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Abstract

Cross-lingual transfer learning is an important
property of multilingual large language mod-
els (LLMs). But how do LLMs represent rela-
tionships between languages? Every language
model has an input layer that maps tokens to
vectors. This ubiquitous layer of language mod-
els is often overlooked. We find that similari-
ties between these input embeddings are highly
interpretable and that the geometry of these em-
beddings differs between model families. In
one case (XLM-RoBERTa), embeddings en-
code language: tokens in different writing sys-
tems can be linearly separated with an average
of 99.2% accuracy. Another family (mT5) rep-
resents cross-lingual semantic similarity: the
50 nearest neighbors for any token represent
an average of 7.61 writing systems, and are fre-
quently translations. This result is surprising
given that there is no explicit parallel cross-
lingual training corpora and no explicit incen-
tive for translations in pre-training objectives.
Our research opens the door for investigations
in 1) The effect of pre-training and model ar-
chitectures on representations of languages and
2) The applications of cross-lingual representa-
tions embedded in language models.

1 Introduction

Multilingual large language models (LLMs) have
the potential to support transfer learning between
languages with little to no additional training data
(Lauscher et al., 2020; Wu and Dredze, 2019; Con-
neau et al., 2020; Winata et al., 2021). But we have
limited theory for how LLMs represent meanings
across languages. This work describes a mecha-
nism for cross-lingual transfer learning by measur-
ing the properties of the input embedding vectors.
While most of the interest in LLMs rightly focuses
on their ability to produce contextualized output,
in this study we focus specifically on the lowest
network layer: the initial token embedding layer.
This layer often comprises a large percentage of the

total parameters in a model. It also serves as the
connection between human-readable strings and
the latent vector representations that initialize the
remaining layers. As such, the initial token em-
bedding layer is both geometrically expressive and
readily interpretable. We explore the initial token
embeddings of two highly multilingual model fam-
ilies, XLM-RoBERTa (XLM-R) (Conneau et al.,
2020) and mT5 (Xue et al., 2021). We find that
mT5 discovers a universal, cross-lingual semantic
space that assigns words (or word fragments) with
similar meanings to nearby vector positions.1

Previous work has shown that algorithms exist
to train multilingual word embeddings without ex-
plicit parallel text or glossaries (Ammar et al., 2016;
Chen and Cardie, 2018). What is novel about the
current work is the discovery that certain highly
multilingual LLMs contain such an embedding as
an emergent property without any explicit instruc-
tion to do so.

Explaining the factors that cause LLMs to find
cross-lingual semantic embeddings would require
pre-training experiments that are beyond the scope
of this short paper. Describing these behaviors
is, however, a necessary first step. At the same
time, there is increasing attention on producing
language technology for lower-resource languages
(Kumar and Albuquerque, 2021), where the data-
hungry methods that have been successful for high-
resource languages may not be applicable. Creat-
ing predictive theories that explain the relationship
between properties of pre-training data and repre-
sentations learned by LLMs could lead us to build
collections, architectures, and algorithms that most
efficiently improve performance. This will be an
extremely valuable step to enhance language tech-
nology for low-resource languages.

1Code is available at: https://github.com/
andreawwenyi/hyperpolyglot
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Figure 1: 2D Projections of input token embeddings. In XLM-RoBERTa-XL (left), writing systems are widely
spaced; while for mT5-XL (right), vectors are more mixed.

2 Related work

Previous work has found interpretable patterns in
feed-forward layers (Geva et al., 2021, 2022), self-
attention (Mrini et al., 2020; Clark et al., 2019;
Serrano and Smith, 2019), and input embeddings
from the perspective of adversarial perturbation
(Sato et al., 2018). In this work, we directly inter-
pret the relative positions of the token embeddings
through the lens of the vocabularies.

Prior to the explosion of contextualized language
models, there was substantial interest in cross-
lingual word embeddings (CLWE) (Ruder et al.,
2019; Mikolov et al., 2013; Lazaridou et al., 2015).
The goal is often to map monolingual word embed-
dings from different languages to the same shared
space, so that words of the same meaning are close
to each other. CLWE approaches involve some
levels of supervised alignment (Faruqui and Dyer,
2014; Zou et al., 2013), seed dictionaries (Artetxe
et al., 2017; Gouws and Søgaard, 2015) or adver-
sarial training (Lample et al., 2018; Artetxe et al.,
2018; Zhang et al., 2017; Miceli Barone, 2016).
Contexualized embeddings from language mod-
els have also been used in combination with static
word embeddings to improve alignments of cross-
lingual word vectors (Aldarmaki and Diab, 2019;
Zhang et al., 2021). Contrary to our findings for
the token embeddings of LLMs, it was not clear
that aligning word vectors is possible without some
level of supervision, or to more than two languages
at a time. Previous results also showed that CLWE
approaches are sensitive to language pairs, where
languages with large semantic or structural differ-
ences usually failed, such as English-Japanese and
Spanish-Chinese (Xu et al., 2022).

3 Multilingual vocabularies

Sub-word tokenization and writing systems
Initial embedding layer maps tokens to vectors.
Most contemporary language models use sub-word
tokenization schemes such as byte-pair encoding.
These methods balance representational richness
(providing distinct vectors for as many inputs as
possible) with efficiency in limiting overall vocab-
ulary size. While some methods produce tokens
consisting of byte sequences that are not valid UTF-
8 characters, in practice almost all tokens are valid,
displayable sequences of Unicode characters, and
a large number are recognizable words 2.

As it is difficult to assign tokens to specific lan-
guages (e.g. war can be an English noun or a Ger-
man verb), we use Unicode metadata to define cat-
egories of tokens. For example, a is LATIN SMALL
LETTER A. Most characters are letters (L), but vo-
cabularies also include punctuation (P), numbers
(N), and symbols (S, which include emoji). Letters
are also marked by writing system, such as LATIN,
CYRILLIC, or BENGALI. We define the category
of a character as either its writing system (for let-
ters) or its Unicode class for non-letters. A token
can mix characters of different categories, but they
typically have a most frequent category: the string
doesn’t contains letters and punctuation, but is
primarily LATIN letters. We define the category
of a token based on its majority character category.
As a result, doesn’t is classified as LATIN.

Overlap between model vocabularies While
model families have distinct sets of vocabular-

2We find 39.93% of mT5 and 47.78% of XLM-R vocab-
ularies in multilingual dictionaries provided by Lample et al.
(2018).
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Figure 2: There is substantial overlap in vocabulary
between models (mean 60.4%), but much of the overlap
is Unicode LATIN. mT5 and XLM-R have the largest
non-Latin intersection (59.4%). While large, BLOOM
vocabularies do not include Slavic languages, Japanese,
or Korean.

Figure 3: Token embeddings can predict Unicode cat-
egories. Both models have high accuracy, but XLM-
R-XL is significantly higher than mT5-XL across the
majority of categories.

ies, they are often comparable. Current vocab-
ulary sizes of monolingual models are often ⇡
32,000 (BERT, T5, LLaMa), 50,000 (GPT2, GPT-
J, Pythia), or 65,000 (falcon). Highly multilingual
models have larger sizes around 250,000 (mT5,
umT5, XLM-R, BLOOM).

To make strings comparable across tokenzation
methods, we replace the space character in BPE to-
kenizations with Unicode LOWER ONE EIGHTH
BLOCK, which looks like a long underscore, as
it is more readable and compatible with T5-style
SentencePiece vocabularies.

Figure 2 shows the total overlap in vocabularies
between six LLMs. We select mT5 and XLM-R
as the most multilingual comparison due to their
large vocabulary size, significant overlap, and large
overlap in non-LATIN tokens. Of the models
with a large vocabulary, BLOOM focuses more
on African and South Asian languages and thus
has a much smaller token overlap in CYRILLIC,
HANGUL, HIRAGANA, and KATAKANA.

4 Results

Models encode languages differently. We make
comparisons between the embeddings of XL-scale

models from mT5 and XLM-R families. In ad-
dition to -XL models being potentially more ex-
pressive, XLM-R-XL and mT5-XL are also more
comparable in parameter size (3.5B and 3.7B, re-
spectively). Figure 1 shows UMAP (McInnes et al.,
2018) projections of the embeddings from XLM-
R-XL and mT5-XL for each token in the shared
vocabulary, colored by Unicode category. We find
that XLM-R’s representations encode languages —
tokens of different categories form isolated clusters.
Clusters of Unicode categories are also noticeable
in mT5 but they are more overlapping. The ex-
ception is Symbols (S) and Numbers (N): they are
scattered in XLM-R-XL, but clustered in mT5-XL.

To further show how embeddings encode lan-
guages, we use logistic regression to predict Uni-
code category from embeddings. For each category,
we construct a balanced dataset and run 10-fold
cross-validation. Embeddings from XLM-R-XL
and mT5-XL both encode a high level of language
information. Tokens with different Unicode cate-
gory could be linearly separated with an average of
99.24% and 93.32% accuracy, respectively. Figure
3 shows accuracy for selected categories. XLM-R-
XL has significantly higher (near perfect) accuracy
across the majority of categories than mT5-XL.

Embedding neighborhoods encode semantics
across languages. We next zoom in to study
the neighbors of individual tokens. Neighbors
from mT5-XL are often direct translations, whereas
XLM-R-XL finds tokens in the same language that
are semantically or linguistically similar. Figure 5
shows that the 50 nearest neighbors for mT5-XL
tokens have an average of 7.61 different Unicode
categories, whereas XLM-R-XL has 1.64. Figure 4
shows examples of 20 nearest neighbors of selected
tokens.

The neighboring categories of tokens in mT5
vary by the category of a token, as shown in Figure
6. We find interesting comparisons between two
Japanese writing systems, KATAKANA and HIRA-
GANA. KATAKANA, a writing system often used
for words of foreign origin, has more diverse neigh-
bors (most often LATIN). HIRAGANA, used more
for native Japanese words, has more neighbors in
HIRAGANA and CJK (Kanji). We do not find evi-
dence to suggest that tokens appearing more often
in pre-training corpora have more diverse neigh-
bors (Figure 9 in the Appendix).
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token XLM-R-XL neighbors mT5-XL neighbors
Comment Comments, Review, Blog, Update, Text, Group, Info, Support, Photo, 

Share, Work, Information, Article, Link, Video, Chat, Search, News
Comments, komment ("comment", is), Kommentar ("comment", sv), 
omentário, Commentaire ("Comment", fr), Коментар ("Comment", bg), 
Kommentare ("Comments", de), Komentar ("Comment", ms), Koment 
("Commentary", sq), kommentarer, comentário ("comment", es), coment

Nike Adidas, Sony, Samsung, Rose, Mini, BMW, Apple, NBA, Toyota, Blue, 
Mike, Honda, Volkswagen, Green, Max, Puma, Alex, 55, Ferrari

Adidas, ナイキ ("Nike", ja), Asics, Reebok, Puma, نایك ("Nike", ar), 
Converse, SICS, Jordan, 나이키 ("Nike", ko), sneaker

miliki 
("possess", 
ms)

mempunyai ("have", ms), shika ("hold", sw), memiliki ("possess", ms), 
hitaji ("need", sw), sajili ("register", sw), Li, gunakan ("use", ms), shiriki 
("participate", sw), Ka, lihat ("look", ms), lakukan ("do", ms), bawa ("wing", 
sw), hifadhi ("reserve", sw), ishi ("live", sw), shauri ("to advice", sw), bentuk 
("shape", ms), kata ("cut", sw), gambar ("picture", ms)

punya ("have", ms), milik ("posession", ms), 拥有 ("own", zh), lakukan 
("do", ms), berikan ("give", ms), tiene ("has", es), makai, sahip ("owner", tr), 
possu, ပုိင္, ilki, irklich, เปนเจาของ ("own", th), enggunakan, មាន ("have", 
km), 具备 ("possess", zh), ပုိင် ("own", my), มี ("have", th), ediakan, มีความ

när 
("when", sv)

when, når ("when", da), då ("then", sv), eftersom ("since", sv), två ("two", 
sv), nær ("closer", is), där ("where", sv), för ("for", sv), första ("first", sv), 
från ("from", sv), här ("here", sv), också ("also", sv), nästan ("almost", sv), 
även ("even", sv), är ("are", sv), innan ("before", sv), stora ("large", sv), 
människor ("people", sv)

når ("when", da), nær ("closer", is), when, lähe ("go", et), cuando ("when", 
es), quando ("when", pt), כש ("when", he), för ("for", sv), innan ("before", 
sv), near, att ("to", sv), Wenn ("if", de), hur ("how", sv), quand ("when", fr), 
quan

アメリカ 
("America", ja)

米国 ("USA", ja), イギリス ("England", ja), 韓国 ("Korea", ja), 미국 ("USA", 
ko), フランス ("France", ja), ドイツ ("Germany", ja), イタリア ("Italy", ja), アジア 
("Asia", ja), 日本の ("Japanese", ja), ロシア ("Russia", ja), ヨーロッパ 
("Europe", ja), 東京 ("Tokyo", ja), 海外 ("abroad", ja), 美国 ("USA", zh), 英国 
("England", zh), آمریکا ("America", fa), امریکا ("America", fa), 일본 ("Japan", 
ko), 美國 ("USA", zh), 現代 ("modern", zh)

アメリカの ("American", ja), 미국 ("USA", ko), Amerika ("America", ms), 米国 
("USA", ja), 美国 ("USA", zh), イギリス ("England", ja), Америка ("America", 
mk), ამერიკ ("America", ka), 美國 ("USA", zh), フランス ("France", ja), 
அெமரிக்க ("American", ta), America, അേമരിക്ക ("America", ml), 
amerikansk ("American", da), amerikanische ("American", de), meerika, 
อเมริกา ("America", th)

Figure 4: The top 20 neighbors from mT5-XL are often direct translations; whereas those from XLM-R-XL are
often semantically or linguistically similar words in the same language. The last row is an example of KATAKANA,
the Japanese writing system used for words of foreign origin. ISO 639-1 language abbreviations are included in
the Appendix. Some words exist in several languages, we record only one. Closely related languages are often
neighbors, e.g. Swedish (sv) and Danish (da). Malay (ms) words are translated from root terms.

Figure 5: The 50 nearest neighbors for mT5-XL tokens
have an average of 7.61 Unicode categories, and XLM-
R-XL has 1.64. The figure is made by randomly selected
1% of tokens.

Embedding geometries are similar across pa-
rameter scales. Finally, we consider whether ini-
tial token embeddings as a whole are similar across
model families and parameter scales. We use two
metrics to quantify similarity in geometric struc-
tures of embedding space.

The first metric measures the local similarity
between vectors in two matrices. We first find
the set of tokens shared between model families
and create subset embedding matrices that only

Figure 6: In the 50 nearest neighbors of mT5-XL to-
kens, HIRAGANA and LATIN find the majority of
neighbors in their respective writing systems; whereas
KATAKANA and CYRILLIC tokens have more diverse
neighbors.

include those tokens. For each token in the shared
vocabulary, we then find the 100 nearest neighbors
within each matrix using cosine distance. Finally,
we calculate the overlap between these neighbor
sets from each pair of models. For example, on
average, 60 of the 100 nearest neighbors of a token
in XLM-R-XL will also be nearest neighbors of the
same token in XLM-R-XXL. Figure 7 compares
the average number of overlapping terms out of 100
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Figure 7: There is a high level of overlap between the
nearest neighbors of tokens, derived from embeddings.
XLM-R models are the most similar, with up to 60 out
of 100 shared neighbors. mT5 is less consistent, and
BLOOM is significantly different.

nearest neighbors for pairs of models, including
BLOOM for comparison. Results are averaged
over 45,000 shared tokens between mT5, XLM-R,
and BLOOM. We find that XLM-R models have
the largest similarity. mT5 are more varied, but
still find 20–30 shared tokens on average. BLOOM
is the most different: the 1.1B model shares only
5–10 tokens with other models, the 3B 15–20.

The second metric uses canonical angles, a linear
algebraic measure of rotational alignment. While
it is extremely unlikely that input embedding ma-
trices will be comparable at the level of individual
columns or entries, the matrices of two models
may be identical up to rotation or permutation. We
can measure the degree to which two matrices are
rotations through the method of canonical angles.
Given matrices A and B both with n rows, we cal-
culate QARA = A and QBRB = B. Then we
form the SVD U⌃V T = QT

AQB . The singular val-
ues ⌃ are the cosines of the angles of rotation. The
single largest value is the cosine of the smallest
angle, so it forms an upper bound on our ability
to rotate one matrix to match the other. Figure 8
shows the first singular values for pairs of models
restricted to rows for their shared vocabularies, in-
cluding a random “embedding” matrix with size
512. We find that XLM-R models have a high ro-
tational similarity to each other (0.99 out of 1.0),
while mT5 models are more differentiated (0.95–
0.97) but still highly similar. All models are signifi-
cantly more similar to each other than to a random
matrix (0.15–0.27).

Figure 8: Embeddings for overlapping tokens have simi-
lar geometries, as measured by canonical angles. XLM-
R models are extremely similar to each other and mT5
small and base. All models are far from random (0.14–
0.27).

5 Conclusion

While input embeddings and sub-word tokenized
vocabularies of LLMs may appear inscrutable, we
find that they are in fact interpretable and mean-
ingful. We observe significant patterns that differ
by model families, including an emergent ability
of mT5 to discover a shared semantic space that
spans languages — accidentally achieving a goal
that defied a decade of research on cross-lingual
word embeddings.

Future directions include explaining factors that
cause the different token embedding patterns we
observe in XLM-R and mT5. This could include
investigations in model architectures, pre-training
procedures, and data-centric strategies such as the
curation of pre-training corpora. Finding an ef-
ficient path to a more equitable language model
performance will be valuable for enhancing lan-
guage technology for low-resource languages. An
interesting next study could explore the utility of
combining low-resource languages with closely
related higher-resource languages in pre-training
corpora. Another future direction is to explore
the potential applications of cross-lingual represen-
tations embedded in LLMs — What does it say
about downstream applications? Could it be used
to guide practitioners to select models that are more
appropriate for their intended uses?

6 Limitations

This work is descriptive rather than explanatory.
We observe that there are patterns in the geometric
structure of input embedding matrices in families
of LLMs, but we are unable to identify why these
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patterns emerge and differ. There are many differ-
ences in model architectures, training methods, and
pre-training corpora between LLM families. It is
out of the scope of this work to determine what fac-
tors are causal. As we have limited ability to carry
out pre-training experiments, we chose to focus on
descriptive observations of existing LLMs.
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A ISO 639-1 language codes

The language codes for Figure 4: ar: Arabic, bg:
Bulgarian, da: Danish, de: German, es: Spanish, et:
Estonian, fa: Persian, fr: French, he: Hebrew, hu:
Hungarian, is: Icelandic, ja: Japanese, km: Khmer,
ko: Korean, mk: Macedonian, ml: Malayalam, ms:
Indonesian/Malay, my: Burmese, pt: Portuguese,
ru: Russian, sw: Swahili, sv: Swedish, sq: Alba-
nian, tr: Turkish, th: Thai, zh: Chinese

B Frequency of tokens does not correlate
with diversity of neighbors.

It could be that words with fewer occurrences in the
training corpus would have more or less diversity
in Unicode categories in their neighbor sets. We
calculated an estimate of the frequency of mT5 SP
tokens based on a sample from the mC4 dataset.
We then took a stratified sample of tokens from
the mT5 vocabulary from 10 frequency bands and
calculated the mean number of distinct Unicode
categories for their neighbors, see Figure 9. We

1130



find no correlation between the frequency of terms
and the diversity of their nearest neighbor sets.

Figure 9: There is no correlation between how often a
token is found in pre-training corpora and how diverse
a token’s 50 nearest neighbor set is. The neighbor set is
calculated with mT5-XL embeddings.
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