. Wang et al.

4Self-training techniques and a data-efficient Few-shot
learner of Language Model
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(a) Single Label Word Mapping

Location

...|𝑉|

(b) Multi Label Words Mapping

Location

Sum
...|𝑉|

PLM

Word

Embedding
(|𝑉|, 𝑑ℎ)

RoBERTa
(𝑑ℎ)

❄ Freeze

MLM Head

FCL
(𝑑ℎ, 𝑑ℎ)

Decoder
(𝑑ℎ, |𝑉|)

FCL
(𝑑ℎ, 𝑑ℎ)

Decoder
(𝑑ℎ, |𝑉|)

𝐡
MASK . . .

...

Vocab Extractor
(|𝑉|, 𝑑ve)

Output Layer
(𝑑ve, c)

(c) Mapping-free Automatic Verbalizer (MAV)

Location

|𝑉|

MLM Head

= { Location }

= { Location, City, Place, ... }

Figure 1: Illustration of MAV and comparison with other verbalizers. (a), (b): The input sequence with the template
added is fed into the PLM and MLM Head, which returns a prediction vector of [MASK] token. Among MLM
prediction, logit values of one or multiple pre-defined label words of each class are extracted to form the final
prediction vector by a mapping function M. (c): MLM prediction is calculated while the parameters of the
MLM Head are frozen. MAV feeds MLM prediction into two FCLs to return the final probability distribution,
automatically identifying the necessary vocabulary information for class distinction.

(2022b) conducted self-training with a teacher-
student-based adapter tuning method. Most of
these studies target binary and three-class classifi-
cation. Furthermore, they all rely on the manual
single-label word mapping of Schick and Schütze
(2021) and Gao et al. (2021a), potentially causing
information loss and sub-optimal performance.

Furthermore, it is challenging to integrate the
verbalizer enhancement methodologies mentioned
in Section 2.1 with self-training for multi-class
classification. Specifically, automatic verbalizer
approaches require additional data for label word
search and incur a significant computational burden
when the number of classes increases. Moreover,
verbalizer-free methods rely on spatial distances,
making it impossible to generate explicit predic-
tive probability distributions essential for the self-
training process. In contrast, our proposed MAV is
a specialized verbalization method for multi-class
classification that offers cost-saving benefits, as it
eliminates the need for label word search. More-
over, MAV utilizes all MLM prediction informa-
tion, allowing pre-trained knowledge to be fully
leveraged in downstream tasks.

3 Methodology

3.1 Mapping-free automatic verbalizer

The procedure of prompt-based fine-tuning is
shown in Figure 1. For a multi-class classification
task, the given input sequence x is augmented with

a pre-defined template as shown in Eq. (1). In this
study, we used the manual template (“[MASK] :”)
from Gao et al. (2021a).

x′ = [CLS] [MASK] : x [SEP] . (1)

The MLM prediction of the [MASK] token
v ∈ R|V | is generated by the Pre-trained Language
Model (PLM) and the MLM head.

Existing verbalizers (Figure 1 (a) and (b)) con-
struct the final predictive probability distribution
with the MLM prediction as

P (y|x′) = M (P ([MASK] = v|x′)|v ∈ Vy) , (2)

where Vy is a set of pre-defined label words of a
specific class y, and a function M (e.g., identity
function, sum) transforms predicted values of la-
bel words to the probability of the class. These
approaches require additional costs for label word
selection.

In contrast, as shown in Figure 1 (c), Mapping-
free automatic verbalizer (MAV) consists of two
FCLs and feeds the MLM prediction v as

P
(
y
∣∣x′) = softmax

(
W T

c · Tanh
(
W T

ve · Tanh (v)
))

.

(3)
Wve ∈ R|V |×dve is a weight matrix of the first

FCL, named Vocab Extractor (VE). It extracts use-
ful information from high dimensional (|V |) vocab-
ulary features to low dimensional (dve) representa-
tion. dve is set to 256 via hyper-parameter tuning
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Weak-Aug (Dropout)

Strong-Aug (Random Masking)

Unlabeled Sample [MASK] : What is the capital of Kosovo ?

[MASK] : What is the [MASK] of Kosovo ?

[MASK] : What is the capital of [MASK] ?

Labeled Sample

[MASK] : Name a female figure skater .
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Figure 2: Overall Self-training Framework. The labeled sample with the template is processed through the prompt
framework including MAV to return the predictive probability distribution, and the supervised loss is calculated with
the ground-truth label. The unlabeled sample is weakly augmented to generate a pseudo-label. The self-training
loss is computed with the pseudo label and the predicted probability distribution derived by strongly augmented
sample. Furthermore, the auxiliary MLM loss is calculated by applying random masking on the unlabeled sample.
Note that [MASK] highlighted in red represents the token used in MLM prediction.

(see Appendix B.2). The subsequent FCL with a
weight matrix Wc ∈ Rdve×c generates the final pre-
dictive probability distribution for each class based
on the compressed information. This approach con-
verts the verbalizer into a learnable form without
providing any label word information related to
the class. Therefore, MAV autonomously identify
the vocabulary information needed to distinguish
between classes in the MLM prediction.

Another significant consideration in construct-
ing MAV is the fixed parameters of the MLM head.
During the pre-training phase, the decoder of the
MLM head shares parameters with the word em-
bedding matrix, meaning it contains pre-trained
vocabulary representation information. In order to
preserve this information and reduce training cost,
the MLM head is frozen during the fine-tuning
phase. The effect of freezing parameters is dis-
cussed in Section 4.5.

3.2 Overall training framework
The overall self-training framework using MAV
minimizes supervised and unsupervised losses
calculated based on labeled and unlabeled data,
as depicted in Figure 2. The unsupervised loss
comprises the self-training loss based on Fix-
Match (Sohn et al., 2020) and the auxiliary MLM
loss, following the previous research, SFLM (Chen
et al., 2021). We construct the final loss term with
weighting factors, λ1 and λ2, as

Ltotal = Lsup + λ1 · Lst + λ2 · Lmlm. (4)

Let xi and ui in Eq. (5) denote labeled and unla-

beled samples in the batch, respectively. B is the
number of labeled samples in the batch, and µ is
the ratio of labeled and unlabeled samples. Each
loss is computed as follows.

xi (i ∈ (1, · · · , B)) ,

ui (i ∈ (1, · · · , µB)) .
(5)

Supervised loss For a labeled sample xi, the pre-
dictive distribution ỹi = P (y|x′

i) is obtained from
the MAV framework. The Cross Entropy (CE) loss
is measured between ỹi and the ground truth label
yi expressed as a one-hot vector.

Lsup =
1

B

B∑

i=1

CE (yi, ỹi) . (6)

Self-training loss Lst, a component of the un-
supervised loss, aims to perform consistency reg-
ularization by taking weak and strong augmenta-
tion to the unlabeled sample so that the predic-
tive distribution of the strongly augmented sample
closely matches the pseudo-label generated from
the weakly augmented sample.

Lst =
1

µB

µB∑

i=1

1

(
max

(
q̃weak
i

)
≥ τ

)
·

CE
(
q̂weak
i , q̃strong

i

)
,

(7)

where q̃weak
i and q̃strong

i denote the predictive dis-
tributions of the weakly and strongly augmented
samples, respectively. q̂weak

i represents the pseudo
label for the weakly augmented sample, taking
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the form of a hard label (one-hot vector). Fol-
lowing the thresholding technique of FixMatch,
the self-training loss is computed only for samples
where the confidence of the weakly augmented
sample (max

(
q̃weak
i

)
) exceeds a pre-determined

threshold (τ ), set to 0.95. Additionally, we imple-
mented dropout and random masking as weak and
strong augmentation methods, following Chen et al.
(2021) (see Appendix B.2 for details).

Auxiliary MLM loss Lmlm is an auxiliary loss
proposed by Schick and Schütze (2021) to prevent
catastrophic forgetting often observed when fine-
tuning with a small amount of labeled data. Chen
et al. (2021) added a similar self-supervised loss
that predicts the [MASK] token of the strongly aug-
mented sample for regularization. In this study,
we adopted the auxiliary MLM loss of PET and
applied 15% random masking to the unlabeled sam-
ple, separate from the strong augmentation.

Lmlm =
1

µB

µB∑

i=1

Li
mlm, (8)

where Li
mlm denotes the average MLM loss of

masked tokens (except the one in the template)
in the ith sequence:

Li
mlm =

1

m

m∑

j=1

− logP
(
[MASKj ] = tj

∣∣RM
(
u′
i

))
,

(9)
where m represents the number of masked tokens
in the ith sequence, and tj denotes the target of the
jth [MASK] token. RM means Random Masking.

4 Experiments

4.1 Experimental setup

4.1.1 Dataset
We evaluated MAV on five multi-class datasets;
TREC (Hovy et al., 2001), TREC50 (Li and Roth,
2002), GoEmotions (Demszky et al., 2020), Ya-
hoo Answers (Zhang et al., 2015), and AG’s
News (Zhang et al., 2015). The datasets encom-
pass a minimum of four classes and extend up to
dozens of classes, thereby confirming versatility
across datasets with different numbers of classes.

Following the experimental settings of Chen et al.
(2021), we set the number of labeled data per class
(k = 16) and unlabeled data ratio (µ = 4) per
class, resulting in a minimum training data size of
80 (16+16∗4) for each class. However, for TREC,

Dataset Type # Class
(Before)

# Class
(After) k µ

TREC Topic 6 6 12 4
Trec50 Topic 50 22 8 4
GoEmotions Emotion 28 26 8 4
Yahoo Answers Topic 10 10 16 4
AG’s News Topic 4 4 16 4

Table 1: Data description. Each column indicates the
name of dataset, the type of classification, the number
of classes before and after data pre-processing, the num-
ber of labeled data per class (k), and the ratio between
labeled and unlabeled data size (µ).

TREC50, and GoEmotioins dataset, some classes
did not fulfill the minimum data size per class. In
such cases, we maintained a constant ratio of unla-
beled data (µ) but decreased the value of k, which
means fewer data for each class. Some classes that
did not meet the minimum data requirement were
excluded from the experiment. Details of datasets
are provided in Table 1 and Appendix B.1.

4.1.2 Baselines
Three baselines were employed to evaluate the per-
formance of prompt-based self-training with our
proposed MAV.

Standard fine-tuning is a traditional fine-tuning
technique that does not utilize templates or verbal-
izers. Instead, it performs classification using the
[CLS] token representation by adding a classifica-
tion head after the PLM.

Single label word takes only the logit value of
a single label word mapped to a class in MLM
prediction. We adopted the manual label words
used in Schick and Schütze (2021) and Gao et al.
(2021a). Implementation details can be found in
Appendix B.3.

Multi label words take the logit values of mul-
tiple label words mapped to each class in MLM
prediction. We adopted AMuLaP5 (Wang et al.,
2022a), a parameter-free automatic verbalizer con-
struction method using only a small number of la-
beled samples, as the Multi Label Words baseline.
Details can be found in Appendix B.3.

Furthermore, we explored the verbalizer-free
approach discussed in Section 2 as a baseline.
However, this methodology is not applicable to
the self-training approach employed in this study.
Therefore, we conducted an alternative experiment,
which is described in Appendix C.

5Automatic Multi-Label Prompting
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TREC TREC50 GoEmotions Yahoo AG’s News

Standard Fine-tuning

Small-supervised 70.1 (4.6) 80.0 (6.5) 21.2 (1.6) 63.4 (1.8) 84.6 (0.9)
Semi-supervised■ 80.2 (4.2) 79.4 (9.4) 21.9 (1.5) 64.4 (1.4) 86.3 (1.1)
Full-supervised 90.8 (3.1) 91.2 (2.0) 36.4 (1.0) 68.7 (0.3) 88.5 (0.8)

Benefit Ratio ↑ 0.49 -0.05 0.05 0.19 0.44

Single Label Word

Small-supervised♦ 77.2 (6.3) 84.4 (6.0) 15.7 (2.2) 65.5 (1.5) 86.1 (1.0)
Semi-supervised♣ 81.4 (3.1) 81.5 (12.1) 16.8 (1.0) 68.0 (0.7) 87.3 (0.8)
Full-supervised 91.6 (1.0) 93.1 (1.5) 32.8 (2.0) 69.2 (0.9) 88.1 (0.6)

Benefit Ratio ↑ 0.29 -0.33 0.06 0.66 0.60

Multi Label Words

Small-supervised♠ 72.7 (6.0) 64.6 (1.2) 17.3 (1.6) 57.6 (2.2) 81.4 (1.5)
Semi-supervised 76.3 (2.3) 82.0 (2.1) 18.0 (1.3) 61.1 (1.7) 84.1 (0.7)
Full-supervised 81.4 (3.1) 89.7 (3.3) 32.8 (1.4) 68.2 (0.5) 88.1 (0.8)

Benefit Ratio ↑ 0.21 0.69 0.05 0.33 0.40

MAV (ours)

Small-supervised 77.1 (9.9) 78.0 (5.2) 24.2 (1.7) 64.7 (2.4) 84.3 (2.2)
Semi-supervised 85.4 (3.7) 87.9 (5.1) 25.4 (2.5) 68.1 (0.9) 87.2 (0.9)
Full-supervised 93.9 (1.1) 91.3 (2.0) 36.1 (1.2) 69.4 (0.5) 89.0 (0.5)

Benefit Ratio ↑ 0.50 0.74 0.10 0.73 0.63

Table 2: Results of few-shot multi-class classification. Each cell is filled with the average accuracy of the five
random seeds, with numbers in brackets indicating the standard deviation. For each methodology, we report
performance of small-supervised, semi-supervised, and full-supervised model, along with a benefit ratio to measure
the effectiveness of self-training. Small-supervised and full-supervised models are trained with the supervised loss
outlined in Section 3.2, while semi-supervised model is trained with both self-training loss and auxiliary MLM loss
in addition to the supervised loss. The highest self-training performance and benefit ratio achieved in each dataset
are emphasized in bold text. The superscript symbol denotes previous researh corresponding to each setting (■:
FixMatch (Sohn et al., 2020), ♦: LM-BFF (Gao et al., 2021a), ♣: SFLM (Chen et al., 2021), ♠: AMuLaP (Wang
et al., 2022a)).

4.1.3 Experimental details

PLM We adopted RoBERTa-base (Liu et al.,
2019) as the PLM for all experiments.

Evaluation Following Gao et al. (2021a), we
sampled training and validation data under five
random seeds and evaluated them using the orig-
inal test dataset, measuring the average accuracy
and standard deviation. To adhere to the few-shot
text classification assumption, we set the size of
the validation dataset to be the same as that of the
training dataset. Furthermore, hyper-parameters
are tuned based on validation performance. Details
of hyper-parameter selection are in Appendix B.2.

Quantitative metric To assess self-training ef-
fectiveness, we measured the performance of
three settings as follows: Small-supervised model
trained with a small amount of labeled data (k la-
beled samples per class), Semi-supervised model
trained with a small amount of labeled data and µ
times unlabeled data (k labeled and µk unlabeld
samples per class), and Full-supervised model
trained with full labeled data (k + µk labeled sam-
ples per class).

The performances of small-supervised and full-
supervised models indicate the lower and upper
bounds for the semi-supervised model. In other
words, small-supervised performance showcases
how semi-supervised model benefits from incor-
porating unlabeled data with limited labeled data,
while full-supervised performance represents the
upper limit in the semi-supervised context. We
calculated the benefit ratio (Zhu et al., 2022) as

Benefit Ratio =
Acc (Semi)− Acc (Small)

Acc (Full)− Acc (Small)
, (10)

measuring the performance improvement of semi-
supervised model compared to small and full super-
vised model.6 The closer the benefit ratio is to 1,
the more comparable the performance of the semi-
supervised model is to the full-supervised model.

4.2 Experimental results

Table 2 presents the experimental results for multi-
class classification. The proposed MAV achieves

6The benefit ratio was originally proposed to measure the
learning difficulty of each class. In this paper, we aggregated
results from all classes to demonstrate the effectiveness of
semi-supervised learning.
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Sihouette score: 0.3989

(a) Zero-shot Inference

Sihouette score: 0.5903

(b) Single Label Word

Sihouette score: 0. 4219

(c) Multi Label Words

Sihouette score: 0.6729

(d) MAV (ours)

Figure 3: t-SNE visualization of [MASK] representations from baselines and MAV. (a) Zero-shot inference before
fine-tuning, (b) Single Label Word Mapping, (c) Multi Label Words Mapping, (d) Mapping-free Auto Verbalizer
results. The numbers below each plot represent Silhouette scores. We used TREC dataset, which contains six
classes, and randomly sampled one of the five seeds.

the highest self-training performance across all
baselines, except AG’s News dataset, with an av-
erage self-training performance improvement of
12.8% over the existing prompt-based self-training
methodology, SFLM (Single Label Word, Semi-
supervised). Moreover, MAV attains the highest
benefit ratio for all datasets, demonstrating that it
is the most advantageous verbalizer structure for
self-training in multi-class classification tasks. In
contrast, Single Label Word does not fully bene-
fit from self-training, despite performing well in
small-supervised setting. Moreover, Single Label
Word requires additional costs to manually specify
the label word for every class.

The self-training performance of MAV and Sin-
gle Label Word baseline is comparable for AG’s
News, which has fewer classes than other datasets,
and for Yahoo Answers, which has a relatively
clear distinction between classes. However, MAV
offers a clear advantage in that it does not require
manual intervention on the label words and can be
scaled to other datasets regardless of the number
of classes. For the GoEmotions dataset, which in-
volves categorizing over 20 fine-grained emotions,
the classification task is challenging, and the impact
of self-training is uncertain across all approaches
due to a relatively weak classifier. Nonetheless,
MAV significantly outperforms Single Label Word
and Multi Label Words, which utilize limited infor-
mation when class distinctions are unclear.

Interestingly, our findings contradict the com-
mon belief that prompt-based fine-tuning always
outperforms standard fine-tuning in few-shot set-
tings (Gao et al., 2021a; Chen et al., 2021). Our
results indicate that standard fine-tuning is not sig-
nificantly inferior in multi-class classification tasks.
Moreover, a considerable drop in performance of
Multi Label Words is observed when compared to

standard fine-tuning.
Overall, the proposed MAV maximizes the ef-

fectiveness of prompt-based self-training by fully
leveraging MLM prediction without any additional
cost for label word engineering.

4.3 Qualitative analysis

The effectiveness of prompt-based self-training in
text classification, which utilizes MLM predictions
from [MASK] representations, is heavily influ-
enced by the degree of aggregation of these repre-
sentations by class (Cui et al., 2022). Therefore,
we examined the aggregation of [MASK] represen-
tations by class within the test dataset using t-SNE
plot and Silhouette scores. As shown in Figure 3,
MAV (Figure 3 (d)) forms much denser clusters
of [MASK] representations compared to zero-shot
inference (Figure 3 (a)) and explicit label word
mapping methodologies (Figure 3 (b) and (c)). Ad-
ditionally, we applied K-Means clustering with the
number of clusters equal to the number of classes
and calculated the silhouette score. Both t-SNE
plots and Silhouette scores demonstrate that the
clustering results of MAV are superior to the base-
lines. This suggests that leveraging all information
from MLM predictions is beneficial for multi-class
classification in prompt-based self-training than
using limited information from MLM predictions.

4.4 Comparison of verbalizers

The core motivation of MAV is to construct a learn-
able verbalizer that enables the model to identify
the vocabulary features helpful for classification.
This section investigates whether MAV focuses on
the most appropriate vocabularies that represent
the unique characteristics of each class. Since the
verbalizer of Multi Label Words (Table 3 (b)) was
built with only a small amount of labeled data, we
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Class (a) Single Label Word (b) Multi Label Words (c) MAV (ours)

Location Location*
Poll, Related, RELATED, More,
MORE, Video, Query, Bonus, . . .

Map, city, Map*, Maps, map,
Location, cities*, map*, Paris, . . .

Human being Human*
Next, Note, NOTE, UPDATE, Quick,
Advertisement, Edit, Trump, Now, . . .

Who*, Winners*, Name, winners*,
named*, Guests*, nominated*, . . .

Numeric value Number*
Question, Analysis, Myth, AP,
Correction, GM, CNN, BP, Claim, . . .

1985, Time, RM, 1968, 1969, 1982,
1965, 1984, Temperature, 1978, . . .

Table 3: Comparison of verbalizers. The first column involves three randomly sampled classes in TREC dataset,
while each cell of the other three columns indicates (a) a single label word mapped to each class, (b) automatically
explored multiple label words through AMuLaP for each class, and (c) vocabulary features that contributed the
most to the prediction with each class. We randomly sampled one of the five seeds for (b) and (c). Note that the
word with * (e.g., ‘Ġacronym’) refers to a token with a space symbol.

validated the capability of MAV under a more chal-
lenging small-supervised setting without the benefit
of unlabeled data. SHapley Additive exPlanations
(SHAP), proposed by Lundberg and Lee (2017),
was utilized to identify the words that contributed
the most to the final prediction.

Specifically, we calculated the SHAP value for
each class using only the samples that answered
correctly in the test dataset and listed top features
(tokens), as shown in Table 3 (c). The empirical
evidence supports that MAV truly has the ability
to utilize words (e.g., ‘Map’, ‘city’, ‘Location’) as-
sociated with the class (e.g., ‘Location’) for multi-
class classification. This is remarkable since MAV
does not refer to any label word information about
the class at all. On the other hand, for Multi La-
bel Words, the lowest performer, selecting label
words through zero-shot MLM inference with only
a small amount of labeled data is unsuitable for
multi-class classification tasks where it is relatively
difficult to distinguish between classes.

4.5 Effect of freezing parameters

An important feature of MAV is that it freezes the
parameters of the MLM head that produces vo-
cabulary logits. This freezing mechanism aims to
generate informative predictions that are not biased
by the small amount of labeled data during the
fine-tuning process. Simultaneously, we harnessed
the pre-trained knowledge embedded within the
decoder of the MLM head. We compared the per-
formance of prompt-based self-training based on
the MAV structure with different parameter update
scenarios while following the overall self-training
framework in Figure 2. According to Table 4, self-
training performances of freezing the parameters
of the MLM head are almost identical to the results

Parameter freeze TREC TREC50 GoEmotions

No 85.7 (4.1) 87.4 (2.9) 25.3 (1.6)
MLM Head (ours) 85.4 (3.7) 87.9 (5.1) 25.4 (2.5)
RoBERTa 50.1 (8.6) 36.1 (8.4) 13.9 (1.7)

Table 4: Self-training performances of MAV depending
on freezing parameters. The three settings are as follows:
No (updating all parameters), MLM Head (freezing only
the MLM head), and RoBERTa (freezing the RoBERTa
encoder).

TREC TREC50 GoEmotions

MAV (ours) 83.6 (5.7) 87.0 (3.6) 25.4 (1.4)

Single Label Word 82.6 (3.5) 83.0 (8.2) 15.2 (0.8)

Table 5: Self-training performances of FlexMatch.

of the fully fine-tuned case. At the same time, it
significantly outperforms the scenario where the
RoBERTa encoder is frozen. This suggests that the
MLM head is sufficiently adept at generating MLM
predictions that carry valuable information about
the downstream data even without further tuning.

4.6 Effect of self-training methods

We adopted FixMatch as the self-training method-
ology for a fair comparision with SFLM. To verify
the robustness of MAV when implementing dif-
ferent self-training algorithms besides FixMatch,
we conducted a comparative analysis using Single
Label Word, which demonstrated the best perfor-
mance among the baseline models. Our experi-
ments included FlexMatch (Zhang et al., 2021), an
improved self-training algorithm that adjusts the
threshold based on the difficulty of each class. The
results are illustrated in Table 5. The performance
gaps between MAV and Single Label Word are
consistent across the self-training methods.
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5 Conclusion

In this research, we proposed a simple and effec-
tive verbalizing method, Mapping-free Automatic
Verbalizer, to enhance prompt-based self-training
performance on various multi-class classification
tasks. Unlike previous verbalizers which take lim-
ited information from MLM prediction and require
label engineering, MAV is a trainable verbalizer
consisting of two FCLs that extracts key vocab-
ulary features from MLM predictions and maps
them to label space. This approach has the advan-
tage of promoting the efficiency of prompt-based
learning without manual verbalizer manipulation or
the search for optimal label words. Experimental
findings not only validate the effectiveness of MAV
but also highlight its self-training efficacy across
all datasets, as supported by quantitative metrics
and qualitative analysis.

Limitations

Due to the instability and high sensitivity of few-
shot learning to hyper-parameter selection, rel-
atively large standard deviation can be seen in
certain cases in Table 2 (Semi-supervised model
with Standard Fine-tuning for TREC50, Semi-
supervised model with Single Label Word for
TREC50, Small-supervised model with MAV for
TREC). This is mainly caused by data sampling and
hyper-parameter tuning being performed separately
for each seed and the small size of the validation
data. Additionally, the checkpoint with the highest
validation performance may not necessarily yield
the best results on test dataset, resulting in signif-
icant variance. These are inherent limitations of
few-shot learning. To provide clarity, we provide
the performance by seed for these three cases in
Appendix A.

In this study, we did not address scenarios
where the class distribution of the dataset is im-
balanced. It will be worth investigating a prompt-
based self-training approach that can handle im-
balanced datasets, which is a significant challenge
in real word applications. Furthermore, we sug-
gest exploring self-training methodologies tailored
to the prompt framework that align with MLM
objectives, moving beyond the application of self-
training methodologies from the vision field.

Ethics Statement

We honor the ACL Code of Ethics. All datasets
employed in this study are publicly available, and

following previous research (Gao et al., 2021a),
five sub-datasets were randomly sampled and uti-
lized in the experiments. To ensure reproducibility
and facilitate future research on this topic, we re-
lease all resources including datasets and code, and
appropriate citations to previous research are indi-
cated within the code.

Furthermore, our research focused on investigat-
ing news topic and sentiment classification tasks
that are not anticipated to have any negative social
impacts. However, when it comes to classification
tasks that have the potential to raise ethical con-
cerns regarding race and gender, it is crucial to
adopt a more careful and cautious approach while
analyzing the results.
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A Inherent Limitations of Few-shot
Learning

As mentioned in Limitations, we provide the perfor-
mance by seed in the cases where relatively large
standard deviation can be seen. Three cases are
described in Table 6.

B Experimental Details

B.1 Datasets

As elaborated in Section 4.1.1, it was essential to
omit certain classes from TREC50 and GoEmo-
tions to maintain a balanced self-training frame-
work, considering the minimum data requirement
of 80 examples per class. We aimed to ensure the
integrity of training, as extremely small sample
sizes for certain classes could hinder robust model
learning and data consistency. Some of the elimi-
nated classes consist of only a handful of samples,
as low as 4 or 6.

Since it is not possible to make predictions for
classes that are not included in the training, classes
that are removed from the train and dev datasets
are correspondingly excluded from the test dataset.
Regarding class balance, the characteristics of test
sets differ across datasets. In the case of Yahoo
Answers and AG’s News, the test sets are intention-
ally designed to maintain a balanced distribution of
classes. Conversely, TREC, TREC50, and GoEmo-
tions exhibit class-imbalanced test sets, reflective
of their original nature.

B.2 Hyper-parameter selection

Hidden dimension of vocab extractor The first
FCL of MAV, vocab extractor, is designed to auto-
matically extract the vocabulary features required
for classification from high-dimensional(|V |) vo-
cabulary logits and map them into a low-
dimensional(dve) space. To identify an appropriate
dimension for feature extraction, we adopted four
comparison groups. As shown in Table 7, the effec-
tiveness of MAV was greatest when the dimension-
ality was 256.

Augmentation methods In this study, we
adopted dropout and random masking as weak and
strong augmentation techniques for consistency
regularization, the same as SFLM (Chen et al.,
2021). Unlike image data, text is characterized
by its discrete nature within the language domain,
where small variations can cause large semantic
changes (Feng et al., 2021). Therefore, to preserve
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Method Type Datset Seed 13 Seed 21 Seed 42 Seed 87 Seed 100 Avg Acc (SD)

Single Semi-supervised TREC50 89.3 81.2 86.8 89.6 60.7 81.5 (12.1)
Standard FT Semi-supervised TREC50 84.3 80.2 84.8 85.0 62.9 79.4 (9.4)

MAV Small-supervised TREC 63.0 87.6 71.8 84.0 79.2 77.1 (9.9)

Table 6: Performance of each seed for cases where standard deviation is greater than 9. Note that Standard FT
indicates Standard Fine-tuning, and Single indicates Single Label Word.

TREC TREC50 GoEmotions

hidden
dimension

(dve)

64 83.5 (4.1) 76.8 (5.1) 22.1 (2.4)
128 85.0 (3.8) 82.5 (6.6) 23.9 (1.1)
256 85.4 (3.7) 87.9 (5.1) 25.4 (2.5)
512 84.7 (4.2) 84.0 (9.3) 25.2 (2.1)

Table 7: Self-training performances depending on the
hidden dimension of MAV.

the semantic information of unlabeled samples, it
is reasonable to construct weakly augmented sam-
ples the same as the original, and let dropout in
the model act as a minimal data augmentation of
hidden representations (Gao et al., 2021b).

On the other hand, strong augmentation plays a
significant role in performance, as emphasized by
Sohn et al. (2020). Chen et al. (2021) considered
only EDA techniques (Crop, Swap, and Deletion)
as a comparison group for strong augmentation
methods. However, given the diversity of augmen-
tation techniques in the NLP field, a more rigorous
comparison experiment is necessary. Thus, we em-
ployed the expanded augmentation pool provided
by Kim et al. (2022). In addition to EDA, contex-
tual augmentation and continuous augmentation
are added to ensure that a sufficient variety of aug-
mentation techniques can be considered. A total
of eight augmentation techniques utilized in this
study are as follows:

• Random Mask (Devlin et al., 2019): ran-
domly masking tokens with a probability of
15%,

• Word Delete (Wei and Zou, 2019): removing
each token with a probability of 20%,

• Word Swap (Wei and Zou, 2019): swapping
the position of each token with another token
with a probability of 20%,

• Word Delete/Swap (Wei and Zou, 2019): ran-
domly choosing between Word Delete and
Swap for each sample,

Augmentation Methods TREC50 Yahoo

Single

Random Mask (2019) (ours) 87.9 (5.1) 68.1 (0.9)
Word Delete (2019) 83.4 (4.3) 68.0 (1.3)
Word Swap (2019) 87.2 (4.5) 68.1 (1.0)
Word Delete, Swap (2019) 84.9 (5.3) 67.9 (1.3)
BERT-aug (2021) 84.6 (5.9) 67.2 (1.4)
Back-translation (2020) 85.7 (5.6) 67.5 (0.7)
R3F (2021) 87.5 (5.6) 67.5 (1.1)
Cutoff (2020) 84.9 (5.5) 67.0 (1.1)

Random Augmentation 85.1 (5.9) 67.9 (0.9)

Auto Augmentation (2022) 85.2 (3.3) 67.7 (1.3)

Table 8: Self-training performances depending on
strong augmentation methods. Note that weak augmen-
tation is fixed with dropout.

• BERT-aug (Yi et al., 2021): applying random
masking with 15% probability and replacing
with the result of pre-trained BERT inference,

• Back-translation (Xie et al., 2020): translat-
ing each sample to English-German-English,

• R3F (Aghajanyan et al., 2021): injecting
noise sampled from a uniform distribution into
word embeddings,

• Cutoff (Shen et al., 2020): removing from
word embeddings by a factor of 0.3.

With these augmentation methods, we designed
three comparison experimental settings as follows:

• Single Augmentation: applying one augmen-
tation technique in the augmentation pool,

• Random Augmentation: randomly sampling
augmentation techniques per batch (similar to
FixMatch’s augmentation),

• Auto Augmentation (Kim et al., 2022): up-
dating the augmentation policy every iteration
to select augmentation techniques that are dif-
ficult but not too semantically different from
the original.

The results are shown in Table 8. Random Mask
achieved the best performance, demonstrating the
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Dataset {Class: Single Label word}

AG’s News {World: World}, {Sports: Sports}, {Business: Business}, {Sci/Tech: Tech}

TREC
{Abbreviation: Expression}, {Entity: Entity}, {Description and abstract concept: Description},
{Human being: Human}, {Location: Location}, {Numeric value: Number}

Yahoo Answers

{Society&Culture: Society}, {Science&Mathematics: Science}, {Health: Health},
{Education&Reference: Education}, {Computers&Internet: Computer}, {Sports: Sports},
{Business&Finance: Business}, {Entertainment&Music: Entertainment},
{Family&Relationships: Relationship}, {Politics&Government: Politics}

TREC50

{Expression abbreviated: shortened}, {Animal: animal}, {Lasting time of something: period},
{Invention, book and other creative piece: creation}, {Disease and medicine: medical},
{Food: food}, {Other entity: other}, {Sport: sport}, {Equivalent term: equal},
{Definition of something: definition}, {Description of something: description},
{Manner of an action: manner}, {Reason: reason}, {Group or organization of persons: group},
{Individual: individual}, {City: city}, {Country: country}, {Other location: location},
{State: state}, {Number of something: count}, {Date: date}, {Price: money}

GoEmotions

{Optimism: optimism}, {Neutral: neutral}, {Amusement: amusement}, {Curiosity: curiosity},
{Surprise: surprise}, {Confusion: confusion}, {Nervousness: nervous}, {Disgust: disgust}, {Joy: joy},
{Anger: anger}, {Gratitude: gratitude}, {Sadness: sadness}, {Disappointment: disappointment},
{Desire: desire}, {Embarrassment: embarrassment}, {Remorse: remorse}, {Realization: realization},
{Excitement: excitement}, {Admiration: admiration}, {Disapproval: disapproval}, {Caring: caring},
{Fear: fear}, {Approval: approval}, {Love: love}, {Annoyance: annoyance}, {Relief: relief }

Table 9: Manually selected single label words for each dataset. The label words of the TREC dataset are from
LM-BFF (Gao et al., 2021a), and those of the AG’s News and Yahoo Answers datasets are from PET (Schick and
Schütze, 2021). For the TREC50 and GoEmotions datasets, we manually chose the label word to be a single token
that closely represents the class name. Note that each label word is a single token including a space symbol (e.g.,

‘ĠWorld’).

suitability of the strong augmentation technique
adopted in this study. Prompt-based self-training
naturally benefits from the random masking tech-
nique since it maintains the input form contain-
ing the [MASK] token which also used in the pre-
training stage.

Hyper-parameters for training In this section,
we describe the hyperparameter tuning process as-
sociated with the training loop. We conducted a
grid search for the learning rate within the range of
{1e−5, 5e−5}, the weight of the self-training loss
(λ1) within the range of {0.5, 1, 2}, and the weight
of the auxiliary MLM loss (λ2) within the range of
{0.1, 1}. These ranges were selected based on pilot
experiments conducted on the TREC and TREC50
datasets, aiming to cover a diverse set of values.

For all experiments, we trained the models for up
to 200 epochs and evaluated the performance every
20 epochs. The best model was selected based on
its evaluation performance. To accommodate the
GPU memory limitations, gradient accumulation
was employed, allowing larger effective batch sizes.
The batch size for all experiments was set to 32.

B.3 Baselines

Single label word For the TREC dataset, we
used manual label words provided by LM-
BFF (Gao et al., 2021a), and for the AG’s News
and Yahoo Answers datasets, which were not tested
by LM-BFF, we used the manual label words pro-
vided by PET (Schick and Schütze, 2021). For the
TREC50 and GoEmotions datasets, which were not
tested in either of the previous studies, we adopted
the class name as a label word. If the class name
is not a single token, we manually selected a sim-
ilar one. All label words used in this study are
described in Table 9. Furthermore, we excluded
the automatic search method proposed by Gao et al.
(2021a) due to increasing training cost proportional
to the number of classes. Additionally, we dis-
missed the demonstration technique of sampling
training instances of all classes individually and
concatenating them to the input sequence due to
the maximum input length.

Multi label words AMuLaP (Wang et al., 2022a)
is more efficient than other automatic verbalizers
as it does not require parameter updates to explore
label words. Before fine-tuning, MLM inference is
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TREC TREC50 GoEmotions

Verbalizer-free 76.0 (6.3) 81.7 (5.5) 23.2 (1.1)

MAV (ours) 85.4 (3.7) 87.9 (5.1) 25.4 (2.5)

Table 10: Self-training performances of verbalizer-free
method.

performed with a small number of labeled samples
to select label words with high prediction proba-
bility for each class. The logits of these tokens
are then added together and considered as the logit
value of the class. In this study, we selected the
top 16 tokens with high prediction probability as
label words for each class, applying deduplication
to prevent overlap of label words across classes.

B.4 Training details
We employed the PyTorch7 library for training
model. The overall organization of the experimen-
tal code is derived from the code implemented in
previous studies8. Whole training process of this re-
search was conducted using NVIDIA RTX A6000.

C Comparison of MAV vs Verbalizer-free
Approach

MAV shares similar goals with verbalizer-free
methodologies as both utilize the [MASK] repre-
sentation to construct soft label words. The distinc-
tion lies in MAV proceeding with MLM prediction,
while most verbalizer-free methodologies rely on
spatial distance from the [MASK] representation.

As mentioned in Section 2.2, existing verbalizer-
free methodologies are not applicable to self-
training algorithms based on pseudo-labeling and
consistency regularization, which require explicit
output probability distributions. Thus, a direct per-
formance comparison with the proposed MAV is
not feasible. Alternatively, we considered using the
[MASK] representation fed into the classification
head as a verbalizer-free baseline. The results are
shown in Table 10. These findings demonstrate
that leveraging all the information in the vocabu-
lary logits produced by MLM prediction is more
effective for multi-class classification than simply
using the [Mask] representation.

7https://pytorch.org/
8https://github.com/princeton-nlp/LM-BFF,

https://github.com/MatthewCYM/SFLM
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