
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 1662–1669
December 6-10, 2023 ©2023 Association for Computational Linguistics

Simple Hardware-Efficient PCFGs with
Independent Left and Right Productions

Wei Liu1,2∗, Songlin Yang3∗, Yoon Kim3, Kewei Tu1,2

1School of Information Science and Technology, ShanghaiTech University
2Shanghai Engineering Research Center of Intelligent Vision and Imaging

3Massachusetts Institute of Technology
{liuwei4,tukw}@shanghaitech.edu.cn

{yangsl66,yoonkim}@mit.edu

Abstract

Scaling dense PCFGs to thousands of nonter-
minals via a low-rank parameterization of the
rule probability tensor has been shown to be
beneficial for unsupervised parsing. However,
PCFGs scaled this way still perform poorly
as a language model, and even underperform
similarly-sized HMMs. This work introduces
SimplePCFG, a simple PCFG formalism with
independent left and right productions. Despite
imposing a stronger independence assumption
than the low-rank approach, we find that this
formalism scales more effectively both as a lan-
guage model and as an unsupervised parser. As
an unsupervised parser, our simple PCFG ob-
tains an average F1 of 65.1 on the English PTB,
and as a language model, it obtains a perplexity
of 119.0, outperforming similarly-sized low-
rank PCFGs. We further introduce FlashInside,
a hardware IO-aware implementation of the
inside algorithm for efficiently scaling simple
PCFGs.

1 Introduction

Despite the improvements in unsupervised pars-
ing obtained through scaling neural probabilistic
context-free grammars (PCFGs), their language
model performance scales less favorably compared
to, for example, hidden Markov models (HMMs)
and neural language models. On the Penn Tree-
bank, a neural PCFG with 30 nonterminals and 60
preterminals obtains ≈ 250 perplexity (Kim et al.,
2019), and while scaling neural PCFGs to thou-
sands of states via a low-rank parameterization can
improve perplexity to ≈ 170 (Yang et al., 2022),
this still lags behind a similarly-sized HMM, which
obtains ≈ 130 perplexity (Chiu et al., 2021), de-
spite the fact that HMMs are a subclass of PCFGs

This work proposes SimplePCFG, a simple
PCFG formalism with independent left and right
productions. We find that this simple PCFG scales

∗Equal contribution.
Code: https://github.com/sustcsonglin/TN-PCFG.

more effectively (in terms of both language mod-
eling and unsupervised parsing) than previous ap-
proaches which scale PCFGs by factorizing the rule
probability tensor into low-rank components (Yang
et al., 2021b, 2022). In particular, we find that sim-
ple PCFGs can obtain significantly lower perplexity
in language modeling while achieving higher un-
supervised parsing performance compared to low-
rank PCFGs with a similar number of nonterminals,
achieving a near state-of-the-art unsupervised pars-
ing performance on the Penn Treebank with an F1
of 65.1. We further describe a hardware-efficient
IO-aware implementation of the inside algorithm,
dubbed FlashInside, to facilitate scalable learning
of simple PCFGs.

2 Simple PCFGs

A PCFG can be defined by a 6-tuple G =
(S,N ,P,Σ,R, π), where S is the distinguished
start symbol, N/P/Σ are a finite set of non-
terminal/pre-terminal/terminal symbols,1 R is a
set of production rules of the form,

S → A, A ∈ N
A → BC, A ∈ N , B,C ∈ N ∪ P
T → w, T ∈ P, w ∈ Σ

and π : R → [0, 1] maps rules to their associated
probabilities. In simple PCFGs, we decompose
πA→BC into πB↶A · πA↷C , effectively assuming
that left and right children are generated indepen-
dently. 2 We denote L,R ∈ R|N |×|N | as the ma-
trix representation of πB↶A and πA↷C , and apply
a neural parameterization over these matrices to
compute the rule probabilities (Kim et al., 2019).
See Appendix A for details.

1For brevity we do not distinguish between N and P for
the rest of the paper.

2This formalism has been discussed in Hsu et al. (2012),
i.e., PCFG-I. We also experimented with PCFG-IE, where
L = R, but found it necessary to distinguish between L and
R to achieve good performance.

1662

https://github.com/sustcsonglin/TN-PCFG

A

B C B C R2

R

A

R3

R1

T
U

V W
VUT

(a) (b) (c)

WUT

Figure 1: Bayesian network-like representations of
PCFG binary rules: (a) original grammar, (b) after ten-
sor decomposition (Yang et al., 2021b), and (c) rank
space grammar (Yang et al., 2022). Our simple PCFG
is almost the same as (c) but uses a flexible parameteri-
zation.

Comparing simple vs. low-rank PCFGs. The
previous approach to scaling HMMs and PCFGs to
thousands of nontermals is parameterizing the rule
probability tensor T ∈ R|N |×|N |×|N | to be low-
rank (Chiu et al., 2021; Yang et al., 2021b, 2022).
Low-rank PCFGs can be viewed as introducing a
new latent variable, namely a “rank variable” R, to
decompose πA→BC into

∑
R πA→RπB↶RπR↷C ,

as shown in Fig. 1, where the tensor/matrix rep-
resentations of πA→BC , πA→R, πB↶R, πR↷C are
T,U,V,W, respectively. Yang et al. (2022,
Sect. 4.2) show that a low-rank PCFG can be re-
parameterized as a simple PCFG with independent
left/right productions by marginalizing nontermi-
nal variables and viewing the rank variables as new
nonterminal variables. As such, low-rank PCFGs
parameterize L,R in a more restrictive manner:
L = VUT ,R = WUT . We speculate that the
shared UT would restrict the expressiveness of low-
rank PCFGs and thus hinder optimization, which
motivates our simple PCFGs.

3 A Hardware-efficient Inside Algorithm

3.1 The inside algorithm for simple PCFGs
The inside algorithm for simple PCFGs has the
following recursive formula:

βA
ij =

∑

B,C∈N
πB↶A · πA↷C

∑

i<k<j

βB
ik · βC

kj

=
∑

i<k<j

(∑

B∈N
πB↶A · βB

ik

)

︸ ︷︷ ︸
ηAik

(∑

C∈N
πA↷C · βC

kj

)

︸ ︷︷ ︸
ζAkj

where βA
ij is the inside probability for span (A, i, j)

with the base case βA
ii = πA→wi . We cache ηAij , ζ

A
ij

to avoid repeated computation, similar to Cohen
et al. (2013) and Yang et al. (2022). The result-
ing complexity is O(l3|N | + l2|N |2) where l is
sentence length.

Vector form. We abuse the notation to have
βij ,ηij , ζij ∈ R|N |. Then we can write βij =∑

i<k<j ηik ⊙ ζkj and ηij = Lβij , ζij = Rβij ,
where ⊙ is the element-wise product.

3.2 FlashInside
It is necessary to implement the inside algorithm
on GPUs efficiently to facilitate scaling of simple
PCFGs. We introduce FlashInside, a hardware-
efficient IO-aware implementation of the inside
algorithm in the spirit of FlashAttention (Dao et al.,
2022). FlashInside comprises of four main tech-
niques:

Span-level parallelism. Given the span width
w, the inside probability vector βi(i+w) could be
computed in parallel for different starting position
i (Yi et al., 2011, Sect. 4.2).

The log-einsum-exp trick. To improve numeri-
cal stability, it is common to use the “log-sum-exp”
trick. For example, letting oij = logβij ,aij =
log ηij , bij = log ζij , we have

oij = x⋆ + log
∑

i<k<j

exp(aik + bkj − x⋆) (1)

where x⋆ = maxi<k<j(aik + bkj) ∈ R|N |. Using
log-sum-exp could be expensive when computing
aij and bij , so we resort to the “log-einsum-exp”
trick (Peharz et al., 2020, Sect. 3.2),

aij = x† + log
(
L exp(oij − x†)

)

bij = x† + log
(
R exp(oij − x†)

)

where x† = maxoij ∈ R.3 This allows
us to leverage matrix multiplication operators,
which are highly optimized on GPUs, to compute
L exp(oij − x†) and R exp(oij − x†).

Kernel fusion. The above computation involves
many element-wise operations and is thus memory-
bounded. Loading and storing these vectors mul-
tiple times would cause significant IO-cost (Dao
et al., 2022). We reduce the IO-cost by fusing these
operations whenever possible. Concretely, when

3We abuse the notation for broadcasting vector-scalar ad-
dition/subtraction.

1663

Algorithm |N | l Speed Memory
log-sum-exp 512 20 1x 100x
log-einsum-exp 512 20 4.8x 3x
FlashInside 512 20 9.5x 1x
log-einsum-exp 8192 20 1x 2x
FlashInside 8192 20 6x 1x
log-sum-exp 512 40 1x 50x
log-einsum-exp 512 40 16x 3x
FlashInside 512 40 44x 1x
log-einsum-exp 8192 40 1x 2.4x
FlashInside 8192 40 39x 1x

Table 1: Ablation of how different elements of FlashIn-
side contribute to speed and memory effiency, with
different numbers of nonterminals (|N |) and sentence
lengths (l). For speed the regular log-sum-exp imple-
mentation from Torch-Struct (Rush, 2020) is the base-
line, whereas for memory our FlashInside serves as the
baseline.

computing exp(oij−x†), we perform max,−, exp
in the same kernel that computes oij ; and we com-
pute aij , bij at once by

[aij |bij] = x† + log
(
[L|R] exp(oij − x†)

)

followed by fused element-wise log and addition
operations.

Recomputation. While it possible to rely on
automatic differentiation (AD) to backpropagate
through the inside algorithm (Eisner, 2016), this
can be memory-inefficient since AD would save
all the intermediate results in the DP computation,
which are not needed. For example, in Eq. 1 the
partial differentiation between oij and aik, bkj is
given by,

δoij

δaik
=

δoij

δbkj
=

exp (aik + bkj − x⋆)∑
k′ exp

(
aik′ + bk′,j − x⋆

)

=
exp (aik + bkj − x⋆)

exp (oij − x⋆)
= exp (aik + bkj − oij)

In the backward pass, we could recompute
exp(aik + bkj − oij) without the need to store
exp(aik + bkj − x⋆) in the forward pass, thus sav-
ing memory 4. We found that this manual backprop-
agation led to a slight decrease in running speed
but greatly increased memory savings, and thus use
it for all our experiments.

Speed comparison Table 1 shows running speed
and memory footprint measured under a single
NVIDIA-A40 GPU, where we compare against
the standard log-sum-exp implementation of the
inside algorithm which only leverages span-level

4This is also known as gradient checkpointing (Chen et al.,
2016).

Model NT ppl (↓)
NHMM 4096 147
LHMM 16384 131.8
Rank HMM 16384 127.0
Rank HMM 32768 126.4
Rank PCFG† 4096 174.5±11.1

Rank PCFG† 8192 161.2±8.9

SN-PCFG 4096 125.4±4.1

SN-PCFG 8192 119.0±5.3

Table 2: Results on the PTB language modeling split
from Mikolov et al. (2011). NT denotes the number of
nonterminals and ppl denotes perplexity. Top results
are from previous papers (Chiu et al., 2021; Yang et al.,
2022), while the bottom results are from the current
work. Our runs are averaged over 4 seeds.

parallelism (e.g., in Torch-Struct (Rush, 2020)).
We can see that the use of log-einsum-exp trick
significantly accelerate the running speed and re-
duce the memory footprint. FlashInside uses the
kernel fusion and recomputation techniques in ad-
dition, resulting in further improvement, especially
on larger grammars and longer sentences.

4 Experimental Setup

Datasets. We conduct experiments on the Penn
Treebank (PTB) (Marcus et al., 1993) dataset with
two different splits: one for language modeling
(Mikolov et al., 2011), and one for unsupervised
parsing (Shen et al., 2018, 2019). We also evaluate
our model on Chinese Treebank 5.1 (CTB) (Xue
et al., 2005) and German and French treebanks
from SPRML (Seddah et al., 2014).

Baselines. Our HMM baselines include neural
HMM (NHMM) (Chiu et al., 2021) , LHMM (Chiu
et al., 2021), and Rank HMM (Yang et al., 2022).
Our PCFG baselines include Neural/Compound
PCFG (N/C-PCFG) (Kim et al., 2019), TN-PCFG
(Yang et al., 2021b) and Rank PCFG (Yang et al.,
2022). † denotes our reimplementation. For Rank
PCFG we use rank size 4096. See Appendix B for
more implementation details.

Evaluation. We use perplexity (ppl) to evaluate
language modeling and sentence-level F1 (S-F1)
(Kim et al., 2019) to evaluate unsupervised parsing.

5 Results

We compare our simple neural PCFG (SN-PCFG)
to the baseline models. Table 2 shows the language
modeling performance on PTB. SN-PCFG obtains
significantly lower perplexity than Rank PCFG,
and outperforms similarly-sized HMMs. This in-
dicates that simple PCFGs provide a viable path

1664

Model NT Chinese French German

S-F1(↑) ppl(↓) S-F1(↑) ppl(↓) S-F1(↑) ppl(↓)
Left-Branching - 7.2 - 5.7 - 10.0

Right-Branching - 25.5 - 26.4 - 14.07 -
Random Trees - 15.2 - 16.2 - 13.9 -

Kim (2022) - - - 41.9 - 47.3 -
Li and Lu (2023) - - - 48.7 - 40.8 -

N-PCFG 30 26.3±2.5 45.0±2.0 42.3±1.6

C-PCFG 30 38.7±6.6 - 45.0±1.1 - 43.5±1.2 -
TN-PCFG 250 39.2±5.0 39.1±4.1 47.1±1.7

Rank PCFG 4096 31.00±8.9 409.4±29.5 31.2±9.3 355.8±13.7 35.6±9.1 215.3±57.1

Rank PCFG 8192 32.4±8.2 372.6±31.4 32.9±10.6 332.2±60.8 38.9±9.6 190.5±65.9

SN-PCFG 4096 39.9±6.3 328.3±62.1 38.0±3.1 379.7±5.2 46.7±4.9 157.8±65.6

SN-PCFG 8192 41.2±3.5 288.2±11.7 43.3±9.9 259.9±70.2 46.9±5.1 159.5±77.2

SC-PCFG 512 38.4±7.4 - 47.9±1.2 - 47.7±1.0 -
SC-PCFG 2048 42.9±2.9 - 49.9±1.7 - 49.1±1.0 -

Table 3: Results on the Chinese, French, and German treebanks. All runs are averaged over 4 seeds.

Model NT S-F1 (↑) ppl (↓)
N-PCFG 30 50.8 252.6
C-PCFG 30 55.2 -
TN-PCFG 500 57.7 210.0
Rank PCFG 4500 64.1 168.0
Rank PCFG† 4096 60.1±7.6 165.1±7.7

Rank PCFG† 8192 61.1±5.9 171.2±11.7

N-PCFG† 128 56.7±3.7 181.1±15.3

SN-PCFG 128 51.1±4.1 231.7±8.1

SN-PCFG 4096 65.1±2.1 132.5±4.9

SN-PCFG 8192 62.9±2.8 134.6±9.1

SC-PCFG 512 54.3±4.8 -
SC-PCFG 2048 60.6±3.6 -
PRPN - 37.4 -
ON - 47.7 -
DIORA+span constraint - 61.2 -
S-DIORA - 57.6 -
Constituency test - 62.8 -
StructFormer - 54.0 -
Fast-R2D2 - 57.2 -
Right-Branching - 39.5 -
Oracle Trees - 84.3 -

Table 4: Unsupervised parsing performance on the PTB
test set, including comparison against prior work (bot-
tom): PRPN (Shen et al., 2018), ON (Shen et al., 2019),
DIORA (Drozdov et al., 2019; Xu et al., 2021), S-
DIORA (Drozdov et al., 2020), Constituency tests (Cao
et al., 2020), StructFormer (Shen et al., 2021), and Fast-
R2D2 (Hu et al., 2022). Whereever possible, we take
the average F1 numbers across different seeds reported
by the above papers (instead of the max).

towards scaling PCFGs, despite the strict indepen-
dence assumption.

Table 4 and 3 show the unsupervised parsing
performance. SN-PCFG consistently outperforms
Rank PCFG in S-F1 while obtaining much lower
perplexity. We also experiment with the com-
pound version of simple PCFGs (SC-PCFG) which
uses an auxiliary sentence-level vector to model
sentence-level properties and uses variational infer-

ence for learning (see the appendix for the full pa-
rameterization). We find that SN-PCFG performs
better on English while SC-PCFG achieves the best
parsing performance in languages other than En-
glish. We remark that the compound parameteriza-
tion is reported to be not compatible with low-rank
parameterization probably due to optimization is-
sues (Yang et al., 2021b). This work successfully
scales compound PCFGs to thousands of states,
which could be useful in some settings such as
multimodal grammar induction which condition on
vector representations of side information (Zhao
and Titov, 2020; Jin and Schuler, 2020; Zhang et al.,
2021, 2022; Li et al., 2022).

Simple PCFG vs. Neural PCFG. Despite the
better scalablity of simple PCFGs, we find that
under the same number of nonterminal (i.e., 128),
SN-PCFG expectedly underperforms N-PCFG in
both language modeling and unsupervised parsing
(Table 4) due to the stronger independence assump-
tion that is necessary for scaling. Nevertheless,
N-PCFG does not scale well and (for example)
runs into memory issues even with just 256 nonter-
minals, while SN-PCFG can scale to 8192 nonter-
minals on a single A40 GPU.

Simple PCFG vs. Rank PCFG. Recall that the
rank PCFG and simple PCFG share an identical
dynamic programming structure. The rank vari-
able in the rank PCFG amounts to the nontermi-
nal variable in the simple PCFG. Consequently, if
we align the rank size in the rank PCFG with the
nonterminal size in the simple PCFG, we achieve
parity in terms of memory footprint and compu-
tational speed within the dynamic programming
computation. In our experiments, we opt for a rank
size of 4096 in the low-rank PCFG. The results, as
presented in tables 2-4, showcase the worse perfor-

1665

mance of the rank PCFG when compared to SN-
PCFG with 4096 nonterminals. Interestingly, this
work was motivated by our observation that merely
augmenting the rank size of PCFG falls short in
bridging the performance gap between HMMs and
PCFGs in language modeling. This resulted in our
exploring alternative parameterizations, culminat-
ing in the straightforward independent left/right
productions based parameterization which yields
superior results in both language modeling and un-
supervised parsing.

6 Related Work

Independence assumptions are frequently made
in grammar learning for tractability and scalabil-
ity. Simple PCFGs assume independent generation
of left and right children, thus resembling split-
head dependency grammars (Eisner, 1996; Collins,
1997; Eisner and Satta, 1999; Paskin, 2001; Klein
and Manning, 2004). We have shown that trading
expressiveness (of grammar formalism) for scal-
ablity is beneficial, and this idea could be applied to
other complex grammar formalism of high parsing
complexity, such as mildly context-sensitive gram-
mars (Yang et al., 2023), synchronized grammars
(Kim, 2021; Wang et al., 2022; Friedman et al.,
2022; Lou and Tu, 2023) and lexicalized grammars
(Zhu et al., 2020; Yang et al., 2021a).

7 Conclusion

In this work we explore a simpler variant of PCFGs
(SimplePCFG) that shows better scaling properties
than previous approaches in terms of both language
modeling and unsupervised parsing performance.
We also introduce a hardware-aware version of the
inside algorithm (FlashInside) which improves over
existing vectorized GPU implementations.

Limitations

We have successfully bridged the gap between
HMMs and PCFGs in language modeling. How-
ever, a significant disparity remains between
PCFGs and neural models like Transformers.
While we recognize the potential of our hardware-
efficient inside algorithm implementation for con-
ducting large-scale language modeling experi-
ments, our aim is not to position PCFGs as direct
rivals to neural models, given the intrinsic limi-
tations arising from PCFG’s strong context-free
independence assumption. Our main objective is to
enhance unsupervised PCFG learning, with a cen-

tral focus on optimizing the sentence log marginal
likelihood objective function.

Simple PCFGs, due to their restrictive grammar
nature, require many nonterminals for optimal per-
formance. However, we observe diminishing re-
turns while scaling up simple PCFGs. This phe-
nomena is common in scaling up latent-variable
models and future work might consider leveraging
the technique from Liu et al. (2023) to mitigate this
issue.

When scaling up simple PCFGs, the computa-
tion of grammar rule probabilities could also be ex-
pensive, especially when constructing the emission
probability matrix of size R|P|×|V|. Compound
parameterization exacerbates this issue since each
sentence will have its own set of grammar rule
probabilities. Consequently, we only used up to
2048 nonterminals in our SC-PCFG experiments.

Acknowlgedment

This study was supported by the National Natural
Science Foundation of China (61976139) and by
funds from an MIT-IBM Watson AI Lab grant.

References
Steven Cao, Nikita Kitaev, and Dan Klein. 2020. Unsu-

pervised parsing via constituency tests. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
4798–4808, Online. Association for Computational
Linguistics.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. 2016. Training deep nets with sublinear
memory cost. CoRR, abs/1604.06174.

Justin T. Chiu, Yuntian Deng, and Alexander M. Rush.
2021. Low-rank constraints for fast inference in
structured models. In Advances in Neural Infor-
mation Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pages
2887–2898.

Shay B. Cohen, Giorgio Satta, and Michael Collins.
2013. Approximate PCFG parsing using tensor de-
composition. In Proceedings of the 2013 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 487–496, Atlanta, Georgia. As-
sociation for Computational Linguistics.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. In 35th Annual Meet-
ing of the Association for Computational Linguistics
and 8th Conference of the European Chapter of the

1666

https://doi.org/10.18653/v1/2020.emnlp-main.389
https://doi.org/10.18653/v1/2020.emnlp-main.389
http://arxiv.org/abs/1604.06174
http://arxiv.org/abs/1604.06174
https://proceedings.neurips.cc/paper/2021/hash/16c0d78ef6a76b5c247113a4c9514059-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/16c0d78ef6a76b5c247113a4c9514059-Abstract.html
https://aclanthology.org/N13-1052
https://aclanthology.org/N13-1052
https://doi.org/10.3115/976909.979620
https://doi.org/10.3115/976909.979620

Association for Computational Linguistics, pages 16–
23, Madrid, Spain. Association for Computational
Linguistics.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
In NeurIPS.

Andrew Drozdov, Subendhu Rongali, Yi-Pei Chen, Tim
O’Gorman, Mohit Iyyer, and Andrew McCallum.
2020. Unsupervised parsing with S-DIORA: Single
tree encoding for deep inside-outside recursive au-
toencoders. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 4832–4845, Online. Association
for Computational Linguistics.

Andrew Drozdov, Patrick Verga, Yi-Pei Chen, Mohit
Iyyer, and Andrew McCallum. 2019. Unsupervised
labeled parsing with deep inside-outside recursive
autoencoders. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 1507–1512, Hong Kong, China. Association
for Computational Linguistics.

Jason Eisner. 2016. Inside-outside and forward-
backward algorithms are just backprop (tutorial pa-
per). In Proceedings of the Workshop on Structured
Prediction for NLP, pages 1–17, Austin, TX. Associ-
ation for Computational Linguistics.

Jason Eisner and Giorgio Satta. 1999. Efficient parsing
for bilexical context-free grammars and head automa-
ton grammars. In Proceedings of the 37th Annual
Meeting of the Association for Computational Lin-
guistics, pages 457–464, College Park, Maryland,
USA. Association for Computational Linguistics.

Jason M. Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In COLING
1996 Volume 1: The 16th International Conference
on Computational Linguistics.

Dan Friedman, Alexander Wettig, and Danqi Chen.
2022. Finding dataset shortcuts with grammar in-
duction. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 4345–4363, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Daniel J. Hsu, Sham M. Kakade, and Percy Liang. 2012.
Identifiability and unmixing of latent parse trees. In
Advances in Neural Information Processing Systems
25: 26th Annual Conference on Neural Information
Processing Systems 2012. Proceedings of a meet-
ing held December 3-6, 2012, Lake Tahoe, Nevada,
United States, pages 1520–1528.

Xiang Hu, Haitao Mi, Liang Li, and Gerard de Melo.
2022. Fast-R2D2: A pretrained recursive neural net-
work based on pruned CKY for grammar induction
and text representation. In Proceedings of the 2022

Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2809–2821, Abu Dhabi,
United Arab Emirates. Association for Computa-
tional Linguistics.

Lifeng Jin and William Schuler. 2020. Grounded PCFG
induction with images. In Proceedings of the 1st
Conference of the Asia-Pacific Chapter of the Asso-
ciation for Computational Linguistics and the 10th
International Joint Conference on Natural Language
Processing, pages 396–408, Suzhou, China. Associa-
tion for Computational Linguistics.

Taeuk Kim. 2022. Revisiting the practical effective-
ness of constituency parse extraction from pre-trained
language models. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
pages 5398–5408, Gyeongju, Republic of Korea. In-
ternational Committee on Computational Linguistics.

Yoon Kim. 2021. Sequence-to-sequence learning with
latent neural grammars. In Advances in Neural In-
formation Processing Systems 34: Annual Confer-
ence on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pages
26302–26317.

Yoon Kim, Chris Dyer, and Alexander Rush. 2019.
Compound probabilistic context-free grammars for
grammar induction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 2369–2385, Florence, Italy. Asso-
ciation for Computational Linguistics.

Dan Klein and Christopher Manning. 2004. Corpus-
based induction of syntactic structure: Models of
dependency and constituency. In Proceedings of
the 42nd Annual Meeting of the Association for
Computational Linguistics (ACL-04), pages 478–485,
Barcelona, Spain.

Boyi Li, Rodolfo Corona, Karttikeya Mangalam, Cather-
ine Chen, Daniel Flaherty, Serge J. Belongie, Kil-
ian Q. Weinberger, Jitendra Malik, Trevor Darrell,
and Dan Klein. 2022. Does unsupervised grammar
induction need pixels? CoRR, abs/2212.10564.

Jiaxi Li and Wei Lu. 2023. Contextual distortion reveals
constituency: Masked language models are implicit
parsers. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5208–5222, Toronto,
Canada. Association for Computational Linguistics.

Anji Liu, Honghua Zhang, and Guy Van den Broeck.
2023. Scaling up probabilistic circuits by latent vari-
able distillation. In The Eleventh International Con-
ference on Learning Representations.

Chao Lou and Kewei Tu. 2023. Improving grammar-
based sequence-to-sequence modeling with decom-
position and constraints. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 1918–
1929, Toronto, Canada. Association for Computa-
tional Linguistics.

1667

http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
https://doi.org/10.18653/v1/2020.emnlp-main.392
https://doi.org/10.18653/v1/2020.emnlp-main.392
https://doi.org/10.18653/v1/2020.emnlp-main.392
https://doi.org/10.18653/v1/D19-1161
https://doi.org/10.18653/v1/D19-1161
https://doi.org/10.18653/v1/D19-1161
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
https://aclanthology.org/C96-1058
https://aclanthology.org/C96-1058
https://aclanthology.org/2022.emnlp-main.293
https://aclanthology.org/2022.emnlp-main.293
https://proceedings.neurips.cc/paper/2012/hash/50c3d7614917b24303ee6a220679dab3-Abstract.html
https://aclanthology.org/2022.emnlp-main.181
https://aclanthology.org/2022.emnlp-main.181
https://aclanthology.org/2022.emnlp-main.181
https://aclanthology.org/2020.aacl-main.42
https://aclanthology.org/2020.aacl-main.42
https://aclanthology.org/2022.coling-1.479
https://aclanthology.org/2022.coling-1.479
https://aclanthology.org/2022.coling-1.479
https://proceedings.neurips.cc/paper/2021/hash/dd17e652cd2a08fdb8bf7f68e2ad3814-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/dd17e652cd2a08fdb8bf7f68e2ad3814-Abstract.html
https://doi.org/10.18653/v1/P19-1228
https://doi.org/10.18653/v1/P19-1228
https://doi.org/10.3115/1218955.1219016
https://doi.org/10.3115/1218955.1219016
https://doi.org/10.3115/1218955.1219016
https://doi.org/10.48550/arXiv.2212.10564
https://doi.org/10.48550/arXiv.2212.10564
https://doi.org/10.18653/v1/2023.acl-long.285
https://doi.org/10.18653/v1/2023.acl-long.285
https://doi.org/10.18653/v1/2023.acl-long.285
https://openreview.net/forum?id=067CGykiZTS
https://openreview.net/forum?id=067CGykiZTS
https://doi.org/10.18653/v1/2023.acl-short.163
https://doi.org/10.18653/v1/2023.acl-short.163
https://doi.org/10.18653/v1/2023.acl-short.163

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank. Comput. Lin-
guistics, 19(2):313–330.

Tomás Mikolov, Anoop Deoras, Stefan Kombrink,
Lukás Burget, and Jan Cernocký. 2011. Empirical
evaluation and combination of advanced language
modeling techniques. In INTERSPEECH 2011, 12th
Annual Conference of the International Speech Com-
munication Association, Florence, Italy, August 27-
31, 2011, pages 605–608. ISCA.

Mark Paskin. 2001. Grammatical bigrams. In Ad-
vances in Neural Information Processing Systems,
volume 14. MIT Press.

Robert Peharz, Steven Lang, Antonio Vergari, Karl
Stelzner, Alejandro Molina, Martin Trapp, Guy Van
den Broeck, Kristian Kersting, and Zoubin Ghahra-
mani. 2020. Einsum networks: Fast and scalable
learning of tractable probabilistic circuits. In Pro-
ceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Vir-
tual Event, volume 119 of Proceedings of Machine
Learning Research, pages 7563–7574. PMLR.

Alexander Rush. 2020. Torch-struct: Deep structured
prediction library. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 335–342,
Online. Association for Computational Linguistics.

Djamé Seddah, Sandra Kübler, and Reut Tsarfaty. 2014.
Introducing the SPMRL 2014 shared task on pars-
ing morphologically-rich languages. In Proceedings
of the First Joint Workshop on Statistical Parsing of
Morphologically Rich Languages and Syntactic Anal-
ysis of Non-Canonical Languages, pages 103–109,
Dublin, Ireland. Dublin City University.

Yikang Shen, Zhouhan Lin, Chin-Wei Huang, and
Aaron Courville. 2018. Neural Language Modeling
by Jointly Learning Syntax and Lexicon. In Proceed-
ings of ICLR.

Yikang Shen, Shawn Tan, Alessandro Sordoni, and
Aaron Courville. 2019. Ordered Neurons: Integrat-
ing Tree Structures into Recurrent Neural Networks.
In Proceedings of ICLR.

Yikang Shen, Yi Tay, Che Zheng, Dara Bahri, Donald
Metzler, and Aaron Courville. 2021. StructFormer:
Joint unsupervised induction of dependency and con-
stituency structure from masked language modeling.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
7196–7209, Online. Association for Computational
Linguistics.

Philippe Tillet, Hsiang-Tsung Kung, and David D. Cox.
2019. Triton: an intermediate language and com-
piler for tiled neural network computations. In Pro-
ceedings of the 3rd ACM SIGPLAN International

Workshop on Machine Learning and Programming
Languages, MAPL@PLDI 2019, Phoenix, AZ, USA,
June 22, 2019, pages 10–19. ACM.

Bailin Wang, Ivan Titov, Jacob Andreas, and Yoon
Kim. 2022. Hierarchical phrase-based sequence-to-
sequence learning. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 8211–8229, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Zhiyang Xu, Andrew Drozdov, Jay Yoon Lee, Tim
O’Gorman, Subendhu Rongali, Dylan Finkbeiner,
Shilpa Suresh, Mohit Iyyer, and Andrew McCallum.
2021. Improved latent tree induction with distant su-
pervision via span constraints. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 4818–4831, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Nianwen Xue, Fei Xia, Fu-Dong Chiou, and Martha
Palmer. 2005. The penn chinese treebank: Phrase
structure annotation of a large corpus. Nat. Lang.
Eng., 11(2):207–238.

Songlin Yang, Roger P Levy, and Yoon Kim. 2023. Un-
supervised discontinuous constituency parsing with
mildly context-sensitive grammars. In Proceedings
of ACL.

Songlin Yang, Wei Liu, and Kewei Tu. 2022. Dynamic
programming in rank space: Scaling structured in-
ference with low-rank HMMs and PCFGs. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
4797–4809, Seattle, United States. Association for
Computational Linguistics.

Songlin Yang, Yanpeng Zhao, and Kewei Tu. 2021a.
Neural bi-lexicalized PCFG induction. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 2688–2699, Online.
Association for Computational Linguistics.

Songlin Yang, Yanpeng Zhao, and Kewei Tu. 2021b.
PCFGs can do better: Inducing probabilistic context-
free grammars with many symbols. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1487–1498,
Online. Association for Computational Linguistics.

Youngmin Yi, Chao-Yue Lai, Slav Petrov, and Kurt
Keutzer. 2011. Efficient parallel CKY parsing on
GPUs. In Proceedings of the 12th International
Conference on Parsing Technologies, pages 175–185,
Dublin, Ireland. Association for Computational Lin-
guistics.

1668

http://www.isca-speech.org/archive/interspeech_2011/i11_0605.html
http://www.isca-speech.org/archive/interspeech_2011/i11_0605.html
http://www.isca-speech.org/archive/interspeech_2011/i11_0605.html
https://proceedings.neurips.cc/paper_files/paper/2001/file/89885ff2c83a10305ee08bd507c1049c-Paper.pdf
http://proceedings.mlr.press/v119/peharz20a.html
http://proceedings.mlr.press/v119/peharz20a.html
https://doi.org/10.18653/v1/2020.acl-demos.38
https://doi.org/10.18653/v1/2020.acl-demos.38
https://aclanthology.org/W14-6111
https://aclanthology.org/W14-6111
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://aclanthology.org/2022.emnlp-main.563
https://aclanthology.org/2022.emnlp-main.563
https://doi.org/10.18653/v1/2021.emnlp-main.395
https://doi.org/10.18653/v1/2021.emnlp-main.395
https://doi.org/10.1017/S135132490400364X
https://doi.org/10.1017/S135132490400364X
https://doi.org/10.18653/v1/2022.naacl-main.353
https://doi.org/10.18653/v1/2022.naacl-main.353
https://doi.org/10.18653/v1/2022.naacl-main.353
https://doi.org/10.18653/v1/2021.acl-long.209
https://doi.org/10.18653/v1/2021.naacl-main.117
https://doi.org/10.18653/v1/2021.naacl-main.117
https://aclanthology.org/W11-2921
https://aclanthology.org/W11-2921

Songyang Zhang, Linfeng Song, Lifeng Jin, Haitao Mi,
Kun Xu, Dong Yu, and Jiebo Luo. 2022. Learning
a grammar inducer from massive uncurated instruc-
tional videos. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Process-
ing, pages 233–247, Abu Dhabi, United Arab Emi-
rates. Association for Computational Linguistics.

Songyang Zhang, Linfeng Song, Lifeng Jin, Kun Xu,
Dong Yu, and Jiebo Luo. 2021. Video-aided unsuper-
vised grammar induction. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1513–1524, Online.
Association for Computational Linguistics.

Yanpeng Zhao and Ivan Titov. 2020. Visually grounded
compound PCFGs. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4369–4379, Online. As-
sociation for Computational Linguistics.

Hao Zhu, Yonatan Bisk, and Graham Neubig. 2020.
The Return of Lexical Dependencies: Neural Lexi-
calized PCFGs. Transactions of the Association for
Computational Linguistics, 8:647–661.

A Neural Parameterization

We present the neural parameterization of our sim-
ple neural pcfg and simple compound pcfg. We use
EG = {wN |N ∈ {S} ∪ N ∪ P} to denote sym-
bol embeddings for simple PCFG and use function
gr(·; θ) = πr parameterized by θ to denote neural
parameterization function.

Simple Neural PCFG We use neural networks
to parameterize these rule probabilities. The neural
parameterization of all rule probabilities πr starts
from corresponding symbol embeddings in EG . Pa-
rameterization function gr(·; θ) can be formulated
as gr(EG ; θ) in simple neural PCFG, which takes
from one of these forms:

πS→A =
exp

(
u⊤
Af1 (wS)

)
∑

A′∈N exp
(
u⊤
A′f1 (wS)

) ,

πB↶A =
exp

(
f2
(
w⊤

B

)
f3 (wA)

)
∑

B′∈N∪P exp
(
f2
(
w⊤

B′
)
f3 (wA)

) ,

πA↷C =
exp

(
f4
(
w⊤

C

)
f3 (wA)

)
∑

C′∈N∪P exp
(
f4
(
w⊤

C′
)
f3 (wA)

) ,

πT→w =
exp

(
u⊤
wf5 (wT)

)
∑

w′∈Σ exp
(
u⊤
w′f5 (wT)

)

where f1, f5 are two-layer residual networks;
f2, f3, f4 are one-linear-layer with ReLU activa-
tion function and residual connections. We high-
light the usefulness of sharing symbol embedding

across different grammar rules; and the use of resid-
ual connections in f2, f3, f4.

Simple Compound PCFG Similar to compound
PCFGs, we parameterize our simple compound
PCFGs with a latent variable z ∼ p(z). We replace
three rule probabilities πB↶A, πB↶A, and πT→w

with πr = gr(z,EG ; θ), while leaving the remain-
ing rule probabilities as gr(EG ; θ). The function
πr = gr(z,EG ; θ) can take one of the following
forms:

πB↶A =
exp

(
f2
(
w⊤

B

)
f ′
3 ([wA; z])

)
∑

B′∈N∪P exp
(
f2
(
w⊤

B′
)
f ′
3 ([wA; z])

) ,

πA↷C =
exp

(
f4
(
w⊤

C

)
f ′
3 ([wA; z])

)
∑

C′∈N∪P exp
(
f4
(
w⊤

C′
)
f ′
3 ([wA; z])

) ,

πT→w =
exp

(
u⊤
wf

′
5 ([wT ; z])

)
∑

w′∈Σ exp
(
u⊤
w′f ′

5 ([wT ; z])
)

where f ′
3, f

′
5 are neural networks which are sim-

ilar to f3, f5 but with different input shape.

B Implementation Details

We follow Mikolov et al. (2011) to preprocess PTB
language modeling split data. For other datasets,
we use the preprocessing from Yang et al. (2021b).

We implement our model based on the code-
base of Yang et al. (2022). And most hyper-
parameters follow their settings. We use Xavier
normal initialization to initialize neural networks.
Our model is optimized by Adam optimizer with
β1 = 0.75, β2 = 0.999, and learning rate 0.002.
All dimensions of symbol embeddings are set to
512. Our FlashInside is implemented with Triton
(Tillet et al., 2019) 5, an open-source python-like
GPU programming language. For the latent vari-
able z in SC-PCFG, we follow the implementation
of Kim et al. (2019) which applies a max-pooling
layer over the hidden states of the BiLSTM to
obtain sentence representation and generates 64-
dimensional mean vectors µ(w) and log-variances
logσ(w) by leveraging an affine layer.

We run all experiments on NVIDIA V100 and
NVIDIA A40. All experimental results are aver-
aged from four runs.

5https://github.com/openai/triton

1669

https://aclanthology.org/2022.emnlp-main.16
https://aclanthology.org/2022.emnlp-main.16
https://aclanthology.org/2022.emnlp-main.16
https://doi.org/10.18653/v1/2021.naacl-main.119
https://doi.org/10.18653/v1/2021.naacl-main.119
https://doi.org/10.18653/v1/2020.emnlp-main.354
https://doi.org/10.18653/v1/2020.emnlp-main.354
https://doi.org/10.1162/tacl_a_00337
https://doi.org/10.1162/tacl_a_00337

