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Abstract

Attribute Value Extraction (AVE) boosts many
e-commerce platform services such as targeted
recommendation, product retrieval and ques-
tion answering. Most previous studies adopt
an extractive framework such as named en-
tity recognition (NER) to capture subtokens
in the product descriptions as the correspond-
ing values of target attributes. However, in
the real world scenario, there also exist im-
plicit attribute values that are not mentioned
explicitly but embedded in the image infor-
mation and implied text meaning of products,
for which the power of extractive methods is
severely constrained. To address the above is-
sues, we exploit a unified multi-modal AVE
framework named DEFLATE (a multi-modal
unifieD framEwork For impLicit And expliciT
AVE) to acquire implicit attribute values in ad-
dition to the explicit ones. DEFLATE consists
of a QA-based generation model to produce
candidate attribute values from the product in-
formation of different modalities, and a dis-
criminative model to ensure the credibility of
the generated answers. Meanwhile, to provide
a testbed that close to the real world, we collect
and annotate a multi-modal dataset with parts
of implicit attribute values. Extensive experi-
ments conducted on multiple datasets demon-
strate that DEFLATE significantly outperforms
previous methods on the extraction of implicit
attribute values, while achieving comparable
performances for the explicit ones.

1 Introduction

A wide range of e-commerce platforms benefit
from accurate annotated product attributes and their

∗Work done during internship at Meituan Inc. The first
two authors have equal contributions.

†Corresponding author.

values, which could facilitate customers to under-
stand the product better as additional information
and help users search for preferred products as a
key word (Cao et al., 2018). However, it is a per-
vasive phenomenon that the manually annotated at-
tribute values of most products on the e-commerce
platforms are incomplete and noisy, due to the te-
dious nature of this work (Dong et al., 2020). To
address this, many researches have been proposed
for the task of Attribute Value Extraction (AVE),
aiming at extracting the values of the attributes
from the product information such as title or de-
scription.

Current mainstream methods on AVE treat it
as an information extraction task, the represen-
tative models include NER and machine reading
comprehension (MRC). The former adopt a set
of entity tags for each attribute (e.g., "B-Color"
and "I-Color" for the attribute "Color") to iden-
tify the corresponding attribute values (Chiu and
Nichols, 2016; Lample et al., 2016; Zheng et al.,
2018; Huang et al., 2015; Xu et al., 2019). While
the latter tackles AVE by intercepting spans from
the product textual information as the values of a
given attribute. (Wang et al., 2020; Shinzato et al.,
2022).

Existing works mainly focus on the extraction
for the attribute values that are mentioned explic-
itly in the product descriptions. While there exists
significant gap between them and the real world
scenario, where an attribute value that needs to be
obtained does not usually appear as a subsequence
of the product description, but can be inferred from
the image, implied text meaning and prior knowl-
edge. Fig. 1 shows an intuitive case of this situa-
tion, in which the value ("8 inches") corresponding
to the attribute of "size" appears in the image in-

13139



缤果披萨5选1,极致享受

Benkopizza, choose 1 from 5, ultimate enjoyment

尺⼨: 8寸
Size: 8 inches

⻝材: 水果

Material: fruits

Figure 1: An example of a product with its textual and
visual description. The attribute value to be extracted is
not a subsequence of product description.

stead of the description, and the value ("fruits")
of the "material" attribute is implicitly embedded
in textual and visual information. So for extrac-
tive methods, it is hard to extract those implicit
attribute values accurately by taking snippets from
the product descriptions.

Inspired by recent progress of text generation
paradigms on the field of Natural Language Pro-
cessing (NLP) (Dong et al., 2023), Roy et al. (2022)
explored applying generative models to tackle the
AVE task. They propose word and positional
sequence-based patterns to jointly generate the at-
tributes and the corresponding values. However,
this method is still designed to find explicit answers
from the textual descriptions in essence, without
incorporating the information of images, as well as
the semantic information about the attribute names.
Following this research direction, we further formu-
late AVE as a generative question-and-answer (QA)
task, thus empowering the model to predict (gener-
ate) the implicit attribute values (IAV). Specifically,
we design a multi-modal unifieD framEwork For
impLicit And expliciT AVE (called DEFLATE in
brief), which takes textual and visual information
of products as inputs and adopts an Encoder-to-
Decoder framework.

In Encoder, taking an attribute as the query, DE-
FLATE combines it with the textual description
and the image of a product into a single sequence,
and a novel multi-modal T5 model is applied to
encode the source data incorporating a cross-modal
attention mechanism. In Decoder, all possible val-
ues of a query attribute are generated one by one
as the candidate answers. Besides, to select the
expected attributes, a discriminative model is intro-
duced to determine whether a certain attribute and
corresponding values belong to a product or not.

Moreover, as mentioned above, the existing pub-
lic AVE datasets (such as MAVE (Yang et al., 2022)
and AliExpress (Xu et al., 2019)) offer an ideal
situation for the extractive methods, in which all
attribute values appear explicitly in the textual in-
formation. Considering the absence of a testbed
for the evaluation of implicit AVE, we present a
multi-modal dataset with a considerable number of
IAV to support more future related work.

Our contributions can be summarized as follows:

• We propose a unified framework for AVE task,
which consists of a multi-modal attribute gen-
erative model incorporating visual informa-
tion to generate both explicit and implicit at-
tribute values, and a discriminative model to
filter the generated answers.

• We present a challenging dataset including
texts and images to support researches on the
extraction of implicit attribute values. To the
best of our knowledge, we are the first to con-
centrate on the extraction of implicit attribute
values.1

• Extensive experiments show that our method
outperforms previous works sharply for the
extraction of the products with IAV, and are
also well-performed for extracting explicit at-
tribute values.

2 Related Work

2.1 Extractive Methods for AVE
Early AVE works are mainly rule-based approaches
that design regular expressions to recognize phrases
that indicate the values of every attribute using
human-crafted domain-specific seed dictionary
(Vandic et al., 2012; Gopalakrishnan et al., 2012).
With the development of deep neural networks, var-
ious deep learning-based methods have achieved
success on the sequence tagging task, which is sim-
ilar to NER (Chiu and Nichols, 2016; Lample et al.,
2016). For example, models based on BiLSTM-
CRF are applied to a sequence tagging task success-
fully (Kozareva et al., 2016; Huang et al., 2015),
and some extended methods like LSTM-CNNs-
CRF model have also achieved significant perfor-
mances on this task (Ma and Hovy, 2016). Fur-
thermore, recent works regard AVE as a sequence
tagging task, in which values for each attribute a

1Our dataset and code are publicly available at
https://github.com/G0vi/DEFLATE
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in a sentence will be tagged as "B-a" and "I-a",
denoting beginning and inside of subsequences at-
tributed to a (Karamanolakis et al., 2020; Zheng
et al., 2018). To improve the scalability of mod-
els for large set of attributes and unseen attributes,
Xu et al. (2019) consider each attribute as a query
added to the attention layer of the product title, and
adopt a global BIO tags for all the attributes.

There are also some NER models incorporating
multi-modal product information for the AVE task
(Zhu et al., 2020). Besides, other methods also try
to formulate AVE as a QA task in MRC, with the
goal to extract spans for a given attribute (Wang
et al., 2020; Shinzato et al., 2022). Both sequence
tagging and MRC methods above are extractive
methods, which are only applicable to the situations
when the attribute values completely appear in the
product descriptions, but can hardly extract those
attributes embedded in the information of contexts
or images implicitly without directly mentioned in
the texts.

2.2 Generative Methods for AVE

Motivated by successful works such as T5 (Raffel
et al., 2020) that use generative techniques as a uni-
fied solution for various NLP tasks including text
classification and slot filling, several researchers
have also formulated AVE as a text generation task.
Roy et al. (2021) combine the context and an at-
tribute with its value masked as blank, and utilize
Infilling by Language Modeling (ILM) (Donahue
et al., 2020) to generate the missing span as the pre-
diction of the value. Roy et al. (2022) propose two
generative paradigms: word sequence-based and
positional sequence-based to tackle the AVE task,
which jointly generate the values and positions in
the text with their corresponding attribute names
one by one. But generating values and their at-
tributes by positions still needs the attribute values
to appear explicitly in the product titles or descrip-
tions. And both the two methods above have not
considered multi-modal information of the prod-
ucts. Cho et al. (2021) unify vision and language
tasks using a multi-modal text generation frame-
work. And analogously in the field of AVE, Lin
et al. (2021) tackle the problem by a seq2seq model
called PAM that combines the product texts, Op-
tical Character Recognition (OCR) tokens and vi-
sual objects detected in the product image in the
encoder, and the decoded tokens are selected from
the above inputs as well as a dynamic vocabulary

of values. However, PAM just uses detected OCR
tokens and partial objects in an image by pretrained
models, which could lose some visual information
that is unimportant to the pretraining task but use-
ful for AVE. Besides, it only focuses on value ex-
traction for given attributes, without considering
which attributes should appear in the outputs. In
addition, Tavanaei et al. (2022) propose MMT4,
a transformer framework with multi modality to
improve the performance of generative models in
e-commerce. It is also a vision-projected sequence-
to-sequence architecture with image feature vectors
processed by ViT or CNN. Compared to MMT4,
our DEFLATE incorporates a discriminative model
to enhance the quality of generated samples, and
additionally utilizes a more lightweight image en-
coding scheme with less information loss of images
than ViT and CNN.

3 Approach

In this paper, a new framework DEFLATE is intro-
duced for attribute value extraction. We unify the
extraction for both explicit and implicit attribute
values of products as a multi-modal text generation
task. The main idea of DEFLATE is to generate
candidate values for each attribute conditioned on
the attribute name and the product information first,
and then determine the values of which attributes
pertain to a certain product using a discriminative
model. The overall architecture of DEFLATE is
visualised in Fig. 2.

3.1 Text Embedding

To begin with, we design a uniform QA format
for training. The text information of each product
p includes its description desp and name namep.
For this task, we combine all textual information
above of a product as well as an attribute A into
an question sequence as {The [A] of [namep]
([desp]) are}. We encode it as the text embed-
ding et = {t1, t2, ..., tn} ∈ Rn×d, where n is the
sequence length and d is the hidden dimension of
transformer. The encoder, decoder and language
modeling head use a shared group of embedding
parameters. Following T5, we adopt relative po-
sition embedding and add relative position bias to
each self-attention layer.

3.2 Image Embedding

Directly feeding the high resolution image pixels
to the models requires excessive memory and time
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Figure 2: The generative-and-discriminative modules of DEFLATE for the AVE task. The generator and discrimina-
tor use a shared encoder. The blue dashed line represents the generation process, and the red is for the discriminant
module.

for training. For more lightweight training and
inference, we compress the images using DALL-E
(Ramesh et al., 2021), a technique based on discrete
variational auto-encoder. It converts each 256×256
RGB image into 32×32 tokens, which can assume
8192 possible values for each element.

The visual tokens are denoted as V =
{[vis1], [vis2], · · · , [vism]}, where m is the num-
ber of tokens. We represent each token [visi] as a
one-hot vector. The corresponding visual embed-
ding of each image can be obtained as follows:

ev = VW = {v1, v2, ..., vm} ∈ Rm×d, (1)

where W ∈ R8192×d is a trainable matrix in the
same latent d-dim space with the texts, and vi is
the embedding of [visi].

3.3 Encoder-Decoder Architecture

Our multi-modal generative model overall follows
the encoder-decoder architecture of T5. The multi-
modal T5 (Mul-T5) encoder consisting of 12 trans-
former blocks jointly encodes the concatenated text

and image tokens of the products. Specifically, we
add a special token <IMG> to separate the textual
and visual tokens. Thus the multi-modal feature
fed into the feed-forward network of the encoder is

h = Enc(et, ev)

= {t1, t2, · · · , tn, hIMG, v1, v2, · · · , vm}, (2)

where hIMG is the embedding of the token <IMG>.
Similar to the encoder, the decoder also has
12 transformer blocks with an additional cross-
attention layer for each. The decoder generates text
sequences conditioned on the hidden features of the
encoder and the previously generated tokens. As
with all previously used seq2seq models, the archi-
tecture is trained to maximize the likelihood over
each token of the value sequence: Pθ(yj |y1:j−1, h),
where θ represents the parameters of the generator
and yj is the j-th token of the value sequence.

3.4 Attribute Discriminative Module
The QA-based generator is designed to complete
the values of the given attribute, but actually not
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every product has all attributes. For example, in our
QA approach, a question like "What is the cream
type of braised pork?" would arise, but indeed the
"cream type" is hardly related to "braised pork".
Therefore, we introduce an attribute discrimina-
tion module (discriminator in brief) with a shared
encoder with generator for attribute prediction to
restrict the results of the generator. The architec-
ture of the discriminator is shown in Fig. 2. To be
specific, for a certain product p, given an attribute
name ai, the product’s text tokens Tp, image tokens
Vp extracted by DALL-E and the corresponding at-
tribute values vp,i generated by generator, the input
sequence fed into discriminator can be expressed
as sp,i ={<CLS> The [ai] of [Tp] is [vp,i]
<IMG> V }, where <CLS> is a special classification
token that appears in the first position of every in-
put sequence. The final hidden embedding C of
<CLS> serves as the aggregate sequence representa-
tion for classification. The score function for the
input sequence sp,i is

D(sp,i) = sigmoid(MLP(C)). (3)

The training criterion for the discriminator is to
minimize the cross-entropy loss:

L(p, i) =−
∑

sp,i∈S+∩S−
(yp,i log(D(sp,i))

+ (1− yp,i) log(1−D(sp,i))), (4)

where S+ and S− denote positive and negative
samples respectively, and yp,i = 1 when sp,i ∈ S+

and yp,i = 0 when sp,i ∈ S−. Specifically, whether
a sequence is a positive or negative sample depends
on if the attribute ai ∈ Ap which refers to the at-
tribute set of p. We take each attribute ai+ ∈ Ap

with its values vp,i in the ground truth label of p for
the positive samples, and sample some attributes
that satisfy ai− /∈ Ap for the negative ones. As for
the values vp,i of each ai− in the negative sample
sequences, we employ a generative sampling strat-
egy. During the training of generator, we fetch the
generated results for each ai− as vp,i and combine
it into the product information as a negative sam-
ple sequence sp,i ∈ S−. As an example, “What is
the size of red-cooked pork?” serves as an input to
the generative model and the output result is “10
inches”. Then “<CLS> The size of red-cooked
pork is 10 inches” can be used as a negative sam-
ple. According to this scheme, we construct a total
of nearly 100,000 training samples. After training,

we can use the discriminator to determine the rea-
sonableness of the results given by the generative
model and then output the final filtered attributes
and values.

4 Dataset

Attribute Candidacy
Main material 3670
Accessories 2048

Cooking methods 35
Meat or vegetable 3

Sweet or not 2
Cool or hot 9
Cream type 6

Tea 127
hot 10

Table 1: Statistics of the our dataset DESIRE.

In this paper, we propose DESIRE (multi-moDal
gourmEt productS with Implicit attRibute valuEs),
a dataset in the gastronomy domain. We collect the
data from a large e-commerce platform in China
and have been licensed to release it for research pur-
poses. DESIRE contains corresponding textual in-
formation and image information for each product.
Meanwhile, as a dataset supporting the AVE task,
we provide ten candidate product attributes: "Main
Ingredients", "Accessories", "Flavor", "Cooking
Method", etc. The size of candidate words for
each attribute are shown in Table 1. The annotated
attribute values of each product are labeled accord-
ing to its detail information provided by merchants.
And in order to prevent merchants from missing
certain product attributes, annotators with extensive
experience in the gourmet e-commerce field further
check the attribute information for the products in
the test set.

Besides, in fact, merchants do not always pro-
vide a detailed text description for each product,
and the attribute values of products are not all in-
cluded in the text information. Therefore, to be
more fit with the real-world scenario, we directly
use the real text information provided by the mer-
chant. More specifically, each product is guaran-
teed to have a corresponding short text, but only
about 27.83% of the products have long text de-
scriptions.
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5 Experiments

5.1 Experimental Settings

Baselines We conduct experiments on DESIRE
and evaluate the performances of models for both
attribute prediction (AP) and attribute value extrac-
tion (AVE). And to make the evaluation reliable and
reasonable, the following baselines involving both
extractive and generative models are selected for
comparison due to their reported superior results.

• BiLSTM-CRF (Kozareva et al., 2016) is a
general baseline for NER with a BiLSTM-
based encoder to capture the semantic feature
and a CRF-based decoder to calculate the max-
imum probability label corresponding to each
token in the input sequence.

• M-JAVE (Zhu et al., 2020) is a multi-modal
NER framework and labels the input textual
product descriptions as "BIO" sequences. It
feeds multi-modal features to a regional-gated
cross-modality attention layer, and jointly
makes the attribute prediction.

• Jointly Generative AVE (Roy et al., 2022)
tackles both AP and AVE jointly in a gener-
ative manner. We abbreviate it as JG-AVE
in the following. JG-AVE proposes two
paradigms: word sequence-based and posi-
tional sequence-based that generates values
or value positions with the corresponding at-
tributes one by one in the order of appearance
in the product description. Since the IAV have
no specific positional information, JG-AVE is
still restricted to extracting only EAV due to
the sequential information of the attribute val-
ues it utilizes. And in order to make full use
of its ability to extract IAV, we just implement
a variant of word sequence-based JG-AVE in
our experiments. Different from the original
method, we include all attribute values (both
IAV and EAV) into the long sequence labels
in a random order, regardless of where they
appear.

Evaluation Metrics To better evaluate the perfor-
mances of the model on the tasks, we compute the
F1-micro score for AP and AVE separately. And
it should be noted that the evaluation calculation
for AVE is based on the evaluation results for AP.
In other words, a value is right if and only if both
the predicted attribute and the value are matched

with the label. Meanwhile, the extractive methods
can hardly acquire exactly the same attribute values
as in the label. So to provide a better situation for
the extractive methods, we also calculate the Fuzzy
F1 score for which fuzzily matched predicted and
labeled attribute values are counted as correct. A
predicted value fuzzily matches a label when their
common substring length exceeds half of the label
length.

More implementation details of our experiments
are shown in A.1.

5.2 Main Results

Value AttributeData Range Models
F1 Fuzzy F1 F1

BiLSTM-CRF 8.24 9.99 22.68
M-JAVE 9.2 10.56 25.91
JG-AVE 23.72 26.70 58.22

All

DEFLATE 40.10 42.89 89.39
BiLSTM-CRF 29.97 31.01 -

M-JAVE 31.07 32.96 -
JG-AVE 48.20 51.60 -

Only EAV

DEFLATE 53.69 56.89 -

Table 2: Main results of comparative methods and our
method on our dataset DESIRE.

On our DESIRE dataset, we evaluate the per-
formances of our model and three other baselines
on both AP and AVE tasks. The main results are
presented in Table 2.

Comparing to the recent extractive model M-
JAVE, DEFLATE earns a substantial increase in
metrics on both tasks, where DEFLATE achieves
31 and 73 points improvement in AVE F1 score
and AP F1 score. The main reason is that the mech-
anism of extractive models makes it difficult to
predict product attributes and values not mentioned
in the text information, which could be alleviated
in generative frameworks.

Another generative model JG-AVE earns a bet-
ter performance than the extractive ones, but DE-
FLATE still has an increase of 19% value predict
F1 scores and 41% attribute predict F1 scores on
the basis of it. JG-AVE generates long sequences
of attributes and values directly through the genera-
tive model, while our model uses the discriminative
model for AP and then generates values of a given
attribute each time by the QA approach. However,
it could be a tough task for JG-AVE to learn the
attention information in its decoder when the se-
quence to be generated is too long and lacks order,
which is alleviated in our QA-based DEFLATE. In
addition, our framework additionally utilizes image
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information with more potential attributes beyond
the texts, which is also one of the reasons for the
better performance of DEFLATE.

The overall results show that our proposed DE-
FLATE outperforms other baseline models signifi-
cantly on both tasks.

5.3 Adaptability Study

Value AttributeModels
F1 Fuzzy F1 F1

BiLSTM-CRF 75.83 78.91 85.23
JG-AVE 82.07 85.26 92.53
M-JAVE 85.11 86.36 90.96

DEFLATE 86.01 87.12 96.09

Table 3: Comparative results on the dataset MEPAVE.

As mentioned before, DEFLATE is better-
performed on both explicit and implicit attribute
value extraction. In addition, for the DESIRE
dataset, we also evaluate the models on the extrac-
tion for only explicit attribute values (EAV) by fil-
tering out the attribute values provided by the labels
or predicted by the models that are not mentioned
in the product title or description. And to further
verify the adaptability of DEFLATE, we conduct
additional experiments on another multi-modal Chi-
nese AVE dataset MEPAVE (Zhu et al., 2020) (with
71,194 instances in the train set and 8,000 instances
each in the dev and test set), which is proposed
simultaneously with M-JAVE. It is worth noting
that all attribute values in MEPAVE are mentioned
explicitly in the text descriptions. What addition-
ally needs to be declared is that we apply for the
full data of MEPAVE which is not completely open
source from the creators. And our use of the dataset
is as expected for AVE-related research.

Extraction of EAV is more suitable for extrac-
tive models which directly label the text sequences.
While as shown in Table 2 and 3, the two gener-
ative models still have comparable performances
to the extractive ones. Especially, our DEFLATE
outperforms M-JAVE with 23.9% AVE F1 score
for EAV on DESIRE and 5.1% AP F1 score on
MEPAVE, which further demonstrates DEFLATE
could handle AVE well in various scenarios.

In addition, general results of the experiments on
both datasets demonstrate that AP is an easier task
compared to AVE. And based on this, we make
a further analysis on the comparison between the
two generative methods. According to the mode of

training, DEFLATE completes the AVE task with a
given attribute and could generate values incorpo-
rating the semantic information of the correspond-
ing attribute names. While JG-AVE generates a
value first and then predicts the corresponding at-
tribute of it. Both methods establish a relationship
between the attributes and values, but DEFLATE
predicts attributes separately and utilizes the rela-
tionship when making AVE, while the occasion for
JG-AVE to make use of the relationship is in the
easier task (AP) instead of the harder one (AVE),
for which JG-AVE is inferior to DEFLATE to a
certain extent.

5.4 Ablation Study

To demonstrate the effectiveness of the different
modules of our framework, we have performed the
ablation experiments in the two aspects, 1) remov-
ing visual information of products to the encoder
of generator (the models without cross modality en-
coding will be marked with "v−"); 2) getting rid of
the discriminant module (the variants of DEFLATE
with only a generator will be marked with "d−").

Value AttributeModels
F1 Fuzzy F1 F1

DEFLATEd−,v− 31.23 36.74 70.26
DEFLATEd− 34.95 37.52 72.47
DEFLATEv− 36.66 39.97 89.28
DEFLATE 40.10 42.89 89.39

Table 4: Ablation study result on the DESIRE dataset.

Ablating the Visual Information To validate
the influence of the visual information, we exclude
the image tokens from the input sequences for the
visual ablation experiment.

As shown in Table 4, on the testing set, with-
out the visual information injection, DEFLATEv−

has a 3.44% drop in F1 score on the AVE task
compared to DEFLATE. And without the discrim-
inative model in the framework, the model con-
sidering images (DEFLATEd−) also outperforms
DEFLATEd−,v− that neither has a discriminative
module nor utilizes visual information. In addi-
tion, from the comparison between DEFLATE and
DEFLATEv−, we further find that in the presence
of a discriminant module, the trained discriminator
incorporating visual information performs nearly
the same as the one trained only on texts for at-
tribute prediction, which indicates the attributes of
a product could be determined just by the seman-

13145



tic information of the product and attribute name
as well as the knowledge memorized by the dis-
criminative model. And the better performances
of the multi-modal generative models on AVE fur-
ther illustrates there would exist additional non-
negligible information about attribute values hid-
den in the images of some products.

Ablating the Discriminant Module In the com-
parison experiment where the discriminator is dis-
carded, we mark the value for those attributes not
belonging to a certain product as "None" to ensure
that a single generator can also make attribute pre-
diction while extracting attribute values. In this
way, given a product and an attribute, the trained
generator generates regular values when it deter-
mines that the attribute belongs to the product, and
generates "None" otherwise.

When we complete the two tasks with only the
generator, the f1 value of the AP task in the table
drops from 89.39% to 72.4%. For AP, the discrimi-
nation range of the generated model is as large as
the size of the dictionary, while the labels of our
discrimination model are only "0" and "1", which
is relatively simpler and more accurate. Moreover,
both DEFLATEd− and DEFLATEd−,v− also have
degraded performances on AVE. This is probably
because the token "None" that is not a real value
has a different meaning from others in the gener-
ative training, which would cause a gap between
the distribution of attribute values learned by the
generator and that in the training data.

5.5 Compressed Visual Information

In this section, our study focuses on whether the
visual tokens compressed by DALL-E will lose
some necessary information for the AVE and AP
tasks. In the comparative experiment, instead of ob-
taining the output embedding from the condensed
DALL-E tokens, we feed the original images of
the products into a ViT (Dosovitskiy et al., 2020)
model and get the embedding of 16×16 patches.
In our implementation, ViT-base-patch16-224 (Wu
et al., 2020) is chosen as the backbone model to
extract the image features.

As shown in Table 5, the model extracting fea-
tures from original images does not show observ-
ably better results than that utilizing the com-
pressed image tokens. Since the compressed to-
kens encoded by DALL-E could be restored to the
images that look almost identical to the original
ones without a large degradation in visual quality,

Value AttributeModels
F1 F1

DEFLATE (DALL-E) 40.10 89.39
DEFLATE (ViT) 41.02 89.36

Table 5: Performances of models trained with full or
compressed visual information on DESIRE.

human-visible attribute elements in the images of
products are not lost. Moreover, training with the
patch embedding extracted on ViT brings much
more computational and memory overhead com-
pared to the DEFLATE (DALL-E). So our method
is time-efficient and resource-efficient for the injec-
tion of visual modality on AVE.

5.6 Low-Resource Evaluation
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Figure 3: Performances of different methods on differ-
ent proportions of the MEPAVE data.

For further investigation of our method and the
baselines on small datasets, we divide the training
set into 10 parts and train models with different
proportions. To contrastively evaluate the perfor-
mances of the extractive models with low resource,
we conduct the experiments on MEPAVE. The eval-
uation results of models on the two subtasks for
different proportion are presented in Fig. 3 by the
line chart. The evaluation scores of our model and
JAVE fluctuate less as the data decreased. Even
with only 10% of the data for training, our model
still performs satisfyingly with 94.53% AP F1
score and 76.89% AVE F1 score. In particular,
on the AP task, there is almost no gap between the
performances of the models trained on 10% of the
data and the full amount of data. This also gives ad-
vantages for AVE. But the other generative model
JG-AVE is strongly influenced by the amount of
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data. On the two subtasks, the f1 score of JG-AVE
is lower than our model by over 20%, when 10%
training instances are available. Therefore, we can
have a conclusion that our model is easy to train
and has a stronger learning ability.

6 Conclusion

In this paper, we pay attention to the implicit at-
tribute values (IAV) in AVE and propose an effec-
tive multi-modal generative-discriminative frame-
work called DEFLATE for attribute value extrac-
tion and attribute prediction. Other than the at-
tribute values that are mentioned explicitly (EAV)
in the product descriptions, DEFLATE could also
acquire those IAV beyond the textual information.
We also present a challenging multi-modal dataset
for AVE with both EAV and IAV. Extensive exper-
iments demonstrate the superiority of DEFLATE
over the previous extractive methods on both AVE
and AP tasks, especially for the products with IAV.
And our QA-based framework that leverages the
relationship between attributes and values on the
harder AVE of the two tasks shows an advantage
over the jointly generative method JG-AVE, which
utilizes it on the easier AP. Besides, the ablation
experiments further show the importance of the
visual information fusion module and attribute dis-
crimination module in DEFLATE.

7 Limitations and Future Work

The limitations of our method are as follows:

(1) Despite the better performances our method
DEFLATE achieves on multiple AVE exper-
iments, its mechanism of using attribute as
queries needs to construct the same number
of sequences as attributes for a target prod-
uct, which requires more time for training and
evaluating when there are particularly many
attributes to consider.

(2) The low F1-micro scores of DEFLATE and
all other leading methods for AVE on our DE-
SIRE dataset emphasizes the demand of fur-
ther researches for the information extraction
of the e-commerce products with implicit at-
tribute values. And we would explore strate-
gies such as incorporating external knowledge
(structured or unstructured) to further enhance
the ability of our method on the AVE task in
future works.
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A Appendix

A.1 Implementation Details
The framework of DEFLATE follows T5-pegasus
(Su, 2021), which has 275 million parameters. We
implement DEFLATE with Pytorch and Hugging-
face Transformers and train the models on 2*Tesla
V100 GPUs. For all models, We set 10 training
epochs, the batch size b = 8 and the maximum
sequence length 60 for tokenizer according to our
text data. And an Adamax optimizer with learn-
ing rate lr = 2e − 3, (β1, β2) = (0.9, 0.999) and
weight decay of 1e-4 is adopted for more efficient
training. In all experiments, we train the models
with a fixed random seed and make a number of
evaluations on the test set using the intermediate
checkpoints during training. All of the reported re-
sults on DESIRE are selected from the best scores
among the 20 evaluation results for each model.

Specifically, for BiLSTM-CRF, since pretrain-
ing language models (PLMs) were not popularly
used when this method was proposed, we use the
word embedding from pretrained BERT (Devlin
et al., 2019) model instead of randomized embed-
ding. For M-JAVE, texts and images are prepro-
cessed into vectors using pretrained BERT-base
and ResNet (He et al., 2016) models, and then the
model is trained and inferred using its publicly
available code2. In order to allow the above two
extractive models to mark parts of implicit attribute
values, we select the IAV with at least two consec-
utive characters that appear in the text and mark
these characters as "BIO" tags. And for JG-AVE,
we also adopt T5-pegasus (Su, 2021) as the back-
bone of the generative model and apply only the
variant of the word sequence-based paradigm.

2https://github.com/jd-aig/JAVE
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