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Abstract

Multi-task language models show outstanding
performance for various natural language un-
derstanding tasks with only a single model.
However, these language models utilize an un-
necessarily large number of model parameters,
even when used only for a specific task. This
paper proposes a novel training-free compres-
sion method for multi-task language models
using a pruning method. Specifically, we use
an attribution method to determine which neu-
rons are essential for performing a specific task.
We task-specifically prune unimportant neurons
and leave only task-specific parameters. Fur-
thermore, we extend our method to be applica-
ble in low-resource and unsupervised settings.
Since our compression method is training-free,
it uses few computing resources and does not
destroy the pre-trained knowledge of language
models. Experimental results on the six widely-
used datasets show that our proposed prun-
ing method significantly outperforms baseline
pruning methods. In addition, we demonstrate
that our method preserves performance even in
an unseen domain setting.

1 Introduction

Various pre-trained language models with large-
scale data and parameters have emerged (Devlin
et al., 2018; Lewis et al., 2019; Raffel et al., 2019;
Brown et al., 2020). Specifically, pre-trained lan-
guage models like TS (Raffel et al., 2019) and GPT-
3 (Brown et al., 2020) have shown outstanding
performance on many natural language understand-
ing tasks. These language models can perform
various tasks with a single model by treating ev-
ery text processing problem as a text generation
problem. However, these language models may uti-
lize unnecessary large-scale model parameters even
when performing only a specific task. Previous
works have introduced various compression meth-
ods for language models such as pruning (Chen
et al., 2020; Goyal et al., 2020; He et al., 2021),

knowledge distillation (Sanh et al., 2019; Hou et al.,
2020; Mao et al., 2020; Sun et al., 2020), quan-
tization (Shen et al., 2020), and low-rank factor-
ization (Liu et al., 2021). However, these studies
have (1) not compressed the language models task-
specifically or (2) demanded an additional train-
ing process like the case of knowledge distillation.
This additional training process requires excessive
computing resources and a massive training dataset.
Furthermore, this training process can destroy in-
herent pre-trained knowledge in language models
since it updates the model’s pre-trained parameters
(Toneva et al., 2018). Due to the catastrophic for-
getting (McCloskey and Cohen, 1989) caused by
pre-trained knowledge destruction, models which
are compressed and trained for a specific task, tend
to show degraded performance on solving other
pre-trained tasks (Kirkpatrick et al., 2017; Ritter
et al., 2018). Also, additional memory space is
required to store the trained parameters separately.

In this paper, we propose a novel training-free
attribution-based task-specific pruning method that
enables more efficient compression and inference
by extracting only task-specific parameters from
multi-task language models. We can determine
which neurons are essential to derive a specific out-
put for each neural network layer by using attribu-
tion so that we can extract only task-specific param-
eters from the entire model, as shown in Figure 1.
We can efficiently process input data while preserv-
ing the model’s task performance by selecting only
the important neurons determined by the attribu-
tion method. Furthermore, we extend our method
to be applicable in two challenging scenarios: low-
resource and unsupervised scenarios. The former
alleviates insufficient labeled data situations, and
the latter handles settings when labels are unavail-
able. Both methods can relieve the cost of obtaining
labeled datasets, which requires excessive human
resources and is time-consuming. Especially under
the low-resource setting, our attribution-based task-
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“sst2 sentence: based on a true and historically
significant story.”

“positive”

“rte sentencel: Lin Piao, after all, was the creator of Mao’s “Little Red
Book” of quotations. sentence2: Lin Piao wrote the “Little Red Book”.”

“entailment”

“not equivalent”

have swept the grounds for booby traps. sentence2: Security lights

["mrpc sentencel: Security lights have also been installed and police

have also been installed on a barn near the front gate.”

Figure 1: Task-specific Knowledge of Multi-task Language Models. Not all parameters in a language model behave
as important parameters when performing a single task. For example, in this figure, when a language model receives
SST-2 data, sentiment analysis data, only the parameters expressed in red color behave as essential parameters.

specific pruning requires only a single forward and
backward propagation computation for few-shot
data samples (e.g., only ten samples) to derive attri-
bution of each neuron. Since this pruning process
does not update the model’s parameters, it does not
destroy the pre-trained knowledge of the language
models. Therefore, it is irrelevant to the various
disadvantages that arise during an additional train-
ing process. Since our method is model-agnostic, it
can be applied to any neural network model broadly
and generally. Even we can use it to extract only
task-specific knowledge after other compression
methods are applied.

Experimental results on the six widely-used nat-
ural language understanding tasks show that our
proposed method significantly outperforms base-
line training-free pruning methods. Furthermore,
we demonstrate that our method shows robust per-
formance in both low-resource and unsupervised
settings. Also, we reveal that our proposed method
shows outstanding knowledge preservation even
for an unseen related domain, which suggests that
our method can preserve task-specific knowledge
effectively. We additionally investigate to offer a
guideline for our task-specific compression method
by analyzing which types of layers are significant
for processing task-specific knowledge.

2 Related Works
2.1 Efficient Language Models

As transformer-based (Vaswani et al., 2017) lan-
guage models (Devlin et al., 2018; Radford et al.,
2018; Raffel et al., 2019; Liu et al., 2019; Yang
et al., 2019) have become state-of-the-arts on many
NLP tasks in the last few years, deep neural net-
work model compression methods have been vastly
applied to large-scale language models. Fan et al.
(2019) randomly drops layers at training time,
which enables structured pruning on transformer

layers at inference time. Michel et al. (2019) prunes
less important attention heads at inference time.
Other works (Goyal et al., 2020; Kim et al., 2021)
focus on pruning less important tokens and pro-
gressively remove them during inference. How-
ever, many of the pruning methods (Goyal et al.,
2020; Kim et al., 2021; Chen et al., 2020) require a
following fine-tuning step of the model parameters
after fixing the configuration of a pruned network,
which makes such methods undesirable for efficient
task-specific compression.

On the knowledge distillation side, Sun et al.
(2019); Jiao et al. (2019); Sanh et al. (2019) employ
teacher-student framework (Hinton et al., 2015) to
transfer knowledge from an original large model
(teacher), to a lightweight shallow model (student).
They differ in how the student network is initialized
and to which components knowledge distillation is
applied. On the other hand, Shen et al. (2020) uses
the mixed precision group-wise quantization based
on Hessian information to compress BERT.

There are other streams of works that explore
efficient language models by solving the bottleneck
of the Transformer-based model computation. Belt-
agy et al. (2020) and Zaheer et al. (2020) sparsify
the attention matrix to make transformer-based lan-
guage models more efficient and Wang et al. (2020)
applies low-rank approximation to increase infer-
ence speed. However, such works sparsify the full
self-attention matrix according to attention score,
which does not directly reduce the dimension of
the matrices in the model such as query, key, value,
and feed-forward matrices.

2.2 Network Pruning

One of the ways to categorize network pruning is
to compare structured pruning to unstructured prun-
ing. For structured pruning (Li et al., 2016; Hu
etal.,2016; Wen et al., 2016), groups of weight con-
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nections are removed from a network together, such
as entire channels or filters in CNN-based networks
and layers or attention heads in transformer-based
networks. For unstructured pruning (Han et al.,
2015a,b), weight connections are removed from a
network individually. However, unstructured prun-
ing methods produce large sparse weight matri-
ces which are computationally inefficient unless
equipped with a specifically designed hardware. In
this paper, we utilize the structured pruning method
to propose a compression method that enables effi-
cient weight matrix multiplication computation.

2.3 Attribution Method

We utilize an attribution method (Shrikumar et al.,
2016) to extract the importance of neurons from the
pre-trained language models. Attribution methods
are mostly used to derive important features (i.g.,
pixel, token) to extract interpretability from deep
neural networks (Baehrens et al., 2010; Springen-
berg et al., 2014; Shrikumar et al., 2016). Specifi-
cally, attribution methods are used to compute the
importance of each feature for performing a spe-
cific task. Formally, suppose we have a function
P :RY — [0,1]™ that represents deep neural net-
works for multi-class classification. The contribu-
tion of the ¢-th feature in x to the prediction of c-th
class using P is defined as follows:

o, OP(clz)
A% (z) = z; 1
. (x) =2 x o2, ()
where 0P (c|z)/Ox; is the gradient of P(c|x) with
respect to the i-th feature.

3 Methodologies

In this section, we describe our attribution-based
pruning method for extracting only the task-
specific knowledge from a multi-task language
model T5 (Raffel et al., 2019), where attribution
is obtained using gradient information. Further-
more, we extend our method to low-resource and
unsupervised settings to alleviate insufficient la-
beled data situations. We select TS because it is a
multi-task solving model and can be used in any
natural language understanding setting by treating
every text processing problem as a text generation
problem. For our problem setting, suppose we
have input text + = {z1, ..., z,} and output text
y = {y1,...,ym} mapped as (z,y) € D, where
each text corresponds to a sequence of tokens, and
an input text contains a prefix task description. We

can represent a standard conditional language mod-
eling objective to maximize the following likeli-
hood:

E(.’E,y) :ZIOgP(yz’%yl;vyz—h@) (2)

where the conditional probability P is modeled
using a neural network with parameters ©.

3.1 Task-specific Knowledge Extraction

Applying Pruning for Transformer variants
Deep neural networks can be compressed by prun-
ing unimportant ¢-th neurons of the layer repre-
sentation h (Han et al., 2015a,b). The architec-
ture of Transformer-based models mainly consists
of multi-head attentions and fully connected feed-
forward networks as follows.

MultiHead(Q, K, V) = Concat(heads, ..., headh)Wo
head; = Attentz‘on(QWiQ, KW}k, VWiV)
FFN(z) =o(xW1 + b1)Wa + by
3)
where W2V e Rimoderxdg ke and WO e
R *dmodel are the projection matrix parameters
for multi-head attentions. For the fully connected
feed-forward network (FFN), two linear transfor-
mations, denoted with the projection matrix param-
eters W7 and W5 and biases by and by, with an
activation function are used. Transformer (Vaswani
et al., 2017) variants can be compressed by prun-
ing WREV0 W12, and by » for each transformer
block.

Deriving Attribution for Language Models
Language models generate text outputs by itera-
tively selecting a word-piece from the vocabulary
dictionary. Therefore, the text generation process
can be seen as a classification task dealt with in the
attribution methods, and we can apply the attribu-
tion methods to compute the importance of features
for language models. However, the purpose of this
study is to derive the importance of each neuron
h; in the layer representation . € R?, rather than
deriving the importance for the input feature x;.
Hence, the attribution formula is adapted to com-

@95) ¢ R as follows:

7

pute a neuron attribution A

OP(y;|z, y1.i—
(yj‘ yl ¥i 1) ( 4)
Oh;
If the target output text consists of multiple word-
pieces rather than a single word-piece, language

A () = hy x
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Figure 2: Module-specific Pruning Results. Our proposed attribution-based pruning significantly outperforms the
other pruning methods in most cases. Especially, our task-specific pruning is more effective on decoder compression;
these results suggest that most task-specific knowledge exists in the decoder of language models. The standard
deviations of T5-RP and T5-RAP are shown in appendix B.

models must derive the multiple word-piece output
distributions. Therefore, we change the attribution
formula to handle multiple word-piece outputs as
follows:

|yl
OP(yjlz, y1:5-1)
> o (5)

A (h) = by x
j=1

Since Al(-m’y) is attribution for one sample data z,
we obtain the final neuron attribution by summing
attributions for multiple sample data as shown in
the following formula:

D T
Az(‘ )(h) = Z Az(‘ Y (h) (6)
(z,y)eD

where D means the entire task-specific dataset. In
low-resource environments, few-shot samples can
be used for D (e.g., only ten samples), which are
sufficient to derive a precise importance score for
each neuron. Experimental results for low-resource
setting are described in section 4.3.

Attribution-based Layer Pruning We focus on
applying attribution-based pruning on the Trans-
former encoder and decoder, more specifically
on multi-head attention and fully connected feed-
forward networks. We use neuron attribution AZ(-D)
as the importance for each neuron of a specific
layer. We sort the importance of each neuron in
order of magnitude at each layer, and we can com-
press the model by pruning neurons with lower
importance.

argsorti(A) =[{j|(Ai < Aj) U (Ai = A;,j < i)}

7
where i, j € {1,...,k} ™

Once neurons are sorted according to the impor-
tance score, we prune neurons from each layer with
the pruning rate p by constructing a set M of neu-
ron indices to be secured.

M = {i]argsort;(A) < |k x p|}

8
where i € {1,...,k} ®

The algorithm for deriving a set M is shown in
appendix A. Suppose W € R4*¥ is a linear matrix
multiplication parameter we want to prune, the ma-

trix after pruning is denoted as W = (Wij)i<i<d-
JjeEM
If the bias term b € R” is added to the operation for

an affine transformation, the bias term can also be
compressed by performing the b = (b;)ic s opera-
tion similarly. The compressed parameters are used
to compute the new representation by performing
the transformation operation AW or hW +b.

More specifically, for VViQ, WiK , and WiV from
eq. (3), second dimension (the number of columns)
of the matrix is pruned and for Wio, W1, and Wy,
the first dimension (the number of rows) is pruned
to preserve the original architecture by matching
shape with input processed from the previous layer.
After pruning, multi-head attention and fully con-
nected feed-forward network computations are pre-
cisely the same as before but with the pruned
weight matrices:
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MultiHead(Q, K, V) = Concat(heads, ..., headh)Wo
head; = Attention(QWE, KWK v
FFN(z) = o(zW1 + b))Wa + bs
)
Note that attribution scores are sorted locally within
each layer, and the pruning rate p is applied to each
prunable layer uniformly.

Our proposed compression process utilizes a
structured pruning without any training process.
Therefore, our method can conduct on-demand real-
time task-specific compression and inference for
each task while preserving pre-trained parameters.
The detailed algorithm for on-demand real-time
task-specific compression and inference is shown
in appendix A.

3.2 Unsupervised Pruning

Obtaining labeled data usually requires excessive
human resources and is time-consuming. There-
fore, we propose an additional method to derive
attributions in an unsupervised setting to mitigate
this problem. If the label for the dataset is given,
we can simply compute attribution by summing the
gradients values for the word-piece set composing
the label. However, when the label is not given, the
target word-piece set is ambiguous. To resolve this
problem, we compute task-specific importance by
summing the absolute values of attributions for all
candidate labels as follows:

|y| OP(yilz. 11
T, » Y1
yey J=1

(10)
where ) is the candidate label set. The above im-
portance computation formula does not require su-
pervision for any data. Hence, we may not reflect
definite label information when computing each
neuron’s importance under our unsupervised com-
pression setting. However, this setting is helpful
for a resource-constrained environment, where ob-
taining labeled data is challenging.

4 Experiments

4.1 Experimental Setup

Datasets We conduct experiments on six down-
stream tasks (Wang et al., 2018, 2019). Specifi-
cally, we utilize SST-2 (sentiment analysis); MRPC

(semantic textual similarity); BoolQ (question an-
swering); and QNLI, CB, RTE (natural language
inference).

Implementation Details We select pre-trained
T5-base' as a backbone for the following exper-
iments. T5-base consists of 12 encoder and 12
decoder layers. Each encoder layer contains 6 prun-
able matrices: 4 for the multi-head self-attention
networks and 2 for the feed-forward networks.
Each decoder layer contains 10 prunable matrices:
4 for the multi-head self-attention networks and 2
for the feed-forward networks, and 4 for the cross-
attention networks. 75-base used in our experi-
ments has been fine-tuned by multi-task learning
using the six datasets above. We experiment with
pruning rates ranging from 0.1 to 1.0, and a pruning
rate is applied to each prunable layer uniformly.

4.2 Task-specific Pruning Efficiency

In this section, we validate the effectiveness of our
task-specific attribution-based pruning by compar-
ing the performance with other pruning methods.
We collect compressed models using various prun-
ing methods and evaluate the model’s performance
on testset for all six datasets.

Baselines We select four other training-free prun-
ing methods to compare with our task-specific TS
Attribution Pruning (T5-AP).

* TS5 Forward Propagation Pruning (T5-
FPP) derives the importance of each neuron
with the absolute value of the forward prop-
agation value of each neuron. This method
is widely used to compress model in various
studies (Han et al., 2015b; Hu et al., 2016;
Li et al., 2016). Previous studies using FPP
generally fine-tune the compressed model to
increase the model’s performance. However,
we eliminate the fine-tuning process to main-
tain a fair evaluation scenario since we focus
on studying training-free compression.

« T5 Low Rank Factorization (T5-SVD)
prunes weight matrices of neural networks
using Singular Value Decomposition (SVD).
SVD is commonly used as a main matrix com-
pression idea in various researches (Wang
et al.,, 2020; Noach and Goldberg, 2020).
Specifically, SVD is used to compress a ma-

"https://huggingface.co/t5-base
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Figure 3: Module-integrated Pruning Results. These results reveal that compressing the whole architecture of the
model does not additionally degrade the model’s performance compared to module-specific pruning. We experiment
with the combinations of ten pruning rates for the encoder and decoder, and plot the interpolated results.

trix based on low rank factorization formula
as follows:

W=USV~Y o;x(U;xV;) (1)
=1

where W € RY** is a matrix to compress,
and U € R and V € R"*¥ are the decom-
posed matrices. ¥ = diag(oy,09,...,0,) is
a diagonal matrix consisting of the singular
values o;, where < min(d, k) is the matrix
rank. Uj is the j-th column of U and V} is the
j-th row of V. We can compress the matrices
of T5 by determining the rank 7 = Ljiifljj
to have the same number of parameters as
T5-AP, where p is the pruning rate defined in
formula 8.

* TS Random Attribution Pruning (T5-RAP)
randomly selects word-pieces that are not la-
bel, and uses them to compute attribution.
RAP does not derive appropriate task-specific
importance for each neuron since this method
randomly selects word-pieces output. We cal-
culate the final performance of T5-RAP by
averaging the accuracy derived from five tri-
als of random word-pieces selection.

* T5 Random Pruning (T5-RP) randomly se-
lects which neuron to prune. This method can
achieve the lower-bound performance of over-
all training-free pruning methods since it ran-
domly selects which neuron to prune without
any knowledge. We calculate the final perfor-
mance of T5-RP by averaging the accuracy
derived from five trials of random pruning.

Module-specific Pruning For each dataset, we
separately compressed the encoder and decoder
at varying pruning rates to reveal the effect of
our method on the encoder and decoder, respec-
tively. Figure 2 shows the experimental results
for five compression methods, including our pro-
posed method. Experimental results show that our
method outperforms other compression methods
in most cases. Specifically, there is almost no per-
formance difference between the T5-RP and T5-
FPP. These results suggest that the TS-FPP does
not extract task-specific knowledge. In addition,
T5-SVD performs not badly in some cases, but gen-
erally performs similarly to T5-RP. It is because
the low-rank approximation of T5-SVD does not
work task-specifically. Surprisingly, T5-RAP some-
times performs similarly to T5-AP, probably due
to the use of partial gradients information calcu-
lated from model parameters. Our experiments
show that the decoder part of T5 has the robustness
for task-specific compression than the encoder part
of TS. These results demonstrate that TS5 decoder
processes more task-specific information than T5
encoder.

Module-integrated Pruning To maximize the
compression efficiency of a language model, we
should compress the whole model instead of
compressing the encoder or decoder, respectively.
Therefore, we also validate our method by com-
pressing the whole architecture of T5. Figure 3
shows the experimental results of simultaneously
compressing both the encoder and decoder using
our method. These experimental results reveal that
compressing the whole architecture of the model,
not compressing each encoder or decoder sepa-
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Figure 4: Experimental results extending our pruning method to challenging settings: (a) Low-resource setting
experiment results. (b) Unsupervised setting experiment results. (c) Unseen domain setting experiment results.
These extensions make our method more practical for use in a real-world setting.

rately, does not degrade the model’s performance
additionally.

Our method focuses on compressing a multi-
task language model without any additional train-
ing process in a model-agnostic way. Therefore,
it is difficult to compare our method with previ-
ous compression research due to the inconsistent
experimental setting since previous studies have
treated training-based and model-specific compres-
sion methods. Since our method is model-agnostic,
it can be utilized broadly and generally to prune
multi-task language models containing only task-
specific knowledge after applying other compres-
sion methods.

4.3 Low-resource Setting

In this section, we demonstrate the results for com-
pressing language models based on the attribution
computed from only few-shot. Specifically, we
compute neuron importance using only 103 and
102, and 10" samples of SST-2 and QNLI datasets
and prune the T5 model with the computed impor-
tance, where we balance the number of samples
for each class when sampling a subset of the whole
dataset. All results are reported by averaging five
trials of random sampling. Figure 4-(a) represents
the pruning results in low-resource setting. For
SST-2 dataset, we find that compression using only
10 data samples yields comparable performance to
the results of using the entire training dataset. The
total number of data samples of SST-2 is 67k, and
10" of data samples corresponds to about only 10~4
of the whole dataset. For the QNLI dataset, we
demonstrate that compression using only 103 data
samples of the labeled training dataset yields com-
parable performance to the results of using the en-
tire training dataset. Furthermore, the performance
degradation is also insignificant when using only

10' samples of the labeled QNLI training dataset.
The total number of data samples of QNLI is 105k,
and 103 and 10" data samples correspond to about
only 1072, 10~ of the whole dataset, respectively.
These results suggest that most of the task-specific
knowledge is derived from computing gradients
for only the candidate outputs. We can effectively
reduce the time consumption in this low-resource
setting by using a few labeled instances to com-
pute the attribution, and it is the most significant
advantage over other training-based compression
methods.

4.4 Unsupervised Setting

We suggest an additional method to compute at-
tributions using an unlabeled text dataset in sec-
tion 3.2. We present the pruning results by com-
puting attributions for an unsupervised setting in
Figure 4-(b). Results of encoder compression with
the unsupervised setting for both SST-2 and QNLI
datasets show competitive scores to that of labeled
data. For the decoder, the performance of SST-2
decreases slightly, but the performance of QNLI
rather increases. The experimental result on SST-2
reveals that the compression in an unsupervised
setting shows robust performance maintenance. In
the QNLI result, we observe that computing attribu-
tions using information from all output candidates
enhances the model’s performance.

4.5 Unseen Domain Setting

In this section, we validate the effect of our task-
specific compression on unseen domains. We com-
press the T5 using related and unrelated datasets,
and then compare the performance preservation for
the original dataset. Specifically, we compress the
T5 using attribution computed with SST-2 and RTE,
respectively. And then, we evaluate the compressed
models with the QNLI dataset. QNLI and RTE are
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Figure 5: Layer types analysis: (a) Layer architecture experiment results. (b) Layer depth experiment results. The

higher the degradation, the more essential layers are.

related domains since both are natural language in-
ference datasets, and SST-2 is an unrelated domain
built for sentiment analysis. Figure 4-(c) shows the
evaluation results of the compressed model for re-
lated and unrelated domains. Experimental results
reveal our method’s robust performance mainte-
nance for the related domain. Surprisingly the case
of decoder compression shows even better perfor-
mance maintenance in the related domain than in
the original domain.

4.6 Layer-specific Pruning Analysis

This section further investigates the pruning effect
per layer type. We select two pruning settings: (1)
Layer type-specific and (2) Layer depth-specific.

Layer Type-specific Pruning Analysis Layer
type-specific pruning analysis focuses on under-
standing how the performance of the model varies
depending on the type of compressed layers.
The encoder investigates pruning results for feed-
forward neural networks and self-attention net-
works, and the decoder focuses on feed-forward
neural networks, self-attention networks, and cross-
attention networks.

Layer Depth-specific Pruning Analysis Layer
depth-specific pruning analysis investigates how
the performance of the model changes depending
on the depth of the compressed layers. We select
SST-2 for experiments and separate each encoder
and decoder into three parts: (1) Low-level layer,
(2) Mid-level layer, and (3) High-level layer. Since
T5-base consists of 12 layers for each encoder and
decoder, each depth consists of 4 layers.
Layer-specific pruning results are shown in Fig-
ure 5. For the encoder, self-attention networks are
more critical for preserving the performance than
feed-forward neural networks. For the decoder,
cross-attention networks are more important than
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feed-forward neural networks and self-attention
networks. For each layer-depth, we can conclude
that the low-level features are more crucial to pre-
serving the model’s performance. Especially, ex-
perimental results reveal that the model’s perfor-
mance is preserved even if the pruning rate of a
specific layer is 1.0. These results demonstrate that
there is redundant information processing between
layers for performing a specific task. Note that
although the pruning rate is 1.0 for a layer, the rep-
resentation propagated through the pruned layer
does not lose every knowledge completely. It is
because transformer variants have residual connec-
tions to preserve the knowledge of previous layers.

5 Conclusion

This paper proposes a novel training-free
attribution-based task-specific knowledge ex-
traction method for multi-task language models.
Specifically, we use attribution to determine which
neurons are important to derive a specific output
for each task. Then, we prune task-specifically
unimportant neurons to extract only task-specific
knowledge from the entire model. We further
propose a method for computing attributions
in low-resource and unsupervised settings. We
demonstrate that our method outperforms the
other pruning methods on the widely used text
datasets. In addition, we examine that our task-
specific language model pruning method shows
outstanding performance in the unseen domain,
especially when the unseen domain is related
to the dataset used to configure the compressed
version. Our compression method does not update
the pre-trained parameters of the language models,
which enables efficient on-demand compression
and inference. Also, our proposed method is
valuable because it can be universally applied to
any neural network-based model architecture.



Limitations

To the best our knowledge, this is the first work
to compress a multi-task language model without
extra training on the target task. Due to insuffi-
cient prior work on these training-free compression
methods, we couldn’t include a thorough compari-
son with other baseline algorithms. Also, our work
focused on analyzing the results of six widely-used
natural language understanding datasets among
GLUE benchmark. We believe that extra exper-
iments on various challenging natural language un-
derstanding tasks will show our work’s generaliza-
tion performance. We have conducted experiments
on various settings; varying layer types, layer depth,
low resource, unsupervised, and unseen domain.
However, there are still extra room for improving
this work, such as exploring and applying layer-
specific pruning rates, which we leave for future
work.
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A Algorithms

Our pruning method consists of two stages: (1)
Derivation of task-specific neuron indices per layer
for a specific task (2) Real-time task-specific infer-
ence with previously pruned layers.

Algorithm 1 Deriving task-specific neuron indices
per layer for a task ¢

Input: task-specific dataset D*; model P; pruning rate p
Output: list M* with task-specific neuron indices per layer

1: Initialize all M as an empty set and all Af-Dt) to zero
2: B < split D" into mini-batches of size 3

3: for each batch b € B do

4 for each layer [ € P do

5 for i =1to k' do ®) /11
6: compute neuron importance A;”’ (h')
7: AP (R« AP (W) + AP (n)
8: for each layer ! € P do

9: for i = 1to k' do

0 ifargsorti(A(Dt)(hl)) < |k' x p] then
1 Mj — M; U {i}

return M*

10:
11:

In the first stage, we sort neuron indices in de-
scending order by computed attribution scores,
leaving high-importance neurons by (1 — p) ratio.

Algorithm 2 Real-time task-specific inference with
pruned layers

Input: task ¢; text inputs x; indices container M; model P
Output: text outputs y
1: For task ¢, load corresponding M
2: for each layer € P do
3: Wl — (Wilj)ie/vl;, > match rows with a previous layer I’
jemt
4:  if bias b’ exists in layer  then
5 b (bé)ier
6: compute outputs y with x using the pruned model P
return y

In the second stage, we prune task-specifically
unimportant neurons when given a user request for
a specific task. We task-specifically compress a
model in real-time and conduct an inference with
the pruned model.

B Statistic of Pruning Results

We compute the pruning results of the baselines
of T5-RP and T5-RAP through five random trials.
The standard deviations of the accuracy for the two
baselines are shown in Table 1.

SST-2 MRPC OQNLI RTE CB BoolQ

T5-RP Encoder 0.0202 0.0046  0.0143 0.0426  0.0168  0.0020
Decoder 0.0241  0.0108 0.0003 0.0580 0.0010 0.0060

T5-RAP Encoder 0.0082 0.0080 0.0119 0.0165 0.0099 0.0061
Decoder  0.0159  0.0089  0.0029 0.0123  0.0027  0.0063

Table 1: Standard deviations of Pruning results.

We calculate the standard deviations by averag-
ing the values derived by all pruning rates. These
results reveal that the variances of T5-RP and T5-
RAP are not significant.
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