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Abstract

Emotion recognition in conversation (ERC) has
attracted increasing attention in natural lan-
guage processing community. Previous work
commonly first extract semantic-view features
via fine-tuning pre-trained language models
(PLMs), then models context-view features
based on the obtained semantic-view features
by various graph neural networks. However, it
is difficult to fully model interaction between
utterances simply through a graph neural net-
work and the features at semantic-view and
context-view are not well aligned. Moreover,
the previous parametric learning paradigm
struggle to learn the patterns of tail class given
fewer instances. To this end, we treat the pre-
trained conversation model as a prior knowl-
edge base and from which we elicit correlations
between utterances by a probing procedure.
And we adopt supervised contrastive learning
to align semantic-view and context-view fea-
tures, these two views of features work together
in a complementary manner, contributing to
ERC from distinct perspectives. Meanwhile,
we propose a new semi-parametric paradigm
of inferencing through memorization to solve
the recognition problem of tail class samples.
We consistently achieve state-of-the-art results
on four widely used benchmarks. Extensive
experiments demonstrate the effectiveness of
our proposed multi-view feature alignment and
memorization1.

1 Introduction

Emotional intelligence is an advanced capability
of conversational AI systems. A fundamental and
critical task in this domain is emotion recognition
in conversation (ERC), which aims to identify the
emotions conveyed in each utterance within the
dialogue context (Poria et al., 2019b).

∗Corresponding author.
1https://github.com/gyhou123/MFAM.

Figure 1: Major challenges in the ERC task.

Unlike the basic emotion classification (EC) task
(Yin and Shang, 2022), ERC is a more practical
endeavor that involves predicting the emotion label
of each utterance based on the surrounding context.
Previous methods (Ghosal et al., 2019; Ishiwatari
et al., 2020; Shen et al., 2021b) commonly follow
a two-step paradigm of first extracting semantic-
view features via fine-tuning PLMs and then mod-
eling context-view features based on the obtained
semantic-view features by various graph neural
networks, such as GCN (Kipf and Welling, 2016),
RGCN (Ishiwatari et al., 2020), GAT (Veličković
et al., 2017). Considering the complexity of emo-
tions, some recent works (Song et al., 2022; Hu
et al., 2023) use supervised contrast loss as an auxil-
iary loss to improve the feature discriminability be-
tween different classes of samples. Although these
methods have achieved excellent performance on
ERC task, three issues still remain: (1) As illus-
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Figure 2: T-SNE (Van der Maaten and Hinton, 2008)
visualization of features at semantic-view and context-
view.

trated in Figure 1, the interaction between utter-
ances in a conversation is very complex, and it’s dif-
ficult to fully model this interaction simply through
a graph neural network. (2) Both semantic-view
and context-view are important for ERC. The for-
mer focuses on the emotion conveyed by the in-
dependent utterance, while the latter offers clues
about the emotional context. These two views of in-
formation work together in a complementary man-
ner, contributing to ERC from distinct perspectives.
However, as illustrated in Figure 2, semantic-view
and context-view are not well aligned. (3) Due to
the smaller number of samples in the tail class, it
is difficult for the parametric model to learn the
pattern of the tail class during training. How to
effectively recognize samples of the tail class re-
mains an issue to be solved.

To address these issues, we propose Multi-view
Feature Alignment and Memorization (MFAM) for
ERC. Firstly, we treat the pre-trained conversation
model (PCM) (Gu et al., 2021) as a prior knowl-
edge base and from which we elicit correlations
between utterances by a probing procedure. The
correlation between utterances will be used to form
the weights of edges in the graph neural network
and participate in the interactions between utter-
ances. Secondly, we adopt supervised contrastive
learning (SCL) to align the features at semantic-
view and context-view and distinguish semantically
similar emotion categories. Unlike the regular SCL,

both semantic-view and context-view features will
participate in the computations of SCL. Finally, we
propose a new semi-parametric paradigm of infer-
encing through memorization to solve the recogni-
tion problem of tail class samples. We construct
two knowledge stores, one from semantic-view and
the other from context-view. Semantic-view knowl-
edge store regarding semantic-view features and
corresponding emotion labels as memorized key-
value pairs, and the context-view knowledge store
is constructed in the same way. During inference,
our model not only infers emotion through the
weights of trained model but also assists decision-
making by retrieving examples that are memorized
in the two knowledge stores. It’s worth noting that
semantic-view and context-view features have been
well aligned, which will facilitate the joint retrieval
of the semantic-view and context-view.

The main contributions of this work are sum-
marized as follows: (1) We propose multi-view
feature alignment for ERC, which aligns semantic-
view and context-view features, these two views of
features work together in a complementary man-
ner, contributing to ERC from distinct perspectives.
(2) We propose a new semi-parametric paradigm
of inferencing through memorization to solve the
recognition problem of tail class samples. (3) We
treat the PCM as a prior knowledge base and from
which we elicit correlations between utterances by
a probing procedure. (4) We achieve state-of-the-
art results on four widely used benchmarks, and
extensive experiments demonstrate the effective-
ness of our proposed multi-view feature alignment
and memorization.

2 Related Work

2.1 Emotion Recognition in Conversation

Most existing works (Ghosal et al., 2019; Ishiwatari
et al., 2020; Shen et al., 2021b) commonly first ex-
tract semantic-view features via fine-tuning PLMs
and then model context-view features based on the
obtained semantic-view features by various graph
neural networks, there are also some works (Zhong
et al., 2019; Shen et al., 2021a; Majumder et al.,
2019) that use transformer-based and recurrence-
based methods to model context-view features. It’s
worth noting that self-attention (Vaswani et al.,
2017) in transformer-based methods can be viewed
as a fully-connected graph in some sense. Some
recent works (Li et al., 2021; Hu et al., 2023)use
supervised contrastive loss as an auxiliary loss to
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enhance feature discriminability between samples
of different classes. In the following paragraphs,
we provide a detailed description of graph-based
methods and methods using supervised contrastive
loss.

DialogueGCN(Hu et al., 2021) treats the dia-
logue as a directed graph, where each utterance is
connected with the surrounding utterances. DAG-
ERC(Shen et al., 2021b) uses a directed acyclic
graph to model the dialogue, where each utter-
ance only receives information from past utterances.
CoG-BART(Li et al., 2021) adapts supervised con-
trastive learning to make different emotions mutu-
ally exclusive to identify similar emotions better.
SACL(Hu et al., 2023) propose a supervised adver-
sarial contrastive learning framework for learning
generalized and robust emotional representations.

2.2 Memorization

Memorization-based methods (or non/semi-
parametric methods) performs well under
low-resource scenarios, and have been ap-
plied to various NLP tasks such as language
modeling(Khandelwal et al., 2019), question
answering(Kassner and Schütze, 2020), knowledge
graph embedding(Zhang et al., 2022) and relation
extraction(Chen et al., 2022).

2.3 Probing PLMs

Some work has shown that PLMs such as
BERT(Devlin et al., 2018), RoBERTa(Liu et al.,
2019), ELECTRA(Clark et al., 2020) store rich
knowledge. Based on this, PROTON(Wang et al.,
2022) elicit relational structures for schema linking
from PLMs through a unsupervised probing proce-
dure. Unlike PROTON operating at the word level,
our probe procedure is based on PCM and operates
at the utterance level.

3 Methodology

We introduce the definition of ERC task in sec-
tion 3.1, and from section 3.2 to section 3.5, we
introduce the proposed MFAM in this paper. The
overall framework of MFAM is shown in Figure 3.

3.1 Definition

Given a collection of all speakers S, an emo-
tion label set Y and a conversation C, our goal
is to identify speaker’s emotion label at each
conversation turn. A conversation is denoted as
[(s1, u1), (s2, u2), · · · , (sN , uN )], where si ∈ S

is the speaker and ui is the utterance of i-th turn.
For utterance ui, it is comprised of ni tokens
ui = [ωi,1, ωi,2, · · · , ωi,ni ].

3.2 Multi-view Feature Extraction
In this section, we will introduce how to extract the
semantic-view and context-view features of utter-
ance.

3.2.1 Semantic-view Feature Extraction
Semantic Feature Extraction We employ PLM
to extract the semantic feature of utterance ui. Fol-
lowing the convention, the PLM is firstly fine-tuned
on each ERC dataset, and its parameters are then
frozen while training. Following Ghosal et al.
(2020), we employ RoBERTa-Large (Liu et al.,
2019) as our feature extractor. More specifically,
for each utterance ui, we prepend a special token
[CLS] to its tokens, making the input a form of
{[CLS], wi,1, wi,2, · · · , wi,ni}. Then, we average
the [CLS]’s embedding in the last 4 layers as ui’s
semantic feature vector xi ∈ Rdu .

Commensense Feature Extraction We
extract six types (xIntent, xAttr, xNeed,
xWant, xEffect, xReact) of commensense
feature vectors related to the utterance ui from
COMET(Bosselut et al., 2019):

cji = COMET (wi,1, wi,2, · · · , wi,ni , rj) (1)

where rj(1 ≤ j ≤ 6) is the token of j-th relation
type, cji ∈ Rdc represent the feature vectors of the
j-th commensense type for ui.

Semantic-view feature is obtained by concate-
nate semantic feature vectors with their correspond-
ing six commensense feature vectors as follows:

gi = Wg(xi ⊕ SV D(c1i ⊕ · · · ⊕ c6i )) (2)

where SV D is used to extract key features from
commensense, Wg is used to reduce feature dimen-
sion. gi ∈ Rdf is the final semantic-view feature
of utterance ui.

3.2.2 Context-view Feature Extraction
Correlation Probe Given a conversation com-
prised of N utterances [u1, u2, · · · , uN ], the goal
of our probing technique is to derive a function
f(·, ·) that captures the correaltion between an ar-
bitraty pair of utterances. To this end, we employ
a PCM(Gu et al., 2021), which is pretrained on
masked utterance generation, next utterance gener-
ation and distributed utterance order ranking task.
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Figure 3: The overall framework of MFAM, which mainly consists of four parts: multi-view feature extraction,
multi-view feature alignment, knowledge store and retrieval, training and inference.

As shown in Figure 4, we first feed the N ut-
terances into the PCM. We use huj to denote the
contextualized representation of the j-th utterance
uj , where 1 ≤ j ≤ N . Then, we replace the
ui with a mask utterance [CLS,MASK,SEP ]
and feed the corrupted N utterances into the PCM
again. Accordingly, we use huj\i to denote the new
representation of the j-th utterance uj when ui is
masked out. Formally, we measure the distance
between huj and huj\i to induce the correlation be-
tween ui and uj as follows:

f(ui, uj) = d(huj , h
u
j\i) (3)

where d(·, ·) is the distance metric to measure the
difference between two vectors. We use Euclidean
distance metric to implement d(·, ·):

dEuc(ui, uj) = ∥ui − uj∥2 (4)

where dEuc(·, ·) denotes a distance function in Eu-
clidean space.

By repeating the above process on each pair of
utterances ui, uj and calculating f(ui, uj), we ob-
tain a correlation matrix X = {xij}|N |,|N |

i=1,j=1, where
xij denotes the correlation between utterance pair
(ui, uj).

Graph Construction Following Ghosal et al.
(2019), a conversation having N utterances is repre-
sented as a directed graph G = (V, E ,R,W), with
vertices/nodes vi ∈ V , labeled edges (relations)

rij ∈ E where r ∈ R is the relation type of the
edge between vi and vj and αij is the weight of
the labeled edge rij , with 0 ⩽ αij ⩽ 1, where
αij ∈ W and i, j ∈ [1, 2, ..., N ].

Each utterance in the conversation is represented
as a vertex vi ∈ V in G. Each vertex vi is initialized
with the corresponding semantic-view feature gi,
for all i ∈ [1, 2, · · · , N ], and has an edge with the
immediate p utterances of the past: vi−1, . . . , vi−p,
f utterances of the future: vi+1, . . . , vi+f and it-
self: vi. Considering to speaker dependency and
temporal dependency, there exists multiple relation
types of edge. The edge weights Wij are obtained
by combining the results of two computation ways.
One use a similarity based attention module to cal-
culate edge weights αij , weights keep changing
during training, which can be regarded as adaptive
training. The other takes the correlation xij be-
tween utterance pair (ui, uj) computed by Eq.(3)
as edge weights, weights keep frozen during train-
ing, which can be regarded as correlation-based
knowledge injection:

αij = softmax(gTi We[gi−p, . . . , gi+f ])

Wij = αij + bxij
(5)

where j = i − p, . . . , i + f , b denotes the pre-
defined weight coefficient of xij , reflects the injec-
tion intensity of correlation-based knowledge.

Interaction between Utterance Based on the
constructed graph, we utilize RGCN to implement
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Figure 4: Correlation Probe procedure.

interactions between utterances, and then obtain
context-view feature fi of utterance ui. The de-
tailed calculation process can be found in Appendix
A.

3.3 Multi-view Feature Alignment

We adopt SCL to align semantic-view and context-
view features. Specifically, in a batch consisting
of M training samples, for all m ∈ [1, 2, ...,M ],
both gm and fm are involved in the computation of
SCL, we can incorporate gm and fm into the SCL
computation separately, forming 2M samples, or
concatenate them for SCL computation. Taking the
former approach as example, the supervised con-
trastive loss of 2M samples in a multiview batch
can be expressed by the following equation:

GM =[g1, . . . , gm] FM =[f1, . . . , fm]

Y = [GM , FM ]

LSCL =
∑

i∈I

−1

|P (i)|
∑

p∈P (i)

SIM(p, i)

SIM(p, i) = log
exp((Yi · Yp)/τ)∑

a∈A(i) exp(Yi · Ya/τ)

(6)

where Y ∈ R2M×d, i ∈ I = {1, 2, · · · , 2M}
indicate the index of the samples in a multiview
batch, τ ∈ R+ denotes the temperature coef-
ficient used to control the distance between in-
stances, P (i) = Ij=i − {i} represents samples
with the same category as i while excluding itself,
A(i) = I − {i, i+M/i−M} indicates samples
in the multiview batch except itself.

To further enrich the samples under each cate-
gory, we incorporate the prototype vectors corre-
sponding to each category into the SCL computa-
tion. Prototype vectors can correspond to features
at different views, forming multiple prototypes, or
they can correspond to the concatenation of fea-
tures at different views, forming single prototype.

For instance, with multiple prototypes, the updates
for P (i) and A(i) are as follows:

P (i) = Ij=i − {i}+ {lc}+ {oc}
A(i)=I−{i, i+M/i−M}+{L}+{O} (7)

where c represents the emotion category corre-
sponding to sample i, L = {l1, · · · , l|Y|} and
O = {o1, · · · , o|Y|} respectively represents the in-
dex collection of semantic-view and context-view
prototype vectors for all emotion categories.

3.4 Knowledge Store and Retrieval
Given a training set (u, y) ∈ (U ,Y), paramet-
ric model computes semantic-view feature x2 and
context-view feature f of input utterance u. Then
we get semantic-view features {xi}Pi=1 and context-
view features {fi}Pi=1 of all training inputs {ui}Pi=1.
We use BERT-whitening (Su et al., 2021) to reduce
the feature dimension, therefore, the retrieval speed
is accelerated.

{x̃i}Pi=1 = BERT-whitening({xi}Pi=1)

{f̃i}Pi=1 = BERT-whitening({fi}Pi=1)
(8)

We construct two knowledge stores, one from
semantic-view and the other from context-
view. Semantic-view knowledge store regarding
semantic-view features x̃i and corresponding emo-
tion labels yi as memorized key-value pairs. For
context-view knowledge store, we adopt the same
construction method as semantic-view.

(Ksem,Vsem) =
⋃

(u,y)∈(U ,Y)

(x̃i, yi)

(Kcon,Vcon) =
⋃

(u,y)∈(U ,Y)

(f̃i, yi)
(9)

During inference, given an utterance u, paramet-
ric model computes corresponding semantic-view
feature x and context-view feature f . We do the
same as Eq.(8) for x and f to get x̃ and f̃ , which
is used to respectively retrieve the semantic-view
and context-view knowledge store for the k nearest
neighbors (kNN) U according to L2 distance:

pkNN−sem(y|u)∝
∑

(ki,vi)∈U
1y=viDIS(ki, x̃)

pkNN−con(y|u)∝
∑

(ki,vi)∈U
1y=viDIS(ki, f̃)

DIS(ki, x̃/f̃) = exp(
−d(ki, x̃/f̃)

T
)

(10)

2Semantic feature is an essential component of the
semantic-view features, we use it to represent semantic-view
features during knowledge store construction and retrieval.
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where T is the temperature.

3.5 Training and Inference

Training Since semantic-view and context-view
features have been well aligned, we concatenate
them for emotion classification and use cross-
entropy loss function to calculate classification loss.
Meanwhile, we use logit compensation (Menon
et al., 2020) to eliminate the bias in the classifica-
tion layer caused by class imbalance issues:

LCE=−
M∑

i=1

log
exp(φy(wi) + δy)∑

y′∈[Y]

exp(φy′ (wi)+δy′)
(11)

where wi = gi ⊕ fi, ⊕ represent feature conca-
tention, φ represent classification layer, δy is the
compensation for class y and its value is related
to class-frequency. Finally, we have the following
batch-wise loss for training.

L = LCE + LSCL (12)

Inference During inference, we not only infer
the utterance’s emotion through the trained model
but also assists decision-making by retrieving ex-
amples that are memorized in the two knowledge
stores:

p(y|u) =λpModel(y|u) + µpkNN−sem(y|u)
+ γpkNN−con(y|u) (13)

where λ, µ, γ represent the interpolation hyperpa-
rameters between model output distribution and
kNN distribution.

4 Experiments

4.1 Datasets and Evaluation metrics

We evaluate our method on four benchmark
datasets: IEMOCAP (Busso et al., 2008), MELD
(Poria et al., 2019a), DailyDialog (Li et al., 2017)
and EmoryNLP (Zahiri and Choi, 2018). Detailed
descriptions of each dataset can be found in the
appendix B. The statistics of four datasets are pre-
sented in Table 1.

We utilize only the textual modality of the above
datasets for the experiments. For evaluation met-
rics, we follow (Shen et al., 2021b) and choose
micro-averaged F1 excluding the majority class
(neutral) for DailyDialog and weighted-average F1
for the other datasets.

Dataset DD MELD ENLP IEMOCAP

#Dial Train 11118 1038 713 120
Dev 1000 114 99 120
Test 1000 280 85 31

#CLS 7 7 7 6

Table 1: Statistics of four benchmark datasets.

4.2 Implementation Details

The initial weight of RoBERTa come from Hug-
gingface’s Transformers(Wolf et al., 2020). We
utilize Adam (Kingma and Ba, 2014) optimizer
to optimize the network parameters of our model
and the learning rate is set to 0.0003 and remains
constant during the training process. We adopt
faiss (Johnson et al., 2019) library to conduct re-
trieval, and the dimensions of semantic-view and
context-view features respectively become 384 and
64 after the BERT-whitening operation. We search
the hyper-parameters on the validation set. All
experiments are conducted on A6000 GPU with
48GB memory.

4.3 Compared Methods

We compare our model with the following base-
lines in our experiments.
Transformer-based methods: BERT (Devlin
et al., 2018), RoBERTa(Liu et al., 2019), CoG-
BART(Li et al., 2021), CoMPM(Lee and Lee,
2021), SPCL(Song et al., 2022), MPLP(Zhang
et al., 2023).
Recurrence-based methods: DialogueRNN (Ma-
jumder et al., 2019), DialogueRNN-RoBERTa,
COSMIC (Ghosal et al., 2020), DialogueCRN(Hu
et al., 2021), SACL(Hu et al., 2023).
Graph-based methods: DialogueGCN (Ghosal
et al., 2019), DialogueGCN-RoBERTa, RGAT
(Ishiwatari et al., 2020), RGAT-RoBERTa,
SGED+DAG-ERC(Bao et al., 2022) and DAG-
ERC(Shen et al., 2021b).

In addition to the above-mentioned baselines,
we also take into account the performance of Chat-
GPT(Brown et al., 2020) on the ERC task evaluated
by Yang et al. (2023) and Zhao et al. (2023).

5 Results and Analysis

5.1 Overall Performance

The comparison results between the proposed
MFAM and other baseline methods are reported
in Table 2. We can observe from the results that
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Model IEMOCAP MELD DailyDialog EmoryNLP Avg
ChatGPT†

zs (Zhao et al., 2023) 44.97 57.30 40.66 37.47 45.10
ChatGPT‡

zs (Yang et al., 2023) 53.35 61.18 43.27 32.64 47.61
ChatGPT†

fs (Zhao et al., 2023) 48.58 58.35 42.39 35.92 46.31
Transformer-based Methods
BERT (Devlin et al., 2018) 60.98 62.28 54.85 34.87 53.25
RoBERTa (Liu et al., 2019) 63.38 62.51 54.33 35.90 54.03
BART (Lewis et al., 2019) 56.14 63.57 55.34 35.98 52.76
CoG-BART(Li et al., 2021) 66.18 64.81 56.29 38.04 56.33
CoMPM(Lee and Lee, 2021) 69.46 66.52 60.34 38.93 58.81
SPCL(Song et al., 2022)∗ 66.93 64.93 - 39.45 -
MPLP(Zhang et al., 2023) 66.65 66.51 59.92 - -
Recurrence-based Methods
DialogueRNN (Majumder et al., 2019) 62.75 57.03 - - -
+RoBERTa∗ 64.76 63.61 57.32 37.44 55.78

COSMIC (Ghosal et al., 2020) 63.05 64.28 56.16 37.10 55.15
DialogueCRN (Hu et al., 2021) 66.20 58.39 - - -
SACL(Hu et al., 2023) 69.22 66.45 - 39.65 -
Graph-based Methods
DialogueGCN (Ghosal et al., 2019) 64.18 58.10 - - -
+RoBERTa∗ 64.91 63.02 57.52 38.10 55.89

RGAT (Ishiwatari et al., 2020) 65.22 60.91 54.31 34.42 53.72
+ RoBERTa∗ 66.36 62.80 59.02 37.89 56.52

DAG-ERC (Shen et al., 2021b) 68.03 63.65 59.33 39.02 57.51
SGED + DAG-ERC (Bao et al., 2022) 68.53 65.46 - 40.24 -
MFAM(Ours) 70.16 66.65 62.19 41.06 60.02

Table 2: Overall results (%) against various baseline methods for ERC on the four benchmarks. † and ‡ represent
different prompt templates, zs and fs respectively represent zero-shot and few-shot scenario. ∗ represent models
with RoBERTa utterance features. The results reported in the table are from the original paper or their official
repository. Best results are highlighted in bold. The improvement of our model over all baselines is statistically
significant with p < 0.05 under t-test.

our proposed MFAM consistently achieves start-of-
the-art results on four widely used benchmarks.

As a graph-based method, MFAM achieves
an average performance improvement of +4.36%
when compared to preceding graph-based meth-
ods. Moreover, when considering the four bench-
marks individually, MFAM achieves a performance
improvement of +2.38%, +1.82%, +4.82%, and
+2.04% respectively, marking a significant enhance-
ment over the earlier graph-based methods.

MFAM also shows a significant advantage when
compared to other types of methods. It achieves
an average performance gain of +2.06%, +7.60%
respectively compared to transformer-based and
recurrence-based methods. Moreover, we notice
that the performance of ChatGPT in zero-shot
and few-shot scenarios still has a significant gap
compared to the performance of models currently

trained on the full dataset.

5.2 Ablation Study

To study the effectiveness of the modules in
MFAM, we evaluate MFAM by removing knowl-
edge module, alignment module and memorization
module. The results of ablation study are shown in
Table 3.

Concerning the knowledge module, which in-
cludes commonsense knowledge and correlation-
based knowledge. Its removal results in a sharp
performance drop on IEMOCAP and DailyDia-
log, while a slight drop on MELD and EmoryNLP.
Therefore, we can infer that the conversations in
IEMOCAP and DailyDialog involve more com-
monsense knowledge and more complex utter-
ance interactions. Concerning the alignment mod-
ule, its removal leads to a similar and significant
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Model IEMOCAP MELD DailyDialog EmoryNLP Avg

MFAM(Ours) 70.16 66.65 62.19 41.06 60.02
w/o Know 68.66(↓ 1.50) 65.97(↓ 0.68) 61.04(↓ 1.15) 40.27(↓ 0.79) 58.99(↓ 1.03)
w/o SCL 68.64(↓ 1.52) 65.69(↓ 0.96) 60.61(↓ 1.58) 39.74(↓ 1.32) 58.67(↓ 1.35)
w/o Retrieval 68.46(↓ 1.70) 64.64(↓ 2.01) 60.10(↓ 2.09) 39.10(↓ 1.96) 58.08(↓ 1.94)
w/o Retrieval & SCL 66.45(↓ 3.71) 63.46(↓ 3.19) 58.49(↓ 3.70) 38.26(↓ 2.80) 56.67(↓ 3.35)

Table 3: Results of ablation study on the four benchmrks.

drop in the model’s performance on all datasets,
demonstrating the importance of multi-view fea-
ture alignment in the ERC task. Concerning the
memorization module, its removal results in a
drastic decrease in model performance across all
datasets, highlighting the effectiveness of infer-
encing through memorization in addressing class
imbalance issues. Moreover, the simultaneous re-
moval of the alignment and memorization modules
results in a performance decline that is greater than
the sum of the declines caused by the removal of
each module individually, proving that aligning
semantic-view and context-view features can facil-
itate the joint retrieval of the semantic-view and
context-view.

5.3 Analysis on λ, µ, γ
λ, µ and γ are very important parameters, which
respectively represent the weights occupied by the
model, semantic-view retrieval, and context-view
retrieval during inference. Determining the appro-
priate weight combination to reinforce their inter-
play is very important. Table 4 shows the test f1-
scores on the IEMOCAP dataset for different λ, µ
and γ.

We can observe that when setting µ to 0.2,
dynamically adjusting λ and γ leads to continuous
changes in performance, when the value of λ
rises to 0.7, corresponding to a drop in γ to 0.1,

λ µ γ Performance
0.4 0.2 0.4 67.67
0.5 0.2 0.3 67.48
0.6 0.2 0.2 68.91
0.65 0.2 0.15 69.26
0.7 0.15 0.15 68.76
0.7 0.2 0.1 70.16
0.7 0.25 0.05 68.98
0.75 0.2 0.05 69.02

Table 4: Test f1-scores on IEMOCAP dataset with dif-
ferent λ, µ and γ.

the best performance is achieved. Continuing to
increase the value of λ and reduce the value of γ
would result in a performance decline. In addition,
fluctuating the value of µ while keeping λ and γ at
0.7 and 0.1 respectively also leads to a decrease in
performance.

5.4 Visualization on Multi-view Feature

To conduct a qualitative analysis of multi-view fea-
ture alignment, we utilize t-sne(Van der Maaten and
Hinton, 2008) to visualize the prototype vectors
corresponding to semantic-view and context-view
features under each emotion category, as shown in
Figure 5.

It can be observed that semantic-view and
context-view features under the same emotion cat-
egory are well aligned. Meanwhile, positive emo-
tions such as "happy" and "excited" are close to
each other, while negative emotions like "frus-
trated", "angry", and "sad" are also close to each
other.

Figure 5: Visualize the prototype vectors corresponding
to semantic-view and context-view features under each
emotion category. Proto1 and proto2 correspond to
semantic-view and context-view features, respectively.
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6 Conclusion

In this paper, we propose Multi-view Feature
Alignment and Memorization (MFAM) for ERC.
Firstly, in order to obtain accurate context-view fea-
tures, we treat the PCM as a prior knowledge base
and from which we elicit correlations between utter-
ances by a probing procedure. Then we adopt SCL
to align semantic-view and context-view features.
Moreover, we improve the recognition performance
of tail-class samples by retrieving examples that
are memorized in the two knowledge stores during
inference. We achieve state-of-the-art results on
four widely used benchmarks, ablation study and
visualized results demonstrates the effectiveness of
multi-view feature alignment and memorization.

Limitations

There are two major limitations in this study.
Firstly, semantic-view and context-view retrieval
based on the training set may suffer from dataset
and model bias. Secondly, during inference, we
need to consider three probability distributions:
semantic-view retrieval, context-view retrieval, and
model output. Determining the appropriate weight
combination to reinforce their interplay is very
important, therefore, additional computational re-
sources are required to find these parameters. The
aforementioned limitations will be left for future
research.
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A Interaction between Utterance

Following Ghosal et al. (2019), we use a two-step
graph convolution process to obtain context-view
features. In the first step, a new feature vector
h
(1)
i is computed for vertex vi by aggregating local

neighbourhood information using the relation spe-
cific transformation inspired from (Schlichtkrull
et al., 2018):

h
(1)
i =σ(

∑

r∈R

∑

j∈Nr
i

Wij

ci,r
W (1)

r gj+WiiW
(1)
0 gi)

for i = 1, 2, . . . , N
(14)

where Wij and Wii are the edge weights, N r
i de-

notes the neighbouring indices of vertex i under
relation r ∈ R, ci,r = |N r

i |. σ is an activation func-
tion such as ReLU, W (1)

r and W
(1)
0 are learnable

parameters of the transformation. In the second
step, another local neighbourhood based transfor-
mation is applied over the output of the first step:

fi = σ(
∑

j∈Nr
i

W (2)h
(1)
j +W

(2)
0 h

(1)
i )

for i = 1, 2, . . . , N

(15)

where, W (2) and W
(2)
0 are parameters of these

transformation and σ is the activation function.

B Detailed Descriptions of ERC Datasets

IEMOCAP (Busso et al., 2008): Multimodal ERC
dataset. Each conversation within the IEMOCAP
dataset comes from the performance based on script
by two actors. Models are evaluated on the samples
with 6 types of emotion, namely neutral, happiness,
sadness, anger, frustrated, and excited.
MELD (Poria et al., 2019a): Multimodal ERC
dataset gathered from the TV show Friends. 7
emotion labels are included: neutral, happiness,
surprise, sadness, anger, disgust, and fear.
DailyDialog (Li et al., 2017): Dialogues penned by
humans, collected from communications of English
learners. 7 emotion labels are included: neutral,
happiness, surprise, sadness, anger, disgust, and
fear.
EmoryNLP (Zahiri and Choi, 2018): This dataset
comprises TV show scripts obtained from the tele-
vision series "Friends," with variations in scene
selection and emotion labeling. 7 emotion labels
are included: neutral, sad, mad, scared, powerful,
peaceful, and joyful.

C Experimental Results and Analysis

C.1 Generalization ability of the model
Based on the IEMOCAP dataset, we applied our
proposed method to two graph network models,
RGAT and DAG-ERC, and two non-graph network
models, RoBERTa and COG-BART. The experi-
mental results are shown in table 5.

Model Original Original+Ours
RGAT 65.22 69.35
DAG-ERC 68.03 70.27
RoBERTa 63.38 65.96
COG-BART 66.18 69.12

Table 5: Generalization ability of the proposed model.
For the RoBERTa model, since it does not model the
context-view features, we only apply the memorization
technique.

Based on the experimental results, applying our
method to other graph networks and non-graph
structured models can bring significant perfor-
mance improvements, indicating that our proposed
method has good generalization capabilities.

C.2 Case Study
After eliciting correlations between utterances by a
probing procedure from a pre-trained conversation
model, the utterance will pay attention to the coher-
ence of the context and the overall logic flow of the
dialogue. Here is a case in table 6, where u3 nicely
picks up the emotion of u1, and the emotions of
u17 and u18 also correspond well. Meanwhile, by
examining the relevance scores between u17 and
other utterances, it is found that u17 has noticed the
topic change at u6 (a more sorrowful topic turning
into an entertaining one).
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Index Conversational Context w/o probe with probe
u1 B: I’m really fed up with work at the moment . I need a break! Disgust Disgust
u2 A: are you doing anything this weekend ? Neutral Neutral
u3 B: I have to work on Saturday all day ! I really hate my job ! Anger Disgust
u4 A: are you available on Sunday ? Neutral Neutral
u5 B: yes , that’s my only day off until Thursday. Neutral Neutral
u6 A: My friends and I are planning on going to the beach. Come with us ? Neutral Neutral
u17 B: ok , where and when should I meet you ? Neutral Happiness
u18 A: we’ll pick you up at your place at noon . Be there or be square ! Happiness Happiness

Table 6: A case that our method gives the correct result.
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