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Abstract

While large language models are able to retain
vast amounts of world knowledge seen during
pretraining, such knowledge is prone to going
out of date and is nontrivial to update. Fur-
thermore, these models are often used under
temporal misalignment, tasked with answer-
ing questions about the present, despite having
only been trained on data collected in the past.
To mitigate the effects of temporal misalign-
ment, we propose fact duration prediction: the
task of predicting how long a given fact will
remain true. In our experiments, we demon-
strate that identifying which facts are prone to
rapid change can help models avoid reciting
outdated information and determine which pre-
dictions require seeking out up-to-date knowl-
edge sources. We also show how modeling fact
duration improves calibration for knowledge-
intensive tasks, such as open-retrieval question
answering, under temporal misalignment, by
discarding volatile facts. Our data and code
are released publicly at https://github.com/
mikejqzhang/mitigating_misalignment.

1 Introduction

A core challenge in deploying NLP systems lies in
managing temporal misalignment, where a model
that is trained on data collected in the past is eval-
uated on data from the present (Lazaridou et al.,
2021). Temporal misalignment causes performance
degradation in a variety of NLP tasks (Luu et al.,
2021; Dhingra et al., 2022; Zhang and Choi, 2021).
This is particularly true for knowledge-intensive
tasks, such as open-retrieval question answering
(QA) (Chen et al., 2017), where models must make
predictions based on world knowledge which can
rapidly change. Furthermore, such issues are only
exacerbated as the paradigm for creating NLP sys-
tems continues to shift toward relying on large pre-
trained models (Zhang et al., 2022; Chowdhery
et al., 2022) that are prohibitively expensive to re-
train and prone to reciting outdated facts.

Question Asked in tq=2021:
What’s the tallest building
in the world of all time?

Who sang the 
American Anthem
at the Super Bowl?

QA System trained
in tM=2018:

Pink sang the 
American…

Retrieved Evidence 
from tE=2018

The Burj Khalifa is
the tallest building…

Fact Duration (d) 
Prediction:

Pred Duration: ~10 years

Confidence: 90%

Confidence Adjusted for 
Misalignment: 85%

Pred Dur: ~1 years
Conf. Adjusted for 
Misalignment: 8%

Confidence: 80%
Misalignment (m) = 3 years

p(d ≤ m)=5%
p(d ≤ m)=
90%

Figure 1: We depict the critical timestamps at play in
open-retrieval QA systems. In the example on the left,
the temporal misalignment between when the system
was trained and evaluated has no affect on the answer.
On the right, the answer has changed, causing the sys-
tem to output an outdated answer with high confidence.
To account for this, we apply our fact duration prediction
system to adjust the system’s confidence accordingly.

Prior work has attempted to address these is-
sues by updating the knowledge stored within the
parameters of an existing pretrained model (Cao
et al., 2021; Mitchell et al., 2022; Onoe et al.,
2023). Another line of work has proposed us-
ing retrieval-based systems, which utilize a non-
parametric corpus of facts that can be updated over
time (Karpukhin et al., 2020; Guu et al., 2020;
Lewis et al., 2021). Both methods, however, are
incomplete solutions as they rely on an oracle to
identify which facts need to be updated and to con-
tinuously curate a corpus of up-to-date facts.

Given the difficulty of keeping existing mod-
els up-to-date, we propose an alternative solution
where we abstain from presenting facts that we
predict are out of date.1 To accomplish this, we

1Some modern language model assistants (e.g., ChatGPT)
have demonstrated a similar ability to abstain from responding
to questions with temporally-dependent answers. We compare
our methods against such system in Section 5.3.
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introduce fact duration prediction, the task of
predicting how frequently a given fact changes,
and establish several classification and regression-
based baselines. We also explore large-scale
sources of distant supervision for our task, in-
cluding fact durations extracted from temporal
knowledge bases (Chen et al., 2021b) and duration-
related news text (Yang et al., 2020). We provide
rich discussion on this challenging task, exploring
the relationship between fact duration prediction
and temporal commonsense (Zhou et al., 2020).

We provide two sets of evaluations for our fact
duration prediction systems. First, as intrinsic eval-
uations, we report how close our systems’ duration
estimates are to ground truth labels. We find that
models that are trained with only distant supervi-
sion can predict the duration of 65% of temporally
dependent facts from real search queries in Natu-
ralQuestions (Kwiatkowski et al., 2019) to within
3 years, compared to 11% from a simple average-
duration baseline. Second, in extrinsic evaluations,
we measure how systems’ duration estimates can
improve an open-retrieval QA system’s predictions
under temporal misalignment. We mainly focus
on improving calibration (as depicted in Figure 1).
Our approach can reduce expected calibration error
by 50-60% over using system confidence alone on
two QA systems (Roberts et al., 2020; Karpukhin
et al., 2020) on the SituatedQA dataset (Zhang and
Choi, 2021).

Lastly, we also explore other ways of applying
our fact duration systems in QA. We experiment
with adaptive inference in ensembled open/closed-
book QA systems, using duration prediction to de-
cide when retrieval is necessary due to temporal
misalignment. We also apply fact duration pre-
diction in a scenario where retrieval is performed
over heterogeneous corpus containing both out-
dated and recent articles, and systems must weigh
the relevance of an article against its recency. In
summation, we present the first focused study on
mitigating temporal misalignment in QA through
estimating the duration of facts.

2 Settings

We aim to address temporal misalignment (Luu
et al., 2021) in knowledge-intensive tasks, such as
open-retrieval QA. Figure 1 illustrates our setting.
We assume a QA model that is developed in the past
and is evaluated on a query from a later date. This
system suffers from temporal misalignment, return-

Eval.
Year Model EM

↑
AUR-
OC ↑

ECE
↓

RC@55
(|∆| ↓)

2018 1⃝ T5 36.0 0.82 0.13 55.0 (0.0)
2⃝ DPR 37.9 0.74 0.22 55.0 (0.0)

2021 1⃝ T5 17.4 0.77 0.26 27.2 (27.8)
2⃝ DPR 17.1 0.63 0.43 22.4 (32.6)

Adjusting Confidence With Oracle Misalignment Info.

2021 1⃝ T5 17.4 0.75 0.12 47.8 (7.2)
2⃝ DPR 17.1 0.71 0.17 38.7 (16.3)

Table 1: NQ-Open QA performance evaluated on an-
swers from 2018 (from NQ-Open) and 2021 (from Situ-
atedQA). Confidence estimates are taken from calibra-
tion models that have been trained for each QA system.
All models are trained on 2018 answers from NQ-Open.
On the bottom, we compare against an oracle system
which zeros the confidence of predictions whose an-
swers have changed between 2018 and 2021.

ing outdated answers for some questions whose
answer has changed in the meantime.

Table 1 reports the QA performance of existing
systems on SituatedQA (Zhang and Choi, 2021), a
subset of questions from NQ-Open (Kwiatkowski
et al., 2019; Lee et al., 2019) that has been re-
annotated with the correct answer as of 2021. In
this dataset, 48% of questions are updated within
the temporal gap (2018 to 2021). We can see that
the current models, without considering temporal
misalignment, experience performance degradation
on both answer accuracy (EM) and calibration.2

In this table, we also explore using an oracle that
identifies which answers have changed and zeroes
the QA system’s confidence in such predictions.
While this does not change the system’s accuracy,
it helps models identify incorrect predictions, im-
proving calibration metrics across the board. In
real-world scenarios, however, we do not know
which facts are outdated. Thus, in this work we
build a fact duration model which predicts facts
that are likely outdated and use it to adjust the con-
fidence of the QA model. We introduce our fact
duration prediction and QA settings in detail below.

2.1 Fact Duration Prediction

We define the fact duration prediction task as fol-
lows: given a fact f , systems must predict its
duration d, the amount of time that the fact re-
mained true for. We consider datasets that represent
facts in a variety of formats: QA pairs, statements,

2QA and calibration model details can be found in Sec-
tion 5.1 and calibration metrics are explained in Section 2.2.
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knowledge-base relations. For modeling purposes,
we convert all facts to statements. For example, the
fact f =“The last Summer Olympic Games were
held in Athens.” has a duration of d = 4 years.

Error Metrics We evaluate fact duration systems
by measuring error compared to the gold reference
duration: Year MAE is the mean absolute error
in their predictions in years and Log-Sec MSE is
mean squared error in log-seconds.

2.2 QA under Temporal Misalignment
The open-retrieval QA task is defined as follows:
Given a question qi, a system must produce the cor-
responding answer a, possibly relying on retrieved
knowledge from an evidence corpus E. When tak-
ing temporal misalignment into consideration, sev-
eral critical timestamps can affect performance:

• Model Training Date (tM ): When the train-
ing data for M was collected or annotated.

• Evidence Date (tE): When E was authored.3

• Query Date (tq): When q was asked.

For studying QA under temporal misalignment, we
further specify that systems must produce appro-
priate answer at the time of the query atq . For
example, the question q =“Where are the next
Summer Olympics?” asked at tq = 2006 has
answer a2006 =“Beijing”. We define the mag-
nitude of the temporal misalignment (m) to be
the amount of time between a a model’s training
date and the query date (m = tM − tq). We will
compare this with the duration of the fact being
asked d = f(q, atq). If m > d, we should lower
the confidence of the model on this question.

For simplicity, we do not take an answer’s start
date into account. Ideally, determining whether a
given QA pair (q, a) has gone out of date should
also consider the answer’s start date (ts) and a
model’s training date (tm), and confidence can be
lowered if ts + d < tm +m. While we expect this
approximation to have less of an impact when set-
tings where the misalignment period is small with
respect to the distribution of durations, we perform
error analysis on examples where considering start
date hurts performance in Appendix C.

3We primarily study settings where the evidence corpus
does not change between training and inference (tE = tM ),
but also explore the effects of updating the evidence corpus
(tE = tq) in Section 6. Training corpora and evidence corpora
can contain documents authored over a span of time. For tM ,
we use the date its latest document was authored. For, tE ,
we studying using Wikipedia as our evidence corpus, and
therefore all evidence is up-to-date as of tE .

Calibration Metrics Even without temporal mis-
alignment, models will not always know the cor-
rect answer. Well calibrated model predictions,
however, allow us to identify low-confidence pre-
dictions and avoid presenting users with incorrect
information (Kamath et al., 2020). Under temporal
misalignment, calibration further requires identi-
fying which predictions should receive reduced
confidence because the answer has likely changed.
We consider following calibration metrics:

• AUROC: Area under the ROC curve evaluates
a calibration system’s performance at classifying
correct and incorrect predictions over all possible
confidence thresholds (Tran et al., 2022).

• Expected Calibration Error (ECE): Com-
puted by ordering predictions by estimated confi-
dence then partitioning into 10 equally sized buck-
ets. ECE is then macro-averaged absolute error
each bucket’s average confidence and accuracy.

• Risk Control (RC@XX): Uncertainty esti-
mates are often used for selective-prediction, where
models withhold low-confidence predictions below
some threshold (< τ ), where τ is set to achieve a
target accuracy (XX%) on some evaluation set. We
measure how well τ generalizes to a new dataset
(Angelopoulos et al., 2022). To compute RC@XX,
we set τ based on predictions from tM , then com-
pute the accuracy on predictions from tq with con-
fidence ≥ τ . In the ideal case, the difference (|∆|)
between RC@XX and XX should be zero.

3 Data

We first describe the datasets used for evaluation,
split by task. We then describe our two large-scale
sources for distant supervision. Appendix B con-
tains further prepossessing details and examples.

3.1 Evaluation Datasets

QA under Misalignment Our primary evalua-
tions are on SituatedQA (Zhang and Choi, 2021), a
dataset of questions from NQ-Open (Kwiatkowski
et al., 2019) with temporally or geographically de-
pendent answers. We use the temporally-dependent
subset, where each question has been annotated
with a brief timeline of answers that includes the
correct answer as of 2021, the prior answer, and
the dates when each answer started to be true. We
evaluate misalignment between tM = 2018 and
tq = 2021 using the answers from NQ-Open for
a2018 and answers from SituatedQA as a2021.

While several recent works have proposed new
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QA Calibration Under Total (Ch. / Unch. between
Temporal Misalignment tM = 2018 and tq = 2021)

SituatedQA 322 (157 / 165)

Duration Prediction # Train / Dev / Test

SituatedQA — / 377 / 322
MC-TACO (Duration) — / 1,075 / 2,899
TimeQA 11,708 / 2,492 / 2,461
TimePre 24,089 / 5,686 / —

Table 2: Dataset statistics for our QA misalignment cal-
ibration and duration prediction tasks. We report the
number of examples used in our QA calibration exper-
iments along with how many examples have answers
that have changed/unchanged between 2018 and 2021.

datasets for studying temporal shifts in QA (Kasai
et al., 2022; Livska et al., 2022), these works focus
on questions about new events, where answers do
not necessarily change (e.g., “How much was the
deal between Elon Musk and Twitter worth?"). We
do not study such shifts in the input distribution
over time. We, instead, study methods for manag-
ing the shift in the output distribution (i.e., answers
changing over time). Adjusting model confidence
due to changes in input distribution has been ex-
plored (Kamath et al., 2020); however, to the best
of our knowledge, this is the first work on calibrat-
ing over shifts in output distribution in QA.

Fact Duration Following suit with the QA evalu-
ations above, we also evaluate fact duration predic-
tion on SituatedQA. To generate fact-duration pairs,
we use the annotated previous answer as of 2021,
converting the question/answer pair into statement
using an existing T5-based (Raffel et al., 2020) con-
version model (Chen et al., 2021a). We then use
distance between the 2021 and previous answer’s
start date as the fact’s duration, d.

Temporal Commonsense Temporal common-
sense focuses on inferences about generic events
(e.g., identifying that glaciers move over centuries
and a college tours last hours). In contrast, fact du-
ration prediction requires making inferences about
specific entities. For instance, determining the du-
ration of an answer to a question like "Who does
Lebron James plays for?" requires entity knowl-
edge to determine that Lebron James is a basketball
player and commonsense knowledge to determine
that basketball players often change teams every
few years. Previous work (Onoe et al., 2021) has
demonstrated the non-trivial nature of combining
entity-specific and commonsense knowledge.

Due to the differences described above, we do
not use temporal commonsense datasets for evaluat-
ing fact duration prediction. We, however, still eval-
uate on them to explore how these tasks compare.
In particular, we evaluate our fact duration systems
on the event duration subset of MCTACO (Zhou
et al., 2019). Each MCTACO example consists of
a multiple-choice question about the duration of
some event in a context sentence, which we convert
into duration statements. We evalute using the met-
rics proposed by the original authors. Following
Yang et al. (2020), we select all multiple choice op-
tions whose duration falls within a tuned threshold
of the predicted duration. EM measures accuracy,
evaluating whether the gold and predicted answer
sets exactly match. F1 measures the average F1
between the gold and predicted answer sets.

3.2 Distant Supervision Sources

Temporal Knowledge Bases have been used
in numerous prior works for studying how facts
change over time. TimeQA (Chen et al., 2021b) is
one such work that curates a dataset of 70 different
temporally-dependent relations from Wikidata and
uses handcrafted templates to convert into decon-
textualized QA pairs, where the question specifies
a time period. To convert this dataset into fact-
duration pairs (f, d), we first convert their QA pairs
into a factual statements by removing the date and
using a QA-to-statement conversion model (Chen
et al., 2021a). We then determine the duration of
each facts to be the length of time between the start
date of one answer to the question and the next.

News Text contains a vast array of facts and
rich temporal information. Time-Aware Pretrain-
ing dataset (TimePre) (Yang et al., 2020) curates
such texts from CNN and Daily Mail news articles
using regular expressions to match for duration-
specifying phrases (e.g., “Crystal Palace goal-
keeper Julian Speroni has ended the uncertainty
over his future by signing a new 12 month con-
tract to stay at Selhurst Park.”). Pretraining on
this dataset has previously been shown to improve
performance on temporal commonsense tasks.

3.3 Dataset Summary

Table 2 reports data statistics and Figure 2 presents
the distribution of durations from each dataset.
While most facts in SituatedQA and TimeQA
change over the course of months to decades, facts
in MCTACO and TimePre cover a wider range.
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Figure 2: Duration statistics on each dataset’s develop-
ment set. Columns represent different duration classes
used by our classification model, with units abbreviated
as Seconds, Minutes, Days, Weeks, Months, Years,
Decades, and Centuries. Cells contain the % of exam-
ples in each dataset in the column’s duration class.

4 Fact Duration Prediction

4.1 Comparison Systems

Here, we describe our fact duration prediction sys-
tems. We include two simple lowerbound baselines:
Random samples a duration and Average uses the
average duration from each dataset.

Following prior work on temporal common
sense reasoning (Yang et al., 2020), we develop
BERT-based (Devlin et al., 2018) models.4 We
frame fact duration prediction as cloze questions to
more closely match the system’s pretraining objec-
tive (Schick and Schütze, 2020). To this end, we
append “, lasting [MASK][MASK]” onto each fact,
eliciting the model to fill in the masked tokens with
a duration. We use two mask tokens as typically
duration information requires at least two tokens,
one for value and another for unit. For our TimePre
and MCTACO datasets, we similarly replace the
target durations with two mask tokens. Table 8 in
Appendix B contains examples. Predictions are
made by averaging the encoded representations of
the two “[MASK]” tokens, then using this represen-
tation as an input to a single hidden layer network.
Using this same representation, we train two mod-
els with regression-based and classification-based
learning objectives described below.

Classification Model frames the task as a 13-way
classification task where each class corresponds
to a duration in Figure 2.5 We train using cross
entropy loss, selecting the closest duration class as
the pseudo-gold label for each fact. Because this
model can only predict a limited set of durations,
we report its upperbound by always selecting the
class closest to the gold duration.

4We explore using other pretrained models in Appendix C.
5We select these duration classes based on frequency

across all datasets.

Regression Model uses the mean squared error
loss in units of log seconds, where the output from
the hidden layer predicts a scalar value.

4.2 Results

We experiment with training on TimeQA and
TimePre individually and on the union of both
datasets. Figure 3 reports duration prediction and
temporal commonsense performance. Overall, we
find that our trained systems outperform simple
random and average baselines on SituatedQA. This
is indicative of strong generalizability from our
distantly-supervised fact-duration systems, even
when baselines benefit from access to the gold label
distribution. We also provide a histogram of errors
from our systems in Figure 3 where we can see
that over 60% of our classification-based system’s
predictions are within 3 years of the gold duration,
while predicting the exact duration remains chal-
lenging. Below, we reflect on the impact of our
different modeling choices and research questions.

Regression vs. Classification Regression-based
models tend to outperform their classification-
based counterparts. The instances where this is
not true can be attributed to an insufficient amount
of training data. In Figure 3, we can see the dif-
ferent types of errors each model makes. The clas-
sification system predicts duration within 1 year
more frequently, but the regression system predicts
duration within 4 years more frequently.

Supervision from KB vs. News Text We find
that training on temporal knowledge-base relations
(TimeQA) alone vastly outperforms training on
news text (TimePre) alone for fact-duration predic-
tion; however, the opposite is true when compar-
ing performance on temporal commonsense (MC-
TACO). Training on both datasets tends to improve
our regression-based system, but yields mixed re-
sults for our classification-based system. We hy-
pothesize that the closeness in label distribution
(see Figure 2) between the training and evaluation
sets impacts the performance significantly.

Fact Duration vs. Temporal Commonsense
While fact duration prediction and temporal com-
monsense are conceptually related, we find that
strong performance on either task does not neces-
sarily transfer to the other. As discussed above,
this can be attributed to differences in label distri-
butions; however, label distribution also serves as
a proxy variable for the type of information being
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Model Training Data
SituatedQA TimeQA MCTACO

MSE MAE MSE MAE EM F1
(LS, ↓) (Y, ↓) (LS, ↓) (Y, ↓) (↑) (↑)

Random — 7.14 13.44 2.22 6.96 20.3 38.1
Average — 5.42 10.61 1.65 5.41 23.8 41.3

Classification

Oracle 0.28 4.18 0.12 1.66 8.0 37.2

TimeQA 4.20 8.45 1.55 4.80 20.3 41.3
TimePre 40.51 8.77 9.36 7.85 28.3 57.7
Time(QA+Pre) 6.28 8.37 1.70 4.66 28.3 57.2

Regression
TimeQA 3.75 8.40 0.97 4.22 21.2 41.0
TimePre 38.48 8.99 32.10 5.70 33.1 57.8
Time(QA+Pre) 3.58 8.15 0.97 4.19 31.8 57.8

Figure 3: Fact Duration Prediction Results. On the left, we report our full results, with performance split by model
type and training data. Performance on SituatedQA and TimeQA are given as the mean average error in years (Y)
and mean squared error in years in log-seconds (LS), the same as the regression system training loss. On the right,
we depict error histograms evaluated on SituatedQA, with systems trained on TimeQA.

queried for in either task. Commonsense knowl-
edge primarily differentiates events that take place
over different orders of magnitude of time (e.g.,
seconds versus years). Differentiating whether an
event takes place over finer-grained ranges (e.g.,
one versus two years), however, cannot be resolved
with commonsense knowledge alone, and further
require fact retrieval. We find that NQ contains
queries for facts that change over a smaller range
of durations (between 1-10 years), and, therefore,
commonsense knowledge alone is insufficient.

5 Calibrating QA under Temporal
Misalignment

Here, we return our motivating use-case of us-
ing fact duration prediction to calibrate open-
retrieval QA systems under temporal misalignment.
We assume an access to base calibration system,
c(q, a) ∈ [0, 1] that has the same training date as
the QA system its calibrating. We then use fact
duration to generate misalignment-aware confi-
dence score cm through simple post-hoc augmenta-
tion, scaling down the original confidence score by
a discount factor based on the degree of misalign-
ment and the predicted fact duration. We compute
this factor differently for each of our fact duration
systems.

• Classification: Here, the system’s output is a
probability distribution over different duration
classes, p(d|q, a). We set the discount factor to

be the CDF of this distribution evaluated at m:6

cm = c(q, a)
∑

d≤m P (d|q, a).
• Regression: Here, the output is a single pre-

dicted duration d. We set the discount factor to
the binary value indicating whether or not the
misalignment period has exceeded the predicted
duration: cm = c(q, a)1{d < m}
As classification systems predict a distribution

over fact durations, we are able to use the CDF of
this distribution to make granular adjustments to
confidence over time. In contrast, our regression
systems predict a single value for fact duration,
and confidence adjustments over time are abrupt,
leaving confidence unchanged or setting it to zero.

5.1 Models
Base QA and Calibration Systems We experi-
ment with three QA systems throughout our study:
• 1⃝ T5: We use T5-large (Roberts et al.,

2020) which has been trained with salient-span-
masking and closed-book QA on NQ-Open.

• 2⃝ DPR (te=2018): We use DPR (Karpukhin
et al., 2020), an open-book system which re-
trieves passages from a te = 2018 Wikipedia
snapshot and is also trained on NQ-Open.

• N⃝ DPR (te=2021): We use the same model as
2⃝, but swap the retrieval corpus with an updated

Wikipedia snapshot that matches query times-
6We experiment with using our classification-based sys-

tem’s predicted class or the expected duration as the duration
for adjusting confidence, but both methods underperform com-
pared to using the system’s CDF. We include these results in
Appendix C.
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QA Model 2018 → 2021 EM Dur. Model AUROC ↑ ECE ↓ RC@55 (|∆| ↓) Avg Conf % ∆

1⃝ T5 36.0 → 17.4

N / A 0.766 0.265 27.2 (27.8) 0.0
Oracle 0.749 0.116 47.8 (7.2) -25.8

Regression 0.709 0.185 32.4 (22.6) -23.2
Classification 0.765 0.131 29.3 (25.7) -15.1

2⃝ DPR (te = 2018) 37.9 → 17.1

N / A 0.629 0.433 22.4 (32.6) 0.0
Oracle 0.708 0.172 38.7 (16.3) -36.9

Regression 0.601 0.268 26.1 (28.9) -34.0
Classification 0.654 0.235 43.5 (11.5) -20.9

N⃝ DPR (te = 2021) —– → 19.6 N / A 0.636 0.370 25.4 (29.6) -3.8

Table 3: Results for calibrating QA under temporal misalignment on SituatedQA. All systems’ training dates are
2018 and evaluation dates are 2021. We report each system’s EM accuracy, evaluated against the answers from 2018
and 2021. We also report how much model confidence changes on average (Avg Conf % ∆) with each adjustment
method (for DPR with te = 2021 we compare average confidence against using te = 2018).

Model Adj. AUROC ECE RC@55 (|∆|)

1⃝ T5 Uniform 0.757 0.180 30.5 (24.5)
Per-Ex 0.765 0.131 29.3 (25.7)

2⃝ DPR Uniform 0.627 0.259 25.6 (29.4)
Per-Ex 0.654 0.235 43.5 (11.5)

Table 4: Ablating per-example calibration: We first ad-
just confidence Per-Example, which is our full system.
We then adjust confidence Uniformly across all exam-
ples, such that the net decrease in confidence across the
entire test set is equivalent.

tamp (te = 2021) following Zhang and Choi
(2021), which showed partial success in return-
ing up-to-date answers.

For each QA system, we train a calibrator that pre-
dicts the correctness of the QA system’s answer.
We follow Zhang et al. (2021) for the design and
input features to calibrator, using the model’s pre-
dicted likelihood and encoded representations of
the input (details in Appendix A).

Fact Duration Systems For both our regression
and classification based models, we use the systems
trained over both with TimeQA. We also include
results using an oracle fact duration system, which
zeroes the confidence for all questions that have
been updated since the training date.

5.2 Results

Table 3 reports the results from our calibration ex-
periments. Both QA models suffer from temporal
degradation, and zero-ing out the confidence of
outdated facts with oracle information improves
the calibration performance. Using model pre-
diction durations shows similar gains. Both re-

gression and classification duration predictions
lower the confidence of models, improving cal-
ibration metrics across the board. We find that
our classification-based model consistently outper-
forms our regression-based model on our calibra-
tion task, despite the opposite being true for our
fact-duration evaluations. We attribute this behav-
ior to our classification-based system’s error distri-
bution, as it gets more examples correct to within 1
year (Figure 3). Classification-based system also
hedge over different duration classes by predicting
a distribution, which we use to compute the CDF.

Retrieval-Based QA: Update or Adjust In Ta-
ble 3, we compare the performance of DPR with
static and hot-swapped retrieval corpora from te =
2018 and te = 2021. While updating the retrieval
corpus improves EM accuracy, adjusting model
confidence using fact duration on a static corpus
performs better on all calibration metrics. This
suggests that, when users care about having ac-
curate confidence estimates or seeing only high-
confidence predictions, confidence adjustments can
be more beneficial than swapping retrieval corpus.

Ablations: Per-Example vs Uniform Adjust-
ment We compare our system, which adjusts con-
fidence on a per-example basis, against one that uni-
formly decreases confidence by the same value υ
across the entire test set: cm = max(c(q, a)−υ, 0).
These ablations still depend on our fact-duration
systems to determine the υ such that the total con-
fidence over the entire test set is the same for both
methods. Table 4 reports the results from this ab-
lation study. We find that uniformly adjusting con-
fidence improves ECE, which is expected given
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the decrease in the QA systems EM accuracy af-
ter misalignment. We find, however, that our per-
example adjustment methods outperform uniform
confidence adjustments.

5.3 Comparisons against Prompted LLMs

While we primarily focus on calibrating fine-tuned
QA models, recent work has also explored calibrat-
ing prompted large language models (LLMs) for
QA (Si et al., 2022; Kadavath et al., 2022; Cole
et al., 2023). Furthermore, recent general-purpose
LLMs (e.g., ChatGPT) have demonstrated the abil-
ity to abstain from answering questions on the basis
that their knowledge cutoff date is too far in the
past; however, it is not publicly known how these
systems exhibit this behavior.

In this experiment, we investigate one such sys-
tem, GPT-4 (OpenAI, 2023), and its ability to ab-
stain from answering questions with rapidly chang-
ing answers. We prompt GPT-4 to answer ques-
tions from SituatedQA, and find that it abstains
from answering 86% of all questions (95% of ques-
tions whose answers have been updated between
2018 and 2021 and on 79% of examples that have
not). Overall, this behavior suggests that GPT-4
overestimates how frequently it must to abstain
from answering user queries. Furthermore, GPT-4
does not provide how frequently the answer is ex-
pected to change. Collectively, GPT-4’s tendency
to over-abstain and its lack of transparency limits
its usefulness to users. In contrast, our approach
provides users with an duration estimate indicating
why a prediction may not be trustworthy. Further
experimental details and example outputs are re-
ported in Appendix D.

6 Beyond Calibration: Adaptive
Inference

In this section, we explore using our misalignment-
aware confidence scores to decide how to answer
a question. Below, we motivate and describe two
adaptive inference scenarios where systems may
choose between two methods for answering a ques-
tion using their fact duration predictions.
Hybrid: Closed + Open ( 1⃝+ N⃝): Besides the
computational benefits from not always having to
use retrieval, forgoing retrieval for popular ques-
tions can also improve answer accuracy (Mallen
et al., 2022). We use our fact duration predictions
to decide when retrieval is necessary: we first pre-
dict an answer using T5 and run our fact duration

Inference Ensemble EM %

1⃝ T5 17.4 0.0
2⃝ DPR te = 2018 17.1 0.0
N⃝ DPR te = 2021 19.6 100.0

1⃝ T5 / N⃝ DPR te = 2021 20.5 45.7
2⃝ DPR te = 2018 / N⃝ DPR te = 2021 19.3 45.0

Table 5: Adaptive inference for temporal misalignment
results: we use our duration prediction to decide whether
to use the prediction from model with newer corpus
(DPR te = 2021). In this data (SituatedQA), 48.8% of
examples requires up-to-date knowledge.

prediction system using this answer. We then use
the CDF of the predicted duration distribution to
determine whether it is at least 50% likely that the
fact has changed:

∑
d≤m P (d|q, a) ≥ 0.5. If so,

we then run retrieval with DPR using the updated
corpus te = 2021 and present the predicted answer.
We report our results in the first row of Table 5,
which shows that this outperforms either system on
its own, while running retrieval on less than half of
all examples.
Two Corpora: Relevancy vs. Recency ( 2⃝+ N⃝):
While most work for QA have focused on retriev-
ing over Wikipedia, many questions require retriev-
ing over other sources such as news or web text.
One challenge in moving away from Wikipedia
lies in managing temporal heterogeneity across dif-
ferent articles. Unlike Wikipedia, news and web
articles are generally not maintained to stay current,
requiring retrieval-based QA systems to identify
out-of-date information in articles. Systems that
retrieve such resources must consider the trade-off
between the recency versus relevancy of an article.
In these experiments, we experiment with using
fact duration prediction as a method for weighing
this trade-off in retrieval.

Our experimental setup is as follows: instead of
computing misalignment from the model’s train-
ing date, we compute relative to when the article
was authored (m = 3 years for 2018 Wikipedia
and m = 0 years for 2021 Wikipedia). After per-
forming inference using both corpora, we re-rank
answers according to their misalignment-adjusted
confidence estimates. We report results in Table 5.
We find that our method is able to recover compara-
ble performance to always using up-to-date articles,
while using it just under half the time.

7 Related Work

Commonsense and Temporal Reasoning Re-
cent works have proposed forecasting bench-
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marks (Zou et al., 2022; Jin et al., 2021a) related
to our fact duration prediction task. While our task
asks models to predict when a fact will change,
these forecasting tasks ask how a fact will change.
Qin et al. (2021) studies temporal commonsense
reasoning in dialogues. Quantitative reasoning has
been explored in other works as quantitative re-
lations between nouns (Forbes and Choi, 2017;
Bagherinezhad et al., 2016), distributions over
quantitative attributes Elazar et al. (2019), and rep-
resenting numbers in language models (Wallace
et al., 2019).

Calibration Abstaining from providing a QA
system’s answers has been explored in several re-
cent works. Chen et al. (2022) examines instances
where knowledge conflicts exist between a model’s
memorized knowledge and retrieved documents.
As the authors note, such instances often arise
due to temporal misalignment. Prior work (Ka-
math et al., 2020; Zhang et al., 2021; Varshney and
Baral, 2023) has explored abstaining from answer-
ing questions by predicting whether or not the test
question comes from the same training distribution
of the QA system. While fact duration also pre-
dicts a shift in distribution, fact duration focuses
on predicting a shift in a question’s output distribu-
tion of answers instead of a shift in input distribu-
tion of questions; therefore, these two systems are
addressing orthogonal challenges in robustness to
distribution shift and are complementary.

Keeping Systems Up-to-Date Several works
have explored continuing pretraining to address
temporal misalignment in pretrained models (Dhin-
gra et al., 2022; Jin et al., 2021b). Other works have
explored editing specific facts into models (Cao
et al., 2021; Mitchell et al., 2022; Meng et al.,
2022). These works, however, have only focused
on synthetic settings and assume access to the up-
dated facts. Furthermore, such systems have yet
to be successfully applied to new benchmarks for
measuring whether language models have acquired
emergent information (Onoe et al., 2022; Padman-
abhan et al., 2023). Recent works on retrieval-
based QA systems have found improved adapta-
tion when updated with up-to-date retrieval cor-
pora (Izacard et al., 2022; Lazaridou et al., 2022).

8 Conclusion

We improve QA calibration under temporal mis-
alignment by introducing the fact duration pre-

diction task, alongside several datasets and base-
line systems for it. Future work may build upon
this evaluation framework to further improve QA
calibration under temporal misalignment. For in-
stance, future work may examine modeling differ-
ent classes distributions of fact duration distribu-
tions, like modeling whether a fact changes after a
regular, periodic time interval.

Limitations

We only evaluate temporal misalignment between
2018 and 2021, a three-year time difference, on a
relatively small scale SituatedQA dataset (N=322).
This is mainly due to a lack of benchmark that sup-
ports studying temporal misalignment. Exploring
this in more diverse setup, including different lan-
guages, text domains, wide range of temporal gaps,
would be fruitful direction for future work.

As is the case with all systems that attempt to
faithfully relay world knowledge, treating model
predictions as fact runs the risk of propagating
misinformation. While the goal of our fact du-
ration prediction systems is to prevent models from
reciting outdated facts, it does not always succeed
and facts may change earlier than expected. Even
though a given fact may be expected to only change
once every decade, an improbable outcome may
occur and the fact changes after only a year. In
such an event, our misalignment-aware calibration
system may erroneously maintain high confidence
in the outdated answer.

Furthermore, our system, as it stands, does not
take the answer start date into account. Our system
also can make errors due to changes in the typical
duration of a given fact. For instance “What’s the
world’s tallest building?” changes more frequently
over time as the rate of technological advances also
increases. We provide examples of such system
errors in Appendix C.
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A Implementation Details

A.1 QA Models

We use the T57 and DPR8 checkpoints that have
been finetuned on NQ-Open’s training set from the
transformers library model hub.9 For DPR, we use
the retrieval corpora from December 20, 2018 for
tE = 2018 and February 20, 2021 for tE = 2021,
following Zhang and Choi (2021).

7https://huggingface.co/google/t5-large-ssm-nqo
8https://huggingface.co/facebook/dpr-reader-single-nq-

base
9https://huggingface.co/models

A.2 Calibration Models

We implement our trained calibration systems us-
ing XGBoost (Chen and Guestrin, 2016) using the
features for T5 and DPR outlined in Zhang et al.
(2021). For T5, we concatenate (1) the averaged,
encoded representations of the input question, and
(2) the model likelihood. For DPR, we concatenate
(1) the averaged, encoded representations of the in-
put question and selected passage, (2) the averaged,
encoded representations of the start and end tokens
of the selected answer span, and (3) the likelihood
of the answer span, computed as the product of the
likelihoods of selecting the start index, end index,
and passage index.

We train our systems on NQ-Open on a randomly
sampled 60/40 training and development splits, fol-
lowing Zhang et al. (2021). We use a maximum
depth of 10 and experiment with several values for
the learning rate {0.01, 0.1, 0.2, 0.5} and column
sub-sampling ratio {0.0, 0.1, . . . , 0.9}, which we
keep the for sampling by tree, level, and node. We
train with early stopping after 10 epochs without
improvement and select the best performing system
as evaluated on the development split.

A.3 Fact Duration Prediction Models

We use BERT-base from the transformers library
for all duration prediction baselines, trained with
a batch size in {32, 64} and learning rate in {1e−
5, 5e− 5}. We train until convergence and select
the best checkpoint as determined by development
set performance. Due to computational resource
constraints, we do not further tune hyperparameters.
All models are trained once and results reflect a
single run. All experiments took were performed
Quadro RTX 8000 gpus and required less than one
week’s worth of GPU hours.

B Datasets

We provide examples from each dataset and our pre-
possessing pipeline in Table 8. We provide futher
preprocessing details below.

B.1 Fact Duration Dataset Preprocessing

In TimeQA, several examples have answers that are
simply the empty string. We remove all such exam-
ples from our preprocessed dataset. In SituatedQA,
several examples have answers that begin and end
in the same year, without further annotation deter-
mining the exact number of days or months. We
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Model Training Data SituatedQA TimeQA MCTACO
LS-MSE Y-MAE LS-MSE Y-MAE EM F1

Classification
TimeQA 8.5 4.18 4.7 1.47 20.6 41.2
TA Pretrain 9.0 55.33 6.0 22.05 28.9 53.8
TimeQA + TA Pretrain 8.2 7.58 5.1 1.56 28.0 56.9

Regression
TimeQA 8.4 3.76 4.6 1.18 25.1 41.3
TA Pretrain 11.6 44.56 20.6 27.59 33.1 58.3
TimeQA + TA Pretrain 8.7 7.66 4.6 1.23 32.2 57.3

Table 6: Fact Duration Prediction Results using DeBERTa-v3-base instead of BERT-base. All other settings are the
same as in Figure 3.

QA Model Misalingmnent Adj. AUROC ↑ ECE ↓ RC@55 (|∆| ↓) Avg Conf % ∆

1⃝ T5
36.0 → 17.4

CDF 0.765 0.131 29.3 25.7 15.1
Argmax 0.762 0.249 28.1 26.9 2.6

Expectation 0.708 0.169 37.5 17.5 35.0

2⃝ DPR (te = 2018)
37.9 → 17.1

CDF 0.654 0.235 43.5 11.5 20.9
Argmax 0.650 0.403 23.8 31.2 3.9

Expectation 0.641 0.177 38.2 16.8 49.2

Table 7: Additional calibration results on SituatedQA, comparing different methods of adjusting model confidence
for temporal misalignment using the output of our classification-based fact-duration system. All other settings are
the same as in Table 3.

simply assume that all such question answer pairs
instances have a duration of 1 month.

B.2 Temporal Commonsense Datasets
Preprocessing

As we noted above, each MCTACO example con-
sists of a multiple-choice question about the du-
ration of some event in a provided context sen-
tence. During prepossessing, we use the same ques-
tion conversion model as above to transform each
QA pair into a statement and prepend the context
sentence onto each question. We use the metrics
proposed by the original authors, and we select
all multiple choice options whose duration falls
within some absolute threshold of predicted dura-
tion, measured in log seconds (Yang et al., 2020).
This threshold is selected based on development
set performance.

C Additional Results

Different Pretrained Models for Fact Duration
Prediction In Table 6, we report our results from
DeBERTa-v3-base (He et al., 2021) on our fact
duration prediction system. We also experiment
with using the large variants of both BERT and
DeBERTa, but do not find substantial improvement.

Adjusting Confidence with Expected Duration
In addition adjusting confidence using the CDF
of the predicted duration distribution from our

classification-based system, we also experiment
with using the expected duration as our discount-
ing factor. We incorporate this by zeroing the
confidence estimate if the expected duration is ex-
ceeded by the degree of misalignment: f(q, a) =
1{∑d≥m d · P (d|q, a)}.

In Table 7, we report additional results on our
calibration evaluation. We include calibration per-
formance of our best performing fact duration mod-
els finetuned on SituatedQA: trained only on Sit-
uatedQA for our classification-based model and
first trained on TimeQA + TA Pretrain for our
regression-based model.

Error Analysis In Table 9, we highlight sampled
errors from our fact duration system and discuss
their causes and impact.

D ChatGPT and GPT-4 outputs

Table 10 includes two examples of ChatGPT in-
forming users that the answers to a given question
may have changed. It, however, does not provide
users with an estimate of how likely it has changed,
or how often the answer is expected to change.
This lack of a duration estimate results in lesser
transparency and interpretatbility for users. To get
results on SituatedQA, we prompt GPT-4 with the
following system prompt (recommended by their
documentation): “You are ChatGPT, a large lan-
guage model trained by OpenAI. Answer as con-
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Dataset Example

SituatedQA Q: Who are the judges on Asia Got Talent? / A: Vanness Wu / Start: 2015, End: 2017
MI: Vanness Wu is the judge on Asia Got Talent , lasting [MASK] [MASK] . / TD: 2 Years

MCTACO
Context: About 30% of Ratners’s profit already is derived from the U.S.
Q: How long did it take to make profit? / A: 3 Months
MI: About 30% of Ratners’s profit already is derived from the U.S. It took [MASK] [MASK] to make
profit. / TD: 3 Months

TimeQA Subj: Patrick Burns (businessman) Rel: Lives in Obj: Oshawa, Ontario Start: 1856 End: 1878
MI: Patrick Burns (businessman) lived in Oshawa, Ontario , lasting [MASK] [MASK] . / TD: 22 years

TA-Pretrain MI: Jorge Ramos has been the face of Univision’s News broadcast for [MASK] [MASK] . TD: 24 Years

Table 8: Fact duration prediction input examples. We standardize formats to predict target duration (TD) from the
masked input (MI). The top row(s) in each cell represents the original data, and the bottom row shows our setting.

Quesiton {2018 Answer / 2021 Answer} {G / P} Dur

When did the last volcano erupt in Iceland? 7 Y / 10 Y
(2010 / March 19, 2021)
How many episodes of Touching Evil are 1 W / 1 Y
there? (16 / 16)
Who got the most passing yards in the 3 Y / 1 Y
NFL? (Peyton Manning / Drew Brees)

Table 9: Example fact duration predictions errors from
SituatedQA. We include the answers from tM = 2018
and tq = 2021, and the gold / predicted durations ({G
/ P} Dur). In the first example, we see that our sys-
tem correctly identified volcanic eruptions as an infre-
quent event; however, our system misses that the answer
has changed within the misalignment period because it
doesn’t have access to the answer start date. In the sec-
ond example, our system fails no longer changes since
the show ended. In the last example, our model underes-
timates the fact’s duration, but still correctly identifies
that the answer has changed.

cisely as possible. Knowledge cutoff: September
2021. Current date: May 12, 2023.” We then
present GPT-4 with the user’s question from Situat-
edQA. We determine whether a systems abstains
from a given prediction if it references its knowl-
edge cutoff from the prompt September 2021 or if
it mentions real-time information in its generated
output.

E Licensing

Dataset Licensing TimeQA is licensed under the
BSD 3-Clause License. SituatedQA and Wikipedia
are both distributed under the CC BY-SA 4.0 li-
cense. MCTACO and TA-Pretrain are both unli-
censed.

Model Licensing The transformers library,
BERT model, T5 model, and question conver-
sion model are all licensed under the Apache Li-
cense v2.0. DPR is licensed under the Attribution-
NonCommercial 4.0 International license. Our use

User: Who is the current US president?
ChatGPT: As an AI language model, I don’t have real-
time information or the ability to browse the internet. My
knowledge was last updated in September 2021, and at
that time, the President of the United States was Joseph
R. Biden Jr. However, please note that the political
landscape can change, and there may have been a new
election or other developments since then. To obtain the
most accurate and up-to-date information, I recommend
checking reliable sources such as official government
websites or reputable news outlets.

User: Who won the last NBA Champtionship?
ChatGPT: As an AI language model, I don’t have real-
time data, and my knowledge was last updated in Septem-
ber 2021. Therefore, I cannot provide information on
the winner of the most recent NBA Championship. How-
ever, as of my last update, the Milwaukee Bucks were
the reigning NBA Champions, having won the champi-
onship in the 2020-2021 season. I recommend checking
reliable news sources or conducting a quick online search
to find the current champion.

Table 10: Example ChatGPT outputs to two temporally
dependent questions with different answer durations.
Predictions are take from the May 12, 2023 ChatGPT
version.

of all these resources are in compliance with their
licenses.

F Ethical Considerations

We do not collect any data in this paper. While we
do generate a dataset, we visually inspect generated
examples and do not find any cases of harmful or
offensive content. The existing datasets used in this
work have previously been vetted by their authors
prior work. We also note that our work is only
applied to English datasets and models.
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