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Abstract vary, crowd-sourcing that can cover various types

Counterfactual Data Augmentation (CDA) is
a commonly used technique for improving ro-
bustness in natural language classifiers. How-
ever, one fundamental challenge is how to
discover meaningful counterfactuals and effi-
ciently label them, with minimal human label-
ing cost. Most existing methods either com-
pletely rely on human-annotated labels, an ex-
pensive process which limits the scale of coun-
terfactual data, or implicitly assume label in-
variance, which may mislead the model with
incorrect labels. In this paper, we present a
novel framework that utilizes counterfactual
generative models to generate a large num-
ber of diverse counterfactuals by actively sam-
pling from regions of uncertainty, and then au-
tomatically label them with a learned pairwise
classifier. Our key insight is that we can more
correctly label the generated counterfactuals
by training a pairwise classifier that interpo-
lates the relationship between the original ex-
ample and the counterfactual. We demonstrate
that with a small amount of human-annotated
counterfactual data (10%), we can generate
a counterfactual augmentation dataset with
learned labels, that provides an 18-20% im-
provement in robustness and a 14-21% re-
duction in errors on 6 out-of-domain datasets,
comparable to that of a fully human-annotated
counterfactual dataset for both sentiment clas-
sification and question paraphrase tasks.

1 Introduction

Counterfactual data augmentation (CDA) has been
used to make models robust to distribution shift
and mitigate biases towards spuriously correlated
attributes. Often, counterfactuals are generated as
labeled examples through pre-specified templates
[1, 2] or crowd-sourcing [3]. While natural text
templates codify a specific number of assumptions
of how counterfactual sentences and labels might
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of counterfactuals, can be expensive. On the other
hand, many existing methods [4, 5, 6, 7] simply
rely on a label-invariance assumption: the label of
the generated counterfactual example is the same
as the corresponding original example. However,
this simple label-invariance assumption does not
always hold [8, 9, 10] and thus greatly increases
the risk of using incorrect labels for counterfactuals
during training. For example, for many NLP tasks
a small perturbation can easily change the ground-
truth label [3, 11], e.g., changing the input from
This movie is great to This movie is supposed to
be great for sentiment classification, or changing
the hypothesis from The lady has three children to
The lady has many children for natural language
inference. Therefore, in this work, we mainly focus
on addressing this challenging research problem:

“How can we automatically explore diverse
counterfactual examples and learn their labels,
given a counterfactual text generator?”

Beyond costly human annotation or simplifying
assumptions of label invariance, researchers have
explored to use a classifier f that has learnt to pre-
dict the label on the original dataset (X, Y"). Such a
classifier has been used to directly label generated
examples (our “trust” baseline; [3]) or to weight
generated examples based on the model uncertainty
(our weighted-trust baseline; [12]). However, we
see that using such simplistic labeling assumptions
for counterfactual data augmentation have limited
benefits for improving robustness (defined as the
accuracy over a counterfactual test set of interest).

In this paper we propose an alternative approach
to this problem: we leverage the sample efficiency
of generative models and exploration capabilities
of active learning [13] to 1) first generate a large
number of diverse counterfactuals, and 2) then train
an auxiliary classifier to automatically annotate the
generated counterfactual data based on the differ-
ence between the original and counterfactual labels.
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Specifically, we propose to generate counterfactual
examples that lie in the region of uncertainty of
the classifier f, and learn a pairwise classifier h to
predict the counterfactual label y'. The pipeline of
our method is shown in Figure 1.

In particular, we utilize a very small set of
human-annotated counterfactual examples to train
the pairwise counterfactual classifier A, which takes
in the pair of original and counterfactual sentences
(z,cs(x)) and the original label y as input. Then
in the inference stage, the pairwise counterfactual
classifier h is used to predict the labels to produce
a large counterfactual augmentation dataset used to
fine-tune f to improve robustness.

c,(x), : “This movie is full of mistakes”
c,(x), : “This movie is full of finesse”
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Figure 1: Overview of proposed approach: We pro-
pose to generate diverse counterfactuals through active
sampling, and label them using a pairwise counterfac-
tual classifier at scale. We use the labeled counterfac-
tuals as data augmentation over the original classifier
(not shown) to significantly improve robustness.

By using active sampling over counterfactual
generators and auxiliary pairwise counterfactual
classifiers, we show that we greatly reduce the num-
ber of counterfactual examples for which we need
human annotation, while providing similar gains
in robustness comparable to a fully human anno-
tated counterfactual dataset. We attribute this to two
core components of our method. First, the active-
learning based sampling method helps diversify
the types of generated counterfactuals and enables
them to capture different robustness issues not pre-
viously captured by our classifier model. Second,
the proposed auxiliary pair-wise classifier can au-
tomatically annotate the generated counterfactu-
als with more accurate labels and help efficiently
scale up the size of the counterfactual augmenta-
tion dataset. Our core contributions in this work
include:

e We propose an active-learning based sampling
method to generate diverse counterfactuals
and effectively improve robustness of classi-
fiers for the sentiment classification task on
Stanford Sentiment Treebank (SST-2) dataset,
and the question paraphrase task on Quora
Question Pair (QQP) dataset.

e We propose a novel pairwise counterfactual
classifier to automatically label counterfac-
tually generated examples based on a small
set of annotated counterfactuals, improving
sample efficiency of counterfactual data aug-
mentation.

o The generated augmented dataset, which uses
just 10% of human-annotated labels, produces
an improvement in counterfactual robustness
of 18-20%, comparable to a fully human an-
notated dataset, and a reduction in errors by
14-21% on out-of-domain datasets that were
not used during training: IMDB, Amazon, Se-
mEval (Twitter), and Yelp reviews.

2 Related Work

Our work is built on advances from various do-
mains as outlined below:

Adversarial Text Generation Training against
adversarial examples which perturb inputs in the
vicinity of the existing training data by making ge-
ometric assumptions [10, 14] on a lower dimen-
sionality of the data to improve robustness has
been extensively studied recently. Natural examples
which are syntactically and semantically similar to
the original sentence, but produce different model
predictions have been produced [7]. Similarly, de-
fenses against adversarial attacks on self-attentive
models have shown improvement in robustness to
label invariant examples [15]. In FairGAN [4], they
showed it is possible for a discriminator to achieve
statistical parity on the real dataset, while perform-
ing the auxiliary task of detecting real and gener-
ated examples. Such controlled adversarial genera-
tive approaches [16] have demonstrated the effec-
tiveness of automating data augmentation in text-
based tasks. Generative models which optimize
for fluency have passed human annotation checks
where the model generated text is almost indistin-
guishable from human generated ones [17, 18]. We
build on this body of work and utilize a generative
model [19] that captures template-based counter-
factuals to improve robustness. Generic adversar-
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ial notions of robustness however applicable, fail
to incorporate specific counterfactuals directly in
their training and orthogonal to our scope of study.
Through carefully disentangling specific attributes
and the rest of the latent variables in text, we gen-
erate counterfactuals across all possibilities, and
utilize human-annotated templates to label a small
fraction of the generated examples to train a pair-
wise counterfactual classifier.

Semi-Supervised and Self-Supervised Learn-
ing Labeling functions which provide crude es-
timates of the label have been used in semi-
supervised methods [20, 21, 22], and are further
used to learn a generative model to generalize over
them. Further, utilizing unlabeled data [23] to im-
prove adversarial robustness leverages geometric
smoothing-based techniques to bridge the sample
complexity gap between accuracy and robustness
[24]. Thus, semi-supervised learning approaches
aim to generate examples where the discrimina-
tor is least confident about [12]. Language models
with very large number of parameters have also
shown to be few-shot learners with minimal su-
pervision [25]. Similarly, reinforcement learning
based approaches with minimal labels have been
proposed to combine the objectives of accuracy
and counterfactual robustness [26]. Generalization
against counterfactual examples by making mod-
els not to rely on salient features (easy examples)
have been extensively studied by modeling biases
in corpora [27, 28, 29, 30, 31, 32]. While the goal
in these works have been building ensembles or
end-to-end bias mitigation models, our goal is to
minimize the number of human labels required to
achieve an equivalent improvement in robustness.
In this spirit of efficiently capturing the patterns al-
ready prevalent in the original dataset, and learning
only the new ones introduced in the counterfac-
tual templates, we learn the pairwise counterfactual
classifier on a small number of samples, and use
it to capture the label variations in the remaining
counterfactual dataset.

Counterfactual Applications The counterfac-
tual datasets we use throughout this paper were
intended to highlight the shortcomings of existing
models at the time. Improving robustness through
training on the augmented data has been exten-
sively explored [33, 34]. Learning how counter-
factuals differ have been explored by comparing
against gradient supervision [35] and the general-
izability between original and counterfactuals [3].

The generated counterfactuals have also been used
for explanations [36], highlighting biases [1] and
debiasing through statistical methods [37]. This
rich set of contrast sets [11], checklists [8], para-
phrases [38, 39], adversarial schemes [40] and lex-
ical diagnostic datasets [41] form the foundation
of our method, which re-purposes them to build a
counterfactual generative model and improve coun-
terfactual robustness.

Generative Learning Generative adversarial ac-
tive learning has been proposed with pool-based
and synthesizing-based sampling strategies [42].
While the pool-based strategy selects from an exist-
ing sample of generated examples, the synthesizing-
based sampling re-samples from the generator
based on information theoretic measures like mu-
tual information [43, 44] or model uncertainty [45]
or informativeness [46, 13] over the initial sam-
ple. Further, recent work has highlighted that us-
ing large language models for generation and an-
notation of that generated data can be very use-
ful [47, 48]. We build on this work, and use the
synthesizing-based Bayesian Generative Active
Learning approach [44], where we condition on
a counterfactual with low uncertainty in the model,
to actively generate more counterfactual examples.
We then iteratively sample the examples with the
highest classifier uncertainty and annotate manu-
ally. The human annotations are then used to train
the pairwise classifier h, which is then used to scale
the annotation process for all other generated coun-
terfactuals.

3 Methodology

Problem Framing

Let z, y be the input sentence and its associated la-
bel in the original dataset, respectively. We assume
y € {0, 1} throughout the paper (i.e., we focus on
binary classification tasks), but our framework can
be extended to multi-class tasks as well.

Our core challenge is what is the true label 7/
for a generated counterfactual 2’? Although we can
further obtain human annotations, this can quickly
become time consuming and budget intensive to do
at scale. If we make the simplified assumption of la-
bel invariance throughout the counterfactual inputs
x’ generated, which is a common assumption in ad-
versarial literature [49, 6, 7], we could end up with
an incorrect counterfactual dataset which might
hurt robustness and accuracy. Our goal is thus, to
generate a counterfactual augmentation dataset
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that produces a comparable improvement in accu-
racy and robustness as that of human-annotated
counterfactuals with minimal supervision.

We frame this problem as how to learn when
the labels flip, i.e., identifying when the label of
the counterfactual is different from the label of the
original sentence: P(y # y') = 0, (0 < ¢ < 1),
in the counterfactual distribution 2’ € X'. Given a
generation model ¢, we denote c,(x) as the gener-
ated counterfactual over by changing an attribute
s in x. We also assume that a classifier f : X — Y
has been learnt on the original dataset (X,Y") by
optimizing for accuracy A.

A=Epyex(f(z) =y) (1)

In our paper, the objective is to use the counter-
factual data to train a model f’ that improves ro-
bustness, i.e., to make sure the models we trained
generalize to unseen scenarios. We measure this
by the counterfactual accuracy A of f on multi-
ple held-out counterfactual datasets (X', Y”) split
based on domains (OOD), patterns (e.g. negation,
insertion):

A=Ep ey I(f' @) =y) @

In the remainder of this section, we first explain
how the counterfactuals are generated using active
learning. Then, we explain how we account for the
possibility that the label of the generated counter-
factual c () might have flipped, using a pairwise
classifier. Finally, we explain how when both these
components are combined, we can further improve
robustness.

Active Counterfactual Generation

To achieve the goal of improving counterfactual ac-
curacy on held-out counterfactual datasets (Eqn 2),
we use a controlled generative model to generate
additional training counterfactual data c(x) € X
(here the subscript ¢ denotes the training set) that
modifies original input x € X based on the at-
tribute s. In natural language tasks, the attribute
s cannot be directly inferred from the sentence
x and hence we rely on templates to define the
types of counterfactual (e.g., negation, insertion,
deletion) as commonly used in [8, 19] to infer the
attribute s. Lety € Y,y € Y/ be the label for the
original and counterfactual sentences in our coun-
terfactual training dataset. The training objective
of robustness is to minimize the error gt of the
model f aggregated by attribute s on the training

counterfactuals (X/,Y}), where C'E refers to the
cross-entropy loss, as follows:

Et(8) = Erex (co@)y)exiy) CE(fes(2)),y)
3)
&t = Eses&i(s) )

The counterfactual generator that optimizes the
above cross-entropy loss then generates several
counterfactuals ¢s(z) by relying on instructions
provided in controlled generation methods [19]
such as “negation”, “restructure”. However, these
counterfactuals are not necessarily diverse, and
fails to incorporate the classifier’s uncertainty to
get the most informative set of generated counter-
factuals. To improve generalization across a diverse
set of counterfactual types, we fine-tune the gen-
erator to actively sample counterfactuals the most
informative set from the unlabeled dataset zx € X}
(BALD, [43]) that synthesizes examples by maxi-
mizing the acquisition function given by the Monte
Carlo (MC) dropout approximation method [45]
using the class-wise probability scores of the pair-
wise classifier h, where H[y|z,.] represents the
Shannon entropy of the corresponding conditional
probability:

Tt = argmaly e x! [H[y/|$/7 X, Y] Q)
_EJSEXtH[y/|$/7 z, f(l‘)]]

Since ¢/ is not readily available for counter-
factual generated sentences cs(x) in our training
dataset and gathering them for all examples can
be expensive, our goal is to minimize the num-
ber of human-annotations of counterfactuals ¢’ in
the training dataset Y/, while achieving compa-
rable improvement in robustness (Eqn 2). Hence,
the training sentence and label set (X7,Y/) can
be decomposed into two sets, one whose labels
are human-annotated: (X, Y,) and the other with
model generated labels: (X, Y]), such that X; =
X, U X, Yy = YUY, Our goal is to au-
tomatically discover informative counterfactuals
X; and learn their labels with access to a lim-
ited human-annotated counterfactual data (X, Y,),
where |V, | < |Y]], while achieving counterfactual

robustness A (Eqn 2) comparable to the scenario
when all the training labels are human-annotated.
Pairwise-Counterfactual (PC)

In order to generate labels for the counterfactuals,
we construct a novel auxiliary pairwise classifier h,
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which at inference time, takes in as input both the
original dataset (x,y) € (X,Y), and a correspond-
ing counterfactual c5(z) € X, to output y' € Y.
This classifier h is trained on pairs of input sen-
tences x, cs(x) and the original label y to predict
the human-annotated label 4’ € Y.

Specifically, the classifier h takes in the original
input sentence = and its associated label y, as well
as its corresponding counterfactual example ¢4 ().
The output of the classifier h(x,cs(z),y) is the
predicted label of the counterfactual example cs(x).
In the training stage, the classifier  is optimized on
the counterfactual examples with human-annotated
labels (cs(z),y’) € (X),Y,) via minimizing the
loss function:

gh =F CE(h(.%',CS(l'),y),y/)

(6)

With the well-trained classifier h, we can gen-

erate the labels for any counterfactual example

cs(z) € X, (the counterfactual set without human
annotation) according to:

(z,y)e(X,Y)
(cs(@),y)e(Xa,Yy)

y' = h(z,cs(x),y) : (z,y) € (X,Y),cs(x) € X,
(N

Classifier-Aware Pairwise-Counterfactual
(CAPCO)

Additionally, since we know that f is already opti-
mized to predict the label accurately on the origi-
nal dataset, the auxiliary classifier h could poten-
tially leverage f in its pairwise prediction through
transfer learning. Specifically, if we decompose the
counterfactual distribution (X', Y”) as a mixture
of samples from the original distribution (X,Y)
and those that are independent of the original distri-
bution, we would benefit by training A to identify
samples from the latter distribution. In addition,
assuming the correspondence between f(z) and
f(es(x)) is easier to learn (e.g., with a lower model
complexity), we could also benefit from learning
a classifier-aware function to better capture this
correspondence. Thus, we propose to augment the
predictions of the original classifier f(x), f(cs(z))
as input to h as follows:

y €Yy =h(z,cs(x),y, f(2), fles()) : (8)
(2,9) € (X,Y),cs(x) € X,
Any uncertainty that f has on the counterfactual

samples P(f(cs(z)) # y') can be mitigated by
the auxiliary classifier h by identifying patterns

in ¢s(x) when f predicts incorrectly. As a sim-
ple example, without any human annotation, the
original model f might make incorrect assump-
tions on c,(z) that lead to incorrect predictions
f(es(x)) # ¢/, e.g., a sentiment analysis model
might give “positive” sentiment predictions due to
the presence of qualifiers like “terrific”, “amazing’
(this movie was amazing) even when the counter-
factual input c4(x) alters aspects of a sentence that
changes the label (this movie was supposed to be
amazing). But, this can be corrected using Eqn 8
after h has observed some data over the correct cor-
relation between z, ¢5(z), y, f(x), f(cs(x)) and v/,
especially if there exists a lower-complexity func-
tion mapping between them - for instance, adding
the phrase “supposed to be" may alter the label of
areview.

’

4 Evaluation

We evaluate on two NLP tasks, sentiment classifi-
cation and question paraphrase, using two datasets
namely the Stanford Sentiment Treebank (SST-2)
[50] and the Quora Question Pair (QQP) [51, 52].
When the CAPC classifier is used in conjunction
with generated examples through active learning,
we correspondingly prefix the model name as p-
CAPC (pool-based sampling with no retraining as
per Eqn 5) or s-CAPC (examples synthesized with
re-generation of counterfactuals optimizing Eqn 5).

Counterfactual Generator: Polyjuice

We use a general purpose counterfactual text gener-
ator called Polyjuice [19], which extends CheckList
[8], that has shown promise by improving diversity,
fluency and grammatical correctness as evaluated
by user studies. It covers a wide variety of com-
monly used counterfactual types including patterns
of negation [3], adding or changing quantifiers [11],
shuffle key phrases [38], word or phrase swaps
which do not alter POS tags [40] or parse trees [39],
along with insertions or deletion of constraints that
do not alter the parse tree [41]. Specifically, we
use 8 types of counterfactuals - negation, quantifier,
lexical, resemantic, insert, delete, restructure, shuf-
fle; in Polyjuice to generate the augmented dataset.
Other text generative models like [5, 3, 6] that im-
prove adversarial robustness or like [53, 54] that
allow controlled generation could be used as well.
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Experiment Setup

We test our methods on two popular text datasets.
We briefly describe the two datasets below, and
discuss the different evaluations of counterfactual
robustness we perform over them.

Stanford Sentiment Treebank (SST-2): The
sentiment analysis task in SST-2 [50] assigns a
binary sentiment (negative/positive) to a sentence
mined from RottenTomatoes movie reviews. The
corresponding counterfactuals are generated using
the Polyjuice generator [19]. The original dataset
contained 4,000 samples, while the counterfac-
tual dataset had 2,000 samples with human labels
against which we evaluate. We show a sample of
the dataset in the following:

Positive: A dog is embraced by the dog
Negative: A dog is not embraced by the dog

Quora Question Pair: In the QQP dataset [51, 52],
given a pair of questions, the task is to predict if
they are semantically equivalent, hence marked as
duplicate. Here, again the second question is mod-
ified by Polyjuice [19] as per the templates used
for the SST-2 dataset including negation, insertion,
deletion, rephrasing, etc, out of which 1,911 sam-
ples were human annotated for evaluation. The orig-
inal dataset had 20,000 samples.

Duplicate: How can I help a friend experiencing
serious depression?; How can I help a friend who
is in depression?

Non-duplicate: How can I help a friend experi-
encing serious depression?; How can I play with a
friend who is in depression?

Evaluation: In both datasets, we have a small num-
ber of counterfactual human annotations available
(SST-2: 2,000; QQP: 1,911) [19]. We divide these
examples into two sets, one for training and anno-
tating using A, and another held-out test dataset
used to compute counterfactual robustness of f.
The former dataset is used for fine-tuning f for
counterfactual robustness, while the latter is used
only as a held-out test set. In the SST-2 dataset, this
means we split out 1,000 samples for training/an-
notation and 1,000 as the test set, while in the QQP
dataset, we use 1,000 samples for training/anno-
tation and the remaining 911 samples for testing
counterfactual robustness. However, our aim is to
use a minimal subset of the 1,000 samples avail-
able for training the base classifier directly. Instead,
we use a smaller training dataset (100) to train
our pairwise classifier which in-turn can then ar-

tifically annotate the remaining (say 900) samples.
The combination of these (sum to 1000) will then
be used to train the base classifier. Thus, in all our
experiments, the number of counterfactual samples
available to the base classifier to train on remains
the same, although at different levels of human
labeling costs.

The classifier f is first trained on the original
classifier and then fine-tuned on the counterfactual
dataset. We also perform 10 random initializations
of the model f and A and a 10-fold cross-validation
split on the training/annotation data, thus report
the mean and standard error bounds o /+/n over
n = 1000 runs for each model-based annotation
and training for counterfactual robustness. We used
the standard hyperparameters provided! for train-
ing f on (X,Y") and the hyperparameters for fine-
tuning f on (X7, Y/) include learning rate of 5¢—°,
batch size of 16 and a sequence length of 120 for
20 epochs. The pairwise counterfactual classifier’s
hyperparameters were chosen after a grid search
to have a learning rate of 5e~*, batch size of 32
for 50 epochs, sequence length of 240 including
the original label and classifier predictions with
special marker characters. While the base classi-
fier f is trained on contextual embeddings of the
sentence(s), h is trained by further augmenting the
original and counterfactual sentence embeddings as
input to RoBERTa followed by the base classifier’s
predictions separated by special delimiters [DEL].
A similar 10-fold cross-validation split is used to
finetune the parameters of the classifier h.

Out-of-Distribution (OOD): To test the
methodology on out-of-domain datasets, we test
on sentiment analysis tasks in 6 reviews datasets -
IMDB movie (3 including contrast sets) reviews,
Amazon, SemEval, and Yelp reviews [55]. The
IMDB reviews (1,700) were collected by [3]
through careful human elicitation to produce
label varying counterfactuals of existing IMDB
reviews. In the Yelp reviews [56], the task is
to predict the ratings of 115,907 reviews on a
scale of 1-5, and in the Amazon reviews [57], we
evaluate on the 57,947 reviews in the clothing
product category. Each of these datasets was not
used for training either the base classifier or the
pairwise classifier, and the training relies solely
on the SST-2 dataset. So, we can measure the
generalizability of the pairwise classifier based
data augmentation methodology.
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Baselines

We now briefly describe five different baselines
used to generate the labels of counterfactual aug-
mented data (Yg’), given access to a small num-
ber of annotated labels Y,. No-cda: f without
any counterfactual data used for robustness. Label-
invariant (invariant) : the labels of the counter-
factual examples are assumed to be the same as the
original sentence: 3y’ = y (except for the counter-
factuals generated for the negation type, where it
is the opposite). Trust: we trust the classifier f to
annotate the counterfactual labels y' = f(cs(z)) -
a form of semi-supervision based on the existing
base classifier. Weighted-trust (w-trust): the la-
bel of the counterfactual example is computed via
the maximum score weighted by the confidence
score of the classifier f on the pair for a label [ :
pi(x) such that y' = argmax; pi(z) - pi(cs(w)).
Random: In order to understand the importance
of the counterfactual sentences used in the pair-
wise classifier, we also evaluate against a classifier
which takes two randomly paired sentences from
the original dataset as input and predicts the sec-
ond label given the label of one sentence. Train-
ing: we only use those counterfactual examples
with human-annotated labels (X, Y,) and drop all
other counterfactual examples.

For all these baselines as well as our proposed
methods, we use the RoBERTa [58] fine-tuned
model as the choice of classifier f, and a corre-
sponding pairwise fine-tuning task using RoBERTa
! for the auxiliary pairwise counterfactual classifier
h.

5 Results

Improving Counterfactual Robustness

To demonstrate the effectiveness of our pro-
posed method: actively synthesized classifier-aware
pairwise-counterfactual (s-CAPC), we perform
counterfactual data augmentation using 10% coun-
terfactual examples with human-annotated labels
as well as 90% counterfactual examples (a total of
1,000 samples), whose labels are predicted using
each method. The error rate on the hold-out coun-
terfactual examples (referred as robustness) as well
as on the original test set are shown in Figure 2.
We can clearly see that (1) the error rate of
our proposed method: s-CAPC significantly out-
performs other baselines on models’ robustness.

"huggingface.co/roberta-large-mnli, textattack/roberta-
base-SST-2, ji-xin/roberta_base-QQP-two_stage

SST-2 QQP
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Counterfactual
Accuracy (%)

60 -

100
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Figure 2: (a) Robustness: (first row) Training on 10%
of human-annotated counterfactuals, and annotating
the rest using the auxiliary classifier, we achieve a com-
parable improvement in robustness (lower error rate)
for both Stanford Sentiment and Quora Question Pair
datasets; (b) Accuracy: This improvement in robust-
ness does not sacrifice the accuracy on the original held-
out dataset.

(2) Comparing PC and CAPC, we can see that
CAPC performs slightly better than PC. This indi-
cates that the prediction of the original classifier
f(z), f(es(x)) does provide additional informa-
tion to help with labels prediction. (3) In addition,
we also compare our methods with the extreme case
that all the counterfactual examples (100%) are pro-
vided human-annotated labels, denoted as (human-
labels). Surprisingly, our methods, which only use
10% human-annotated labels and predict the labels
for the other 90% counterfactual data, achieve com-
parable performance in improving models’ robust-
ness. This sufficiently supports that our proposed
methods can effectively predict the labels for coun-
terfactual examples. (4) Looking at the error rate on
the hold-out original test set, all the methods share
a similar performance on SST-2 and our methods
are better than other baselines and comparable to
human-labels on QQP.

How much human-annotated data do we need?

To understand the impact of the training data pro-
vided to the auxiliary classifier h, we increased
the % of data Y, provided to the classifier. While
this increases costs of annotation, it is important
to understand the headroom improvement in coun-
terfactual robustness one would get had they opted
for complete human-annotation. Figure 3 shows
that across both datasets, the improvement in ac-
curacy and robustness in providing more human
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Figure 3: Impact of training size: As the number of
samples |Y,/| increases more than 10% in the s-CAPC
model , there is not much headroom in counterfactual
accuracy, and does not significantly impact the accu-
racy on the held-out original test dataset on both SST-2
and QQP datasets (overlapping error bounds).

annotations to train h : CAPC and subsequently
training the model f : RoOBERTa-{SST-2, QQP}
is not significant and hence further demonstrates
that, with just 10% of the augmentation dataset, we
can already achieve an improvement comparable
to a fully human annotated dataset. This further
confirms our method can achieve high sample effi-
ciency in improving models’ robustness.

Generalization across Counterfactual Types

We evaluate the generalization of our pairwise
counterfactual classifier h by ablating one coun-
terfactual type (e.g negation, quantifier, etc) at a
time during training h, but still annotate them to
generate the augmented training data for f. The re-
sults are shown in Table 1 (rows 2-9). We see that
for the SST-2 task, our approach outperforms ex-
isting baselines on counterfactual robustness. This
further indicates the importance of learning a coun-
terfactual classifier which captures patterns of label
invariance that generalizes across counterfactual
templates. Finally, we evaluate if our generated
augmentation dataset can be used to improve un-
seen counterfactual types - ablated while training
both i and f. While this is not the goal of our paper,
it is useful to understand what types of counterfac-
tuals are captured by our generator and if any over-
lap between the types of counterfactuals is lever-
aged. Table 1 (row 10) shows that our approach is
comparable with baselines (rows 2-5 in Table 1)
when a specific counterfactual type is ablated com-
pletely from the data augmentation pipeline. This is
consistent with existing work [59, 60] and further
highlights the need to incorporate diverse types of

counterfactuals to perform data augmentation.

Checklist Evaluation

To further validate that the generated labels by our
auxiliary model can be used for other tasks, we eval-
uate it against the labels in CheckList [8] which
capture other types of counterfactuals. We measure
the Absolute Failure Gap: |€ — €,| computed as the
difference between the true error rate € and the error
rate as reported by using our augmented dataset ¢,
while evaluating the models and tasks in the Check-
List dataset. In Figure 4, we see that even when
the training data provided to the auxiliary classi-
fier is synthetically made explicitly label-invariant
(90%), evaluating against counterfactuals with min-
imal label-invariance (10%), our model generalizes
with a lower failure gap than other augmentation
approaches. However, on the original Checklist
dataset there is no significant improvement in fail-
ure gap compared to reporting the failure gap just
on the training data alone.

Out-of-Distribution Generalization
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Figure 4: Checklist Evaluation - (a) Out of distri-
bution data: Our methods perform well over different
label-invariant distributions with 90% counterfactual la-
bel flips (y # y') in the Checklist dataset even when the
training distribution has only 10% counterfactual label
flips; (b) Model Comparison: However, on the origi-
nal Checklist dataset [8], we achieve a comparable fail-
ure gap with the golden error rate to other model-based
annotations

Out-of-Domain Reviews

To validate that the counterfactuals we augment
through our pairwise classifier’s annotations have
generalizability to 6 out-of-domain datasets, we
evaluate the reduction in error rates of the base
RoBERTa model when they are trained on the pair-
wise classifier’s data augmentation in Table 2. In
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Sliced Error by Counterfactual Type %

Model negation quantifier lexical resemantic insert delete restructure shuffle
s-CAPC-no-ablation 2.20 1.81 1.94 1.40 2.01 1.75 2.01 2.12
no-cda 19.12 18.10  21.40 20.65 17.54  20.99 18.32 17.42
invariant 14.62 4.82 4.32 3.10 7.72 7.83 6.48 9.24
trust 12.96 4.15 4.73 3.00 495 1249 3.74 9.02
w-trust 5.09 3.55 8.91 10.60 7.72 5.57 10.51 10.60
random 4.74 4.04 6.92 222 7.42 5.55 5.72 4.96
training 4.53 3.53 6.32 2.62 7.24 5.32 5.83 4.83
Slice error when counterfactual type is ablated from training i
PC 4.50 5.35 2.73 3.20 2.12 2.13 5.30 5.10
CAPC 4.04 2.20 4.76 2.10 4.56 4.67 3.56 4.50
p-CAPC 3.12 2.01 221 1.78 2.66 2.65 2.08 2.48
s-CAPC 2.54 1.84 2.19 1.46 2.07 1.86 2.02 2.14
Sliced error when counterfactual type is ablated from training h and f
s-CAPC ‘ 11.17 13.02 7.55 13.33 4.98 5.76 10.77 9.01

Table 1: Generalization of Counterfactual Types: Comparison of error rates (%) sliced by different counterfac-
tual sentence types shows that our approach s-CAPC continues to perform well even when those types are held out
during training h. However, when we ablate the counterfactual type both while training f and h, our approaches
performs comparably to the baselines sliced error rates. This shows that h does not just memorize the templates,
but training on diverse counterfactual types continues to be important for robustness.

Test error rate %

Model ‘IMDB Yelp Amazon SemEval IMDB-cont IMDB-cap
no-CDA 9.2 157 20.0 152 7.8 135
invariant 11.3 159 215 154 8.0 13.8

trust 93 158 205 15.5 8.1 13.8

w-trust 92 155 202 15.5 8.0 13.7

random 104 163 238 17.2 9.5 14.3
PC 8.0 143 18.1 14.2 7.4 129

CAPC 72 131 172 13.6 6.0 10.3
p-CAPC 92 137 159 13.6 59 10.1
s-CAPC 72 104 129 11.9 5.5 9.9

domain-trained‘ 6.7 100 11.7 10.8 54 9.5

Table 2: Out-of-domain reviews: Using data augmen-
tation with SST-2 counterfactuals from the Polyjuice
generator and classified using s-CAPC performs com-
parable to a model trained on within-domain data.

the IMDB reviews dataset [61], we see an improve-
ment in error rates from 9.2% without data augmen-
tation to 7.2% through CAPC and s-CAPC. This
out-of-domain error rate is comparable to the error
rate obtained by the model trained by [3] after incor-
porating samples from the counterfactuals drawn
from the same distribution as part of the training
(6.7%). In the Yelp reviews too 2 we see a reduc-
tion from 15.7% to 10.4% whereas other baseline
approaches lead to an increase in error rates. In the
Amazon reviews, the s-CAPC approach (12.9%)
outperforms the baselines and is comparable to
the augmentation from the training split from the
Amazon reviews (11.7%). Similar improvements
can be seen on the SemEval [62] and IMDB con-
trast sets (IMDB-cont, IMDB-CAD) [11, 3]. Each
of these improvements has to be viewed with the

“https://www.yelp.com/dataset/

context that it was achieved in a more sample ef-
ficient manner (1,000 counterfactuals generated
from the original SST-2 dataset by Polyjuice) as
compared to the in-distribution training approach,
where the training data has 3,400 samples from
their own respective datasets. This further confirms
that training on augmented counterfactuals using a
generator and pairwise classifier approach is com-
parable to human-annotated samples from other
domains, while providing us the ability to scale
both in terms of domain generalization as well as
labeling efficiency.

6 Conclusion

Counterfactual Data Augmentation approaches
have been extensively used to train for counter-
factual robustness. As the types of counterfactu-
als - both label-invariant and label-modifying, over
which to evaluate natural language models increase,
there is a need to adopt a methodology that can
scale with increasing types of counterfactuals. We
overcome a significant challenge in doing so, by
learning an auxiliary pairwise counterfactual clas-
sifier that leverages the patterns of counterfactuals
produced by vairous generative models. Using only
a small amount of human annotated counterfac-
tual samples, we demonstrate that our method can
produce a dataset that improves counterfactual ro-
bustness comparable to a fully human-annotated
dataset.
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7 Limitations

In this work, we have demonstrated new methods
to safely use more diverse counterfactuals and their
value, but in taking on this broader goal, we dis-
cover a number of further steps that could take
the work further forward. One of the limitations of
our paper is that the set of counterfactuals we im-
proved robustness over is limited and restricted to
perturbations in the English language. Our analysis
indicates the value of using more diverse counter-
factual types that require a case-by-case contextual
understanding. We show that adding more coun-
terfactual types can be done in a sample efficient
manner by using a generator trained to produce
counterfactuals. However, this still suffers from the
limitation that to extend to more counterfactuals
and languages, a classifier which labels them by
training on a small set of human annotations is re-
quired. Further, we do not investigate the quality of
the counterfactuals annotated, and we do not study
the performance using more nuanced counterfactu-
als with low levels of inter-rater agreement. Since
we use an auxiliary classifier to label the gener-
ated counterfactuals, the risk of label drift remains
a clear challenge and we do not control for this
label drift based on the certainty of these labels
from the auxiliary classifier. Further, a natural drift
in concepts based on active exploration might ren-
der invalid sentences that are not grammatically or
semantically correct, and new methods would be
needed to filter based on these text patterns.

As in other generative models, the risk of perpet-
uating or amplifying biases in the generated text
data continues to be important and while we be-
lieve counterfactual generation and augmentation
can help address such biases, there is also uncer-
tainty in using more flexible, generated counter-
factuals. For example, it is quite possible that one
of the generated counterfactuals relies on an iden-
tify term in the generated sentence, and attributes a
negative sentiment spuriously based on prevalent
stereotypes in the text corpus. For this reason, we
refer the reader to incorporating bias mitigation
strategies like [63] in addition to improving coun-
terfactual robustness.

While we show generalization across label vari-
ance in templates, we cannot guarantee that by
learning solely on label invariant counterfactuals,
a classifier can generalize over label modifying
counterfactuals or obtain the same levels of sam-
ple efficiency on harder classification tasks. While

generators like Polyjuice [19] have been evaluated
for fluency, diversity, etc., there is a need to evalu-
ate them within the context of a task and its labels.
However, the gains in robustness shown in Figure
3 and Table 2 further illustrate the need for dataset
generation in an efficient manner. As future work,
one can also look towards an efficient crowdsourc-
ing strategy that minimizes the gain provided by the
pairwise classifiers as each sample in the annotated
dataset provides a unique and diverse counterfac-
tual.
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