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Abstract

Quality estimation models have been developed
to assess the corrections made by grammatical
error correction (GEC) models when the refer-
ence or gold-standard corrections are not avail-
able. An ideal quality estimator can be utilized
to combine the outputs of multiple GEC sys-
tems by choosing the best subset of edits from
the union of all edits proposed by the GEC base
systems. However, we found that existing GEC
quality estimation models are not good enough
in differentiating good corrections from bad
ones, resulting in a low F0.5 score when used
for system combination. In this paper, we pro-
pose GRECO1, a new state-of-the-art quality
estimation model that gives a better estimate
of the quality of a corrected sentence, as in-
dicated by having a higher correlation to the
F0.5 score of a corrected sentence. It results
in a combined GEC system with a higher F0.5

score. We also propose three methods for utiliz-
ing GEC quality estimation models for system
combination with varying generality: model-
agnostic, model-agnostic with voting bias, and
model-dependent method. The combined GEC
system outperforms the state of the art on the
CoNLL-2014 test set and the BEA-2019 test
set, achieving the highest F0.5 scores published
to date.

1 Introduction

Grammatical error correction (GEC) is the task
of automatically detecting and correcting errors in
text, including but not limited to grammatical er-
rors, misspellings, orthographic errors, and seman-
tic errors (Chollampatt et al., 2016; Chollampatt
and Ng, 2018a; Qorib et al., 2022; Bryant et al.,
2023). A GEC model is evaluated by calculating
the F -score (van Rijsbergen, 1979) from compar-
ing the edits proposed by the GEC model against
gold (human-annotated) reference edits. GEC ed-
its are a set of insertion, deletion, or substitution

1Source code available at https://github.com/nusnlp/
greco.

operations that are applied to the original (source)
sentence to make it free from errors. An edit is
represented by three values: start index, end index,
and correction string (Table 1). Since CoNLL-2014
(Ng et al., 2014), F0.5 has become the standard
metric for GEC. Grundkiewicz et al. (2015) and
Chollampatt and Ng (2018c) reported that the F0.5

score correlates better with human judgment than
other GEC metrics.

Qorib and Ng (2022) reported that GEC models
have outperformed humans when measured by the
F0.5 metric, but still make occasional mistakes in
simple cases. Thus, we need a way to evaluate
the corrections proposed by a GEC model before
accepting their corrections as a replacement for our
original sentences. In real-world use cases where
the gold reference is not available, we can use a
GEC quality estimation model to assess the quality
of the correction made by a GEC model.

GEC quality estimation model accepts a source
sentence and its correction and produces a quality
score. The quality score characterizes the accuracy
and appropriateness of a correction with respect
to the source sentence. The higher the score, the
more accurate and appropriate the correction is. A
quality estimation model is typically used as a fil-
tering method to accept or reject a correction made
by a GEC model (Chollampatt and Ng, 2018b). It
can also be used for choosing the best correction
from the top-k outputs of a GEC system (Liu et al.,
2021).

In this paper, we propose to extend that use case
further. Instead of choosing the best correction (hy-
pothesis) from GEC models, we can use a GEC
quality estimation model to produce a new and
more accurate correction, based on the edits that
appear in the hypotheses. We generate all pos-
sible hypotheses from the edit combinations and
score them using a quality estimation model. The
highest-scoring hypothesis is then deemed as the
most appropriate correction of the source sentence.
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Source To sum it up I still consider having their own car is way more safe and convinient .
Correction To sum up , I still consider having your own car way more safe and convenient .
Differences To sum {it} up {,} I still consider having {their→ your} own car {is} way more safe

and {convinient → convenient} .
Edits (2, 3, ‘’), (4, 4, ‘,’), (8, 9, ‘your’), (11, 12, ‘’), (16, 17, ‘convenient’)

Table 1: Example GEC edits.

We discuss this in more detail in Section 3.
The main contributions of this paper are:

• We present novel methods for utilizing GEC
quality estimation models for system combi-
nation.

• We reveal and highlight the low performance
of existing GEC quality estimation models
when used for system combination.

• We present a new state-of-the-art GEC quality
estimation model that has better correlation to
the F0.5 score and produces higher F0.5 scores
when used for system combination.

• We report new state-of-the-art scores on the
CoNLL-2014 and BEA-2019 test sets.

2 Related Work

2.1 GEC Quality Estimation Models
In this section, we briefly discuss existing neural
GEC quality estimation models, including a neural
reference-less GEC metric.

2.1.1 NeuQE
NeuQE (Chollampatt and Ng, 2018b) is the first
neural quality estimation model for GEC. NeuQE
uses the predictor-estimator framework (Kim et al.,
2017) which trains a word prediction task on the
predictor network and trains the quality score on
the estimator network. The estimator is trained us-
ing knowledge from the predictor. NeuQE has two
types of model, one for F0.5 score estimation and
the other for post-editing effort estimation. NeuQE
is trained on the NUCLE (Dahlmeier et al., 2013)
and FCE (Yannakoudakis et al., 2011) corpora.

2.1.2 VERNet
VERNet (Liu et al., 2021) estimates the quality
of a GEC model from the top-k outputs of beam
search decoding of the GEC model. VERNet uses
BERT-like architecture to get the representation of
each token. It then constructs a fully-connected
graph between pairs of (source, hypothesis) for

each beam search output to learn the interaction
between hypotheses, then summarizes and aggre-
gates the information of the hypotheses’ interaction
using two custom attention mechanisms. VER-
Net trains the model using the top-5 outputs of the
Riken&Tohoku (Kiyono et al., 2019) model on the
FCE, NUCLE, and W&I+LOCNESS (Bryant et al.,
2019; Granger, 1998) datasets.

2.1.3 SOME

SOME (Yoshimura et al., 2020) is a reference-less
GEC metric that scores a GEC correction based
on three scoring aspects: grammaticality, fluency,
and meaning preservation. SOME consists of three
BERT models, one for each scoring aspect. Differ-
ent from the aforementioned GEC quality estima-
tion models, SOME does not aim to estimate the
F0.5 score. Instead, it estimates the aspect scores
directly. The authors created a new dataset to train
the BERT models by annotating outputs of various
GEC systems on the CoNLL-2013 test set with
the three scoring aspects. The authors argue that
reference-less metrics are better than F0.5 score be-
cause it is difficult to cover all possible corrections
in the gold reference.

2.2 GEC System Combination Methods

In this section, we briefly discuss state-of-the-art
GEC system combination methods.

2.2.1 ESC

ESC (Qorib et al., 2022) is a system combination
method that takes the union of all edits from the
base systems, scores each edit to decide whether
the edit should be kept or discarded, and generates
the final corrections using the selected edits. ESC
uses logistic regression to score each edit based on
the edit type and inclusion in the base systems, and
filters the overlapping edit based on a threshold and
a greedy selection method. ESC is trained on the
BEA-2019 development set.
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Figure 1: Beam search with beam size (b) = 2. The blue arrow denotes generation of a new hypothesis, and
the orange circle denotes the hypotheses with the highest scores. At each step, new hypotheses are generated by
applying edit ei to the top-b hypotheses of step i− 1.

2.2.2 MEMT
MEMT (Heafield and Lavie, 2010) is a system com-
bination method that combines models’ outputs
by generating candidate hypotheses through token
alignments and scoring each candidate according
to its textual features, which include n-gram lan-
guage model score, n-gram similarity to each base
model’s output, and sentence length. MEMT was
originally designed for machine translation system
combination, but Susanto et al. (2014) successfully
adapted it for use in GEC.

2.2.3 EditScorer
EditScorer (Sorokin, 2022) is a model that scores
each edit based on its textual features to generate
a better correction. The model can be used to re-
rank edits from a single model or combine edits
from multiple models. It has a similar principle to
ESC but uses the textual features of the edit and its
surrounding context instead of the edit type. The
textual feature is acquired from RoBERTa-large’s
(Liu et al., 2019) token representation of the can-
didate sentence. The model is trained with more
than 2.4M sentence pairs from cLang8 (Rothe et al.,
2021) and the BEA-2019 training set.

3 GEC System Combination via Quality
Estimation

To be able to use a GEC quality estimation model
for system combination, we assume an ideal quality
estimation model that can discern good hypothe-
ses from bad ones and produce appropriate quality
scores. Even though a perfect quality estimation
model does not exist yet, quality estimation that

behaves closely to our assumption will be good
enough to be useful for combining GEC systems.

3.1 Problem Formulation

For a source sentence s = {s1, s2, ..., sl} with
length l and a hypothesis h = {h1, h2, ..., hm}
with length m, a quality estimation model produces
a quality score Q(s, h) to assess how good h is as a
correction to s. When combining GEC systems, we
have multiple hypotheses from different base GEC
systems. From these hypotheses, we can extract all
the edits. Let E denote the union of all edits.

A new hypothesis can be generated by applying
an edit ei ∈ E to the source sentence s. If it is a
correct edit (e+i ), the quality score of the resulting
hypothesis should be higher than when the edit is
not applied or when a wrong edit (e−i ) is applied.
Let h ⊕ e denote the operation of applying edit e
to sentence h. For any hypothesis h (including the
case of h = s), an ideal quality estimation model
should have the following property:

Q(s, h⊕ e+) > Q(s, h) > Q(s, h⊕ e−) (1)

3.2 Beam Search

From an edit union of size |E|, we can get 2|E| pos-
sible hypotheses. However, scoring all possible hy-
potheses is too costly, so we use beam search with
size b to generate the potential candidates in a rea-
sonable time. We apply each edit in E one by one
to the hypotheses in the current beam to generate
new candidates, with time complexity O(b× |E|).

Initially, the beam contains the source sentence
and all edits in E are sorted from left to right, i.e.,
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edits with smaller start and end indices are pro-
cessed earlier. In each step, we generate new candi-
dates by applying the current edit to all candidate
sentences in the beam if it does not create a con-
flict with previously added edits. We use the edit
conflict definition of Qorib et al. (2022). Next, we
compute the quality scores for the new candidates
and add them to the beam. At the end of each step,
we trim the beam by only keeping the top-b can-
didates with the highest quality scores. After we
finish processing all edits, the candidate with the
highest quality score becomes the final correction.
We illustrate this process in Figure 1.

4 Quality Estimation Method

A correction produced by a GEC model can be
wrong in three aspects: keeping wrong words or
phrases from the source sentence, changing the
words or phrases into the wrong ones, or missing
some words or phrases. In other words, a qual-
ity estimation model needs to know which words
are correct and which are wrong, as well as deter-
mine whether the gaps between words are correct
or wrong (in which case a word or phrase needs to
be inserted).

A GEC quality estimation model should also
produce the quality scores proportionately. A better
correction of the same source sentence should get
a higher score than a worse one. That is, a quality
estimation model should be able to rank hypotheses
by their quality scores correctly.

In this section, we describe our approach to build
a quality estimation model with the aforementioned
qualities, which we call GRECO (Gammaticality-
scorer for re-ranking corrections).

4.1 Architecture

Our model uses a BERT-like pre-trained language
model as its core architecture (Figure 2). We draw
inspiration from quality estimation for machine
translation models (Kim et al., 2019; Lee, 2020;
Wang et al., 2020). The input to the model is the
concatenation of the source sentence and a hypoth-
esis, with the source sentence and the hypothesis
prefixed with [CLS] (s0) and [SEP] (h0) pseudo-
tokens respectively.

For every word in the hypothesis, the model
learns to predict its word label wi and gap label gi.
The word label denotes whether the current word
is correct. wi is 1 when the word is correct and
0 otherwise. The gap label denotes whether there

Figure 2: Model architecture

should be a word or phrase inserted right after the
current word and before the next word. gi is 1 when
the gap is correct (i.e., there should be no words
inserted) and 0 otherwise. The gold word labels
and gap labels are computed by extracting the dif-
ferences between the hypothesis and the gold refer-
ence sentence using ERRANT (Bryant et al., 2017).
The word label wi and gap label gi are computed
from the projection of the embeddings learned by
the pre-trained language model to a value in [0,1]
using a two-layered neural network with tanh acti-
vation (ϕ). We formally describe them in Equation
(2) and (3), where LM denotes the pre-trained lan-
guage model, σ denotes the sigmoid function, Aw,
aw, bw, and bw denote the weights and biases for
the weight label projector, and Ag, ag, bg, and
bg denote the weights and biases for the gap label
projector. The size of Aw and Ag is dLM × dLM ,
while the size of aw, ag, bw, and bg is dLM × 1,
with dLM being the language model dimension.

V = LM(s;h)

= LM(s0, s1, . . . , sl, h0, h1, . . . , hm)

= {vs
0,v

s
1, . . . ,v

s
l ,v

h
0 ,v

h
1 , . . . ,v

h
m}

wi = σ(aT
wϕ(Awv

h
i + bw) + bw) (2)

gi = σ(aT
g ϕ(Agv

h
i + bg) + bg) (3)

The length of the word label vector w is the
same as the hypothesis (m), while the length of the
gap label vector g is m+ 1. The gap vector length
is one more than the hypothesis’ length to account
for the potentially missing words at the start of
the hypothesis. If the pre-trained language model
uses sub-word tokenization, tokens that are not the
beginning of a word are masked. The quality score
Q (s, h) is calculated from the normalized product
of the word label and gap label probabilities from
all words in the hypothesis.

Q (s, h) = 2m+1

√√√√
m∏

i=1

wi ·
m∏

i=0

gi (4)
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4.2 Loss Function

The model is trained on two objectives: predict-
ing the word label and gap label, and ranking the
hypotheses correctly with the quality score, i.e.,
hypotheses with higher F0.5 scores should have
higher quality scores than hypotheses with lower
F0.5 scores. This translates into three loss func-
tions: word label loss (Lw), gap label loss (Lg),
and rank loss (Lr). The first two losses are based
on binary cross-entropy loss and the rank loss is
based on RankNet (Burges et al., 2005; Burges,
2010) with a slight modification to amplify the
power term with a multiplier µ.

L =
1

n

n∑

j=1

Lw(j) +
1

n

n∑

j=1

Lg(j) + γ · Lr (5)

Lw = − 1

m

m∑

i=1

(ywi · logwi+

(1− ywi ) · log(1− wi))

(6)

Lg = − 1

m+ 1

m∑

i=0

(ygi · log gi+

(1− ygi ) · log(1− gi))

(7)

Lr =
∑

yrv>yru

log
(
1 + e−σ(Qv−Qu)·µ

)
(8)

We formalize the loss functions in Equation (5) to
(8), where n is the number of training instances, yw

and yg are the correct labels for the word label and
gap label respectively, yrv and Qv are the F0.5 score
and quality score of hypothesis v respectively, and
γ is a hyper-parameter.

4.3 System Combination Biases

The Q score from quality estimation models is
model-agnostic as it fully depends on the source
sentence and the hypothesis sentence, independent
of the system that proposes the hypothesis. With
a perfect quality estimation model, it should be
enough to get the best hypothesis. If we use an
imperfect quality estimation model, some valuable
information in the system combination task can be
useful to get a better hypothesis, such as how many
systems propose an edit and which systems pro-
pose it. We incorporate the former through a voting
bias and the latter through edit scores from an edit-
based system combination method. In this section,
we discuss how we replace the quality score Q in
the beam search with a biased hypothesis score Q′.

4.3.1 Voting Bias
Model voting is a common ensemble method that
chooses a prediction label based on how many base
systems predict that label. The rationale behind
it is straightforward: the more systems propose a
label, the more likely for it to be correct. In GEC,
voting ensemble has also been used to combine
edit labels from multiple GEC sequence-tagging
models (Tarnavskyi et al., 2022).

h = s⊕ Eh (9)

Q′(s, h) = Q(s, h) · V (Eh)
α (10)

V (Eh) =
1

|Eh|
∑

e∈Eh

count(e)

c
(11)

We incorporate voting bias into beam search by
multiplying the quality score with a voting score
V (Eq. 10). The voting score is calculated by
the average number of base systems that propose
an edit (count(e)) for all edits in the hypothesis
(Eh), normalized by the number of base systems c.
The effect of voting bias is governed by a hyper-
parameter α, 0 ≤ α ≤ 1. If α = 0, voting bias is
not used.

4.3.2 Edit Score
Qorib et al. (2022) reported that the best hypothe-
sis is the one that maximizes the strengths of the
base systems. Edit-based GEC system combination
methods approximate the strengths of GEC models
through their performance on each edit type and
learn the best combination from the edit type fea-
ture. If we have edit scores that reflect the base
GEC models’ strength, we can incorporate them
into the hypothesis scoring function.

One way to incorporate the edit scores is by mul-
tiplying the hypothesis score with the edit scores.
However, if we only multiply the scores of the edits
that are applied to the hypothesis, we will reward
hypotheses with fewer edits, even if we normalize
the edit score2. Instead, we want to reward hypothe-
ses that contain good edits and penalize hypotheses
that miss good edits. Thus, we design the edit score
to be the product of all edits in the edit union E.

Q′(s, h) = Q(s, h)1−β · V (Eh)
α · ES(Eh,E)β

(12)
2For example, if edit e1 has an edit score of 0.95 and edit

e2 has an edit score of 0.9, the score of applying both edits is
lower than just applying e1 if we only multiply the scores of
edits that appear in the hypothesis, even though e2 is also a
good edit.

12750



Single system evaluation Multi-system evaluation
Model ρ P R F0.5 ρ P R F0.5

NeuQE –0.003 52.53 12.83 32.45 0.212 38.30 10.84 25.43
VERNet 0.199 72.13 35.93 60.04 0.354 65.06 22.41 47.12
SOME 0.002 53.02 51.06 52.62 0.392 47.30 34.62 44.07
GPT-2 0.088 54.09 50.98 53.43 0.116 46.67 33.32 43.21
GRECO 0.445 71.23 47.72 64.84 0.415 67.39 30.71 54.40

Table 2: Quality estimation and re-ranking results on the CoNLL-2014 test set. ρ denotes Spearman’s rank
correlation coefficient.

pedit(e,Eh) =

{
pES(e) if e ∈ Eh

1− pES(e) otherwise
(13)

ES(Eh,E) = |E|

√∏

e∈E
pedit(e,Eh) (14)

We formulate the hypothesis score with voting bias
and edit score ES in Equation (12) – (14), where
pES denotes the probability of each edit. The effect
of edit score is governed by the hyper-parameter β,
0 ≤ β < 1. If β = 0, the edit score is not used.

5 Experiments

5.1 Model Training
We use DeBERTA-V3-Large (He et al., 2023) as
the pre-trained language model. We train the
quality estimation model using the unique cor-
rections of nine GEC systems, which are BART-
GEC (Katsumata and Komachi, 2020), GECToR
RoBERTa (Omelianchuk et al., 2020), GECToR
XLNet, GECToR BERT, Kakao&Brain ensemble
(Choe et al., 2019), Kakao&Brain Transformer-
base, Riken&Tohoku ensemble (Kiyono et al.,
2019), T5-Large (Rothe et al., 2021), and UEDIN-
MS ensemble (Grundkiewicz et al., 2019), on the
W&I+LOCNESS training set.

The training data are grouped into small groups
of size n, with corrections of the same source sen-
tence grouped together as much as possible, and
each group must contain at least n

2 corrections from
the same source sentence. This way, the rank loss
(Eq. 8) computes more comparisons of hypotheses
from the same source. Corrections with no edits
are filtered out so that the model can focus more
on predicting the labels on edit words. Perfect cor-
rections are also filtered out to maintain the label
distribution balance. W&I+LOCNESS has 34,308
sentences and the resulting training data, obtained
after filtering the unique corrections of the nine
GEC systems above, has 65,824 hypotheses. Dur-
ing training, word labels and gap labels associated

with tokens not present in the source sentence are
given a higher weight z than other word and gap
labels in the calculation of Lw and Lg. We choose
the hyper-parameters based on the model’s perfor-
mance on the BEA-2019 development set (Bryant
et al., 2019) and the CoNLL-2013 test set (Ng et al.,
2013). We list the hyper-parameters and explain
our hyper-parameter search in Appendix B.

5.2 Evaluation

We evaluate our model on quality estimation, re-
ranking, and system combination tasks. We com-
pare our models to other GEC quality estimation
models (NeuQE, VERNet, SOME) and a language
model baseline, GPT-2 Large (Radford et al., 2019),
which has been reported to perform relatively well
on unsupervised GEC task (Alikaniotis and Raheja,
2019). We use the RC variant of NeuQE and the
ELECTRA variant of VERNet which produce the
highest scores on the CoNLL-2014 test set (Ng
et al., 2014). For the system combination task, we
compare our model to state-of-the-art GEC system
combination methods in Section 2.2.

For the quality estimation and re-ranking tasks,
we perform experiments in two scenarios: single
system and multi-system evaluation. For single
system evaluation, we follow Liu et al. (2021)
on evaluating the models on the top-5 outputs
of Riken&Tohoku (Kiyono et al., 2019) on the
CoNLL-2014 test set. For multi-system evaluation,
we evaluate the models on the outputs of 12 partic-
ipating teams of the CoNLL-2014 shared task.

For the quality estimation task, we follow Chol-
lampatt and Ng (2018b) in comparing the correla-
tion coefficient of the quality score to the sentence-
level F0.5 score. We use Spearman’s rank corre-
lation coefficient (Spearman, 1904), which is the
primary metric of the WMT-2022 shared task on
quality estimation (Zerva et al., 2022).

For the re-ranking task, we pick one hypothe-
sis with the highest quality score for each source
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BEA-2019 BEA-2019 Test CoNLL-2014 Test
Model Dev (F0.5) P R F0.5 P R F0.5
1. T5-Large 56.21 74.30 66.75 72.66 69.66 51.50 65.07
2. GECToR XLNet 55.62 79.20 53.90 72.40 77.49 40.15 65.34
3. GECToR RoBERTa 54.18 77.20 55.10 71.50 73.91 41.66 64.00
4. Riken&Tohoku 53.95 74.7 56.7 70.2 73.26 44.17 64.74
5. UEDIN-MS 53.00 72.28 60.12 69.47 75.15 41.21 64.52
6. Kakao&Brain 53.27 75.19 51.91 69.00 - - -
NeuQE 29.30 68.48 20.19 46.32 66.48 15.87 40.59
VERNet 54.80 73.19 58.42 69.67 74.08 39.12 62.85
SOME 52.23 66.40 67.83 66.68 68.39 54.23 65.00
GPT-2 52.00 67.20 68.08 67.38 68.30 52.65 64.47
ESC 63.09 86.65 60.91 79.90 81.48 43.78 69.51
MEMT 60.72 82.20 63.00 77.48 76.44 48.06 68.37
EditScorer 61.66 88.05 58.71 80.05 74.32 51.44 68.25
GRECO 60.74 80.03 66.22 76.83 76.39 50.35 69.23
GRECOvoting 62.22 82.86 65.10 78.58 79.36 48.69 70.48
GRECOvoting+ESC 63.40 86.45 63.13 80.50 79.36 48.69 70.48

Table 3: System combination results. The first group of rows shows the base GEC systems that are combined,
while the second and the third group of rows show the combination results of existing quality estimation models and
system combination methods respectively. We do not show Kakao&Brain’s score on CoNLL-2014 as it is not used
in the CoNLL-2014 combination. ESC and MEMT results are taken from (Qorib et al., 2022). GRECOvoting refers
to our model with voting bias, and GRECOvoting+ESC refers to our model with voting bias and edit scores from ESC.

sentence, and then compute the corpus-level F0.5

score for the chosen hypotheses of all source sen-
tences. We also add the source sentence as one of
the hypotheses so that a model has the option to
not make any corrections if the hypotheses are bad.
We use the M2 Scorer (Dahlmeier and Ng, 2012)
to compute the F0.5 score.

For the system combination task, we combine
the base systems given in Table 3 using ESC,
MEMT, and EditScorer. We also combine the same
base systems using beam search via quality esti-
mation for the different quality estimation meth-
ods NeuQE, VERNet, SOME, GPT-2, GRECO,
GRECOvoting, and GRECOvoting+ESC. We report the
F0.5 scores on the BEA-2019 test set and CoNLL-
2014 test set.

We use William’s test (Williams, 1959) to mea-
sure the statistical significance of the correlation
coefficients. We use bootstrap resampling on 100
samples for the statistical significance of the F0.5

scores in the re-ranking and system combination
tasks.

6 Results

6.1 Quality Estimation and Re-Ranking
We report the results of quality estimation and re-
ranking evaluation in Table 2. Our model sig-

nificantly outperforms all other quality estima-
tion models on the correlation score and F0.5

score in both experimental settings (p < 0.001).
Our re-ranking result has higher precision, recall,
and F0.5 score compared to the top-1 output of
Riken&Tohoku, which has a precision, recall, and
F0.5 score of 68.59, 44.87, and 62.03 respectively3.

6.2 System Combination

We report the results of the system combination
experiments in Table 3. Existing GEC quality es-
timation models fail to produce better corrections.
More surprisingly, all of them produce combination
scores that are lower than the fourth best base sys-
tem on the BEA-2019 experiment and the second
best base system on the CoNLL-2014 experiment.
Our model without any additional biases (GRECO)
successfully produces better corrections with 4.17
points and 3.89 points higher than the best base
system on the BEA-2019 (T5-Large) and CoNLL-
2014 (GECToR XLNet) test sets respectively.

By adding the voting bias, our model outper-
forms MEMT on both datasets and ESC and Ed-

3The top-1 performance for Riken&Tohoku in this ex-
periment is different from Table 3 because the data for this
experiment was from reproduction by Liu et al. (2021), which
does not include right-to-left re-ranking due to that component
not being publicly available according to them.

12752



Model BEA-2019 Test
P R F0.5

1. T5-XL 76.85 67.26 74.72
3. GECToR-Large 80.70 53.39 73.21
+ Model [2], [4], [5], [6] from Table 3

ESC 86.64 61.54 80.10
GRECO 80.46 66.59 77.24
GRECOvoting 83.24 65.12 78.85
GRECOvoting+ESC 86.66 63.72 80.84

Table 4: Combination of the same base systems in Table
3, but with model [1] replaced by T5-XL and model [3]
replaced by GECToR-Large RoBERTa.

itScorer on the CoNLL-2014 test set. Our model
when augmented with voting bias and edit scores
from ESC outperforms ESC and EditScorer on the
BEA-2019 test set by 0.6 and 0.45 points respec-
tively. Note that EditScorer is trained with 70 times
more data than GRECO. Using edit scores from
ESC on the CoNLL-2014 test set does not change
the result since the optimal edit weight (β) is zero.
In other experiments, we found that combining
with ESC can also improve the F0.5 score on the
CoNLL-2014 test set (Appendix Table 11). Our
final model has significantly higher scores than all
other methods (p < 0.005).

We also evaluate our model on the combination
of stronger GEC models. We replace T5-Large by
T5-XL and GECToR RoBERTa by GECToR-Large
RoBERTa (Tarnavskyi et al., 2022) from the base
systems and achieve the highest BEA-2019 test
score, 80.84, reported to date. (Table 4).

7 Discussions

This section discusses important characteristics of
our model. From this section onward, we some-
times refer to our model GRECOvoting as Gv, and
GRECOvoting+ESC as Gv+E.

7.1 Model-Agnostic

GRECO is model-agnostic, which means we can
add or change the base systems during inference.
We run an experiment of adding the C4-200M
GEC system (Stahlberg and Kumar, 2021) to the
base systems of the CoNLL-2014 system combi-
nation while using the model weights and hyper-
parameters from Table 3. This experiment setting
is not possible with ESC and MEMT which re-
quire the same set of base systems during training
and testing. In this experiment, we also replace

Model CoNLL-2014 Test
P R F0.5

1. T5-XL 74.40 52.02 68.50
7. C4-200M 75.47 49.06 68.13

+ Model [2] – [5] from Table 3
GRECO 76.68 51.54 69.86
GRECOvoting 79.60 49.86 71.12

Table 5: Combination of the same base systems in
Table 3, but with T5-Large replaced with T5-XL and
the C4-200M model added to the base systems.

T5-Large with T5-XL. From this experiment, our
model achieves the highest CoNLL-2014 test score
reported to date, 71.12 (Table 5). We also evaluate
it on the CoNLL-2014 test set with 10 annotations,
using the same approach as Bryant and Ng (2015)4

and report the highest score to date, 85.21.

7.2 Fluency

We analyze the output fluency of our methods by
measuring the perplexity of the generated correc-
tions using GPT-2, since prior work (Kann et al.,
2018) has found that perplexity correlates with hu-
man fluency score. We found that our method gen-
erates more fluent corrections than all other meth-
ods, and adding more biases to our model makes
the model less fluent (Figure 3). Based on the gen-
erated sentences, edit-based methods like ESC and
EditScorer are too optimized toward picking the
correct edits which can make the sentence unnatu-
ral. Our model with three modes of generality of-
fers a flexible trade-off between F0.5 score and flu-
ency. Our GRECOvoting+ESC achieves a higher F0.5

score and better fluency at the same time compared
to the previous best system combination methods
ESC and EditScorer.

Figure 3: Median perplexity of the generated corrections
on the BEA-2019 development set (lower is better).

4Evaluate the output on 10 sets of 9-annotation references
and average the F0.5 scores from all 10 sets.
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Model b
BEA BEA CoNLL
-Dev -Test -2014

GRECOvoting+ESC 16 63.40 80.50 70.48
GRECOvoting+ESC 1 62.96 80.18 67.48
GRECOvoting 16 62.22 78.58 70.48
GRECOvoting 1 60.66 77.04 67.48
GRECO 16 60.74 76.83 69.23
GRECO 1 60.18 76.77 66.84
GRECO without rank loss 16 59.78 75.62 68.51
GRECO without rank loss 1 57.50 73.05 65.64

b
BEA BEA CoNLL
-Dev -Test -2014

1 62.96 80.18 67.48
2 63.13 80.17 69.38
4 63.31 80.31 70.25
8 63.34 80.47 70.36
12 63.34 80.49 70.34
16 63.40 80.50 70.48
20 63.38 80.53 70.44
24 63.33 80.53 70.36
32 63.37 80.55 70.56

Table 6: Ablation study for each component of the model (left) and different beam sizes b (right).

7.3 Ablation

We run an ablation study to evaluate the contri-
bution of each component of our method and the
effect of beam size on model performance (Table
6). We found that both the training (rank loss) and
inference (voting bias, edit scoring, beam search)
techniques contribute to the final model perfor-
mance. We also found that the performance does
not change much with beam size >= 8. However,
the difference between greedy (beam size = 1) and
beam search (beam size = 16) decoding is quite
substantial, especially on the CoNLL-2014 test set.
Beam search has more effect on the CoNLL-2014
test set because its number of edits per sentence is
more than the BEA-2019 development set.

7.4 Number of Base Systems

We investigate the performance of our model when
the number of base systems is reduced. We use the
base systems in Table 3 and randomly sample 5
combinations of base systems for each experiment
(except when combining 5 systems where there is
only one combination). We evaluate the combina-
tion on the CoNLL-2014 test set and calculate the
average F0.5 score for each number of base systems
(Figure 4). We found that ESC’s performance dete-
riorates rapidly when the number of base systems
is reduced, while GRECOvoting and EditScorer can
maintain their performance.

8 Conclusion

In this paper, we present novel methods to uti-
lize GEC quality estimation models for system
combination with varying generality: model-
agnostic, model-agnostic with voting bias, and
model-dependent method. We report that existing
GEC quality estimation models are not able to dif-

Figure 4: Average F0.5 score on the CoNLL-2014 test
set for varying number of base systems.

ferentiate good corrections from bad ones, which
is shown by their ineffectiveness on the re-ranking
and system combination tasks. Hence, there is a
need for a new quality estimation model for GEC.

We present a new state-of-the-art quality estima-
tion model, GRECO. Our model outperforms ex-
isting models on quality estimation and re-ranking
evaluation. Our re-ranking of the top-5 hypotheses
of Riken&Tohoku beats the performance of the top-
1 hypothesis. Our source code and model weights
are publicly available, making our model directly
usable as a post-processing tool for re-ranking GEC
systems’ outputs.

Our model, combined with a voting bias and an
edit-based system combination method, success-
fully improves the F0.5 scores on the GEC system
combination task and produces the highest F0.5

scores on the CoNLL-2014 test set and BEA-2019
test set to date, which are 71.12 and 80.84 respec-
tively.

Limitations

Our model is trained on English GEC data with a
single reference, and we only report experimental
results on English GEC. Future work can apply our
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model to other languages. We believe our work
does not pose any risks to society.
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Orăsan, Marina Fomicheva, André F. T. Martins, and
Lucia Specia. 2022. Findings of the WMT 2022
shared task on quality estimation. In Proceedings of
WMT, pages 69–99.

A Oracle Performance

In this section, we analyze the performance of an or-
acle system combination method on the BEA-2019
development set and CoNLL-2014 test set. Here,
we assume the oracle always picks the correct edits
from the union of all edits from the base systems,
making the precision 100%. From Table 7, we see
that the oracle combination of T5-Large and GEC-
ToR XLNet on the CoNLL-2014 test set already
produces a very high score, 13.97 points higher

12756

https://doi.org/10.18653/v1/D19-1119
https://doi.org/10.18653/v1/D19-1119
https://doi.org/10.18653/v1/D19-1119
https://aclanthology.org/2020.wmt-1.118
https://aclanthology.org/2020.wmt-1.118
https://aclanthology.org/2020.wmt-1.118
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2021.naacl-main.429
https://doi.org/10.18653/v1/2021.naacl-main.429
https://doi.org/10.18653/v1/2021.naacl-main.429
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.3115/v1/W14-1701
https://aclanthology.org/W13-3601
https://aclanthology.org/W13-3601
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2022.naacl-main.143
https://doi.org/10.18653/v1/2022.naacl-main.143
https://aclanthology.org/2022.coling-1.246
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.18653/v1/2021.acl-short.89
https://aclanthology.org/2022.emnlp-main.785
https://aclanthology.org/2022.emnlp-main.785
http://www.jstor.org/stable/1412159
http://www.jstor.org/stable/1412159
https://aclanthology.org/2021.bea-1.4
https://aclanthology.org/2021.bea-1.4
https://aclanthology.org/2021.bea-1.4
https://doi.org/10.3115/v1/D14-1102
https://doi.org/10.3115/v1/D14-1102
https://doi.org/10.18653/v1/2022.acl-long.266
https://doi.org/10.18653/v1/2022.acl-long.266
https://doi.org/10.18653/v1/2022.acl-long.266
https://aclanthology.org/2020.wmt-1.123
https://aclanthology.org/2020.wmt-1.123
https://doi.org/10.18653/v1/2020.coling-main.573
https://doi.org/10.18653/v1/2020.coling-main.573
https://doi.org/10.18653/v1/2020.coling-main.573
https://aclanthology.org/2022.wmt-1.3
https://aclanthology.org/2022.wmt-1.3


than our state-of-the-art F0.5 score, while the com-
bination of 5 systems is 16.56 points higher than
our state-of-the-art F0.5 score. This analysis shows
that there is much room for further investigation
on the GEC system combination task. Research
on GEC system combination is important to better
understand how and why GEC models have com-
plementary strengths and why it is not trivial to
combine them.

Base systems BEA
Dev

CoNLL-
2014

T5-Large + GECToR-
XLNet

82.94 84.45

+GECToR-RoBERTa 84.35 85.05
+Riken&Tohoku 85.81 86.53
+UEDIN-MS 86.68 87.04

Table 7: The oracle F0.5 scores with increasing number
of base systems.

B Hyper-Parameters

Our method introduces seven hyper-parameters
(HP), one for training data generation (n), four
for training the model (γ, µ, dropout rate d for the
classifier layers, and weight z for weighting the
cross-entropy loss of word labels and gap labels
associated with tokens not present in the source sen-
tence), and two for inference (α and β). We also
search the batch size (bs), learning rate (lr), and
beam size (b). See Table 8. Note that bs needs to
be divisible by n. We search the hyper-parameters
through manual tuning and select them based on
the F0.5 scores on the validation sets. For the in-
ference hyper-parameters, we evaluate the model 9
times to find the optimal α on the validation sets,
then another 9 evaluations (with the α applied) to
find the optimal β.

B.1 Training Data
As mentioned in Section 5.1, we arrange the train-
ing data in small groups of size n, in which hy-
potheses from the same source are put together. In
our experiment, n = 4, so the number of rank loss
computations within one group is

(
n
2

)
=

(
4
2

)
= 6.

B.2 Final Hyper-Parameters
We use DeBERTa-V3-Large5 as the backbone of
our model, which has about 434M parameters. Our
model has a word classifier with 1M parameters

5https://github.com/microsoft/DeBERTa

HP Bound Search Interval
lr lr < 1 {1, 2, 3} × 10−5

bs bs > 1 32, 64, 128, 256
n 1 ≤ n ≤ bs 4, 8
γ 0 ≤ γ ≤ 1 0, 0.2, 0.3, 0.5, 1.0
d 0 ≤ d < 1 0.2, 0.25, 0.3
z z ≥ 0 2.0
µ µ > 0 1, 4, 5, 7
α 0 ≤ α ≤ 1 0.1, 0.2, ..., 0.9
β 0 ≤ β < 1 0.1, 0.2, ..., 0.9
b b ≥ 1 1, 2, 4, 8, 12, 16, 20,

24, 32

Table 8: Hyper-parameters introduced by our method.

and a gap classifier with 1M parameters. In total,
our model has 436,113,410 effective parameters.
We detail the hyper-parameters of our final model
in Table 9.

HP Value
lr 2× 10−5

lr scheduler linear
bs 128 (32 × 4 gradient acc)
Optimizer AdamW (β1 = 0.9, β2 = 0.999)

(Loshchilov and Hutter, 2019)
Max epochs 15
n 4
γ 0.2
d 0.25
z 2.0
µ 5
α 0.4
β 0.7 for BEA-2019 in Table 3

0.0 for CoNLL-2014 in Table 3
0.6 for BEA-2019 in Table 4

b 16

Table 9: Hyper-parameters of our final model. Our
model converged after epoch 4.

C Running Time

We run all of our experiments on a single NVIDIA
A100 40GB GPU. We report the training and test-
ing time in Table 10.

D Experimental Results

We repeat our experiments five times with different
random seeds for training the models. We report
the F0.5 scores in Table 11 and report the mean and
standard deviation in Table 12.
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Step Running Time
(HH:MM:SS)

Training 09:53:52
Inference

BEA-2019 Dev 00:06:08
BEA-2019 Test 00:05:22
CoNLL-2013 00:01:46
CoNLL-2014 00:01:51

Table 10: Running time of each process on a single
NVIDIA A100 40GB GPU.

BEA-2019 Test
No GRECO GRECOv GRECOv+E
1 76.83 78.58 80.50
2 76.74 78.54 80.42
3 76.00 77.94 80.17
4 76.31 78.43 80.63
5 76.78 78.93 80.49

CoNLL-2014 Test
No GRECO GRECOv GRECOv+E
1 69.23 70.48 70.48
2 68.81 70.31 70.24
3 68.48 69.60 70.08
4 68.38 69.77 69.77
5 68.57 69.83 70.45

Table 11: The details of our experimental results. The
cell values are the F0.5 scores. Run 1 has the best score
on the development set so it was chosen in our experi-
ments.

E Resources

We list the data sources in Table 13. We use the
standard train/validation/test splits for all datasets.
We list the GEC quality estimation model sources
in Table 14, the GEC model sources in Table 15,
and the scorer source code sources in Table 16.

Model BEA-Test CoNLL-14
ESC 79.86±0.07 69.47±0.14
MEMT 76.66±0.82 68.14±0.20
GRECOvoting+ESC 80.44±0.17 70.20±0.29

Table 12: Average and standard deviation of
F0.5scores(x̄ ± σ) on the BEA-2019 test set and
CoNLL-2014 test set from 5 experiments. The ESC
and MEMT results are taken from (Qorib et al., 2022).
Sorokin (2022) only reported a single data point, so we
do not include EditScorer in this table.
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Data URLs
1. W&I+LOCNESS https://www.cl.cam.ac.uk/research/nl/bea2019st/
2. BEA-2019 Dev https://www.cl.cam.ac.uk/research/nl/bea2019st/
3. BEA-2019 Test https://www.cl.cam.ac.uk/research/nl/bea2019st/
4. CoNLL-2013 Test https://www.comp.nus.edu.sg/~nlp/conll13st.html
5. CoNLL-2014 Test https://www.comp.nus.edu.sg/~nlp/conll14st.html
6. Participants of CoNLL-2014 https://www.comp.nus.edu.sg/~nlp/conll14st.html
7. Top-5 outputs of Riken&Tohoku https://github.com/thunlp/VERNet/tree/main

Table 13: Data sources.

Model URLs
1. NeuQE https://github.com/nusnlp/neuqe
2. VERNet https://github.com/thunlp/VERNet/
3. SOME https://github.com/kokeman/SOME
4. GPT-2 https://github.com/openai/gpt-2

Table 14: Quality estimation models.

Model URLs
1. T5-XL https://github.com/google-research-datasets/clang8
2. T5-Large https://github.com/google-research-datasets/clang8
3. GECToR-Large https://github.com/MaksTarnavskyi/gector-large
4. GECToR XLNet https://github.com/grammarly/gector/tree/fea1532608
5. GECToR RoBERTa https://github.com/grammarly/gector/tree/fea1532608
6. Riken&Tohoku https://github.com/butsugiri/gec-pseudodata
7. UEDIN-MS https://github.com/grammatical/pretraining-bea2019/
8. Kakao&Brain https://github.com/kakaobrain/helo_word/
9. BART-GEC https://github.com/Katsumata420/generic-pretrained-GEC

Table 15: GEC systems’ sources.

Scorer URLs
1. ERRANT https://github.com/chrisjbryant/errant
2. M2Scorer https://www.comp.nus.edu.sg/~nlp/conll14st.html

Table 16: Scorer source code sources.
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