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Abstract

Modern embedding-based metrics for evalua-
tion of generated text generally fall into one
of two paradigms: discriminative metrics that
are trained to directly predict which outputs
are of higher quality according to supervised
human annotations, and generative metrics that
are trained to evaluate text based on the proba-
bilities of a generative model. Both have their
advantages; discriminative metrics are able to
directly optimize for the problem of distinguish-
ing between good and bad outputs, while gen-
erative metrics can be trained using abundant
raw text. In this paper, we present a frame-
work that combines the best of both worlds,
using both supervised and unsupervised signals
from whatever data we have available. We op-
erationalize this idea by training T5SCORE, a
metric that uses these training signals with mT5
as backbone.1 We perform an extensive empiri-
cal comparison with other existing metrics on 5
datasets, 19 languages and 280 systems, demon-
strating the utility of our method.2 Experimen-
tal results show that: T5SCORE achieves the
best performance on all datasets against exist-
ing top-scoring metrics at the segment level.
3

1 Introduction

Automatically evaluating the quality of generated
text plays an essential role in the development
of text generation systems (Lin and Hovy, 2003;
Peyrard, 2019; Mathur et al., 2020a). A key ele-
ment of this evaluation is the design of an auto-
mated metric that can recognize high-quality texts.
The current most-popular approach to create such
high-quality metrics is the discriminative paradigm.

∗Corresponding author
1We use mT5 because it supports more languages com-

pared to other options (e.g., mBART) and provides different
scales of models (e.g., 3B, 11B).

2Appendix A.9.1 shows the dataset details.
3We release our code and models at https://anonymous.

4open.science/r/T5Score-F21D.
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Figure 1: Our framework supports generative and dis-
criminative training. The former uses parallel data and
maximizes the probability of output data conditioned on
the input data. The latter ranks two hypotheses by their
manual scores and maximizes the probability of the bet-
ter hypothesis while minimizing the probability of the
worse hypothesis. Lgen and Ldis denote generative loss
and discriminative loss respectively.

These models are generally trained by taking a sen-
tence embedding model and fine-tuning it using
human judgments of generated text quality as a
learning signal, allowing metrics to directly predict
the quality score of a text. Popular examples in-
clude COMET (Rei et al., 2020) and BLEURT (Sel-
lam et al., 2020). However, the effectiveness of
this method comes at the cost of expensive manual
annotation of human judgements, and thus these
models are less broadly applicable than more com-
mon lexical metrics such as BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004).

More recently, there has been promising work
on generative metrics. These metrics recognize
high-quality texts by formulating evaluation as a
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generation task and using the generative likelihood
as an indication of quality, making it possible to
train the models without explicit human annotation.
Examples of these metrics include BARTScore
(Yuan et al., 2021) and PRISM (Thompson and
Post, 2020a). However, because such generative
models do not utilize human judgements at training
time, these models are inherently at a disadvantage
compared to metrics that can utilize supervision.

In this work, we argue that it is crucial to utilize
all possible supervision symbols that could indicate
the quality of the text. To this end, we propose a
framework for learning evaluation metrics based on
the assumption that generative and discriminative
objectives can work in concert to train a better
evaluator, as shown in Fig. 1.

We achieve this idea by (1) starting with the
pre-trained model mT5 (Xue et al., 2021), (2) train-
ing mT5 in a generative fashion by maximizing
the probability of existing parallel data, then (3)
fine-tuning mT5 discriminatively by minimizing a
contrastive loss function to teach it to ensure that
the generative probability of high-quality texts is
higher than that of low-quality texts. At evaluation
time, the probability of generating a text is used as
the quality score, because the model has learned to
assign high probability to superior texts. Our frame-
work has the flexibility to choose from a supervised
training strategy and an unsupervised training strat-
egy depending on if human judgements are avail-
able for a given language or task, while keeping
the evaluation process the same.

We evaluate the proposed metric (T5SCORE) on
5 datasets covering machine translation (MT) and
summarization tasks across 19 languages. Regard-
ing reference-based experiments, at the segment
level, T5SCORE trained generatively achieves the
best performance on one dataset without human
annotated training examples; T5SCORE trained dis-
criminatively achieves the best performance on 4
datasets with human annotated training examples
against top-scoring counterparts. At the system
level, T5SCORE trained discriminatively achieves
the best performance in 5 of 6 test settings (2 cor-
relation methods × 3 datasets). Empirical results
also show the effectiveness of generative training,
especially for tasks without human judgments. Re-
garding source-based experiments, we find it bet-
ter at evaluating top-scoring systems compared
to reference-based evaluation, showing the impor-
tance of developing source-based evaluation as ma-

chines generate higher-quality texts.

2 Task Formulation

Text generation evaluation aims to design a func-
tion auto_eval(·) that takes in a source text x, some
reference outputs y and a system output ŷ and pre-
dicts a scalar value that indicates the quality of
the system output. The validity of the designed
function depends on the degree of correlation be-
tween auto_eval(·) and human judgements (which
can be denoted as manual_eval(·)). The better the
correlation between the two, the more effective we
consider our designed function to be.

Specifically, in this work, we call an evalu-
ation function (1) source-based if it takes only
x and ŷ and predicts using auto_eval(x, ŷ) (2)
and call an evaluation function reference-based
if it takes only y and ŷ and predicts using
auto_eval(y, ŷ), or it takes x, y and ŷ and predicts
using auto_eval(x,y, ŷ).

3 Metric Design

In this section, we describe T5SCORE and explain
how to train the metric in both a generative and
discriminative fashion.

3.1 Evaluation as Generation
Following Yuan et al. (2021), we formulate text
generation evaluation as a text generation problem.

Specifically, the quality of a generated text is
measured by calculating the per-token conditional
probability of one text a given another text b,
which we also abbreviate as “b → a”:

T5SCORE =
1

|a| log p(a|b; θ) (1)

θ are the parameters of the sequence-to-sequence
model used to calculate these probabilities. De-
pending on which strings we use for a and b we
can evaluate the text from different perspectives.
We adopt the definition of Precision, Recall and
F score based on different generation directions
(Yuan et al., 2021):
Precision: (x or y → ŷ): Calculate probability
from reference (or source) text to generated hy-
pothesis p(ŷ|y; θ) (or p(ŷ|x; θ)).
Recall (ŷ → x or y): Calculate probability from
generated hypothesis to reference (or source) text
p(y|ŷ; θ) (or p(x|ŷ; θ)).
F score (x or y ↔ ŷ): The arithmetic average of
Precision and Recall to consider both directions.
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According to preliminary experiments, F score
correlated better with human evaluation scores on
the DA20 dataset (§4.1) than Precision and Recall,
so we adopt F score for default. In order to support
multilingual evaluation, we choose mT5 (Xue et al.,
2021) as our pre-trained model.

3.2 Generative Training for T5SCORE

Generative training aims to teach the model to gen-
erate target text from the input text with a standard
negative log likelihood loss:

Lgen = − 1

m

m∑

t=1

log p(yt|y<t,x; θ). (2)

We use the MT dataset ParaCotta (Aji et al.,
2022) and paraphrasing dataset MT-prism (Thomp-
son and Post, 2020b) as parallel corpora4 to train
our models generatively.

3.3 Discriminative Training for T5SCORE

We also design discriminative training methods
where human judgments for generation quality are
available. Suppose we have an annotated training
dataset D = {xi,yi, ŷi,mi|i = 1, ..., N}, where
xi, yi, ŷi, and mi denote the i-th example of the
source text, the reference text, the hypothesis text,
and the manual score, respectively (ŷi and mi

can be multiple hypotheses with their correspond-
ing quality scores). We first generate a relative
rank dataset DRR = {xi,yi, ŷ

+
i , ŷ

−
i ,m

+
i ,m

−
i |i =

1, ..., N} by finding a pair of hypotheses ŷ+
i with

higher manual score m+
i and ŷ−

i with lower man-
ual score m−

i for the same source text xi and ref-
erence text yi. Then, to encourage the model to
assign higher probabilities to the better hypothesis
ŷ+, we adopt a contrastive loss function, following
Liu et al. (2022); Hopkins and May (2011):

Ldis = max(0, f(ŷ−)− f(ŷ+) + α(m+ −m−))
(3)

where α is the weight of the margin term. f is
defined as f(ŷ) = 1

m

∑m
t=1 log p(ŷt|ŷ<t,y, θ)

for reference-based methods, and f(ŷ) =
1
m

∑m
t=1 log p(ŷt|ŷ<t,x, θ) for source-based

methods, where m is the number of tokens in ŷ.
Because we adopt F score for evaluation by de-

fault, our training process also considers two gener-
ation directions: from x or y to ŷ and from ŷ to x
or y. We augment the training samples by repeating

4Appendix A.9.2 shows the corpus details.

the corpus DRR and changing x or y which is orig-
inally the model’s input to the output and changing
ŷ which is originally the model’s output to the in-
put. Thus, half of the time we calculate f(ŷ) =
1
m

∑m
t=1 log p(yt|y<t, ŷ, θ) for reference based

methods, and f(ŷ) = 1
m

∑m
t=1 log p(xt|x<t, ŷ, θ)

for source based methods.

4 Experimental Setup

4.1 Evaluation Datasets

We evaluate on 5 datasets: the Direct Assess-
ment (DA) corpus from WMT20 metrics shared
task (DA20; Mathur et al. (2020b)); datasets ob-
tained by re-annotating the outputs from WMT20
and WMT21 shared task according to the Multi-
dimensional Quality Metrics (MQM) framework
(MQM20 & MQM21; Lommel et al. (2014)); the
dataset of WMT20 shared task on Quality Estima-
tion (QE20; Specia et al. (2021)); and a multilin-
gual summarization dataset (MultiSumm; Koto
et al. (2021)). Details in Appendix A.9.1.

4.2 Correlation Measurements

We consider both system-level and segment-level
correlations with human judgments when evaluat-
ing automated metrics.
System-level evaluation calculates average human
scores for each generation system to produce a
scalar rating for the system performance. We em-
ploy the Pearson correlation (sys-p) and Kendall’s
Tau correlation (sys-k) as the evaluation measure
for system-level metrics.
Segment-level correlation measures the correlation
over segment-level assessments. We keep the same
setup as in Mathur et al. (2020b) converting Direct
Assessment (DA) to DA relative rank (DARR) and
adopting a Kendall’s Tau-like (seg-k) formulation
as the evaluation measure. We adopt the bootstrap-
ping method (p-value < 0.05) (Koehn, 2004; Gra-
ham et al., 2014) for pair-wise significance tests.

4.3 Baseline Metrics

We consider the following baseline metrics for
comparison: BLEU (Papineni et al., 2002) which
is the precision of n-grams of the MT output
compared to the reference; ROUGE (Lin, 2004)
which measures the lexical overlap between the
system and reference; COMET (Rei et al., 2020)
which is a discriminative metric that uses XLM-
RoBERTa to encode source, hypothesis and refer-
ence and can be optimised towards different ob-
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jectives; BERTScore (Zhang et al., 2019) which
computes the cosine similarity between the refer-
ence and hypothesis tokens’ embeddings based on
BERT (Devlin et al., 2018); BLEURT (Sellam
et al., 2020) which is a BERT-based regression
model trained on synthetic examples and ratings
from WMT; PRISM (Thompson and Post, 2020a)
which is a generative metric that scores MT system
outputs conditioned on their respective human ref-
erences; BARTScore (Yuan et al., 2021) which is
a generative metric that uses BART (Lewis et al.,
2019) to evaluate the generated text. 5

5 Reference-based Evaluation

We consider two tasks in reference-based evalu-
ation: machine translation (DA20, MQM20 and
MQM21) and summarization (MultiSumm).

5.1 Training Details

We consider four different sizes of base models:
mT5-B (580M parameters), mT5-L (1.2B parame-
ters), mT5-XL (3.7B parameters), and mT5-XXL
(11B parameters). Both generative and discrimina-
tive training are considered, with the former based
on ParaCotta corpora and the latter based on WMT
DA corpora from 2017 to 2019. Our model imple-
mentation is based on Huggingface transformers
(Wolf et al., 2020). More details of the hyperpa-
rameters, training time, computing resources can
be found at Appendix A.2.

DA20 Evaluation of the training models is carried
out on the DA20 dataset.

MQM We consider various discriminative training
data, resulting in the following models:6

(a) T5SCORE-*20 is trained on WMT DA corpus
from 2017 to 2019.

(b) T5SCORE-*21 is trained on WMT DA corpus
from 2017 to 2020.

(c) T5SCORE-*21mqm is (b) further trained for 1
additional epoch on MQM20.

MultiSumm Due to the small size of the Multi-
Summ dataset (135 examples per language pair),
we do not undertake the additional training of a
model specific to summarization. Instead, we use
models trained on ParaCotta and WMT directly.

Figure 2: System-level Kendall’s Tau and Pearson cor-
relations for the WMT DA20 corpus. Detailed results
can be found at Appendix A.4.
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5.2 Results

For DA20, Tab.1/Tab.7 shows segment level
Kendall’s Tau correlation results of diverse met-
rics for 10/8 language pairs with English as tar-
get/source;7 Fig.2 shows system level results on av-
erage. For MQM20 and MQM21, Tab.2 shows both
segment level and system level results. For Multi-
Summ, Fig. 3 illustrates the segment Kendall’s Tau
correlation.8 9

In all tables, ‡denotes correlations not signifi-
cantly outperformed by any other metric for the
given language pair, while †denotes correlations
not significantly outperformed by any other unsu-
pervised metric. The highest correlation for each
language pair by unsupervised methods is under-
lined, and the highest correlation overall is bold.

From the above tables and figures, we observe:
1) At segment level, our method achieves the best

performance on average. Supervised T5SCORE-

5The specific models used for each baseline Metric can be
found at Appendix A.10.

6More training results could be found at Appendix A.1.
7We find that one MT system NiuTrans.1511 of language

pair en-zh generates unnecessary spaces between Chinese
characters. Most evaluation metrics cannot handle the spaces
well, causing an obvious outlier MT system and influencing
correlation greatly, especially Pearson’s correlation which is
notably sensitive to outliers. To remove the influence, we
delete the spaces between Chinese characters of MT system’s
outputs at evaluation time for every evaluation metric.

8For simplicity, we report F score of our model and other
baselines like BERTScore, BARTScore which also differenti-
ate Precision, Recall and F score.

9Because segment scores are reliable only when averaged
over sufficient number of judgments (Mathur et al., 2020b),
we choose Kendall’s Tau-like segment score as our correlation
metric, different from the original paper (Koto et al., 2021),
which uses segment Pearson correlation. We also report Pear-
son correlation results in Appendix A.8 for reference.
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Table 1: Segment-level Kendall’s Tau correlations for the WMT DA20 corpus. Avg-en denotes the average
correlation achieved by a metric across all x-en language pairs. Avg-x denotes the average correlation across all
en-x language pairs, and Avg denotes the average correlation across all language pairs. This table shows the results
of all x-en language pairs and the results of en-x language pairs can be found at Appendix A.3.

cs-en de-en iu-en ja-en km-en pl-en ps-en ru-en ta-en zh-en Avg-en Avg-x Avg

UNSUPERVISED METHODS

sentBLEU 6.8 41.1 18.1 18.8 22.6 -2.5 9.6 -0.5 16.3 9.3 13.9 30.0 21.1
BERTScore 11.7 45.2 21.6 24.3 27.9 4.7 15.9 6.0 21.9 13.4 19.3 39.3 28.2
PRISM 13.5‡ 46.5 25.5 26.3 30.4 6.6 16.5 10.0 23.0 14.5 21.3 41.9 30.5
BARTScore 12.4 48.5† 23.5 26.6 31.8‡ 9.1† 16.0 12.8† 23.8 16.3† 22.1 43.4 31.6

T5SCORE-Bun 12.9 48.4 24.3 26.0 30.4 8.3 19.4‡ 11.9 24.0† 15.9 22.2 42.8 31.3
T5SCORE-Lun 13.0† 48.7† 26.6† 27.9† 30.9 8.5 17.7 12.8 24.0† 16.5† 22.7 45.3 32.7
T5SCORE-XLun 13.0 48.8† 26.1† 27.7† 29.8 9.2† 17.7 13.2† 23.8† 15.9 22.5 46.7 33.3

SUPERVISED METHODS

BLEURT 13.6‡ 47.6 27.1 28.1 31.2‡ 4.7 18.4‡ 10.3 25.3 14.7 22.1 50.0 34.5
COMET 12.9 48.5 28.1 27.4 29.8 9.9‡ 15.8 15.6‡ 24.2 17.1‡ 22.9 51.0 35.4

T5SCORE-Bsup 13.9‡ 48.5 29.2‡ 28.1 30.3 9.6‡ 17.4 13.1 23.9 15.5 22.9 47.2 33.7
T5SCORE-Lsup 14.0‡ 49.3‡ 28.5‡ 28.9‡ 30.1 8.3 17.6 15.3‡ 25.9‡ 16.3 23.4 50.4 35.4
T5SCORE-XLsup 12.8 49.6‡ 29.2‡ 29.1‡ 31.5‡ 9.3 18.0 15.2‡ 25.4 15.8 23.6 51.4 36.0

XL surpasses all baselines for DA20, MQM20 and
MQM21; unsupervised T5SCORE-L surpasses all
baselines for MultiSumm.

2) At segment level, as language model size in-
creases, the metric performance tends to saturate.
In Tab.7, from T5SCORE-B to T5SCORE-L and
from T5SCORE-L to T5SCORE-XL, the perfor-
mance of our unsupervised metric improves by 1.4
and 0.6 on average, respectively; while the perfor-
mance of our supervised metric improves by 1.7
and 0.6, respectively.10 However, this is not so
clear at system level. A possible reason is that at
the system level, there are usually less than 20 sys-
tems to be evaluated, much fewer than the number
of examples at the segment level, so tiny differ-
ences in one MT system can have a large impact
on the final results.

3) At system level, our method is better at
Kendall’s Tau correlation compared to Pearson cor-
relation. In Fig.2, our method achieves the highest
Kendall’s Tau correlation compared to other base-
lines while performs slightly worse than COMET
in terms of Pearson correlation. This can be at-
tributed to our training process, which adopts a
contrastive loss function, making our models bet-
ter at predicting the relative rank of examples or
systems instead of the absolute score.

10From T5SCORE-XL to T5SCORE-XXL, the performance
of our unsupervised metrics improves by 0.3. Detailed results
can be found at Appendix A.5. Due to the limited computa-
tional resources and the limited performance improvement of
T5SCORE-XXL, we don’t train supervised T5SCORE-XXL.

Figure 3: Segment-level Kendall’s Tau correlation on
MultiSumm corpus. Details in Appendix A.8.
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4) For datasets without human annotated train-
ing examples, our unsupervised method achieves
the best performance. In Fig. 3, our supervised
methods perform worse than unsupervised meth-
ods, and other supervised methods do not work
well either. The reason could be that these methods
are trained on MT data, and their direct use for the
summarization task may impair their performance.
These results also indicate that our method has the
advantage that the unsupervised version still works
well in the absence of human annotated data.

6 Source-Based Evaluation

We also support source-based discriminatively
trained methods. In this section, we show the effec-
tiveness of the source-based method. We consider
the task of machine translation and inspect the re-
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Table 2: Segment Kendall’s Tau, system Pearson and system Kendall’s Tau of different metrics on MQM20 and
MQM21 dataset. Avg. denotes the average correlation achieved by a metric across two language pairs and two years.
Method COMET uses model wmt20-comet-da and wmt21-comet-mqm for MQM20 and MQM21 respectively.
Method T5SCORE-XLsup uses model T5SCORE-*20 and T5SCORE-*21

mqm for MQM20 and MQM21 respectively.

MQM-2020 MQM-2021 avg
en-de zh-en en-de zh-en

sys-p sys-k seg-k sys-p sys-k seg-k sys-p sys-k seg-k sys-p sys-k seg-k sys-p sys-k seg-k

UNSUPERVISED METHODS

sentBLEU 82.8 52.4 11.3 43.8 57.1 7.6 88.0 82.1 2.8 35.4 28.2 1.5 62.5 54.9 5.8
BERTScore 79.1 42.9 20.4 51.5 35.7 15.2 88.6 82.1 11.6 48.7 33.3 5.3 67.0 48.5 13.1
PRISM 98.9 81.0 27.8 77.8 64.3 23.3 80.7 56.4 12.7 49.0 30.8 10.0 76.6 58.1 18.5
BARTScore 91.9 90.5 25.0 54.0 50.0 20.8 86.7 79.5 17.9 43.2 30.8 9.5 69.0 62.7 18.3

T5SCORE-Bun 94.6 71.4 23.4 52.2 42.9 20.2 82.8 64.1 13.3 49.0 35.9 10.4 69.7 53.6 16.8
T5SCORE-Lun 95.1 81.0 25.6 57.5 42.9 21.8 84.2 64.1 15.1 51.4 35.9 10.4 72.0 56.0 18.2
T5SCORE-XLun 93.4 81.0 27.7 66.6 64.3 22.7 86.4 71.8 16.2 51.7 41.0 10.5 74.5 64.5 19.3

SUPERVISED METHODS

BLEURT 95.5 71.4 30.7 91.6 78.6 24.3 79.7 64.1 16.4 47.3 41.0 10.3 78.5 63.8 20.4
COMET 96.5 71.4 27.7 88.9 71.4 22.1 77.1 66.7 19.8 55.9 33.3 14.1 79.6 60.7 20.9

T5SCORE-Bsup 98.4 71.4 25.5 65.2 42.9 21.8 91.7 79.5 18.0 56.5 46.2 11.5 78.0 60.0 19.2
T5SCORE-Lsup 98.5 81.0 29.6 85.5 64.3 25.1 88.9 74.4 20.7 58.9 48.7 13.6 83.0 67.1 22.3
T5SCORE-XLsup 98.9 81.0 31.8 89.0 78.6 25.5 86.0 69.2 19.2 62.9 53.8 12.5 84.2 70.7 22.3

sults on three datasets: DA20, MQM21 and QE20.

6.1 Training details
Hyperparameters are kept the same as in Sec. 5.1.
DA20 Generative training is performed on MT-
prism, while discriminative training is performed
on the WMT DA corpus from 2017 to 2019.
MQM21 We take the models from DA20 and fur-
ther train them for 2 additional epochs on MQM20.
QE20 DA20 models are further trained on the
QE20 train split. The best checkpoint is picked
based on its performance on QE20 development
split and the results on the test split are reported.

6.2 Results

Table 3: Segment Kendall’s Tau, system Pearson and
system Kendall’s Tau on the MQM21 dataset for source-
based methods. The highest correlation for each lan-
guage pair under each correlation method is bold.

en-de zh-en

sys-p sys-k seg-k sys-p sys-k seg-k

COMETmqm
src 68.5 46.2 16.2 50.5 41.0 10.0

T5SCORE-Bmqm
src 42.9 23.1 13.0 53.0 41.0 6.2

T5SCORE-Lmqm
src 67.6 48.7 16.9 60.8 51.3 8.6

T5SCORE-XLmqm
src 77.8 56.4 17.9 58.7 48.7 9.3

For MQM21, We compare our supervised model
with the COMETmqm

src baseline (Rei et al., 2021).11

11COMETmqm
src is a source-based metric trained on WMT

Tab.3 illustrates both the segment level and system
level results. For DA20, we compare our super-
vised model with COMETsrc baseline (Rei et al.,
2021).12 Results can be found at Appendix A.6.
For QE20, we choose PRISMqe (Thompson and
Post, 2020a) which is a reference free version of
PRISM as the unsupervised baseline, and Tran-
sQuest (Ranasinghe et al., 2020b,a) which is the
winner of WMT2020 Shared Task on Quality Es-
timation (Specia et al., 2021) as the supervised
baseline.13 Tab. 4 illustrates the segment Pearson
correlation14 of different evaluation metrics.

We have the following observations:
1) For MQM21, T5SCORE surpasses the base-

line at both segment and system level on average.
For DA20, T5SCORE is better than the baseline
at the segment level on average, and better than
the baseline for most language pairs at the system
level. For QE20, both supervised and unsupervised
T5SCORE surpass the corresponding baselines.

2) Overall, source-based models perform worse
than the reference-based models, but their differ-
ences are much smaller on MQM21 than DA20. We

DA scores from 2017 to 2020 and adapted to MQM by fine-
tuning on MQM20. We use the model wmt21-comet-qe-mqm.

12COMETsrc is trained on WMT DA scores from 2017 to
2019. We use the model wmt20-comet-qe-da.

13We use the Implementation and the model
monotransquest-da-multilingual.

14The correlation metric follows Specia et al. (2021).
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conjecture that the reason for this may be related
to the human evaluation process where WMT-DA
uses a mixture of source-based and reference-based
annotations, while MQM uses the source.

Table 4: Segment level Pearson correlation on QE20
corpus for source-based methods. The highest corre-
lation by unsupervised method is underlined, and the
highest correlation overall is bold.

si-en ne-en et-en ro-en en-de en-zh Avg

UNSUPERVISED METHODS

PRISMqe 2.9 -13.6 69.4 82.9 46.4 30.4 36.4
T5SCORE-Bu 53.0 55.7 58.1 77.1 13.5 21.3 46.4
T5SCORE-Lu 59.3 60.4 64.1 80.0 20.4 25.9 51.7
T5SCORE-XLu 58.8 61.7 64.0 80.7 26.7 28.5 53.4

SUPERVISED METHODS

TQ 58.9 75.5 76.6 88.0 42.3 44.1 64.2
T5SCORE-Bs 58.1 69.9 71.8 83.4 44.7 41.4 61.6
T5SCORE-Ls 58.9 75.5 76.8 86.4 49.8 44.0 65.2
T5SCORE-XLs 60.2 74.7 77.8 87.1 49.8 45.6 65.9

7 Analysis

We design analyses to better understand the mech-
anism of T5SCORE and its strenghs over other
metrics, specifically asking three questions: Q1:
Is generative training necessary before discrim-
inative training? Q2: What are the strengths
and weaknesses of each evaluation metric? Q3:
When will source-based evaluation outperforms
reference-based evaluation?

Effectiveness of Generative Training In our ex-
periments, discriminative training is based on the
model trained generatively. To answer Q1, we com-
pare the performance of discriminatively trained
models with and without generative training on
DA20. The results are shown in Fig. 4.15 We
observe that (1) Both T5SCORE-B and T5SCORE-
L are enhanced by generative training before dis-
criminative training under three correlation met-
rics (except that T5SCORE-B using segment level
Kendall’s Tau correlation has a little performance
drop), which means that generative training is nec-
essary to improve model performance. (2) Larger
model T5SCORE-L benefits more from generative
training, compared to T5SCORE-B, indicating that
larger models are better at keeping knowledge from
generative training.

Multi-Dimension Analysis For Q2, we compare
diverse evaluation metrics under different error cat-

15Appendix A.7 has detailed results of every language pair.

Figure 4: Segment Kendall’s Tau, system Pearson and
system Kendall’s Tau correlations of different mod-
els with and without generative training on DA20.
T5SCORE-Bw and T5SCORE-Lw are models with gen-
erative training, while T5SCORE-Bw/o and T5SCORE-
Lw/o are models without generative training.
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egories on the MQM datasets. To evaluate the per-
formance of the metrics on a given error category,
we use the score of each example in that error cate-
gory as the gold standard to compare with the score
given by the automated evaluation metrics. There
are six error categories in total, including the five
error categories described in Sec. 4.1 and an overall
category that measures all errors. Fig. 5 shows the
Root Mean Square Error (RMSE)16 of diverse eval-
uation metrics under different error categories. We
observe that: (1) Our model T5SCORE-XLsup ranks
first overall in every error category except accuracy
where BLEURT ranks first. (2) Supervised met-
rics (BLEURT, COMET, T5SCORE-XLsup) per-
form better than other unsupervised metrics. (3)
The evaluation perspectives that all metrics excel at
are the same. All metrics perform best in terms of
accuracy, much better than other error categories.

Top-k Analysis To answer Q3, we conduct exper-
iments on MQM21 and evaluate on the subset of the
data from the top-k performing MT systems.17 Re-
sults are presented in Fig. 6. We find that: (1) The
advantage of the source-based version of T5SCORE

over the reference-based version increases as we
evaluate fewer systems, i.e., only high-quality sys-
tems. Although not as pronounced in COMET,
which also uses the source for its reference-based

16We use RMSE instead of seg-k, because a certain error
category only has a few examples, so the number of examples
to calculate seg-k for that category will be too small to be
accurate. Scores are normalized before calculating RMSE.

17To get more high quality translations, we also evaluate
human translations in this experiment. All other experiments
in this paper don’t include human translations.
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Figure 5: RMSE of different metrics in each error category on MQM dataset.
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Figure 6: Metrics performance of the top-k MT systems. X-axis is number k. Y-axis is correlation results.

approach, it has roughly the same trend. This sug-
gests that the source-based approach is more suit-
able for evaluating top systems, and that source-
based evaluation should be considered as machine
systems are improved. (2) T5SCORE outperforms
COMET on all top-k systems under all three cor-
relation measures, except for the reference-based
version under seg-k correlation. The better perfor-
mance of COMET’s reference-based version may
be attributed to its combination of reference and
source, further indicating the importance of source.

8 Related Work

The increasing performance of generation systems
equipped with large pre-trained models puts for-
ward a higher requirement of the evaluation ability
of automated metrics. As such, researchers are ex-
ploring different evaluation frameworks by teach-
ing metric to learn diverse types of knowledge.

The directest way is to supervise metrics with
manually annotated judgments with a trainable
model, typical works include BEER (Stanojević
and Sima’an, 2014), BLEURT (Sellam et al., 2020),
ROBLEURT (Wan et al., 2022), COMET (Rei
et al., 2020) and C-SPEC (Takahashi et al., 2021).

Despite the superior performance of optimizing
the correlation with human judgments, this method
is expensive in creating human annotations. To by-
pass this challenge, researchers attempt to evaluate
generated texts in an unsupervised way by calculat-

ing the lexical or semantic similarity between refer-
ence and generated texts with surface-based string
match (e.g., BLEU (Papineni et al., 2002), ROUGE
(Lin, 2004) and CHRF (Popović, 2015)) or unsuper-
vised pre-trained components (e.g., BERTSCORE
(Zhang et al., 2019), YISI (Lo, 2019; Lo and Larkin,
2020) and MOVERSCORE (Zhao et al., 2019)).

Recently, works such as PRISM (Thompson and
Post, 2020a) and BARTScore (Yuan et al., 2021)
start to formulate evaluation as a generation task,
which can not only make full use of pre-trained
knowledge but also find more training data that can
provide useful supervision for metrics to learn.

In this paper, we propose a framework that al-
lows different types of signals to be incorporated
into metrics. Concurrent with our work, UniEval
(Zhong et al., 2022) formulates evaluation as a
boolean question answering task and is trained on
semi-supervised data. By contrast, our method is
based on the generation formulation, which enables
us to utilize a large amount of raw parallel data.

9 Conclusions

In this paper, we augment evaluation metrics with
the ability to use different types of signal from data,
which based on the assumption that a good evalua-
tion metric not only should be informed of how to
score different qualities of texts but also how high-
quality texts are generated. We achieve this goal
by proposing a discriminative generation frame-
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work for the evaluation of generated texts, which
outperform 8 existing top-performing metrics on 5
datasets from 19 languages.

Limitations

This study has potential limitations: (1) While dif-
ferent perspectives (e.g. informativeness, fluency,
or factuality) of text could be evaluated, we assign
one overall quality score, which cannot necessar-
ily reflect the quality of a certain aspect. In the
future work, more interpretable metrics could be
designed specifically for a certain evaluation per-
spective. (2) Due to the contrastive training objec-
tive of T5SCORE, our metric may not be as good
at predicting the absolute score of segments or sys-
tems compared to predicting their relative ranks.
(3) We focus on evaluating automatically gener-
ated texts by machine systems. Human generated
texts which might have different features from ma-
chine generated texts could be addressed in future
work. (4) We study reference-based and source-
based metrics separately. A combination of both
could be studied in the future. (5) The potential risk
associated with our model is that the quality anno-
tations we use may have been generated according
to the preferences of a certain demographic group,
for which explicit metadata is not available. As
our model is trained on these annotations, it may
inherit the underlying bias.
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Bojar. 2021b. Results of the wmt21 metrics shared
task: Evaluating metrics with expert-based human
evaluations on ted and news domain. In Proceed-
ings of the Sixth Conference on Machine Translation,
pages 733–774.

Yvette Graham, Nitika Mathur, and Timothy Baldwin.
2014. Randomized significance tests in machine
translation. In Proceedings of the Ninth Workshop on
Statistical Machine Translation, pages 266–274.

Mark Hopkins and Jonathan May. 2011. Tuning as
ranking. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing,
pages 1352–1362.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of
the 2004 conference on empirical methods in natural
language processing, pages 388–395.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Proceedings of
machine translation summit x: papers, pages 79–86.

Fajri Koto, Jey Han Lau, and Timothy Baldwin. 2021.
Evaluating the efficacy of summarization evaluation
across languages. arXiv preprint arXiv:2106.01478.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Chin-Yew Lin and Eduard Hovy. 2003. Automatic
evaluation of summaries using n-gram co-occurrence
statistics. In Proceedings of the 2003 Human Lan-
guage Technology Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 150–157.

Yang Liu and Mirella Lapata. 2019. Text summa-
rization with pretrained encoders. arXiv preprint
arXiv:1908.08345.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

15193

https://aclanthology.org/N03-1020
https://aclanthology.org/N03-1020
https://aclanthology.org/N03-1020


Yixin Liu, Pengfei Liu, Dragomir Radev, and Graham
Neubig. 2022. Brio: Bringing order to abstractive
summarization. arXiv preprint arXiv:2203.16804.

Chi-kiu Lo. 2019. YiSi - a unified semantic MT quality
evaluation and estimation metric for languages with
different levels of available resources. In Proceed-
ings of the Fourth Conference on Machine Transla-
tion (Volume 2: Shared Task Papers, Day 1), pages
507–513, Florence, Italy. Association for Computa-
tional Linguistics.

Chi-kiu Lo and Samuel Larkin. 2020. Machine trans-
lation reference-less evaluation using YiSi-2 with
bilingual mappings of massive multilingual language
model. In Proceedings of the Fifth Conference on
Machine Translation, pages 903–910, Online. Asso-
ciation for Computational Linguistics.

Arle Lommel, Aljoscha Burchardt, and Hans Uszkor-
eit. 2014. Multidimensional quality metrics (mqm):
A framework for declaring and describing transla-
tion quality metrics. Tradumàtica: tecnologies de la
traducció, 0:455–463.

Nitika Mathur, Timothy Baldwin, and Trevor Cohn.
2020a. Tangled up in BLEU: Reevaluating the eval-
uation of automatic machine translation evaluation
metrics. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4984–4997, Online. Association for Computa-
tional Linguistics.

Nitika Mathur, Johnny Wei, Markus Freitag, Qingsong
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A Appendix

A.1 Training with Different Corpora
We compare our model discriminatively trained
on different training corpora: T5SCORE-*20,
T5SCORE-*21 and T5SCORE-*21mqm with baselines:
COMET20 which is trained on WMT DA cor-
pus from 2017 to 2019 and COMET21

mqm which

is trained on WMT DA corpus from 2017 to
2020 and further trained for 1 additional epoch
on MQM-20.18 Tab.5 shows that adding one more
year’s DARR corpus (WMT-DA-20) as training
data, T5SCORE-*21 has better performance than
T5SCORE-*21. Besides, adding MQM in training
has large performance improvement, although the
total number of MQM training samples are much
less than samples in DA corpus.

Table 5: Segment Kendall’s Tau, system Pearson and
system Kendall’s Tau of different metrics on MQM21
with different training data.The highest correlation for
each language pair under each correlation method is
bold.

en-de zh-en

sys-p sys-k seg-k sys-p sys-k seg-k

COMET20 82.3 64.1 18.4 37.2 41.0 11.9
COMET21

mqm 77.1 66.7 19.8 55.9 33.3 14.1

T5SCORE-B20 75.8 53.8 14.5 42.5 28.2 10.0
T5SCORE-B21 82.3 56.4 16.3 41.6 28.2 10.9
T5SCORE-B21

mqm 91.7 79.5 18.0 56.5 46.2 11.5

T5SCORE-L20 79.4 56.4 15.8 44.1 38.5 11.3
T5SCORE-L21 83.9 59.0 17.7 44.0 33.3 11.1
T5SCORE-L21

mqm 88.9 74.4 20.7 58.9 48.7 13.6

T5SCORE-XL21 83.5 61.5 18.0 47.3 35.9 12.4
T5SCORE-XL20 78.7 53.8 16.6 53.4 43.6 12.2
T5SCORE-XL21

mqm 86.0 69.2 19.2 62.9 53.8 12.5

A.2 Training Details
We adopt the Adafactor (Shazeer and Stern, 2018)
optimizer following Raffel et al. (2020). For gen-
erative training, our model is trained on ParaCotta,
and WMT-19 is used as validation set, while WMT-
20 is used as test set. The hyper-parameter tuned
is learning rate. For discriminative training, on the
base of the generative model, we further train our
model on the z-score of WMT DA corpus from
2017 to 2019, using the discriminative loss func-
tion in equation3. The hyper-parameters tuned are
learning rate, dropout rate and α. We choose 4
language pairs (ru-en, en-ru, en-pl, en-cs) as the
validation set to tune the hyper-parameters and pick
the best model checkpoint.

Tab.6 shows the hyper-parameters, training time
and computing resources of T5SCORE. We find
as the model size increases, we need less training
steps to get the best performance on the valida-
tion set, so maximum training steps is decreased

18COMET20 uses the model wmt20-comet-da and
COMET21

mqm uses the model wmt21-comet-mqm.
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for larger models. We use the linear learning rate
scheduler and use 10% of the maximum training
steps as the wamp up step. In the table, when GPU
is larger than 1, we use model parallelism.

A.3 WMT-DA segment level results

A supplement to the Tab. 1 showing the segment-
level results on language pairs with English as
source for the WMT DA20 corpus.

A.4 WMT-DA system level results

Besides segment level correlation, we also calcu-
late system level correlation on WMT DA20 cor-
pus, and the results are shown in Tab.8,9,10,11.

A.5 Unsupvised T5SCORE-XXL Results

In Tab.12, we show results on WMT DA20 corpus
using generative T5SCORE-XXL.

A.6 WMT-DA Source Based Evaluation
Results

We conduct source-based evaluation experiments
on WMT DA20 corpus using supervised T5SCORE.
We compare our supervised source-based model
with COMETsrc baseline (Rei et al., 2021), which
is a source-based metric trained to predict WMT
DA scores from 2017 to 2019.19 Tab.13 illustrates
the segment Kendall’s Tau correlation of diverse
evaluation metrics on WMT-DA. The results show
that at segment level T5SCORE-Bsrc is comparable
to the baseline and larger models surpass the base-
line. Our system level results, shown in Tab.14,15
are also comparable to or better than the baseline
for most language pairs except iu-en and en-iu. In
all tables, Avg-en denotes the average correlation
across all x-en language pairs; Avg-x denotes the
average correlation for all en-x language pairs; Avg
denotes the average correlation for all language
pairs.

A.7 Effectiveness of Generative Training

To show the importance of unsupervised gener-
ative training, we compare the performance of
T5SCORE-B and T5SCORE-L with and without un-
supervised generatively training in Tab.16,17,18,19.
Avg denotes the average correlation for all lan-
guage pairs.

19COMETsrc uses the model wmt20-comet-qe-da.

A.8 MultiSumm Segment Level Pearson
Correlation Result

Tab.20/Tab.21 illustrates the segment Kendall’s
Tau/Pearson correlation of diverse evaluation meth-
ods for 8 language pairs on MultiSumm dataset.

A.9 Dataset

A.9.1 Evaluation Dataset
DA20 DA20 is the Direct Assessment (DA) cor-
pus from WMT20 metrics shared task (Mathur
et al., 2020b) which includes 23,293 segments
across 18 language pairs. DA20 covers 18 language
pairs and 211 systems:km-en(7), en-cs(12), pl-
en(14), ru-en(11), iu-en(11), en-iu(11), ta-en(14),
en-pl(14), en-ta(15), zh-en(16), en-zh(12), cs-
en(12), de-en(12), ja-en(10), en-ja(11), en-de(14),
ps-en(6), en-ru(9).

MQM20 & MQM21 MQM20 (Freitag et al.,
2021a) and MQM21 (Freitag et al., 2021b)
are datasets obtained by professional translators
who re-annotated the outputs from WMT20 and
WMT21 shared task according to the Multidimen-
sional Quality Metrics (MQM) framework (Lom-
mel et al., 2014). The MQM framework con-
tains assessments of five aspects of the text, which
are accuracy, fluency, terminology, style, and lo-
cal. MQM20 covers 2 language pairs and 20 sys-
tems: en-de(10), zh-en(10) and comprises 1,418
and 2,000 segments for language pair en-de, zh-
en respectively. In our experiments, we excluded
3 human translation systems for en-de and 2 hu-
man translation systems for zh-en. MQM21 covers
2 language pairs and 32 systems: en-de(17), zh-
en(15) including 527 and 650 samples for en-de,
zh-en respectively.

QE20 QE20 (Specia et al., 2021) is the dataset of
WMT20 shared task on Quality Estimation (QE).
It covers 6 language pairs: en-de, en-zh, ro-en,
et-en, ne-en, si-en, comprising 7,000/1,000/1,000
segments for Train/Dev/Test set for each language
pair respectively, and each language pair uses one
state-of-the-art machine translation models built
using the fairseq toolkit (https://github.com/
facebookresearch/fairseq).

MultiSumm MultiSumm (Koto et al., 2021) is
a multilingual summarization dataset containing
texts and their summaries in eight languages (en,
id, fr, tr, zh, ru, de, es). The dataset collects 135
documents in each language, as well as summaries
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Table 6: Hyper-parameters, training time and computing resources. Max-step means the maximum training steps.
Save-step means we save a checkpoint every save-step. GPU shows the GPU type and the number of GPUs. A6000
is the NVIDIA RTXTM A6000. Time is the wall clock training time.

max-step save-step batch-size warm-up learning-rate dropout α GPU time

T5SCORE-Bun 10,000 500 10 1,000 5.00e-5 0.10 - A6000*1 0.6h
T5SCORE-Lun 10,000 500 10 1,000 5.00e-5 0.10 - A6000*1 1h
T5SCORE-XLun 10,000 500 10 1,000 5.00e-5 0.10 - A6000*1 3h
T5SCORE-Bsup 300,000 10,000 32 0 1.00e-5 0.05 1 A6000*1 60h
T5SCORE-Lsup 200,000 10,000 32 0 1.00e-5 0.05 1 A6000*2 80h
T5SCORE-XLsup 50,000 5,000 32 0 1.00e-5 0.05 1 A6000*4 40h

Table 7: Segment-level Kendall’s Tau correlations on language pairs with English as source for the WMT DA20
corpus. Avg denotes the average correlation achieved by a metric across all en-x language pairs.

en-cs en-de en-iu en-ja en-pl en-ru en-ta en-zh Avg

UNSUPERVISED METHODS

sentBLEU 43.2 30.2 19.1 47.9 15.3 5.1 39.5 39.7 30.0
BERTScore 51.1 39.5 19.5 53.8 28.5 20.5 60.4 41.1 39.3
PRISM 61.2† 43.7† 19.6 57.8 39.9† 26.8† 39.3 47.3† 41.9
BARTScore 55.9 42.0 26.0 57.9 32.1 24.4 62.8 46.2 43.4

T5SCORE-Bun 52.4 39.4 35.8‡ 55.9 31.9 22.4 62.1 42.8 42.8
T5SCORE-Lun 56.3 41.1 35.9‡ 57.4 35.3 25.3 65.9 45.4 45.3
T5SCORE-XLun 58.9 42.2 34.0 59.8† 38.3 27.4† 66.3† 47.1† 46.7

SUPERVISED METHODS

bleurt 69.3‡ 45.9 32.6 60.8 45.5 30.1 65.3 50.3 50.0
comet 66.8 46.8‡ 32.2 62.4 46.2‡ 34.5‡ 67.1 52.3‡ 51.0

T5SCORE-Bsup 61.2 43.1 32.4 60.5 38.9 28.9 64.1 48.5 47.2
T5SCORE-Lsup 66.6 45.6 33.4 62.8‡ 43.9 31.8 66.7 52.2‡ 50.4
T5SCORE-XLsup 68.0 46.8‡ 34.1 63.0‡ 45.6 33.8‡ 68.1‡ 51.7‡ 51.4

Table 8: System level Pearson correlations on language pairs with English as target for the WMT DA20 corpus.
Avg. denotes the average correlation across all x-en language pairs.

cs-en de-en iu-en ja-en km-en pl-en ps-en ru-en ta-en zh-en Avg

UNSUPERVISED METHODS

sentBLEU 84.4 97.8 65.2 97.4 96.9 50.1 88.8 91.7 92.5 94.8 85.9
BERTScore 81.6 99.8 73.0 97.4 95.0 59.2 93.0 92.7 89.5 96.1 87.7
PRISM 81.8 99.8 83.3 97.4 95.0 50.2 96.6 90.8 89.8 95.7 88.0
BARTScore 84.4 99.8 79.2 97.7 94.4 52.7 95.1 92.4 91.4 95.8 88.3

T5SCORE-Bun 86.1 99.9 80.9 98.1 95.2 52.9 95.8 93.1 90.7 96.1 88.9
T5SCORE-Lun 84.4 99.9 83.8 98.1 95.2 53.6 96.7 92.9 89.9 96.2 89.1
T5SCORE-XLun 83.9 99.9 84.0 97.8 95.0 53.7 96.7 92.5 89.4 96.2 88.9

SUPERVISED METHODS

bleurt 78.9 99.7 84.0 96.5 99.4 56.6 95.7 89.8 92.0 94.7 88.8
comet 78.3 99.8 85.2 96.4 97.1 59.1 94.1 92.3 88.0 95.2 88.6

T5SCORE-Bsup 81.9 99.4 78.9 98.2 97.8 57.4 95.1 91.9 88.1 96.4 88.5
T5SCORE-Lsup 80.4 99.3 77.8 98.0 98.6 59.4 95.4 92.2 89.6 96.6 88.7
T5SCORE-XLsup 79.3 99.3 81.7 97.4 98.3 58.0 95.9 92.0 88.4 95.5 88.6
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Table 9: System level Pearson correlations on language pairs with English as source for the WMT DA20 corpus.
Avg. denotes the average correlation across all en-x language pairs and Avg-all denotes the average correlation
across all language pairs.

en-cs en-de en-iu en-ja en-pl en-ru en-ta en-zh Avg Avg-all

UNSUPERVISED METHODS

sentBLEU 84.1 93.4 13.5 94.6 95.0 98.1 88.2 92.8 82.5 84.4
BERTScore 88.4 95.5 68.4 97.0 91.4 97.2 95.4 92.4 90.7 89.1
PRISM 94.9 95.8 85.9 93.2 95.8 72.4 91.6 96.8 90.8 89.3
BARTScore 90.8 94.5 86.2 94.7 95.5 61.8 95.8 94.7 89.3 88.7

T5SCORE-Bun 89.1 95.9 65.8 95.5 96.0 63.8 96.1 96.4 87.3 88.2
T5SCORE-Lun 91.0 95.9 67.0 95.9 96.1 63.0 96.6 96.6 87.8 88.5
T5SCORE-XLun 92.4 95.2 63.2 94.9 96.4 70.6 96.7 97.0 88.3 88.6

SUPERVISED METHODS

bleurt 98.8 95.4 74.8 95.8 98.3 82.6 92.6 98.3 92.1 90.2
comet 97.8 97.2 86.0 97.4 98.1 92.5 94.4 98.2 95.2 91.5

T5SCORE-Bsup 93.7 97.2 67.9 98.2 97.8 92.9 93.7 97.6 92.4 90.2
T5SCORE-Lsup 96.4 97.3 67.4 97.4 98.0 94.8 95.9 97.8 93.1 90.7
T5SCORE-XLsup 96.8 96.8 61.3 95.9 98.3 95.7 95.0 98.6 92.3 90.2

Table 10: System level Kendall’s Tau correlations on language pairs with English as target for the WMT DA20
corpus. Avg. denotes the average correlation across all x-en language pairs.

cs-en de-en iu-en ja-en km-en pl-en ps-en ru-en ta-en zh-en Avg

UNSUPERVISED METHODS

sentBLEU 78.8 75.8 45.5 73.3 61.9 27.5 60.0 60.0 69.2 85.0 63.7
BERTScore 78.8 72.7 63.6 73.3 71.4 47.3 86.7 52.7 67.0 80.0 69.4
PRISM 75.8 72.7 67.3 86.7 71.4 34.1 86.7 56.4 64.8 80.0 69.6
BARTScore 81.8 75.8 67.3 86.7 71.4 36.3 86.7 56.4 64.8 83.3 71.0

T5SCORE-Bun 84.8 72.7 70.9 82.2 71.4 36.3 86.7 56.4 67.0 81.7 71.0
T5SCORE-Lun 81.8 75.8 74.5 86.7 71.4 36.3 86.7 56.4 64.8 80.0 71.4
T5SCORE-XLun 78.8 75.8 74.5 82.2 71.4 36.3 86.7 56.4 62.6 80.0 70.5

SUPERVISED METHODS

bleurt 75.8 81.8 63.6 77.8 100.0 42.9 86.7 49.1 60.4 73.3 71.1
comet 72.7 75.8 63.6 77.8 100.0 40.7 86.7 56.4 62.6 73.3 71.0

T5SCORE-Bsup 72.7 75.8 56.4 82.2 90.5 42.9 86.7 56.4 60.4 83.3 70.7
T5SCORE-Lsup 75.8 78.8 56.4 77.8 100.0 42.9 86.7 52.7 60.4 71.7 70.3
T5SCORE-XLsup 78.8 78.8 67.3 82.2 90.5 45.1 86.7 52.7 62.6 76.7 72.1
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Table 11: System level Kendall’s Tau correlations on language pairs with English as source for the WMT DA20
corpus. Avg. denotes the average correlation across all en-x language pairs and Avg-all denotes the average
correlation across all language pairs.

en-cs en-de en-iu en-ja en-pl en-ru en-ta en-zh Avg Avg-all

UNSUPERVISED METHODS

sentBLEU 51.5 80.2 23.6 85.5 60.4 94.4 86.7 72.7 69.4 66.2
BERTScore 51.5 80.2 34.5 85.5 56.0 94.4 84.8 72.7 70.0 69.6
PRISM 81.8 86.8 45.5 81.8 67.0 61.1 73.3 81.8 72.4 70.8
BARTScore 54.5 82.4 41.8 78.2 64.8 61.1 84.8 75.8 67.9 69.7

T5SCORE-Bun 54.5 84.6 34.5 85.5 67.0 61.1 86.7 69.7 68.0 69.7
T5SCORE-Lun 51.5 82.4 34.5 89.1 67.0 61.1 84.8 75.8 68.3 70.0
T5SCORE-XLun 51.5 82.4 27.3 85.5 67.0 66.7 84.8 72.7 67.2 69.0

SUPERVISED METHODS

bleurt 90.9 84.6 34.5 81.8 73.6 66.7 73.3 84.8 73.8 72.3
comet 90.9 84.6 38.2 74.5 73.6 72.2 77.1 81.8 74.1 72.4

T5SCORE-Bsup 75.8 86.8 34.5 85.5 69.2 72.2 77.1 84.8 73.3 71.8
T5SCORE-Lsup 90.9 89.0 30.9 85.5 69.2 72.2 79.0 84.8 75.2 72.5
T5SCORE-XLsup 90.9 89.0 23.6 89.1 71.4 72.2 77.1 87.9 75.2 73.5

Table 12: Segment Kendall’s Tau, system Pearson and system Kendall’s Tau correlations on all language pairs for
the WMT DA20 corpus using generative T5SCORE-XXL. Avg-en denotes the average correlation across all x-en
language pairs, Avg-x denotes the average correlation across all en-x language pairs, and Avg denotes the average
correlation across all language pairs.

cs-en de-en iu-en ja-en km-en pl-en ps-en ru-en ta-en zh-en Avg-en

seg-k 13.5 49.0 26.9 27.8 29.9 8.7 16.7 13.9 24.4 15.8 22.7
sys-p 83.0 99.9 83.7 97.6 95.2 55.2 96.9 92.4 90.0 96.2 89.0
sys-k 72.7 75.8 74.5 77.8 71.4 36.3 86.7 56.4 64.8 80.0 69.6

en-cs en-de en-iu en-ja en-pl en-ru en-ta en-zh Avg-x Avg

seg-k 60.4 43.8 33.8 60.6 40.0 26.9 65.3 47.2 47.3 33.6
sys-p 93.1 95.6 64.2 96.1 96.4 68.5 96.7 97.2 88.5 88.8
sys-k 60.6 82.4 27.3 89.1 64.8 66.7 82.9 75.8 68.7 69.2

Table 13: Segment level Kendall’s Tau correlations on WMT DA20 corpus using source-based models. The highest
correlation for each language pair is bold.

cs-en de-en iu-en ja-en km-en pl-en ps-en ru-en ta-en zh-en Avg-en

COMETsrc 9.2 40.8 3.2 15.3 14.9 4.6 9.2 10.1 16.7 9.2 13.3
T5SCORE-Bsrc 7.5 43.2 0.7 16.2 11.9 4.4 9.7 7.5 19.2 9.4 12.9
T5SCORE-Lsrc 5.7 35.9 0.7 19.2 16.7 4.1 10.5 8.4 22.5 8.1 13.2
T5SCORE-XLsrc 7.1 41.7 2.6 22.1 22.5 3.0 10.6 7.3 24.7 7.4 14.9

en-cs en-de en-iu en-ja en-pl en-ru en-ta en-zh Avg-x Avg

COMETsrc 61.3 34.6 -6.3 46.7 35.8 26.4 51.2 39.8 36.2 23.5
T5SCORE-Bsrc 55.3 36.4 0.0 51.2 28.6 24.7 57.1 41.2 36.8 23.5
T5SCORE-Lsrc 60.5 37.1 -5.2 56.9 37.4 27.2 63.9 44.3 40.3 25.2
T5SCORE-XLsrc 62.7 40.0 -2.6 58.7 37.6 28.2 66.2 45.6 42.0 27.0
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Table 14: System level Pearson correlations on WMT DA20 corpus using source based models.

cs-en de-en iu-en ja-en km-en pl-en ps-en ru-en ta-en zh-en Avg-en

COMETsrc 75.5 93.9 70.6 89.2 89.6 44.8 83.2 88.3 79.5 84.7 79.9
T5SCORE-Bsrc 82.6 99.7 -7.8 94.1 86.9 47.4 92.2 90.0 81.6 95.1 76.2
T5SCORE-Lsrc 73.9 99.7 -17.3 96.2 92.2 52.6 92.0 91.1 85.5 92.6 75.8
T5SCORE-XLsrc 73.0 99.5 1.0 95.9 99.1 51.3 94.0 92.0 87.9 91.5 78.5

en-cs en-de en-iu en-ja en-pl en-ru en-ta en-zh Avg-x Avg

COMETsrc 98.9 90.1 86.3 95.2 96.9 80.0 88.8 97.5 91.7 85.2
T5SCORE-Bsrc 95.8 97.3 31.5 96.8 93.5 79.4 91.7 93.7 85.0 80.1
T5SCORE-Lsrc 98.2 96.6 27.4 96.8 96.2 84.9 94.9 95.7 86.3 80.5
T5SCORE-XLsrc 98.5 96.3 22.4 96.4 96.8 88.7 95.2 96.0 86.3 82.0

Table 15: System level Kendall’s Tau correlations on WMT DA20 corpus using source based models.

cs-en de-en iu-en ja-en km-en pl-en ps-en ru-en ta-en zh-en Avg-en

COMETsrc 69.7 78.8 52.7 77.8 90.5 29.7 73.3 45.5 51.6 55.0 62.5
T5SCORE-Bsrc 66.7 66.7 -9.1 64.4 61.9 31.9 86.7 56.4 60.4 65.0 55.1
T5SCORE-Lsrc 72.7 78.8 -12.7 82.2 81.0 31.9 73.3 52.7 56.0 68.3 58.4
T5SCORE-XLsrc 72.7 78.8 5.5 86.7 90.5 29.7 73.3 52.7 64.8 68.3 62.3

en-cs en-de en-iu en-ja en-pl en-ru en-ta en-zh Avg-x Avg

COMETsrc 84.8 80.2 60.0 70.9 80.2 66.7 56.2 84.8 73.0 67.1
T5SCORE-Bsrc 84.8 78.0 12.7 81.8 71.4 61.1 65.7 81.8 67.2 60.5
T5SCORE-Lsrc 93.9 78.0 1.8 78.2 71.4 66.7 77.1 81.8 68.6 63.0
T5SCORE-XLsrc 93.9 80.2 1.8 78.2 67.0 66.7 82.9 78.8 68.7 65.1

Table 16: Segment Kendall’s Tau, system Pearson and system Kendall’s Tau correlations for WMT DA20 corpus
without unsupervised training using T5SCORE-B.

cs-en de-en iu-en ja-en km-en pl-en ps-en ru-en ta-en zh-en

seg-k 14.0 48.4 27.8 28.8 30.7 10.2 18.0 13.1 24.4 16.4
sys-p 82.1 99.2 79.9 97.8 97.7 56.3 94.7 91.8 88.5 96.3
sys-k 72.7 75.8 56.4 82.2 90.5 40.7 86.7 56.4 62.6 80.0

en-cs en-de en-iu en-ja en-pl en-ru en-ta en-zh Avg
seg-k 60.9 43.4 33.4 59.3 39.6 29.3 63.7 48.6 33.9
sys-p 93.9 96.7 64.0 97.2 97.9 91.5 93.9 96.9 89.8
sys-k 69.7 86.8 30.9 85.5 69.2 72.2 77.1 81.8 71.0

Table 17: Segment Kendall’s Tau, system Pearson and system Kendall’s Tau correlations for WMT DA20 corpus
without unsupervised training using model T5SCORE-L.

cs-en de-en iu-en ja-en km-en pl-en ps-en ru-en ta-en zh-en

seg-k 13.2 48.8 30.5 28.9 30.7 9.6 18.4 14.5 25.6 16.1
sys-p 81.5 99.3 79.8 97.9 97.9 58.2 95.2 92.2 89.0 96.5
sys-k 72.7 78.8 56.4 77.8 90.5 40.7 86.7 60.0 60.4 73.3

en-cs en-de en-iu en-ja en-pl en-ru en-ta en-zh Avg
seg-k 65.1 44.5 14.8 63.0 44.6 30.5 67.2 51.2 34.3
sys-p 96.1 96.9 54.4 96.8 98.1 93.1 95.6 97.2 89.8
sys-k 90.9 86.8 20.0 85.5 71.4 72.2 79.0 87.9 71.7

15200



Table 18: Segment Kendall’s Tau, system Pearson and system Kendall’s Tau correlations for WMT DA20 corpus
with unsupervised training using model T5SCORE-B.

cs-en de-en iu-en ja-en km-en pl-en ps-en ru-en ta-en zh-en

seg-k 13.9 48.5 29.2 28.1 30.3 9.6 17.4 13.1 23.9 15.5
sys-p 81.9 99.4 78.9 98.2 97.8 57.4 95.1 91.9 88.1 96.4
sys-k 72.7 75.8 56.4 82.2 90.5 42.9 86.7 56.4 60.4 83.3

en-cs en-de en-iu en-ja en-pl en-ru en-ta en-zh Avg
seg-k 61.2 43.1 32.4 60.5 38.9 28.9 64.1 48.5 33.7
sys-p 93.7 97.2 67.9 98.2 97.8 92.9 93.7 97.6 90.2
sys-k 75.8 86.8 34.5 85.5 69.2 72.2 77.1 84.8 71.8

Table 19: Segment Kendall’s Tau, system Pearson and system Kendall’s Tau correlations for WMT DA20 corpus
with unsupervised training using T5SCORE-L.

cs-en de-en iu-en ja-en km-en pl-en ps-en ru-en ta-en zh-en

seg-k 14.0 49.3 28.5 28.9 30.1 8.3 17.6 15.3 25.9 16.3
sys-p 80.4 99.3 77.8 98.0 98.6 59.4 95.4 92.2 89.6 96.6
sys-k 75.8 78.8 56.4 77.8 100.0 42.9 86.7 52.7 60.4 71.7

en-cs en-de en-iu en-ja en-pl en-ru en-ta en-zh Avg
seg-k 66.6 45.6 33.4 62.8 43.9 31.8 66.7 52.2 35.4
sys-p 96.4 97.3 67.4 97.4 98.0 94.8 95.9 97.8 90.7
sys-k 90.9 89.0 30.9 85.5 69.2 72.2 79.0 84.8 72.5

Table 20: Segment level Kendall’s Tau correlation on MultiSumm corpus. The highest correlation is bold

Focus Coverage

EN ID FR TR ZH RU DE ES AVG EN ID FR TR ZH RU DE ES AVG

ROUGE1 49.0 48.9 48.1 39.6 48.5 7.5 47.1 36.8 40.7 52.9 50.5 48.5 32.0 47.5 9.8 8.9 51.6 37.7
ROUGE2 34.7 51.1 36.5 35.4 50.5 -67.7 35.6 28.4 25.6 52.9 41.9 34.0 30.0 43.4 -66.7 1.3 20.9 19.7
ROUGEL 44.9 46.7 48.1 37.5 48.5 5.4 49.4 38.9 39.9 54.9 46.2 44.3 30.0 49.5 7.8 11.4 42.9 35.9
COMET 36.7 55.6 44.2 33.3 48.5 39.8 60.9 43.2 45.3 41.2 48.4 25.8 32.0 47.5 29.4 31.6 51.6 38.4
BERTScore 34.7 51.1 48.1 50.0 36.6 7.5 63.2 43.2 41.8 49.0 52.7 44.3 38.0 41.4 -29.4 31.6 49.5 34.6
BLEURT 40.8 51.1 55.8 43.8 50.5 57.0 47.1 49.5 49.4 45.1 46.2 42.3 34.0 45.5 70.6 21.5 60.4 45.7
PRISM 32.7 48.9 57.7 25.0 46.5 61.3 54.0 43.2 46.2 45.1 59.1 34.0 38.0 59.6 54.9 31.6 53.8 47.0
BARTScore 32.7 55.6 63.5 41.7 54.5 41.9 67.8 49.5 50.9 41.2 44.1 44.3 36.0 49.5 52.9 34.2 60.4 45.3

T5SCORE-Bun 42.9 51.1 69.2 43.8 48.5 52.7 67.8 43.2 52.4 51.0 52.7 44.3 30.0 47.5 52.9 26.6 60.4 45.7
T5SCORE-Lun 26.5 60.0 67.3 39.6 56.4 61.3 63.2 45.3 52.5 33.3 59.1 52.6 28.0 59.6 64.7 21.5 60.4 47.4
T5SCORE-XLun 24.5 55.6 59.6 39.6 54.5 57.0 65.5 49.5 50.7 33.3 63.4 44.3 26.0 49.5 68.6 19.0 67.0 46.4
T5SCORE-Bsup 46.9 44.4 38.5 35.4 42.6 -3.2 54.0 30.5 36.1 58.8 41.9 32.0 16.0 39.4 -37.3 16.5 38.5 25.7
T5SCORE-Lsup 38.8 60.0 42.3 37.5 42.6 -14.0 42.5 32.6 35.3 54.9 52.7 32.0 26.0 37.4 -41.2 13.9 42.9 27.3
T5SCORE-XLsup 24.5 60.0 42.3 50.0 48.5 14.0 65.5 41.1 43.2 52.9 61.3 15.5 32.0 37.4 -7.8 19.0 49.5 32.5

Table 21: Segment level Pearson correlation on MultiSumm corpus.

Focus Coverage

EN ID FR TR ZH RU DE ES AVG EN ID FR TR ZH RU DE ES AVG

ROUGE1 59.0 70.2 68.7 81.0 82.6 52.0 87.3 60.1 70.1 62.3 70.5 66.2 75.6 77.9 46.6 88.8 63.7 68.7
ROUGE3 53.6 62.8 68.0 77.8 78.7 51.6 85.8 61.2 68.1 53.5 65.1 67.3 73.6 73.6 47.2 88.2 64.9 66.9
ROUGEL 58.2 69.3 68.8 80.0 81.6 51.3 86.8 61.0 69.7 61.0 70.7 66.3 75.5 78.1 46.2 88.3 64.7 68.6
COMET 50.6 67.6 53.1 72.6 73.1 49.9 84.8 55.6 62.8 50.1 68.7 50.2 76.6 70.8 49.9 80.1 62.1 62.8
BERTScore 58.5 69.8 71.8 83.2 77.7 49.4 89.6 58.0 69.7 61.7 71.6 70.2 80.0 75.9 39.0 89.4 66.4 68.9
BLEURT 52.4 61.1 70.5 79.0 72.6 55.8 87.4 66.0 69.1 59.5 61.7 71.4 79.0 75.3 58.7 87.8 65.2 71.0
PRISM 59.3 59.5 68.1 78.9 70.8 42.5 87.0 53.9 65.8 61.2 60.9 64.4 78.3 69.3 45.5 89.0 60.0 66.8
BARTScore 61.1 69.0 72.0 80.3 75.6 54.6 89.3 62.5 70.8 59.9 67.7 68.9 80.1 70.9 57.7 90.7 66.3 70.7

T5SCORE-Bun 59.0 64.9 70.8 79.6 75.6 50.0 88.7 58.5 68.9 59.0 63.9 68.2 79.4 71.5 54.9 90.1 65.7 69.8
T5SCORE-Lun 58.5 68.6 71.1 80.6 76.4 49.3 89.1 59.1 69.2 58.2 68.5 70.1 81.4 73.0 55.8 90.4 66.4 70.8
T5SCORE-XLun 57.8 69.9 70.2 80.2 77.0 50.2 88.9 59.7 69.1 58.0 70.4 70.2 81.3 72.9 54.7 90.0 65.7 70.4
T5SCORE-Bsup 55.7 63.5 58.9 70.6 71.9 26.6 84.4 42.8 58.7 51.1 58.9 49.8 66.3 69.5 23.0 84.6 46.3 55.8
T5SCORE-Lsup 56.7 68.8 59.2 71.8 70.0 18.1 83.1 47.1 58.0 50.6 65.3 50.0 66.6 69.4 12.3 82.3 45.7 53.8
T5SCORE-XLsup 54.2 66.7 63.0 77.0 73.2 32.9 87.7 50.2 62.6 53.8 67.8 54.1 74.4 70.7 34.4 88.1 55.7 61.6
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generated by 2 systems: Pointer-Generator (See
et al., 2017) and BERT (Liu and Lapata, 2019;
Dong et al., 2019) model.

A.9.2 Parallel Dataset
ParaCotta (Aji et al., 2022) A synthetic parallel
paraphrase corpus across 17 languages. We use lex-
ical BLEU between paraphrases to filter the dataset
and keep the paraphrases with low lexical BLEU,
in another word, high lexically diverse.20

MT-prism (Thompson and Post, 2020b) A Ma-
chine Translation dataset includes 99.8M training
sentences across 39 languages. The data sources
are WikiMatrix (Schwenk et al., 2019), Global
Voices,21 EuroParl (Koehn, 2005), SETimes22,
United Nations (Eisele and Chen, 2010).

A.10 Models of Baseline Metrics
BLEU We use the implementation of Sacre-
BLEU (Post, 2018) which is licensed under the
Apache 2.0 License.

ROUGE We use the implementation of py-
rouge (https://github.com/bheinzerling/
pyrouge) which is licensed under the MIT
License.

COMET We use the estimator model wmt20-
comet-da trained on WMT DA17 to DA19 un-
less otherwise stated in Sec.4. It is licensed under
Apache-2.0 license.

BERTScore We use the default multilingual
BERTScore model: bert-base-multilingual-cased.
It is licensed under the MIT License.

BLEURT We use the model BLEURT-20 trained
on human ratings from WMT15 to WMT19. It is
licensed under the Apache-2.0 license.

PRISM We use the model trained on machine
translation data for 39 language pairs. It is licensed
under the MIT License.

BARTScore The original version only supports
English, so we generalize it to a multilingual ver-
sion BARTScore by using mBART (Liu et al.,
2020) and fine-tune it on ParaCotta. It is licensed
under the Apache-2.0 license.

20We keep the paraphrases with lexical BLEU in the range
[0,20], while the possible range is [0,100].

21https://casmacat.eu/corpus/global-voices.html
22http://nlp.ffzg.hr/resources/corpora/setimes/
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