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Abstract

Most biomedical pretrained language models
are monolingual and cannot handle the grow-
ing cross-lingual requirements. The scarcity
of non-English domain corpora, not to men-
tion parallel data, poses a significant hurdle in
training multilingual biomedical models. Since
knowledge forms the core of domain-specific
corpora and can be translated into various lan-
guages accurately, we propose a model called
KBioXLM, which transforms the multilingual
pretrained model XLM-R into the biomedical
domain using a knowledge-anchored approach.
We achieve a biomedical multilingual corpus
by incorporating three granularity knowledge
alignments (entity, fact, and passage levels)
into monolingual corpora. Then we design
three corresponding training tasks (entity mask-
ing, relation masking, and passage relation pre-
diction) and continue training on top of the
XLM-R model to enhance its domain cross-
lingual ability. To validate the effectiveness
of our model, we translate the English bench-
marks of multiple tasks into Chinese. Experi-
mental results demonstrate that our model sig-
nificantly outperforms monolingual and mul-
tilingual pretrained models in cross-lingual
zero-shot and few-shot scenarios, achieving
improvements of up to 10+ points. Our code
is publicly available at https://github.com/
ngwlh-gl/KBioXLM.

1 Introduction

In recent years, biomedical pretrained language
models (PLMs) (Lee et al., 2020; Gu et al., 2020;
Yasunaga et al., 2022) have made remarkable
progress in various natural language processing
(NLP) tasks. While the biomedical annotation
data (Li et al., 2016; Doğan et al., 2014; Du et al.,
2019; Collier and Kim, 2004; Gurulingappa et al.,
2012) are predominantly in English. Therefore,
non-English biomedical natural language process-
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WIKIPEDIA

aligned
EN:42030

Laudanum contains approximately 

10% opium poppy, equivalent to 1% 

morphine…

CN:6640907

鸦片酊通过将罂粟的提取物溶解
在酒精中制备，含有约10%重量
的鸦片粉末…

UMLStrans

Entity Knowledge Alignment:

鸦片酊 罂粟花 吗啡
[CLS] Laudanum contains approximately 10% opium poppy, equivalent to 1% morphine…

Entities:
Laudanum<=>鸦片酊; Morphine<=>吗啡; Opium poppy<=>罂粟花

Relations:
(optium poppy, associated with, morphine)<=>(罂粟花,有关联,吗啡)

Fact Knowledge Alignment:

[CLS]Laudanum contains approximately 10% opium poppy…[SEP]罂粟花有关联吗啡…

Passage Knowledge Alignment:

[CLS]Laudanum contains approximately…[SEP]鸦片酊通过将罂粟的提取物溶解在…

Figure 1: The construction process of aligned biomed-
ical data relies on three types of granular knowledge.
We begin with an English passage identified as 42030 ,
which serves as the primary source. From this passage,
we extract entities and relations using UMLStrans, and
we search for the corresponding aligned Chinese pas-
sage 6640907 from Wikipedia. Combining these three
granular knowledge sources, we construct aligned cor-
pora. We will predict the relationship between the two
passages using the “[CLS]” token.

ing tasks highlight the pressing need for cross-
lingual capability. However, most biomedical
PLMs focus on monolingual and cannot address
cross-lingual requirements, while the performance
of existing multilingual models in general domain
fall far behind expectations (Devlin et al., 2018;
Conneau et al., 2019; Chi et al., 2021). Multi-
lingual biomedical models can effectively tackle
cross-lingual tasks and monolingual tasks. There-
fore, the development of a multilingual biomedical
pretrained model is urgently needed1.

Unlike in general domains, there is a scarcity
of non-English biomedical corpora and even fewer
parallel corpora in the biomedical domain, which
presents a significant challenge for training mul-

1Due to the lack of expertise in other languages, we have
only conducted experiments in Chinese and English.
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tilingual biomedical models. In general domains,
back translation (BT) (Sennrich et al., 2015) is
commonly used for data augmentation. However,
our experiments (refer to “XLM-R+BT” listed in
Table 5) reveal that due to the quality issues of
domain translation, back translation does not sig-
nificantly improve multilingual biomedical mod-
els’ cross-lingual understanding ability. Unlike the
entire text, translating entities and relations con-
stituting domain knowledge is unique. Since do-
main knowledge is considered the most crucial con-
tent (Michalopoulos et al., 2020; He et al., 2020),
we propose a novel model called KBioXLM to
bridge multilingual PLMs like XLM-R (Conneau
et al., 2019) into the biomedical domain by lever-
aging a knowledge-anchored approach. Concretely,
we incorporate three levels of granularity in knowl-
edge alignments: entity, fact, and passage levels, to
create a text-aligned biomedical multilingual cor-
pus. We first translate the UMLS knowledge base2

into Chinese to obtain bilingual aligned entities and
relations named UMLStrans. At the entity level,
we employ code-switching (Yang et al., 2020) to
replace entities in sentences with expressions in
another language according to UMLStrans. At the
fact level, we transform entity pairs with relation-
ships into another language using UMLStrans and
concatenate them after the original monolingual
sentence. At the passage level, we collect paired
biomedical articles in English and Chinese from
Wikipedia3 to form a coarse-grained aligned corpus.
An example of the construction process can be seen
in Figure 1. Furthermore, we design three train-
ing tasks specifically tailored for the knowledge-
aligned data: entity masking, relation masking,
and passage relation prediction. It is worth not-
ing that in order to equip the model with prelimi-
nary biomedical comprehension ability, we initially
pretrain XLM-R on monolingual medical corpora
in both Chinese and English. Then, continuously
training on top of the model using these three tasks,
our approach has the ability to handle cross-lingual
biomedical tasks effectively.

To compensate for the lack of cross-lingual eval-
uation datasets, we translate and proofread four
English biomedical datasets into Chinese, involv-
ing three different tasks: named entity recognition
(NER), relation extraction (RE), and document clas-
sification (DC). The experimental results demon-

2https://www.nlm.nih.gov/research/umls
3https://www.wikipedia.org/

strate that our model consistently outperforms both
monolingual and other multilingual pretrained mod-
els in cross-lingual zero-shot and few-shot scenar-
ios. On average, our model achieves an impressive
improvement of approximately 10 points than gen-
eral multilingual models. Meanwhile, our method
maintains a comparable monolingual ability by
comparing common benchmarks in both Chinese
and English biomedical domains.

To summarize, our contributions can be outlined
as follows:

• We innovatively propose a knowledge-
anchored method for the multi-lingual
biomedical scenario: achieving text alignment
through knowledge alignment.

• We design corresponding tasks for multi-
granularity knowledge alignment texts and
develop the first multilingual biomedical pre-
trained language model to our knowledge.

• We translate and proofread four biomedical
datasets to fill the evaluation gap in cross-
lingual settings.

2 Related Work

2.1 Biomedical Pretrained Language Models
In recent years, the advent of pre-trained language
models like BERT (Devlin et al., 2018) has brought
about a revolution in various downstream NLP
tasks, including biomedical research. Researchers
such as Lee et al. (2020); Huang et al. (2019);
Gu et al. (2020) have focused on training domain-
specific PLMs using specialized corpora. For
example, PubMedBERT (Gu et al., 2020) con-
structs a domain-specific vocabulary by leverag-
ing articles from PubMed and is trained on this
data. BioLinkBERT (Yasunaga et al., 2022) in-
troduces document-link relation prediction as a
pre-training task, achieving state-of-the-art (SOTA)
performance on question-answering and document
classification tasks. BERT-MK (He et al., 2019)
and KeBioLM (Yuan et al., 2021) incorporate
UMLS knowledge into the training process. In
Chinese, Zhang et al. (2020, 2021b); Cai et al.
(2021) have further enhanced BERT with biomedi-
cal knowledge augmentation techniques.

While these models have demonstrated impres-
sive results in monolingual settings, many of them
lack the ability to handle multilingual tasks effec-
tively. Thus, there is still a need for models that
can tackle the challenges presented by multilingual
and cross-lingual tasks.
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Tokens

Entity-level 31.3M
Fact-level 19.6M
Passage-level 14M

Table 1: Tokens of the three-level biomedical multilin-
gual corpus by incorporating three granularity knowl-
edge alignments.

2.2 Multi-lingual Pretrained Language
Models

Multilingual pre-trained models represent multiple
languages in a shared semantic vector space and
enable effective cross-lingual processing. Notable
examples include mBERT (Devlin et al., 2018),
which utilizes Wikipedia data and employs Multi-
lingual Masked Language Modeling (MMLM) dur-
ing training. XLM (Lample and Conneau, 2019)
focuses on learning cross-lingual understanding ca-
pability from parallel corpora. ALM (Yang et al.,
2020) adopts a code-switching approach for sen-
tences in different languages instead of simple con-
catenation. XLM-R (Conneau et al., 2019), based
on RoBERTa (Liu et al., 2019), significantly ex-
pands the training data and covers one hundred lan-
guages. To further enhance the cross-lingual trans-
ferability of pre-trained models, InfoXLM (Chi
et al., 2021) introduces a new pretraining task based
on contrastive learning. However, as of now, there
is no specialized multilingual model specifically
tailored for the biomedical domain.

3 Method

This section presents the proposed knowledge-
anchored multi-lingual biomedical PLM called
KBioXLM. Considering the scarcity of biomed-
ical parallel corpora, we utilize language-agnostic
knowledge to facilitate text alignment at three lev-
els of granularity: entity, fact, and passage. Subse-
quently, we train KBioXLM by incorporating these
knowledge-anchored aligned data on the founda-
tion of the multilingual XLM-R model. Figure 2
provides an overview of the training details.

3.1 Three Granularities of Knowledge

3.1.1 Knowledge Base
We obtain entity and fact-level knowledge from
UMLS and retrieve aligned biomedical articles
from Wikipedia.
UMLS. UMLS (Unified Medical Language Sys-

tems) is widely acknowledged as the largest
and most comprehensive knowledge base in the
biomedical domain, encompassing a vast collec-
tion of biomedical entities and their intricate re-
lationships. While UMLS offers a broader range
of entity types in English and adheres to rigorous
classification criteria, it lacks annotated data in Chi-
nese. Recognizing that knowledge often possesses
distinct descriptions across different languages, we
undertake a meticulous manual translation process.
A total of 982 relationship types are manually trans-
lated, and we leverage both Google Translator4 and
ChatGPT5 to convert 880k English entities into
their corresponding Chinese counterparts. Man-
ual verification is conducted on divergent trans-
lation results to ensure accuracy and consistency.
This Chinese-translated version of UMLS is called
UMLStrans, providing seamless cross-lingual ac-
cess to biomedical knowledge.
Wikipedia. Wikipedia contains vast knowledge
across various disciplines and is available in mul-
tiple languages. The website offers complete data
downloads6, providing detailed information about
each page, category membership links, and interlan-
guage links. Initially, we collect relevant items in
medicine, pharmaceuticals, and biology by follow-
ing the category membership links. We carefully
filter out irrelevant Chinese articles to focus on the
desired content by using a downstream biomedi-
cal NER model trained on CMeEE-V2 (Zan et al.,
2021) dataset. The dataset includes nine major cat-
egories of medical entities, including 504 common
pediatric diseases, 7085 body parts, 12907 clini-
cal manifestations, and 4354 medical procedures.
Then, using the interlanguage links, we associate
the textual contents of the corresponding Chinese
and English pages, generating aligned biomedical
bilingual text.

3.1.2 Entity-level Knowledge
Entities play a crucial role in understanding textual
information and are instrumental in semantic un-
derstanding and relation prediction tasks. Drawing
inspiration from ALM (Yang et al., 2020), we adopt
entity-level code-switching and devise the entity
masking pretraining objective. The process of con-
structing entity-level pseudo-bilingual corpora is
illustrated in orange in Figure 1. We extract enti-
ties from UMLStrans that appear in monolingual

4https://translate.google.com/
5https://openai.com/blog/chatgpt
6https://dumps.wikimedia.org/
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KBioXLM

[CLS]  Laudanum contains approximately 10% 罂粟花 , equivalent to 1% [MASK] [MASK] ...

[CLS] Laudanum ... 10% opium poppy ... [SEP] 罂粟花 [MASK][MASK][MASK] 吗啡 ...

[CLS] Laudanum contains approximately ...[SEP] 鸦片酊通过将罂粟的提取物溶解在 ...

Entity knowledge aligned data:

Fact knowledge aligned data:

Passage knowledge aligned data:

input

output

[CLS] Laudanum contains approximately 10% 罂粟花 , equivalent to 1% 吗啡 ...

[CLS] Laudanum contains approximately 10% opium poppy ... [SEP] 罂粟花 有关联 吗啡 ...

[CLS] Laudanum contains approximately ...[SEP] 鸦片酊通过将罂粟的提取物溶解在 ...

Entity knowledge target output:

Fact knowledge target output:

Passage knowledge target output:

English segment Chinese segment

positive English segment Chinese segment

Figure 2: Overview of KBioXLM’s training details. Masked entity prediction, masked relation token prediction,
and contextual relation prediction tasks are shown in this figure. The color orange represents entity-level pretraining
task, green represents fact-level, and blue represents passage-level. Given that the two passages are aligned, our
model predicts a “positive” relationship between them.

sentences and their counterparts in the other lan-
guage. To ensure balance, we randomly substitute
10 biomedical entities with their respective coun-
terparts in each sample, keeping an equal number
of replaced entities in both languages.

We design specific pretraining tasks to facili-
tate the exchange of entity-level information be-
tween Chinese and English. Given a sentence
X = {x1, x2, · · · , xn} containing Chinese and En-
glish entities, we randomly mask 15% of the tokens
representing entities in the sentence. The objective
of KBioXLM’s task is to reconstruct these masked
entities. The loss function is defined as follows:

Le = −
∑

i

logP (ei|X), (1)

Here, ei represents the masked Chinese or English
entity.

3.1.3 Fact-level Knowledge
Fact refers to a relationship between a subject, pred-
icate, and object in the knowledge base. Our as-
sumption is that if both entities mentioned in the
fact are present together in a text, then the text
should contain this fact. We employ fact matching
to create bilingual corpora and develop a pretrain-
ing task called relation masking. The process of

constructing bilingual corpora at the fact level in-
volves the following steps:

• Retrieve potential relationships between
paired entities from UMLStrans in monolin-
gual corpus.

• Organize these facts in another language and
concatenate them with the original monolin-
gual sentence.

An example is depicted in green color in Figure 1.
Given the input text “Laudanum contains approxi-
mately 10% opium poppy ...”, we extract the fact
“(opium poppy, associated with, morphine)” and
its corresponding Chinese translation “(罂粟花,
有关联, 吗啡)”. The final text would be “Lau-
danum contains approximately 10% opium poppy
... [SEP]罂粟花有关联吗啡”. We will mask the
relationship “有关联”.

The fact-level task is to reconstruct the masked
relationships. The loss function for relation mask-
ing is defined as follows:

Lf = −
∑

i

logP (fi|X), (2)

where fi represents the masked relationship, which
can be either a Chinese or an English representa-
tion.
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3.1.4 Passage-level Knowledge
Some biomedical NLP tasks are performed at the
document level, so we broaden the scope of cross-
lingual knowledge to encompass the passage level.
This expansion is illustrated in blue in Figure 1.
Specifically, we employ paired biomedical English
and Chinese Wikipedia articles to create an aligned
corpus at the passage level. This corpus serves as
the foundation for designing a pretraining task fo-
cused on predicting passage relationships. Inspired
by Yasunaga et al. (2022), the strategies employed
to construct the passage-level corpus are as follows:

• Randomly selecting one Chinese segment and
one English segment, we label them as “pos-
itive” if they belong to paired articles and as
“random” otherwise.

• We pair consecutive segments in the same lan-
guage to create contextualized data pairs and
label them as “context”.

Ultimately, we gather a collection of 30k segment
pairs, with approximately equal quantities for each
of the three types of segment pairs. The pretrain-
ing task employed to incorporate bilingual passage
knowledge into the model is passage relationship
prediction. The loss function for this task is as
follows:

Lp = − logP (c|Xpair), (3)

where c ∈ {positive, random, context}, Xpair is
the hidden state with global contextual information.

The tokens present in the three-level biomedi-
cal multilingual corpus are documented in Table 1.
KBioXLM is trained using an equal proportion of
monolingual data and the previously constructed
three-level bilingual corpora to ensure the model’s
proficiency in monolingual understanding. The
overall pretraining loss function for KBioXLM is
defined as follows:

L = Le + Lf + Lp, (4)

By integrating these three multi-task learning objec-
tives, KBioXLM exhibits improved cross-lingual
understanding capability.

3.2 Backbone Multilingual Model
Our flexible approach can be applied to any multi-
lingual pre-trained language model. In this study,
we adopt XLM-R as our foundational framework,
leveraging its strong cross-lingual understanding

capability across various downstream tasks. To tai-
lor XLM-R to the biomedical domain, we conduct
additional pretraining using a substantial amount
of biomedical monolingual data from CNKI7 (2.15
billion tokens) and PubMed8 (2.92 billion tokens).
The pre-training strategy includes whole word
masking (Cui et al., 2021) and biomedical entity
masking. We match the biomedical Chinese enti-
ties and English entities contained in UMLStrans

with the monolingual corpora in both Chinese and
English for the second pretraining task. Clearly, we
have already incorporated entity-level knowledge
at this pretraining stage to enhance performance.
For specific details regarding the pretraining pro-
cess, please refer to Section A.1. For convenience,
we refer to this model as XLM-R+Pretraining.

4 Biomedical Dataset Construction

Input: 
After taking <0>Metoclopramide</0>, she developed <1>dyskinesia</1> and a 
period of <2>unresponsiveness</2>.

Ouput：
服用<0>甲氧氯普胺</0>后，她的运动出现了<2>障碍</2>和一段时间的<1>反应迟钝。

Prompt: 
Let's think step by step. I will provide you with a marked English text and its translated 
Chinese text. You need to detect and correct missing marks <num> or </num> and 
their orders. Here is a positive example：
Input:   

EN: Severe <1> bleomycin </1> <0> lung toxicity </0> : reversal with high dose 
corticosteroids .

CN: 严重的<1>博来霉素</1> 肺毒性：用大剂量皮质类固醇逆转。
Output：

严重的<1>博来霉素</1> <0>肺毒性</0>：用大剂量皮质类固醇逆转。
Here are the results of the translator: {$Input and $Output from translator}. 
Please return the result I want:

Output：
According to your request, I have obtained the following correction results:

服用<0>甲氧氯普胺</0>后，她出现了<1>运动障碍</1>和一段时间的<2>反应迟钝</2>。

✓ × ×

✓ ✓ ✓

Google Translator

ChatGPT-3.5

Human Evaluation & Revision

Figure 3: This picture illustrates the sentence, “After
taking Metoclopramide, she developed dyskinesia and a
period of unresponsiveness.” which is initially marked
for translation and subsequently revised through a col-
laborative effort involving ChatGPT and manual editing.

Due to the lack of biomedical cross-lingual un-
derstanding benchmarks, we translate several well-
known biomedical datasets from English into Chi-
nese by combining translation tools, ChatGPT,
and human intervention. As shown in Table 2,
these datasets are BC5CDR (Li et al., 2016) and
ADE (Gurulingappa et al., 2012) for NER, GAD for
RE, and HoC (Hanahan and Weinberg, 2000) for
DC. ADE and HoC belong to the BLURB bench-
mark9. Please refer to Section A.2 for details about

7https://kns.cnki.net/kns8
8https://huggingface.co/datasets/pubmed
9https://microsoft.github.io/BLURB/
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Dataset Task Train Dev Test

BC5CDR NER 500 500 500
ADE NER 3845 - 427
GAD† RE 4261 535 534
HoC† DC 1295 186 371

Table 2: Statistics of four biomedical cross-lingual
datasets. 1.Task types; 2. Number of samples in
train/dev/test dataset. 3. The dataset with special mark
† belongs to BLURB benchmark.

these four tasks.
The process, as depicted in Figure 3 can be sum-

marized as follows: we conduct a simple transla-
tion using Google Translator for the document clas-
sification dataset. To preserve the alignment of En-
glish entities and their relationships in the NER and
RE datasets after translation, we modify them by re-
placing them with markers “<num>Entity</num>”
based on the NER golden labels in the original sen-
tences. Here, “num” indicates the entity’s order
in the original sentence. During post-processing,
we match the translated entities and their relation-
ships back to their original counterparts using the
numerical information in the markers. Despite
the proficiency of Google Translator, it has some
limitations, such as missing entity words, incom-
plete translation of English text, and semantic gaps.
To address these concerns, we design a prompt to
leverage ChatGPT in identifying inconsistencies
in meaning or incomplete translation between the
original sentences and their translations. Subse-
quently, professional annotators manually proof-
read the sentences with identified defects while a
sample of error-free sentences is randomly checked.
This rigorous process guarantees accurate and con-
sistent translation results, ensuring proper align-
ment of entities and relationships. Ultimately, we
obtain high-quality Chinese biomedical datasets
with accurately aligned entities and relationships
through meticulous data processing.

5 Experiments

5.1 Dataset and Settings

5.1.1 Pretraining
The pretraining process of KBioXLM employs a
learning rate of 5e-5, a batch size of 128, and a total
of 50,000 training steps. 5,000 warm-up steps are
applied at the beginning of the training. The model
is pretrained on 4 NVIDIA RTX A5000 GPUs for
14 hours.

Language Biomedical

eHealth CN !

SMedBERT CN !

BioBERT EN !

PubMedBERT EN !

BioLinkBERT EN !

mBERT Multi %

InfoXLM Multi %

XLM-R Multi %

XLM-R+BT Multi !

XLM-R+three KL Multi !

KBioXLM Multi !

Table 3: Characteristics of our baselines. “!” indicates
that the model has this feature while “%” means the op-
posite. “CN” means Chinese, “EN” represents English
and “Multi” represents Multilingual.

5.1.2 Finetuning
For monolingual tasks and cross-lingual under-
standing downstream tasks listed in Table 2, the
backbone of Named Entity Recognition is the en-
coder part of the language model plus conditional
random fields (Lafferty et al., 2001). The simplest
sequence classification is employed for relation ex-
traction and document classification tasks. F1 is
used as the evaluation indicator for these tasks.

5.2 Baselines

To compare the performance of our model in mono-
lingual comprehension tasks, we select SOTA mod-
els in English and Chinese biomedical domains.
Similarly, to assess our model’s cross-lingual com-
prehension ability, we conduct comparative experi-
ments with models that possess strong cross-lingual
understanding capability in general domains, as
there is currently a lack of multilingual PLMs
specifically tailored for the biomedical domain.
Monolingual Biomedical PLMs. For En-
glish PLMs, we select BioBERT (Lee et al.,
2020), PubMedBERT (Gu et al., 2020), and Bi-
oLinkBERT (Yasunaga et al., 2022) for compari-
son, while for Chinese, we choose eHealth (Wang
et al., 2021) and SMedBERT (Zhang et al., 2021b).
Multilingual PLMs. XLM-R baseline model
and other SOTA multilingual PLMs, including
mBERT (Devlin et al., 2018), InfoXLM (Chi et al.,
2021) are used as our baselines. We also compare
the results of two large language models (LLMs)
that currently perform well in generation tasks on
these four tasks, namely ChatGPT and ChatGLM-
6B10.

10https://chatglm.cn/blog
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LLMs Multilingual PLMs Multilingual Biomedical PLMs
Datasets ChatGPT ChatGLM mBERT InfoXLM XLM-R XLM-R+BT XLM-R+three KL KBioXLM

ADE 64.50 27.30 59.43 64.23 57.62 64.78 65.47 70.88
EN-to-CN BC5CDR 63.00 40.70 54.59 66.39 57.43 63.83 70.64 73.02

GAD 48.30 48.30 59.52 67.03 68.79 70.65 75.29 78.91
HoC 35.10 28.00 14.29 44.83 37.58 60.45 68.09 78.83

AVG 52.73 36.08 46.96 60.62 55.36 64.93 69.87 75.41

ADE 71.79 42.90 71.31 79.52 77.38 77.92 78.07 85.61
CN-to-EN BC5CDR 54.80 38.80 64.12 75.36 72.40 76.29 78.92 84.52

GAD 51.20 52.20 64.16 69.69 69.96 74.74 76.36 81.16
HoC 41.30 31.70 37.08 48.34 37.67 57.65 61.09 73.99

AVG 54.77 41.40 59.17 68.23 64.35 71.65 73.61 81.32

Table 4: Cross lingual zero shot results. “EN-to-CN” and “CN-to-EN” indicate training in English and testing on
Chinese datasets, and vice versa. AVG represents the average F1 score across four cross-lingual tasks.

10-shot 100-shot
ADE BC5CDR GAD HoC AVG ADE BC5CDR GAD HoC AVG

CN Bio PLMs eHealth 64.57 67.10 67.57 62.08 65.33 78.39 79.09 72.83 74.66 76.24
SMedBERT 54.61 61.11 67.61 33.17 54.13 75.18 75.25 69.36 66.24 71.51

Multi PLMs
mBERT 57.88 55.15 66.44 44.61 56.02 69.88 74.11 73.65 67.08 71.18
InfoXLM 66.92 62.47 69.48 57.47 64.09 76.35 75.62 76.19 67.70 73.97
XLM-R 61.02 56.66 73.85 43.74 58.82 73.06 72.93 76.18 64.12 71.57

LLMs ChatGPT 66.20 60.40 49.40 50.20 56.55 - - - - -
ChatGLM 26.20 27.10 52.60 23.50 32.35 - - - - -

Multi Bio PLMs XLM-R+three KL 71.50 71.01 76.36 73.45 73.08 76.10 77.19 77.86 76.89 77.01
KBioXLM 75.49 74.98 80.76 79.41 77.66 79.45 80.63 81.98 83.20 81.32

Table 5: Cross lingual EN-to-CN few shot results. “Bio” represents Biomedical and “Multi” represents Multilingual.
Due to the limited number of input tokens, we only conduct 10-shot experiments for LLMs.

Multilingual Biomedical PLMs. To our knowl-
edge, there is currently no multilingual pretraining
model in biomedical. Therefore, we build two base-
line models on our own. Considering the effective-
ness of back-translation (BT) as a data augmenta-
tion strategy in general multilingual pretraining, we
train baseline XLM-R+BT using back-translated
biomedical data. Additionally, in order to assess
the impact of additional pretraining in KBioXLM,
we directly incorporate the three levels of knowl-
edge mentioned earlier into the XLM-R architec-
ture, forming XLM-R+three KL.

Please refer to Table 3 for basic information
about our baselines.

5.3 Main Results

This section explores our model’s cross-lingual and
monolingual understanding ability. Please refer to
Appendix A.3 for the model’s monolingual under-
standing performance on more tasks.

5.3.1 Cross-lingual Understanding Ability
We test our model’s cross-lingual understanding
ability on four tasks in two scenarios: zero-shot

and few-shot. As shown in 4 and 5, KBioXLM
achieves SOTA performance in both cases. Our
model has a strong cross-lingual understanding
ability in the zero-shot scenario under both “EN-to-
CN” and “CN-to-EN” settings. It is worth noting
that the performance of LLMs in language under-
standing tasks is not ideal. Moreover, compared to
ChatGPT, the generation results of ChatGLM are
unstable when the input sequence is long. Similarly,
general-domain multilingual PLMs also exhibit a
performance difference of over 10 points compared
to our model. The poor performance of LLMs and
multilingual PLMs underscores the importance of
domain adaptation. XLM-R+three KL is pretrained
with just 65M tokens, and it already outperforms
XLM-R by 14 and 9 points under these two set-
tings. And compared to XLM-R+BT, there is also
an improvement of 5 and 2 points, highlighting the
importance of knowledge alignment. Compared to
KBioXLM, XLM-R+three KL performs 5 or more
points lower. This indicates that excluding the pre-
training step significantly affects the performance
of biomedical cross-lingual understanding tasks,
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Dataset ADE BC5CDR GAD HoC AVG

EN-to-EN

EN Bio PLMs
Pubmedbert 90.22 89.37 80.50 83.97 86.02
BioBERT 89.85 87.14 83.95 82.44 85.85
BioLinkBERT 90.12 89.76 85.90 84.53 87.58

Multi PLMs
mBERT 89.61 84.44 79.67 80.04 83.44
InfoXLM 89.91 86.50 77.33 78.70 83.11
XLM-R 90.07 85.92 80.45 80.12 84.14

Multi Bio PLMs XLM-R+three KL 89.83 86.50 82.35 82.08 85.19
KBioXLM 90.56 88.87 83.04 83.66 86.53

CN-to-CN

CN Bio PLMs eHealth 85.20 72.22 77.53 78.67 78.41
SMedBERT 84.30 41.30 74.34 79.27 69.80

Multi PLMs
mBERT 83.27 67.83 75.69 76.35 75.79
InfoXLM 83.48 72.00 71.71 78.53 76.43
XLM-R 82.67 70.57 78.13 78.52 77.47

Multil Bio PLMs XLM-R+three KL 83.26 78.09 79.61 80.73 80.42
KBioXLM 83.02 78.94 82.76 83.47 82.05

Table 6: The performance of KBioXLM and our baselines on English and Chinese monolingual comprehension
tasks.

Datasets ADE BC5CDR GAD HoC

KBioXLM 70.88 73.02 78.91 78.83
w/o Pas 69.99 71.55 78.08 77.28
w/o Pas+Fact 70.20 69.78 76.87 76.92
w/o Pas+Fact+Ent 66.61 67.03 75.93 76.74

Table 7: KBioXLM’s cross-lingual understanding abla-
tion experiments in the zero-shot scenario.

highlighting the importance of initially pretraining
XLM-R to enhance its biomedical understanding
capability.

In the “EN-to-CN” few-shot scenario, we test
models’ cross-lingual understanding ability under
two settings: 10 training samples and 100 training
samples. It also can be observed that XLM-R+three
KL and KBioXLM perform the best among these
four types of PLMs. Multilingual PLMs and Chi-
nese biomedical PLMs have similar performance.
However, compared to our method, there is a dif-
ference of over 10 points in the 10-shot scenario
and over 5 points in the 100-shot scenario. This
indicates the importance of both domain-specific
knowledge and multilingual capability, which our
model satisfies.

5.3.2 Monolingual Understanding Ability
Although the focus of our model is on cross-lingual
scenarios, we also test its monolingual comprehen-
sion ability on these four datasets. Table 6 shows
the specific experimental results. It can be seen
that KBioXLM can defeat most other PLMs in
these tasks, especially in the “CN-to-CN” scenario.
Compared to XLM-R, KBioXLM has an average

improvement of up to 4 points. BioLinkBERT per-
forms slightly better than ours on English compre-
hension tasks because it incorporates more knowl-
edge from Wikipedia. KBioXLM’s focus, however,
lies in cross-lingual scenarios, and we only utilize
a small amount of aligned Wikipedia articles.

5.4 Ablation Study

This section verifies the effectiveness of different
parts of the used datasets. Table 7 presents the re-
sults of ablation experiments in zero-shot scenarios.
Removing the bilingual aligned data at the passage
level results in a 1-point decrease in model perfor-
mance across all four tasks. Further removing the
fact-level data leads to a continued decline. When
all granularity bilingual knowledge data is removed,
our model’s performance drops by approximately
4 points. These experiments demonstrate the effec-
tiveness of constructing aligned corpora with three
different granularities of knowledge. Due to the
utilization of entity knowledge in the underlying
XLM-R+pretraining, it is difficult to accurately as-
sess the performance when none of the three types
of knowledge are used.

6 Conclusion

This paper proposes KBioXLM, a model that
transforms the general multi-lingual PLM into the
biomedical domain using a knowledge-anchored
approach. We first obtain biomedical multilingual
corpora by incorporating three levels of knowl-
edge alignment (entity, fact, and passage) into the
monolingual corpus. Then we design three train-
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ing tasks, namely entity masking, relation mask-
ing, and passage relation prediction, to enhance the
model’s cross-lingual ability. KBioXLM achieves
SOTA performance in cross-lingual zero-shot and
few-shot scenarios. In the future, we will explore
biomedical PLMs in more languages and also ven-
ture into multilingual PLMs for other domains.

Limitations

Due to the lack of proficient personnel in other less
widely spoken languages, our experiments were
limited to Chinese and English only. However, Our
method can be applied to various other languages,
which is highly significant for addressing cross-
lingual understanding tasks in less-resourced lan-
guages. Due to device and time limitations, we did
not explore our method on models with larger pa-
rameter sizes or investigate cross-lingual learning
performance on generative models. These aspects
are worth exploring in future research endeavors.
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A Appendix

A.1 XLM-R Pretraining Settings
Building upon XLM-R, we train XLM-R using
medical data from CNKI of 2.15B tokens and data
from PubMed of 2.92B tokens. During the training
process, we initialize the model parameters with
XLM-R. It is important to note that in order to
speed up the training process, we first calculate
the distribution of tokens from cnki and pubmed
in the XLM-R vocabulary. Then, we utilize a one-
hot matrix to reduce the original MLM head of
XLM-R from 250002× 768 to 37030× 768, and
use it as the new MLM head. The pre-training
strategy includes whole word masking (Cui et al.,
2021) and biomedical entity masking. We match
the biomedical Chinese entities and English enti-
ties contained in UMLStrans with the monolingual
corpora in both Chinese and English for the second
pretraining task. The proportion of masked tokens
in the sentence is the same as XLM-R, and both
strategies masked tokens at a 1:1 ratio. We limit the
masked biomedical entities to a maximum length
of 3 to accelerate the model’s learning process. The
peak learning rate for this training process is set
to 1e-4, with a batch size of 1280 and a total of
150,000 training steps. In the first 10,000 steps,
the learning rate linearly increases. The model was
pretrained on 4 NVIDIA RTX A5000 GPUs for
two weeks.

A.2 Four Downstream Tasks
BC5CDR. BC5CDR comprises a collection of
1500 PubMed abstracts11 and has been prepro-
cessed by Christopoulou et al. (2019). The objec-
tive of the model is to identify two distinct entity
types in the text: chemical and disease.
ADE. ADE is another NER dataset sourced from
PubMed documents, primarily focused on identify-
ing drugs and adverse effects entities. We leverage
the dataset provided in SpERT (Eberts and Ulges,
2019).
GAD. GAD serves the purpose of detecting the
association between gene entities and disease en-
tities in a given sentence. The gene and disease
entities within the sentences are denoted by special

11https://pubmed.ncbi.nlm.nih.gov/

Dataset Task Train Dev Test

CMeEE (Zan et al., 2021) NER 15000 5000 3000
CMeIE(Guan et al., 2020) IE 14339 3585 4482
CHIP-CDN Diagnosis Normalization 6000 2000 10192
CHIP-STS Sentence Similarity 16000 4000 10000
CHIP-CTC (Zong et al., 2021) Sentence Classification 22962 7682 10000
KUAKE-QIC Intent Classification 6931 1955 1994
KUAKE-QTR Query-Document Relevance 24174 2913 5465
KUAKE-QQR Query-Query Relevance 15000 1600 1596

Table 8: Statistics of Chinese biomedical datasets.
1.Task types; 2. Number of samples in train/dev/test
dataset.

Dataset Task Train Dev Test

BC5-chem† (Li et al., 2016) 4560 4581 4797
BC5-disease† (Li et al., 2016) 4560 4581 4797
NCBI-disease† (Doğan et al., 2014) 5424 923 940
BC2GM† (Du et al., 2019) 12500 2500 5000
JNLPBA† (Collier and Kim, 2004) NER 16807 1739 3856
BC5CDR (Li et al., 2016) 500 500 500
ADE (Gurulingappa et al., 2012) 3845 - 427
CHR (Sahu et al., 2019) 7298 1182 3614
BioRED (Luo et al., 2022) 400 100 100

ChemProt† (Krallinger et al., 2017) 18035 11268 15745
DDI† (Herrero-Zazo et al., 2013) 25296 2496 5716
GAD† (Bravo et al., 2015) RE 4261 535 534
AIMed (Bunescu et al., 2005) 5251 - 583

HoC† (Hanahan and Weinberg, 2000) DC 1295 186 371

Table 9: Statistics of English biomedical datasets.
1.Task types; 2. Number of samples in train/dev/test
dataset; 3. The dataset with special mark † belongs to
BLURB benchmark.

Dataset ehealth SMedBERT XLM-R KBioXLM

CMeEE-V2 59.56 59.86 57.94 59.48
CMeIE-V2 49.74 48.72 50.32 50.22
CHIP-CDN 59.32 55.46 51.04 57.89
CHIP-STS 85.48 84.98 81.71 83.20
CHIP-CTC 63.15 68.05 58.39 66.30
KUAKE-QIC 85.66 85.71 83.10 82.85
KUAKE-QTR 64.56 61.59 58.23 59.49
KUAKE-QQR 85.65 82.83 80.52 81.89

AVG 69.14 68.40 65.16 67.67

Table 10: Monolingual Chinese results.

markers, namely "@GENE$" and "@DISEASE$",
respectively.
HoC. The Hallmarks of Cancer (HoC) corpus com-
prises PubMed abstracts with binary labels indi-
cating specific cancer hallmarks. It contains 37
detailed hallmarks grouped into ten top-level cat-
egories. Models are required to predict these 10
top-level categories.

Please refer to Table 2 for quantity statistics.

A.3 Monolingual Biomedical Tasks
The Chinese Biomedical Language Understanding
Evaluation (CBLUE) (Zhang et al., 2021a) bench-
mark12 in the Chinese medical domain includes

12https://github.com/CBLUEbenchmark/CBLUE
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Dataset PubMedBERT BioLinkBERT XLM-R KBioXLM

BC5-chem 93.08 92.97 88.74 91.84
BC5-disease 85.52 85.78 81.78 84.91
Ncbi-disease 86.60 86.69 86.85 86.67
BC2GM 83.74 84.33 81.91 83.05
JNLPBA 79.16 78.89 79.32 79.42
BC5CDR 89.37 89.76 85.92 88.87
ADE 90.22 90.12 90.07 90.56
CHR 91.61 91.16 91.08 91.82
BioRED 90.74 91.14 84.54 88.72

ChemProt 77.95 76.76 68.49 76.68
DDI 81.02 79.57 74.30 79.43
GAD 80.50 85.90 80.45 83.04
AIMed 88.41 85.96 70.37 84.26

HoC 83.97 84.53 80.12 83.66

AVG 85.85 85.97 81.46 85.27

Table 11: Monolingual English results.

tasks such as NER, RE, sentence classification, and
more. Similarly, the English medical domain also
encompasses these tasks. The quantity statistics
for the Chinese and English datasets are shown in
Table 8 and Table 9, respectively.

Here, we compare KBioXLM with two SOTA
Chinese biomedical models, eHealth and SMed-
BERT on CBLUE benchmark and the English
SOTA models, PubMedBERT and BioLinkBERT
on the corresponding English biomedical tasks.

Table 10 and Table 11 represent the results of
evaluating the model’s monolingual comprehen-
sion ability on Chinese and English biomedical
benchmarks, respectively. Our model KBioXLM
shows significant improvements of two points and
four points compared to XLM-R on average, re-
spectively. This indicates that compared to gen-
eral multilingual PLMs, our model has stronger
biomedical comprehension capability. However, as
our model primarily focuses on addressing cross-
lingual understanding tasks, it falls slightly behind
the current SOTA monolingual biomedical models.
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