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Abstract

Neural ‘dense’ retrieval models are state of the
art for many datasets, however these models of-
ten exhibit limited domain transfer ability. Ex-
isting approaches to adaptation are unwieldy,
such as requiring explicit supervision, complex
model architectures, or massive external mod-
els. We present ABEL, a simple but effective
unsupervised method to enhance passage re-
trieval in zero-shot settings. Our technique fol-
lows a straightforward loop: a dense retriever
learns from supervision signals provided by a
reranker, and subsequently, the reranker is up-
dated based on feedback from the improved
retriever. By iterating this loop, the two com-
ponents mutually enhance one another’s per-
formance. Experimental results demonstrate
that our unsupervised ABEL model outperforms
both leading supervised and unsupervised re-
trievers on the BEIR benchmark. Meanwhile,
it exhibits strong adaptation abilities to tasks
and domains that were unseen during training.
By either fine-tuning ABEL on labelled data or
integrating it with existing supervised dense
retrievers, we achieve state-of-the-art results. !

1 Introduction

Remarkable progress has been achieved in neu-
ral information retrieval through the adoption of
the dual-encoder paradigm (Gillick et al., 2018),
which enables efficient search over vast collections
of passages by factorising the model such that the
encoding of queries and passages are decoupled,
and calculating the query-passage similarity using
dot product. However, the efficacy of training dual-
encoders heavily relies on the quality of labelled
data, and these models struggle to maintain com-
petitive performance on retrieval tasks where dedi-
cated training data is scarce (Thakur et al., 2021).
Various approaches have been proposed to en-
hance dense retrievers (Karpukhin et al., 2020) in
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'Source code is available at https://github.com/
Fantabulous-J/BootSwitch.

zero-shot settings while maintaining the factorised
dual-encoder structure, such as pre-training models
on web-scale corpus (Izacard et al., 2022) and learn-
ing from cross-encoders through distillation (Qu
et al., 2021). Other alternatives seek to trade effi-
ciency for performance by using complex model
architectures, such as fine-grained token interaction
for more expressive representations (Santhanam
et al., 2022) and scaling up the model size for bet-
ter model capacity (Ni et al., 2022). Another line
of work trains customised dense retrievers on tar-
get domains through query generation (Wang et al.,
2022; Dai et al., 2023). This training paradigm is
generally slow and expensive, as it employs large
language models to synthesise a substantial number
of high-quality queries.

In this paper, we present ABEL, an Alternating
Bootstrapping training framework for unsupervised
dense rEtrieval.. Our method alternates the dis-
tillation process between a dense retriever and a
reranker by switching their roles as feachers and
students in iterations. On the one hand, the dense
retriever allows for efficient retrieval due to its fac-
torised encoding, accompanied by a compromised
model performance. On the other hand, a reranker
has no factorisation constraint, allowing for more
fine-grained and accurate scoring, but at the cost
of intractable searches. Our work aims to take ad-
vantage of both schools by equipping the dense re-
triever with accurate scoring by the reranker while
maintaining search efficiency. Specifically, i) the
more powerful but slower reranker is used to assist
in the training of the less capable but more efficient
retriever; ii) the dense retriever is employed to im-
prove the performance of the reranker by providing
refined training signals in later iterations. This al-
ternating learning process is repeated to iteratively
enhance both modules.

Compared with conventional bootstrapping ap-
proaches (Alberti et al., 2019; Zelikman et al.,
2022), wherein the well-trained model itself is
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used to discover additional solutions for subse-
quent training iterations, our method considers one
model (i.e., teacher) as the training data genera-
tor to supervise another model (i.e., student), and
their roles as teacher and student are switched in
every next step. This mechanism naturally cre-
ates a mutual-learning paradigm to enable iterative
bidirectional knowledge flow between the retriever
and the reranker, in contrast to the typical single-
step and unidirectional distillation where a student
learns from a fixed teacher (Miech et al., 2021).

Through extensive experiments on various
datasets, we observe that ABEL demonstrates out-
standing performance in zero-shot settings by only
using the basic BM25 model as an initiation. Addi-
tionally, both the retriever and reranker components
involved in our approach can be progressively en-
hanced through the bootstrapping learning process,
with the converged model outperforming more than
ten prominent supervised retrievers and achieving
state-of-the-art performance. Meanwhile, ABEL is
efficient in its training process by exclusively em-
ploying sentences from raw texts as queries, rather
than generating queries from large language mod-
els. The use of the simple dual-encoder architec-
ture further contributes to its efficient operation. In
summary, our contributions are:

1. We propose an iterative approach to bootstrap
the ability of a dense retriever and a reranker
without relying on manually-created data.

2. The empirical results on the BEIR benchmark
show that the unsupervised ABEL outperforms
a variety of prominent sparse and supervised
dense retrievers. After fine-tuning ABEL using
supervised data or integrating it with off-the-
shelf supervised dense retrievers, our model
achieves new state-of-the-art performance.

3. When applying ABEL on tasks that are unseen
in training, we observe it demonstrates re-
markable generalisation capabilities in com-
parison to other more sophisticated unsuper-
vised dense retrieval methods.

4. To the best of our knowledge, we are the first
to show the results that both dense retriever
and cross-encoder reranker can be mutually
improved in a closed-form learning loop, with-
out the need for human-annotated labels.

2 Preliminary

Given a short text as a query, the passage-retrieval
task aims at retrieving a set of passages that in-

clude the necessary information. From a collection
of passages as the corpus, P = {p1,p2, " ,Pn},
a retriever D fetches top-k passages PL(q) =
{p1,p2, -+ ,pr} from P that are most relevant to
a specific query g. Optionally, a reranker R is
also employed to fine-grain the relevance scores
for these retrieved passages.

2.1 Dense Retrieval Model

The dense retrieval model (retriever) encodes both
queries and passages into dense vectors using a
dual-encoder architecture (Karpukhin et al., 2020).
Two distinct encoders are applied to transform
queries and passages separately, then, a relevance
score is calculated by a dot product,

D(q,p;0) = E(g;0,) " -E(p;0,), (1)

where E(+; §) are encoders parameterised by 6, for
passages and 6, for queries. The asymmetric dual-
encoder works better than the shared-encoder archi-
tecture in our preliminary study. For efficiency, all
passages in P are encoded offline, and an efficient
nearest neighbour search (Johnson et al., 2021) is
employed to fetch top-k relevant passages.

2.2 Reranking Model

The reranking model (reranker) adopts a cross-
encoder architecture, which computes the relevance
score between a query and a passage by jointly
encoding them with cross-attention. The joint en-
coding mechanism is prohibitively expensive to be
deployed for large-scale retrieval applications. In
practice, the joint-encoding model is usually ap-
plied as a reranker to refine the relevance scores for
the results by the retriever. The relevance score by
the reranker is formalised as,

R(q,p; #) = FEN(E(q, p; ¢)), (2)

where E(-, -; ¢) is a pre-trained language model
parameterised by ¢. In this work, we adopt the en-
coder of TS5 (EncT5) (Liu et al., 2021) as E. A start-
of-sequence token is appended to each sequence,
with its embedding fed to a randomly initialised
single-layer feed-forward network (FFN) to calcu-
late the relevance score.

3 Alternating Distillation

We propose an unsupervised alternating distilla-
tion approach that iteratively boosts the ability of
a retriever and a reranker, as depicted in Fig. 1.

913



t=0

Iterate t < T times

1. Retriever Training

2. Reranker Training 3. Retriever Training

Passage (Warm-up)
Collection
P Initial Retriever

Dy

Yo={a.%.

Initial training data

P

l‘

Reranker
R

(@ PRt Ysope)

Retriever
D§

—
yt = {qr?(;lipq._}

Soft labels Updated Training data

Refresh top-k Predictions & Update Soft Labels

Figure 1: The overview of the alternating bootstrapping training approach for zero-shot dense retrieval.

Alg. 1 outlines the proposed method with three ma-
jor steps. Our approach starts with warming up a
retriever by imitating BM25. Subsequently, a re-
cursive learning paradigm consisting of two steps
is conducted: (1) training a reranker based on the
labels extracted from the retriever by the last itera-
tion; (2) refining the dense retriever using training
signals derived from the reranker by the last step.

3.1 Retriever Warm-up

The training starts with constructing queries from
raw texts (line 1) and training a warm-up dense
retriever Dg by imitating an unsupervised BM25
model (lines 3-5).

Query Construction We use a sentence split-
ter to chunk all passages into multiple sentences,
then we consider these sentences as cropping-
sentence queries (Chen et al., 2022). Compared
to queries synthesised from fine-tuned query gen-
erators (Wang et al., 2022) or large language mod-
els (Dai et al., 2023), cropping-sentence queries i)
can be cheaply scaled up without relying on super-
vised data or language models and ii) have been
shown effectiveness in pre-training dense retriev-
ers (Gao and Callan, 2022; Izacard et al., 2022).

Training Data Initialisation The first challenge
to our unsupervised method is how to extract effec-
tive supervision signals for each cropping-sentence
query to initiate training. BM25 (Robertson and
Zaragoza, 2009) is an unsupervised sparse retrieve
model, which has demonstrated outstanding per-
formance in low-resource and out-of-domain set-
tings (Thakur et al., 2021). Specifically, for a given
query ¢ € Q, we use BM2S5 to retrieve the top-
k predictions P§ys(g), among which the high-
est ranked kT € Z* passages are considered as

Algorithm 1: Alternating Bootstrapping
Training for Zero-Shot Dense Retrieval
Input

:Pre-trained language models (e.g., T5), and
Passage collection P.

1 Split passages into sentences as queries Q.

2 /x Step 1: Warm-up Retriever Training */

Retrieve top-k predictions Phips (¢) for each g € Q
using BM25 model.

“w

4 Extract initial training data ) using Eq. 3 and 4.
5 Train a warm-up retriever Dg using Vo.
6 fort < 1toT do
7 /% Step 2: Reranker R4 Training */
8 Retrieve top-k predictions 73;,,_1 (¢) for each
6
q € Q using the most recent retriever D~ ".
9 Extract soft labels for each (g, p) using Dg_lz
Vioge = {D(a,p; Dy lp € ngfl(q)}-
10 Train an reranker ”pr with YV, ¢ using Eq. 5.
11 /* Step 3: Retriever Dy Training */
12 Rerank 73;:;1 (q) using RY,.
13 Extract updated training data ); from the
reranking list using Eq. 3 and 4.
14 Fine-tune D} using V; from D§.
15 end for

16 return D7 .

positive P*(q), while the bottom k= € Z™ pas-
sages are treated as hard negatives P~ (q), follow-
ing Chen et al. (2022),

P*(q) = {plp € PH(a).7(p) <k*}, (3

P~(q) = {plp € PH(q),r(p) =k =k}, (4
where the initial D uses BM25 and r(p) means the
rank of a passage p. Then, we train a warm-up re-
triever based on these extracted training examples.
3.2 Iterative Bootstrapping Training

We iteratively improve the capability of the re-
triever and the reranker by alternating their roles as
teacher and student in each iteration.
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In the t-th iteration, we first use the most recent
retriever D! to retrieve top-k passages 731’;_1 (q)
0

that are most relevant to each query ¢ € Q and gen-
erate soft labels D(q, p; #*~1) for each (g, p) pair
accordingly. Then we use all such soft labels to
train a reranker Rfﬁ as described in Alg. 1 lines
8-10 and §3.3.1. The second step is to train the
t-th retriever. We employ sz) to rerank 731’;2_1 (q)

to obtain a refined ranking list, from which updated
supervision signals are derived as Alg. 1 lines 12-
13. We train a new retriever D}, with these examples
as discussed in Alg. 1 line 14 and §3.3.2. Train-
ing iterations are repeated until no performance
improvement is observed. Note that, in order to
mitigate the risk of overfitting the retriever, for all
iterations we refine the warm-up retriever DJ using
the newest training examples but refresh top-£ pre-
dictions and update soft labels for reranker training
with the improved retriever. Similarly, to avoid the
accumulation of errors in label generation, we re-
initialise the reranker using pre-trained language
models at the start of each iteration, rather than fine-
tuning the model obtained from the last iteration.
Please refer to Table 3 for the empirical ablations.

3.3 Retriever and Reranker Training

In each iteration, we fine-tune the reranker and then
the retriever as follows.

3.3.1 Reranker Training

The reranker is trained to discriminate positive sam-
ples from hard negative ones using a cross-entropy
(CE) loss,

exp(s(q,p*; ¢))
> petprupy €xp(s(¢, 0 9))

In our preliminary experiments, we observed that
using hard labels to train the rereanker yields poor
results. The reason is that hard labels use binary
targets by taking one query-passage pair as positive
and the rest pairs as negative, failing to provide
informative signals for discerning the subtle dis-
tinctions among passages. To address this problem,
we consider using the soft labels generated by a
dense retriever Dy to guide the reranker training.
These labels effectively capture the nuanced seman-
tic relatedness among multiple relevant passages.
Specifically, we employ the KL divergence loss:

EKL == DKL(S(‘CL Ptp ¢)"T(‘Q7 P‘I? 0))7

where P, is the retrieved set of passages regard-
ing to query g, which are sampled from Pgt,l (q).
0

Lcg = —log

T(-|q, Py, 0) and S(:|q, Py, ¢) are the distributions
from the teacher retriever and the student reranker,
respectively. Our preliminary experiment shows
that adding noise to the reranker’s inputs (e.g., word
deletion) can further enhance the performance. For
more details, please refer to Table 4 in Appendix B.

3.3.2 Retriever Training

For each query ¢, we randomly sample one positive
pt and one hard negative p~ from P*(q) (Eq. 3)
and P~ (q) (Eq. 4), respectively. In practice, we use
in-batch negatives (Karpukhin et al., 2020) for effi-
cient training. The dense retriever Dy is trained by
minimising the negative log-likelihood of the posi-
tive passages using contrastive learning (CL) (Had-
sell et al., 2006),

exp(s(qi, pj; 0))
|B]

Lo, = —log .
Zj:l Zpe{p;p;} exp(s(gi, p; 0))

where |B| is the size of a batch . Similarly, we
find that injecting noise into the inputs of the re-
triever during training results in improved perfor-
mance, as demonstrated in Table 4 in Appendix B.
We believe that manipulating words in queries and
passages can be seen as a smoothing method to
facilitate the learning of generalisable matching
signals (He et al., 2020), therefore, preventing the
retriever from simply replying on examining the
text overlaps between the cropping-sentence query
and passages. Additionally, adding noise tweaks
the semantics of texts, which encourages the dense
retriever to acquire matching patterns based on lex-
ical overlaps in addition to semantic similarities.

3.4 Discussion

The novelty of our approach lies in two aspects: i)
We introduce a separate reranker model for training
label refinement. This allows the retriever training
to benefit from an advanced reranker, which fea-
tures a more sophisticated cross-encoding architec-
ture. This design is effective compared to training
the retriever on labels extracted from its own pre-
dictions (see the blue line in Figure 5(a)); ii) We
create a mutual-learning paradigm through iterative
alternating distillation. In our case, we consider
the retriever as a proposal distribution generator,
which selects relatively good candidates, and the
reranker as a reward scoring model, which mea-
sures the quality of an example as a good answer.
At each iteration, the improved reranker can be
used to correct the predictions from the retriever,

915



Setting | Supervised | Unsupervised
'y N + + |8 IS
Model ¥ § 5 757 8 &S § § o 58 F I 5 F
T 5§ §F & G 8§ § JF &8 Fg L5 5 <
S & 0 c & & 4 < ¥ 9 0
Model Size ‘IIOM 110M 110M 4.8B 66M 110M 110M 110M 110M 220M ZZOM‘ - 110M 355M 110M 220M
QGen.Size | - - - - 20MI37B - - - 200M - | - - - - -

Retriever Type \dense dense dense dense dense dense dense mul-vec sparse dense dense\sparse dense dense dense dense

Distillation | X X X X 4 X X 4 v v | X X X X 4

TREC-COVID | 649 59.6 77.2 50.1 70.0 727 789 73.8 71.1 759 765|656 10.0 38.6 262 72.7
BioASQ 309 383 421 324 442 - 429 - 504 433 454|465 230 6.1 306 413
NFCorpus 235 328 30.8 342 345 334 355 338 345 339 35.1|325 209 140 323 33.8
NQ 444 495 518 568 483 - 505 562 544 537 502|329 218 126 269 42.0
HotpotQA 45.1 63.8 635 599 582 604 61.6 667 68.6 0662 657|603 40.5 233 455 619
FiQA-2018 29.5 329 31.6 46.7 344 404 317 356 351 356 343|236 6.1 148 250 311
Signal-1IM (RT) | 249 19.9 265 273 27.6 - 271 - 296 30.1 28.033.0 13.8 214 237 30.8
TREC-NEWS | 384 428 42.8 346 421 - 403 - 394 444 454|398 26.1 257 394 48.0
Robust04 392 47.6 447 50.6 4377 - 443 - 458 479 50.0 | 40.8 20.7 30.0 345 484
ArguAna 419 446 433 540 557 53.8 493 463 521 469 569|315 18.7 456 40.6 50.5
Touché-2020 240 23.0 237 256 255 26.6 238 2063 244 263 195|367 49 116 21.7 29.5
CQADupStack | 29.8 345 347 399 357 - 37.0 - 34.1 354 369|299 105 202 282 35.0
Quora 852 865 847 89.2 836 - 867 852 814 875 845|789 398 815 832 83.9
DBPedia | 28.1 413 39.0 40.8 384 364 39.1 446 442 417 414|313 214 137 299 375
SCIDOCS | 122 165 150 161 169 163 160 154 159 159 174|158 70 74 153 175
FEVER 66.7 758 774 740 759 762 751 785 79.6 78.1 74.1|753 4277 20.1 619 74.1
Climate-FEVER| 20.0 23.7 232 26.7 235 214 21.1 17.6 227 227 218|213 154 176 172 253
SciFact 51.0 67.7 653 662 674 623 709 693 699 679 72.6|66.5 46.1 385 64.6 73.5
Avg. PTR-11 37.0 438 445 449 455 455 457 462 471 465 469 36.1 21.0 279 303 46.1
Avg. BEIR-13 | 41.3 475 482 493 48,6 - 492 499 503 502 500|440 227 26.1 37.7 487
Avg. All 3890 445 454 458 459 - 462 - 474 474 475|423 21.6 246 359 465

Table 1: Zero-shot retrieval results on BEIR (nDCG@10). The best and second-best results are marked in bold
and underlined. Methods that train dedicated models for each of the datasets are noted with . Highlighted rows
represent semantic relatedness tasks. QGen. means query generator. Please refer to Appendix A.2 for baseline

details.

therefore reducing the number of inaccurate labels
in retriever training data. Meanwhile, the improved
retriever is more likely to include more relevant
passages within its top-k predictions and provide
more nuanced soft labels, which can enhance the
reranker training and thus, increase the chance of
finding correct labels by the reranker in the next
iteration. As the training continues, (1) the can-
didates of correct answers can be narrowed down
by the retriever (i.e., better proposal distributions),
as shown in Fig. 4 and (2) the accuracy of finding
correct answers from such sets can be increased
by the reranker, as shown in Fig. 2(b). Overall,
our framework (i.e., ABEL) facilitates synergistic
advancements in both components, ultimately en-
hancing the overall effectiveness of the retrieval
system.

4 Experiments

4.1 Dataset

Our method is evaluated on the BEIR bench-
mark (Thakur et al., 2021), which contains 18
datasets in multiple domains such as wikipedia and
biomedical, and with diverse task formats includ-
ing question answering, fact verification and para-
phrase retrieval. We use nDCG@10 (Jdrvelin and
Kekildinen, 2002) as our primary metric and the av-
erage nDCG @10 score over all 18 datasets is used
for comprehensive comparison between models.
BEIR-13 (Formal et al., 2021) and PTR-11 (Dai
et al., 2023) are two subsets of tasks, where BEIR-
13 excludes CQADupStack, Robust04, Signal-1M,
TREC-NEWS, and BioASQ from the calculation of
average score and PTR-11 further removes NQ and
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Quora. We also partition the datasets into query
search (e.g., natural questions) and semantic re-
latedness (e.g., verification) tasks, in accordance
with Santhanam et al. (2022),

4.2 Experimental Settings

We use Contriever to initialise the dense retriever.
The passages from all tasks in BEIR are chunked
into cropping-sentence queries, on which a single
retriever ABEL is trained. We initialise the reranker
from t5-base-1m-adapt (Raffel et al., 2020) and
train a single reranker ABEL-Rerank similarly. We
conduct the alternating distillation loop for three
iterations and observe that the performance of both
the retriever and reranker converges, and we take
ABEL in iteration 2 and ABEL-Rerank in iteration
3 for evaluation and model comparison. We fur-
ther fine-tune ABEL on MS-MARCO (Bajaj et al.,
2016) to obtain ABEL-FT, following the same train-
ing recipe outlined in Izacard et al. (2022). In
addition, we also evaluate ABEL and ABEL-Rerank
on various datasets that are unseen during training
to test the generalisation ability. More details are
in Appendix A.

4.3 Experimental Results

Retriever Results Both unsupervised and super-
vised versions of our model are compared with a
range of corresponding baseline models in Table 1.
The unsupervised ABEL outperforms various lead-
ing dense models, including models that are super-
vised by MS-MARCO training queries. The super-
vised model, ABEL-FT, achieves 1.0% better over-
all performance than ABEL. ABEL-FT also surpasses
models using the target corpora for pre-training
(COCO-DR), employing fine-grained token inter-
action (ColBERTV2), using sparse representations
(SPLADE++), with larger sizes (GTR-XXL), and
using sophisticated training recipes with diverse
supervision signals (DRAGON+).

Considering semantic relatedness tasks, such as
Signal-1M, Climate-FEVER, and SciFact, ABEL
generally achieves results superior to other super-
vised dense retrievers. For query-search tasks, par-
ticularly question-answering tasks like NQ and Hot-
potQA, ABEL underperforms many dense retrievers.
We attribute such outcomes to the differences in
query styles. Semantic relatedness tasks typically
use short sentences as queries, which aligns with
the cropping-sentence query format employed in
our work. However, query-search tasks often in-
volve natural questions that deviate significantly

—@— ABEL-Rerank Contriever+CE ® UPR A TART X ABEL
@® BM25+CE ® MonoT5 @® PTR W SGPT
48 43.0
X-Large
Lar 42.8
46
42.6
Iol 44 A BAse [ ] 42.4 4
8
c 421 42.2 4
o
; X 42.0
40 41.8 4
[ ]
m|41.6
38 T T T T T T
108 10° 1 2 3

Iteration t (Base Model)
(b) Bootstrapping Iterations

# of parameters
(a) Model Scale

Figure 2: Reranking results on BEIR, with (a) the com-
parison of models with various sizes and (b) the accu-
racy of the reranker in iteration ¢ using the base model.

from the cropping-sentence queries, and such for-
mat mismatch leads to the inferior performance of
ABEL. For lexical matching tasks, such as Touché-
2020, ABEL surpasses the majority of dense retriev-
ers by a considerable margin. We attribute this
success to the model’s ability to capture salient
phrases, which is facilitated by learning supervision
signals from BM25 in retriever warm-up training
and well preserved in the following training iter-
ations. Finally, ABEL outperforms GPL and PTR,
even though they have incorporated high-quality
synthetic queries and cross-encoder distillation in
training. This observation demonstrates that a re-
triever can attain promising results in zero-shot
settings without relying on synthetic queries.

For the supervised setting, the performance of
ABEL can be improved by fine-tuning it on super-
vised data in dealing with natural questions. The
major performance gains are from query-search
tasks and semantic relatedness tasks, which involve
human-like queries, such as NQ (42.0 to 50.2) and
DBPedia (37.5 to 41.4). On other datasets with
short sentences as queries (e.g., claim verification),
the performance of ABEL-FT degrades but is compa-
rable to other supervised retrievers. This limitation
can be alleviated by combining ABEL and ABEL-FT,
thereby achieving performance improvements on
both types of tasks, as illustrated in the last two
bars of Figure 3.

Reranker Results Figure 2 shows the averaged
reranking performance on 9 subsets of BEIR, ex-
cluding FEVER and HotpotQA from PTR-11. As
shown in Figure 2(b), the reranker is able to achieve
improvements as the bootstrapping iteration pro-
gresses, providing strong evidence for the effec-
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| AMB WQA GAT LSO CSP | Avg. #1. Different Pre-trained Models
BM25 963 577 641 31.8 27.7| 55.5 Initialisation \ DRAGON \ ABEL
REALM 88.4 582 430 7.2 5.9 | 40.5
SMCSE | 923 489 417 93 138 | 412 LKL 468 P
Contriever | 96.0 452 672 183 284 | 51.0 R"mrl‘\f[fg 4 180
ABEL 974 696 693 223 354|588 etro : :
#2. Different Training Corpus
Table 2: Zero-shot cross-task retrieval results of unsu- Corpus ‘ Avg. \ A
pervised models based on nD(;G@ 10. The best'and Wikipedia & CCNet 359 _
second-best results are marked in bold and underlined. MS-MARCO 41.0 +5.1
The tasks are AMB=AmbigQA, WQA=WikiQA, BEIR 45.1 +9.2
GAT=GooAQ-Technical, LSO=LinkSO-Python, #3. Model Re-initialisation
CSP=CodeSearchNet-Python. . -
Strategy | wlore-init | w/re-init
Avg. | 457 | 465

tiveness of our iterative alternating distillation ap-
proach. The final reranker model, ABEL-Rerank
(i.e., t = 3), as illustrated in Figure 2(a), enhances
the performance of ABEL by 1.6%, surpassing su-
pervised models of similar parameter sizes. It is
noteworthy that ABEL-Rerank outperforms unsu-
pervised SGPT (Muennighoff, 2022) and zero-shot
UPR (Sachan et al., 2022), despite having much
fewer parameters, and is comparable to PTR, which
creates dedicated models for each task and employs
high-quality synthetic queries. With the increase in
model size, we consistently observe improvements
with ABEL-Rerank and it outperforms TART (Asai
etal., 2022) and MonoT5 (Nogueira et al., 2020) us-
ing only a fraction of the parameters. This finding
demonstrates the potential of incorporating more
capable rerankers to train better retrievers. We
leave this exploration to future work. Please refer
to Tables 5 and 7 in Appendix D for further details.

Cross-Task Results As shown in Table 2, when
directly evaluating ABEL on various tasks unseen
during training, it consistently achieves significant
improvements over Contriever (+7.8%) and out-
performs BM25 and other advanced unsupervised
retrievers. These results show that ABEL is capa-
ble of capturing matching patterns between queries
and passages that can be effectively generalised to
unseen tasks, instead of memorising training cor-
pus to achieve good performance. Please refer to
Appendix E for more results.

4.4 Analysis

Pre-trained Models Table 3 #1 compares our
approach with DRAGON when using different pre-
trained models for initialisation. ABEL outperforms
DRAGON consistently using aligned pre-trained
models, with up to +0.6% gains. Moreover, our
method exhibits continued improvement as we

Table 3: Ablations on pre-trained models, the cor-
pus used for training, and the effects of model re-
initialisation. The average performance (nDCG@10) on
BEIR is reported. Note that for training corpus ablation,
results for retrievers trained with iteration ¢ = 1 are
reported. Wikipedia & CCNet are the training corpora
of Contriever and A indicates performance gains over
Contriever.

use more advanced pre-trained checkpoints. This
demonstrates that our approach is orthogonal to
existing unsupervised pre-training methods, and
further gains are expected when more sophisticated
pre-trained models are available.

Training Corpus We compare models trained us-
ing cropped sentences from different corpus as the
training data. As shown in Table 3 #2, the method
trained using MS-MARCO corpus is significantly
better than the vanilla Contriever (+5.1%) but is
inferior to the one using diverse corpus from BEIR,
and we believe that the diverse corpora we used in
training is one of the factors to our success.

Model Re-initialisation ~We use re-initialisation
to avoid the accumulation from biased errors in
early iterations. At the start of each iteration, we
re-initialise the retriever with the warm-up retriever
and the reranker using pre-trained language models,
respectively, rather than continuously fine-tuning
the models obtained from the last iteration. Table 3
#3 shows the overall performance is increased by
0.8% using this re-initialisation technology.

Combination with Supervised Models We in-
vestigate whether ABEL can advance supervised re-
trievers. We merge the embeddings from ABEL with
different supervised models through concatenation.
Specifically, for a given query ¢ and passage p, and
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Figure 3: The comparison of combining ABEL and su-
pervised dense retrievers (Model & ABEL) on BEIR.
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Figure 4: The effect of bootstrapping the retrieval ability
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Contriever (MS), respectively. # Best Tasks: the number
of tasks on which the models perform the best.

dense retrievers Efz and E;, we compute the rel-
evance score as s(¢, p) = [E}, EJ]" - [E2, E2] =
Z?Zl EéT . E;. The results shown in Figure 3
indicate ABEL can be easily integrated with other
models to achieve significant performance improve-
ment, with an average increase of up to 4.5% on
RetroMAE and even a 1% gain on ABEL-FT. Be-
sides, the benefit is also remarkable (+10%) when
combining ABEL with weak retrievers (i.e., ANCE).
Overall, we observe that the ensembling can re-
sult in performance gains in both query-search and
semantic-relatedness tasks, as demonstrated in Ta-
ble 11 in Appendix F.

Effect of Bootstrapping Figure 4 presents the
comparison of ABEL’s performance throughout all
bootstrapping iterations against the BM25 and the
supervised Contriever. We observe that the accu-
racy of the retriever consistently improves as the
training iteration ¢ progresses. Specifically, ABEL
matches the performance of the supervised Con-
triever on the first iteration, and further gains are
achieved with more iterations ¢ < 2. The perfor-
mance converges at iteration 3, where the results on
six tasks are inferior to those achieved at iteration 2.
Please refer to Figure 6 in Appendix G for results
on each individual task.

Figure 5: Results on BEIR by removing the reranker
component or using synthetic queries for training, where
QS=Query-Search and SR=Semantic-Relatedness.

Self Supervision We investigate the necessity of
taking the reranker as an expert in ABEL. Specif-
ically, we use the top-k predictions of the latest
retriever to extract training data at each iteration,
instead of employing a separate reranker (i.e., with-
out lines 8-10 in Alg.1). The blue line in Figure 5(a)
indicates that the retriever struggles to improve
when using itself as the supervisor. By investigat-
ing a small set of generated labels, we notice the
extracted positive passages for most queries quickly
converge to a stable set, failing to offer new signals
in the new training round. This highlights the es-
sential role of the expert reranker, which iteratively
provides more advanced supervision signals.

Synthetic Queries We assess the utility of
synthetic queries in our approach by replac-
ing cropping-sentence queries with synthetic
queries from a query-generator fine-tuned on MS-
MARCO.? The results in Figure 5(a) show that us-
ing synthetic queries is less effective and exhibits
similar trends, with the performance improving
consistently as the iterative alternating distillation
progresses.’ Splitting task groups, we observe syn-
thetic queries yield a larger performance drop on
semantic-relatedness tasks than query-search tasks,
in Figure 5(b). We attribute this disparity to the
stylistic differences between the training and test
queries. Synthetic queries exhibit similarities to
natural questions in terms of style, akin to those
found in question-answering datasets. In contrast,
semantic relatedness tasks usually involve short-
sentence queries (e.g., claim) that are closer to
cropping-sentence queries. This finding empha-

Zhttps://public.ukp.informatik.tu-darmstadt.
de/kwang/gpl/generated-data/beir

3Using large language models for query generation may
yield better results. We leave this exploration to future work.
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sises the importance of aligning the formats of
training queries with test queries in zero-shot set-
tings. Please refer to Figure 7 in Appendix H for
results comparison in each individual task.

5 Related Work

Neural Information Retrieval Neural retriev-
ers adopt pre-trained language models and fol-
low a dual-encoder architecture (Karpukhin et al.,
2020) to generate the semantic representations of
queries and passages and then calculate their se-
mantic similarities. Some effective techniques
have been proposed to advance the neural retrieval
models, such as hard negative mining (Xiong
et al., 2021), retrieval-oriented pre-training objec-
tives (Izacard et al., 2022), and multi-vector rep-
resentations (Khattab and Zaharia, 2020). All of
these approaches require supervised training data
and suffer from performance degradation on out-
of-domain datasets. Our work demonstrates the
possibility that an unsupervised dense retriever can
outperform a diverse range of state-of-the-art su-
pervised methods in zero-shot settings.

Zero-shot Dense Retrieval Recent research has
demonstrated that the performance of dense retriev-
ers under out-of-domain settings can be improved
through using synthetic queries (Ma et al., 2021;
Gangi Reddy et al., 2022; Dai et al., 2023). Inte-
grating distillation from cross-encoder rerankers
further advances the current state-of-the-art mod-
els (Wang et al., 2022). However, all of these
methods rely on synthetic queries, which gener-
ally implies expensive inference costs on the usage
of large language models. Nonetheless, the quality
of the synthetic queries is worrying, although it can
be improved by further efforts, such as fine-tuning
the language model on high-quality supervised
data (Wei et al., 2022). In contrast, our work does
not have such reliance, and thus offers higher train-
ing efficiency. We show that effective large-scale
training examples can be derived from raw texts in
the form of cropping-sentence queries (Chen et al.,
2022), and their labels can be iteratively refined
by the retriever and the reranker to enhance the
training of the other model.

Iterated Learning Iterated Learning refers to a
family of algorithms that iteratively use previously
learned models to update training labels for subse-
quent rounds of model training. These algorithms
may also involve filtering out examples of low qual-

ity by assessing whether the solution aligns with
the desired objective (Alberti et al., 2019; Zelik-
man et al., 2022; Dai et al., 2023). This concept
can also be extended to include multiple models.
One method is the iterated expert introduced by An-
thony et al. (2017), wherein an apprentice model
learns to imitate an expert and the expert builds on
improved apprentice to find better solutions. Our
work adapts such a paradigm to retrieval tasks in a
zero-shot manner, where a notable distinction from
previous work is the novel iterative alternating dis-
tillation process. For each iteration, the roles of the
retriever and the reranker as apprentice and expert
are alternated, enabling bidirectional knowledge
transfer to encourage mutual learning.

6 Conclusion

In this paper, we introduce ABEL, an unsupervised
training framework that iteratively improves both
retrievers and rerankers. Our method enhances a
dense retriever and a cross-encoder reranker in a
closed learning loop, by alternating their roles as
teachers and students. The empirical results on var-
ious tasks demonstrate that this simple technique
can significantly improve the capability of dense
retrievers without relying on any human-annotated
data, surpassing a wide range of competitive sparse
and supervised dense retrievers. We believe that
ABEL is a generic framework that could be easily
combined with other retrieval augmenting tech-
niques, and benefits a range of downstream tasks.

Limitations

The approach proposed in this work incurs addi-
tional training costs on the refinement of training
labels and the iterative distillation process when
compared to standard supervised dense retriever
training. The entire training pipeline requires ap-
proximately one week to complete on a server with
8 A100 GPUs. This configuration is relatively mod-
est according to typical academic settings.

We focus on the standard dual-encoder paradigm,
and have not explored other more advanced archi-
tectures, such as ColBERT, which offer more ex-
pressive representations. We are interested in in-
vestigating whether incorporating these techniques
would yield additional benefits to our approach.
Furthermore, existing research (Ni et al., 2022)
has demonstrated that increasing the model size
can enhance the performance and generalisability
of dense retrievers. Our analysis also shows that
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scaling up the model size improves reranking per-
formance. Therefore, we would like to see whether
applying the scaling effect to the retriever side can
result in further improvement of the performance.

Moreover, we mainly examined our method on
the BEIR benchmark. Although BEIR covers var-
ious tasks and domains, there is still a gap to in-
dustrial scenarios regarding the diversity of the re-
trieval corpora, such as those involving web-scale
documents. We plan to explore scaling up the cor-
pus size in our future work. Additionally, BEIR is
a monolingual corpus in English, and we are inter-
ested in validating the feasibility of our method in
multi-lingual settings.
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A Experimental Settings

A.1 Implementation Details

For training queries, we divide the passages in the
corpus of each task in BEIR into individual sen-
tences, treating them as cropping-sentence queries.
In datasets with a large corpus size (e.g., Climate-
FEVER), we randomly select 2 million sentences
for training. However, for datasets with fewer pas-
sages (~5k-50k), we use all of them for training.
For each query, we follow Chen et al. (2022) to
extract its positive and negative passages from the
top-k predictions of a specific retriever, where the
top-10 are considered as positives while passages
ranked between 46 and 50 are regarded as negatives.
For the reranking process in line 12 of Algorithm 1,
we always rerank the top 100 retrievals returned by
a specific retriever, from which refined labels are
extracted using the above rules.

We use Contriever? to initialise the dense re-
triever and train it for 3 epochs on 8 A100 GPUs,
with a per-GPU batch size 128 and learning rate
3 x 10~°. Each query is paired with one positive
and one negative passage together with in-batch
negatives for efficient training. A single retriever
ABEL is trained on the union of queries from all
tasks on BEIR. We initialise the reranker from
t5-base-1m-adapt (Raffel et al., 2020) check-
point.> For each query, we sample one positive and
7 negative passages. Similarly, we train a single
reranker ABEL-Rerank using a batch size 64 and
learning rate 3 x 10> for 20k steps, with roughly
1.2k steps on each task. We conduct the iterative
alternating distillation for three iterations and take
ABEL in iteration 2 and ABEL-Rerank in iteration 3
for evaluation and result comparison. We set the
maximum query and passage lengths to 128 and
256 for training and set both input lengths to 512
for evaluation.

We further fine-tune ABEL on MS-MARCO (Ba-
jaj et al., 2016) using in-batch negatives for 10k
steps, with a batch size 1024 and learning rate
1x10~°. The maximum query and passage lengths
for training are set to 32 and 128, respectively. Fol-
lowing Izacard et al. (2022), we first train an initial
model with each query paired with one gold pos-
itive and a randomly-sampled negative. We then
mine hard negatives with this model and retrain
a second model ABEL-FT in the same manner but

4https://huggingface.co/facebook/con’criever

Shttps://huggingface.co/google/
t5-base-1m-adapt

Method | Avg. nDCG@10
Initial Retriever (D) 40.2

+ noise 41.4
Initial Reranker (t = 1) 41.9

+ noise 43.7

+ soft labels 45.6

+ noise & soft labels 47.1

Table 4: Study on the effects of injecting input noise
and using soft labels on model training. Average perfor-
mance on the BEIR benchmark is reported.

with a hard negative 10% of the time.

A.2 Baseline Retrievers

We compare our method with a wide range of
unsupervised and supervised models. Unsuper-
vised models include: (1) BM25 (Robertson and
Zaragoza, 2009); (2) Contriever (Izacard et al.,
2022) that is pre-trained on unlabelled text with
contrastive learning; (3) SimCSE® (Gao et al.,
2021) that uses contrastive learning to learn unsu-
pervised sentence representations by taking the en-
codings of a single sentence with different dropout
masks as positive pairs; (4) REALM’ (Guu et al.,
2020) that trains unsupervised dense retrievers us-
ing the masked language modelling signals from
a separate reader component. Supervised models
include (1) ANCE (Xiong et al., 2021) trained on
MS-MARCO with self-mined dynamic hard neg-
atives; (2) Contriever (MS) and COCO-DR (Yu
et al., 2022) that are first pretrained on unlabelled
corpus with contrastive learning and then fine-
tuned on MS-MARCO; (3) RetroMAE (Xiao et al.,
2022) uses masked auto-encoding for model pre-
training and MS-MARCO for fine-tuning; (4) GTR-
XXL (Ni et al., 2022), ColBERTv2 (Santhanam
et al., 2022) and SPLADE++ (Formal et al., 2022)
that use significantly larger model size, multi-
vector and sparse representations, along with dis-
tillation from cross-encoder on MS-MARCO; (5)
DRAGON+ (Lin et al., 2023) that learns progres-
sively from diverse supervisions provided by above
models on MS-MARCO with both crop-sentence
and synthetic queries; (6) QGen: GPL (Wang et al.,
2022) and PTR (Dai et al., 2023) that create cus-
tomised models for each target task by using syn-
thetic queries and pseudo relevance labels.

®https://huggingface.co/princeton-nlp/
unsup-simcse-roberta-large

"https://huggingface.co/google/
realm-cc-news-pretrained-embedder
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Avg. Performance

Method op-K | TART:9  PTR-11 BEIR-13 Al
Supervised by MS MARCO

BM25+CE 100 39.5 46.2 49.5 47.6

Contriever+CE 100 41.3 46.6 50.2 -

MonoT5 (3B) 1000 44.6 51.1 - -
Zero-shot Domain Adaption

UPR (3B) 1000 37.8 42.7 46.2 -

PTR' (110Mx11) 200 43.9 49.9 - -

TART (1.24B) 100 44.8 - - -

Unsupervised

SGPT (6.1B) 100 38.5 443 46.7 46.2

ABEL-Rerank (110M) 100 42.8 48.5 50.7 48.3

ABEL-Rerank (335M) 100 459 51.3 53.7 51.3

ABEL-Rerank (1.24B) 100 46.7 52.3 54.9 52.4

Table 5: The comparison of state-of-the-art rerankers with ABEL-Rerank on BEIR benchmark using nDCG@ 10.
The averaged results of different experiments are reported. Methods that train dedicated models for corresponding
datasets are noted with . TART-9 excludes FEVER and HotpotQA from PTR-11.

Model | FQ SF TC CQ RB | Avg
SimCSE 267 550 683 29.0 379 | 434
ICT 27.0 585 69.7 313 374 | 448
MLM 302 600 695 304 388 | 45.8
TSDAE 29.3 628 76.1 31.8 394 | 479
Condenser | 25.0 61.7 732 334 41.1 | 469
COCO-DR | 30.7 709 80.7 37.0 443 | 52.7
ABEL 311 735 727 350 484 | 52.1
ABEL-FT | 343 726 765 369 50.0 | 54.1
Table 6: The comparison of unsupervised pre-

training methods on representative BEIR tasks fol-
lowing Wang et al. (2022). The best and second-
best results are marked in bold and underlined. The
tasks are FQ=FiQA, CF=SciFact, TC=TREC-COVID,
CQ=CQADupStack, RB=Robust04. Note that ABEL has
not used MS-MARCQO’s training data for fine-tuning.

B Effects of Noise Injection and Soft
Labels

We find that injecting noise into the inputs for
model training leads to better performance. Specif-
ically, we corrupt the query and passage texts by
sequentially applying random shuffling, deletion,
and masking on 10% of the words. Table 4 shows
the results of injecting noise into the inputs during
the training of the dense retriever and the reranker,
along with the use of soft labels for reranker train-
ing. We observe that noise injection results in posi-
tive effects on both retriever and reranekr training.
Furthermore, incorporating soft labels in reranker
training leads to additional benefits.

C Comparison of Unsupervised
Pre-training Methods

We also compare ABEL with a range of unsuper-
vised domain-adaption methods that employ pre-
training on the target corpus, SimCSE, ICT (Lee
et al., 2019), MLM (Devlin et al., 2019), TS-
DAE (Wang et al., 2021), Condenser (Gao and
Callan, 2021) and COCO-DR. These methods fol-
low a two-stage training paradigm, which first pre-
trains a dense retriever on the target corpus (i.e.,
BEIR) and then fine-tunes the model using MS-
MARCO training data. As shown in Table 6, our
ABEL model, which solely uses unlabelled text cor-
pus for unsupervised training, already outperforms
5 out of 6 models without requiring any supervised
fine-tuning. Building on ABEL, ABEL-FT achieves
the best results among all models that adopt the
two-stage training paradigm. These results clearly
demonstrate the superiority of our method com-
pared to existing ones that rely on the target corpus
for unsupervised pre-training.

D Reranking Performance

We show the reranking results of ABEL-Rerank on
different subsets of BEIR, comparing them with
various state-of-the-art rerankers. Table 5 demon-
strates that ABEL-Rerank achieves comparable or
superior performance than both supervised and un-
supervised rerankers, using similar model sizes
across all subsets. In addition, Table 7 presents the
detailed results of ABEL-Rerank (110M) for differ-
ent iterations. The reranker models trained with
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ABEL-Rerank| FQ SF AA CF DB CQ QU SD FE NF TC T2 HP NQ RB TN SG BA |Avg.

t=1
t=2
t=3

347 73.4 55.2 2277 37.0 36.1 82.8 16.5 68.5 34.4 743 279 67.5 42.0 49.4 45.6 31.5 48.6
35.2 73.1 55.8 252 37.5 36.8 82.9 17.1 76.1 34.8 77.3 29.5 66.6 43.3 50.2 47.1 31.0 47.9|48.2
35.0 72.9 53.4 26.7 37.7 36.6 82.6 17.1 80.8 34.2 76.4 32.1 67.2 4277 49.7 454 29.3 49.0

47.1

48.3

Table 7: The comparison of bootstrapping on the reranking performance of individual tasks. The tasks are
FQ=FiQA, SF=SciFact, AA=ArguAna, CF=Climate-FEVER, DB=DBPedia, CQ=CQADupStack, QU=Quora,
SD=SCIDOCS, FE=FEVER, NF=NFCorpus, TC=TREC-COVID, T2=Touché-2020, HP=HotpotQA, NQ=Natural
Questions, RB=Robust04, TN=TREC-NEWS, SG=Signal-1M, BA=BioASQ.

Domain | Dataset | Query | Passage

Wikipedia | AmbigQA Question Question

Wikipedia | WikiQA Question Answer Sentence
Technical | GooAQ-Technical Question StackOverflow Answer
Technical | LinkSO-Python Question StackOverflow Question
Code CodeSearchNet-Python | Comment | Python Code
Wikipedia | Natural Questions Question | Answer Paragraph
Wikipedia | TriviaQA Question | Answer Paragraph
Wikipedia | WebQuestions Question | Answer Paragraph
Wikipedia | SQuAD Question | Answer Paragraph
Wikipedia | EntityQuestions Question | Answer Paragraph

Table 8: Domains and task formats of cross-task evaluation datasets.

| AMB WQA GAT LSO CSP| Avg.
BM25+CE 96.8 843 747 327 349|647
Contriever+CE | 96.9 87.0 74.7 29.1 43.5|66.2
BM25+MonoT5 | 929 862 79.9 27.8 348|643
TART 911 821 805 25.1 51.4]66.0
ABEL-Rerank | 97.3 79.8 77.7 314 459/ 66.4

Table 9: The cross-task reranking result comparison
of state-of-the-art rerankers with ABEL-Rerank
(nDCG@10). The best and second-best results are
marked in bold and underlined. AMB=AmbigQA,
WQA=WikiQA, GAT=GooAQ-Technical,
LSO=LinkSO-Python, CSP=CodeSearchNet-Python.

more than one iteration (i.e., t = 2, 3) improve the
performance significantly. ABEL-Rerank (¢t = 2)
performs the best on more tasks (10/18), while
ABEL-Rerank (t = 3) achieves a marginally higher
overall score.

E Cross-Task Evaluation

To validate the generalisation ability of ABEL, we
conduct evaluation on a wide range of datasets
(Table 8) without any further training, including
AmbigQA (Min et al., 2020), WikiQA (Yang et al.,
2015), GooAQ-Technical (Khashabi et al., 2021),
LinkSO-Python (Liu et al., 2018), CodeSearchNet-
Python (Husain et al.,, 2019), and five open-
domain question answering datasets, namely Nat-
ural Questions (NQ) (Kwiatkowski et al., 2019),

TriviaQA (Joshi et al.,, 2017), WebQuestions
(WebQ) (Berant et al., 2013) , SQuAD (Rajpurkar
et al., 2016) and EntityQuestions (EQ) (Sciavolino
et al., 2021). Since these datasets were unseen
when training ABEL, their data (i.e., the text corpus)
will only be accessed during the testing phase. Con-
sequently, we consider this as a way to evaluate the
capacity of ABEL to be generalised to unseen tasks
and domains.

E.1 Cross-Task Reranking Results

We compare our ABEL-Rerank model with various
supervised rerankers on five datasets that were not
encountered during training. The results, as shown
in Table 9, indicate that ABEL-Rerank achieves the
highest performance and outperforms supervised
rerankers of comparable sizes (i.e., MonoT5 and
TART). This finding provides compelling evidence
that the reranker component involved in our ap-
proach demonstrates the ability to generalise to
unfamiliar domains and tasks, rather than simply
relying on memorising the corpus of each task in
the BEIR benchmark to achieve promising results.

E.2 Cross-Dataset Results on Open-Domain
Question Answering Datasets

We further evaluate ABEL on five open-domain
question-answering datasets that were not encoun-
tered during training to test its cross-dataset gen-
eralisation ability. We compare ABEL with a wide
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Models NQ TriviaQA WebQ SQuAD EQ Avg.
Top-20 Top-100 | Top-20 Top-100 | Top-20 Top-100 | Top-20 Top-100 | Top-20 Top-100 | Top-20 Top-100

BM25 63.0 78.2 76.4 83.1 62.3 75.5 71.1 81.8 71.4 80.0 68.8 79.7
SimCSE 43.6 58.5 62.1 74.3 44.8 57.7 47.6 63.3 38.5 53.9 473 61.5
ICT' 50.6 66.8 57.5 73.6 434 65.7 45.1 65.2 - - - -
Mss't 59.8 74.9 68.2 79.4 49.2 68.4 51.3 68.4 - - - -
REALM 61.4 74.8 72.2 80.1 62.4 74.1 473 63.5 64.0 74.1 61.5 73.3
Spider® 68.3 81.2 75.8 83.5 65.9 79.7 61.0 76.0 66.3 77.4 67.5 79.6
Contriever | 67.2 81.3 74.2 83.2 65.7 79.8 63.0 78.3 63.9 75.7 66.8 79.7
ABEL 74.7 85.0 80.5 85.7 73.6 834 74.7 84.8 72.1 80.3 75.1 83.8

Table 10: Zero-shot cross-dataset retrieval results of unsupervised models on open-domain question answering
datasets. Top-20 & Top-100 retrieval accuracy on the test set of each dataset is reported. The best and second-best
results are marked in bold and underlined. Unavailable results are denoted with -. Results reported by Ram et al.
(2022) are denoted with .

|FQ SF AA CF DB CQ QU SD FE NF TC T2 HP NQ RB TN SG BA|QS SR Avg.
|31.1 73.5 50.5 25.3 37.5 35.0 83.9 17.5 74.1 33.8 72.7 29.5 61.9 42.0 48.4 48.0 30.8 41.3|44.2 48.7 46.5

29.5 51.0 41.9 20.0 28.1 29.8 85.2 12.2 66.7 23.5 64.9 24.0 45.1 44.4 39.2 38.4 24.9 30.9|34.0 43.8 38.9
34.1 74.1 51.3 27.4 40.5 37.3 87.2 17.9 79.8 33.9 76.5 28.6 64.7 49.5 50.6 49.3 30.6 46.1|47.2 50.6 48.9

32.9 67.7 44.6 23.7 41.3 34.5 86.5 16.5 75.8 32.8 59.6 23.0 63.8 49.5 47.6 42.8 19.9 38.3|43.2 45.8 44.5
31.7 73.8 50.6 25.6 38.8 35.4 84.5 17.6 75.0 34.0 73.2 29.2 62.9 43.1 48.8 48.1 30.9 42.2|44.9 48.9 46.9

RetroMAE [31.6 65.3 43.3 23.2 39.0 34.7 84.7 15.0 77.4 30.8 77.2 23.7 63.5 51.8 44.7 42.8 26.5 42.1|45.8 45.2 45.4
+ ABEL |34.5 71.4 48.5 26.8 43.8 36.3 86.7 17.5 82.0 34.2 80.5 28.8 69.1 53.8 51.5 47.2 30.7 47.9|49.3 49.7 49.5

DRAGON+|35.6 67.9 46.9 22.7 41.7 35.4 87.5 15.9 78.1 33.9 75.9 26.3 66.2 53.7 47.9 44.4 30.1 43.3|47.2 47.6 47.4
+ ABEL |35.5 72.3 51.3 25.4 43.6 37.5 87.8 18.2 80.2 34.8 79.0 28.8 68.5 53.7 51.2 48.4 31.4 46.9|49.1 50.3 49.7

ABEL+ 34.3 72.6 56.9 21.8 41.4 36.9 84.5 17.4 74.1 35.1 76.5 19.5 65.7 50.2 50.0 45.4 28.0 45.4|46.5 48.5 47.5
+ ABEL |33.8 73.9 54.5 24.7 41.8 37.2 85.3 18.0 77.2 34.9 77.4 24.0 66.3 49.5 50.1 48.1 29.9 45.9|47.1 49.9 48.5

ABEL

ANCE
+ ABEL

Contriever
+ ABEL

Table 11: The comparison of various supervised dense retrievers combining ABEL on BEIR benchmark using
nDCG@10. QS and SR means the average performance on query-search and semantic-relatedness tasks, respectively.
The tasks are FQ=FiQA, SF=SciFact, AA=ArguAna, CF=Climate-FEVER, DB=DBPedia, CQ=CQADupStack,
QU=Quora, SD=SCIDOCS, FE=FEVER, NF=NFCorpus, TC=TREC-COVID, T2=Touché-2020, HP=HotpotQA,
NQ=Natural Questions, RB=Robust04, TN=TREC-NEWS, SG=Signal-1M, BA=BioASQ.

range of unsupervised retrievers, including BM25,
REALM, SimCSE, ICT, MSS (Sachan et al., 2021),
Spider (Ram et al., 2022) and Contriever. We use
Top-k (k = 20,100) as the main metrics for eval-
uation according to Karpukhin et al. (2020). As
shown in Table 10, ABEL significantly outperforms
other unsupervised retrievers that have been so-
phisticatedly pre-trained, with an average accuracy
improvement of +8.4% for Top-20 and +4.0% for
Top-100 over Contriever. Note that ABEL exhibits
promising results and surpasses BM25 on SQuAD,
a dataset with high lexical overlaps between ques-
tions and answer paragraphs, and EQ, a dataset
consisting of entity-centric queries. This further
confirms that ABEL effectively retains and enhances
the lexical-matching ability acquired through learn-
ing from BM25 and this strength generalises well
to unseen datasets.

F Combination with Supervised Models

Table 11 shows the results in each individual task
when combining ABEL with supervised dense re-
trievers. The findings indicate that on both types of
tasks (i.e., query-search and semantic-relatedness),
the ensembling with ABEL leads to performance im-
provements on all supervised retrievers, with the
gains being generally more significant on semantic-
relatedness tasks. This demonstrates the comple-
mentarity between ABEL and existing supervised
dense retrievers, which are commonly trained us-
ing labelled data in the form of natural questions.

G Effects of Boostrapping

Figure 6 shows the detailed results of each individ-
ual task throughout the iterative alternating distilla-
tion process. We observe that ABEL-1 outperforms
ABEL-0 on almost all datasets, and the performance
consistently improves from ABEL-1 to ABEL-2. For
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Figure 6: Effects of bootstrapping the retrieval ability on each task of BEIR. CT and MS indicate Contriever and
MS-MARCO, respectively.

ABEL-3, it achieves improvement on 9 datasets but
the results degrade on 6 datasets, with the overall
performance merely competitive to ABEL-2.

H The Effects of Synthetic Queries

Figure 7 shows that synthetic queries demonstrate
greater efficacy on tasks involving natural ques-
tions (e.g., FiIQA), while cropping-sentence queries
are more effective on semantic-relatedness tasks
with short sentence queries (e.g., Climate-FEVER).
Furthermore, when considering query-search tasks
whose domains are substantially distinct from MS-
MARCO, where the query generator is fine-tuned,
employing synthetic queries leads to significantly
worse results, such as touché-2020 and BioASQ.
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