
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 11155–11173
December 6-10, 2023 ©2023 Association for Computational Linguistics

Explicit Planning Helps Language Models in Logical Reasoning

Hongyu Zhao∗1,3 Kangrui Wang1,3 Mo Yu2 Hongyuan Mei3
1University of Chicago 2WeChat AI 3Toyota Technological Institute at Chicago

{hzhao,hongyuan}@ttic.edu

Abstract

Language models have been shown to perform
remarkably well on a wide range of natural lan-
guage processing tasks. In this paper, we pro-
pose LEAP, a novel system that uses language
models to perform multi-step logical reasoning
and incorporates explicit planning into the in-
ference procedure. Explicit planning enables
the system to make more informed reasoning
decisions at each step by looking ahead into
their future effects. Moreover, we propose a
training strategy that safeguards the planning
process from being led astray by spurious fea-
tures. Our full system significantly outper-
forms other competing methods on multiple
standard datasets. When using small T5 mod-
els as its core selection and deduction compo-
nents, our system performs competitively com-
pared to GPT-3 despite having only about 1B
parameters (i.e., 175 times smaller than GPT-
3). When using GPT-3.5, it significantly out-
performs chain-of-thought prompting on the
challenging PrOntoQA dataset. We have con-
ducted extensive empirical studies to demon-
strate that explicit planning plays a crucial role
in the system’s performance.

1 Introduction
Logical reasoning is one of the most important and long-
standing problems in artificial intelligence (Russell and
Norvig, 2010). A logical reasoning system is able to
draw new facts by applying known rules to known facts
and determine the truth value of a given hypothesis;
see Figure 1 for an example. For decades, research in
building reasoning systems has heavily relied on for-
mal logic. Since the surge of pretrained large language
models (LMs), there have been efforts that harness the
power of pretrained LMs and directly handle natural
language statements to perform multi-step logical rea-
soning; see section 5 for a summary. In this paper, we
propose LEAP, the first LM-based logical reasoning
system that performs explicit planning during inference.
While determining the truth value of a statement, our
system searches over the known facts for those which

∗Work done during internship at TTI-Chicago.

x1

x6

x1

x2

x3

x4

x5 x7

x6

x0

x2

x3 x4

x5

x0: Eagles are carnivores.

x2: Eagles eat rabbits.

x1: Carnivores only eat animals.

x3: Rabbits are animals.

x4: Eagles do not eat plants.

x7: Eagles are carnivores.x6: Eagles only eat animals.

x5: Eagles eat animals.

goaltheory logical reasoning process

(3 steps of selection and deduction)

x1
x2

x3

x4

step 1

selection step 1

deduction
step 2

selection

step 2

deduction

step 3

selection step 3

deduction

x5

x7

x6

added after step 1

added after step 2

added after step 3

Figure 1: An example of theory T and goal x0 as well as
a human-annotated multi-step logical reasoning process
that proves the goal based on the theory.

are relevant and performs multiple rounds of deduction
to reach the conclusion. At each round, the planning
process looks ahead into the future outcomes of each
possible reasoning decision (i.e., which to select and
what to deduce), examining which of them is more likely
to discover a valid proof for the given statement.

Why planning? Planning is a fundamental property
of intelligent behavior: it uses foresight to anticipate
future outcomes of each possible decision and informs
the process of decision making to achieve desirable
end results. This concept has influenced the develop-
ment of various methods in the field of artificial intel-
ligence. Minimax-style game playing evaluates each
possible move by anticipating replies and counterreplies
between the player and the opponent (while assuming
that both play optimally) (Russell and Norvig, 2010).
Model-based reinforcement learning uses environment
models to simulate responses to actions and then uses
the simulated experiences to help learn value functions
(e.g., Dyna, Monte-Carlo tree search) (Sutton and Barto,
2018). In natural language processing, planning has
been used to help language models generate utterances
that satisfy complex constraints (Lu et al., 2022a).

Planning is important for logical reasoning. By ex-
amining the future outcomes of each possible decision,
a planning-based system will be able to focus on the
actually useful (given and deduced) facts at early steps,
thus enjoying a high chance of success. In addition, a
planning-based reasoning system tends to be more in-
terpretable, thus more useful in user-centric and safety-
critical scenarios. For example, at each round of deduc-
tion, planning will explicitly show “what will happen
after—and that is also why—I select these known facts

11155

and deduce this particular new fact from them”, which
is more informative than only saying “I select these and
deduce this.” However, none of the previous LM-based
systems use explicit planning during inference.

Why is it challenging? During planning, a verifica-
tion mechanism is in need to determine the quality of
each possible proof. In reality, the verification has to
be performed by a model (like in model-based rein-
forcement learning), and models are imperfect due to
architectural biases and finite training data. As a con-
sequence, the reasoning system faces the problem of
model exploitation: any model mistake may misguide
the planning such that it favors a seemingly promising
decision over the actually correct one. For example,
the model may incorrectly think a statement proves the
hypothesis, just because of a significant lexical over-
lap, causing the planning to favor a decision that helps
deduce that statement and lead to the wrong conclusion.

Our contributions. We first propose a logical reason-
ing system along with a beam-search-style inference
algorithm (section 3.1): the system utilizes pretrained
LMs and mimics human-like step-by-step reasoning.
Then we integrate explicit planning into the inference
algorithm (section 3.2) and significantly improve the
performance of the system. We empirically demonstrate
that planning encounters the issue of model exploita-
tion: when the given hypothesis is false, planning may
find out an incorrect proof that fools the system to be-
lieve that the hypothesis is true. Finally, we develop a
training strategy that effectively mitigates the issue of
model exploitation (section 3.3). Our training strategy
is adversarial: for each training theory, we synthesize
a non-provable hypothesis but call the planning-based
inference method to find a highly-scored proof for it;
then we refine the verification model such that the score
it assigns to that proof is suppressed; at the same time,
we force the verification model to preserve its scores
on the correct proofs of the provable hypothesises. Our
experiments show that this strategy further significantly
improves the performance of our system.

2 Problem Formulation
We consider the problem of logical reasoning. Given a
hypothesis (or, in other words, a goal) x0 and a theory
T = {x1, . . . ,xN}, we are interested in determining
the truth value of x0, i.e., whether x0 can be logically
proved by T . If the goal x0 is provable, we are inter-
ested in discovering the reasoning process that proves it.
Below is an example theory T

{
“Richard is a King.” “John is also a King.”
“John is greedy.” “A greedy King is evil.”

}

For the goal “John is evil.”, humans can easily verify
that it is provable by figuring out the following reason-
ing path: we can select the two premises about “John”
and deduce “John is a greedy King.” by combining
them; we then pick the premise about “greedy King”

and conclude “John is evil.” by combining it with the
previous deduction. In this paper, we build an automatic
system that is able to perform this kind of human-like
logical reasoning.

3 Our LEAP Framework
We propose LEAP, an LM-based logical reasoning sys-
tem that performs explicit planning. Pretrained LMs are
excellent at understanding natural languages as well as
fluently generating them.1 Our LEAP system harnesses
such abilities to simulate step-by-step reasoning pro-
cesses that resembles how humans do logical reasoning.
In this section, we will incrementally build up our full
system, starting from a base system (section 3.1) to how
explicit planning is integrated (sections 3.2–3.3).

3.1 Base System
Our base system consists of a selection model psel, a de-
duction model pded, and a verification model pver. They
work together in an iterative fashion to perform multi-
step reasoning like shown in Figure 1. At each step, the
selection model psel selects a couple of premises from
the current theory. For example, at step-1 in Figure 1,
it selects “eagles eat rabbits” and “rabbits are animals”
from the original theory of four premises. Then the
deduction model pded reads the selected premises and
outputs a new statement that is logically plausible given
the selection. For example, at step-1 in Figure 1, it de-
duces “eagles eat animals”. The new statement is then
added to the theory (whose size increases by one) and
it may be selected by psel at a later step. The procedure
stops if the max number of reasoning steps has been
reached; otherwise, it starts a new iteration of selection
and deduction. This procedure gives a reasoning path
as shown in Figure 1.

We define the proof score of the reasoning path to be

f(T ,x0)
def
= max

n=1,...,N
pver(x0 | xn) ∈ (0, 1) (1)

where theory T has been extended to include all the
new deductions obtained through the reasoning process.
Each pver(x0 | xn) is given by the verification model
and measures how likely the statement xn will prove the
goal: e.g., “eagles only eat animals” (x6) should have
a lower score than “eagles are carnivores” (x7) since
the latter means the same as the goal. The proof score
f(T ,x0) can be regarded as the system’s belief that the
theory proves the goal.

How do we define the verification score pver(x0 |
xn)? We utilize a pretrained DeBERTa model (He et al.,
2021) that was fine-tuned on the standard MNLI lan-
guage inference dataset (Williams et al., 2018). For a
statement xn and goal x0, we define the verification
score pver(x0 | xn) to be the DeBERTa probability that
xn entails x0. It is a reasonable estimate for the proba-
bility that xn proves x0.

1We use “language model” broadly to refer to multiple
types of language representation models including encoder-
only, decoder-only, and encoder-decoder models.

11156

Our system is general: the selection and deduction
models can be any pretrained decoder-only or encoder-
decoder models, including the small models whose pa-
rameters we could update and the huge models that we
could only use as blackboxes. In section 4, we will
discuss some specific model choices as well as how to
transfer them to our logical reasoning problem. Gener-
ally, we only require that

• the selection model psel can propose multiple multi-
premise selections given the theory T and assign a
score to each of them. For a multi-premise selec-
tion s (e.g., s = x2x3), we denote the score to be
psel(s | T ,x0), or psel(s) for short.

• the deduction model pded can draw multiple deduc-
tions given a selection s and assign a score to each
of them. For a deduction x, we denote its score to be
pded(x | s).

So far, we have been assuming that we select the highest
scored selection and deduction at each step (e.g., in Fig-
ure 1 and at the beginning of this section). But this kind
of one-best decoding tends to be short-sighted: there
may be multiple possible reasoning paths to proving
the goal; some may be better than the others (e.g., they
are shorter) but they may not appear to be promising at
the early steps; such reasoning paths may be missed by
one-best decoding. Therefore, we develop an improved
decoding method that resembles beam search (Jurafsky
and Martin, 2000).

Beam-search-style inference. We maintain a bufferB
of maximum size B which can host at most B ongoing
reasoning paths, which we think are the most promising
and will eventually prove the goal. Each of ongoing path
tracks its proof score f as well as its log-probability g
under our system. Both f and g get updated as the path
progresses, which we will explain shortly. It also tracks
its initial theory as well as its selections and deductions;
the initial theory and the deductions form the extended
(or current) theory. As long as we haven’t reached the
maximum number of steps, we keep expanding each
ongoing path in the buffer. Each step of expansion
includes a selection step followed by a deduction step.
At the selection step, we do the following:

• For each ongoing path, we find its top B most proba-
ble selections (u1, s1), . . . , (uB , sB) where ub is the
log-probability log psel(sb). Each selection expands
its ongoing path and updates its g score by g ← g+ub.

• Now we have B2 extended paths and let the buffer B
only keep B of them which are most probable under
the system (i.e., those with the highest g).

At the deduction step, we follow a similar procedure:

• For each ongoing path, we draw its top B most proba-
ble deductions (v1,y1), . . . , (vB ,yB) conditioned on
the most recent selection s; vb is the log-probability

pded(yb | s) under deduction model pded. Each deduc-
tion expands the ongoing path: it updates the scores
by g ← g + vb and f ← max{f, pver(x0 | yb)}.

• Now we end up with B2 extended paths and only keep
B of them which have the highest g.

In the end, we return the reasoning path with the highest
proof score f : intuitively, among all the choices that
are probable under the selection and deduction models,
we’d like to pick what’s most likely to actually prove
the goal. This method becomes one-best decoding if we
set B = 1.

Appendix B.1 has more details of the base system,
including pseudocode for inference (Algorithms 1–3).

Relations to formal logic systems. Our base system
resembles a rule-based system and the inference method
is like a combination of the forward and backward chain-
ing algorithms (Russell and Norvig, 2010). Each deduc-
tion step extends the theory by deducing new facts from
the existing facts and rules, which resembles the forward
chaining algorithm. Each selection step is conditioned
on the goal, which resembles the backward chaining
algorithm. However, the forward and backward algo-
rithms can not handle the theories that have non-definite
clauses like “Either John or Richard is evil.”; our method
doesn’t have that limitation.

3.2 Improvement-A: Inference with Planning
The inference method in section 3.1 lacks planning.
While expanding each ongoing path, the selections and
deductions are ranked by their scores u and v that are
only conditioned on the previous selections and deduc-
tions. However, the selections and deductions that ap-
pear to be promising may not actually lead to the future
steps that are able to prove the goal. In this section, we
propose an improved inference method that ranks the
selections and deductions by explicit planning. We refer
to the improved version as System-A.

Planning for selection. At each selection step, we
expand each ongoing reasoning path with B selections
given by the no-planning method, and let the buffer B
keep B of the B2 extended paths with the highest scores.
The key improvement is: we redefine the score such that
it reflects not only the probability of the selection under
the model psel but also the quality of the future steps
that the selection leads to.

Precisely, we redefine u = log psel(s)+α∆u where α
is a tunable hyperparameter and ∆u is a future-specific
correction term that we can compute after rolling out
some imaginary future deductions. For a possible se-
lection s, we call the base one-best decoding method
(section 3.1) to roll out D steps of future deductions
ỹ1, . . . , ỹD. Then we obtain pver(x0 | ỹd)—which
evaluates how likely each rolled-out deduction may
entail the goal—and compute the correction term by
∆u

def
= maxd log pver(x0 | ỹd). Note that ∆u is the log-

arithm of the proof score defined on the rolled-out future

11157

x0x1

x2

goal

x3

x4

x1

x2

x3

x4

x5

…

x4

x5

…

possible

selections

current

theory

2 steps of roll-out

(i.e., roll-out 2 steps of deduction)

proof score = 0.65

proof score = 0.57

proof score = 0.93

x4x5 has highest score, thus selected

… … …

…

(a) Planning for selection.

x0

goal

x1

x2

x3

x4

x5

x4

x5

current

selection

current

theory

1 steps of roll-out

(i.e., roll-out 1 step of deduction)

proof score = 0.38

proof score = 0.92

proof score = 0.71

this has highest score, thus chosen as deduction

… … …

…

possible

deductions

(b) Planning for deduction.
Figure 2: An illustration of explicit planning at the 2nd selection and deduction step of the full procedure in Figure 1.

reasoning path. Intuitively, a higher ∆u means that this
future reasoning path is more likely to prove the goal.
In the end, we obtain B selections with updated scores
(u1, s1), . . . , (uB , sB) for each ongoing path.

This improved subroutine is illustrated in Figure 2a.
Its pseudocode is Algorithm 10 in Appendix B.5.

Planning for deduction. At each deduction step, we
expand each ongoing reasoning path with B deductions
given by the no-planning method, and let the buffer B
keep B of the extended paths with the highest scores.
Similar to the planning-based selection step, the key
improvement is the refined definition of the score, which
reflects not only the probability of the deduction under
the model pded but also the quality of its future steps.

Precisely, we first draw B most probable deductions
(v1,y1), . . . , (vB ,yB) under the model pded. Then we
edit the score vb ← vb + β∆vb where β is a tun-
able hyperparameter and ∆v is a future-specific cor-
rection similar to ∆u. For each possible deduction yb,
we call the no-planning one-best decoding method to
roll out D steps of future deductions ỹb,1, . . . , ỹb,D.

Then we compute ∆vb
def
= maxd log pver(x0 | ỹb,d). In

the end, we obtain B deductions with updated scores
(v1,y1), . . . , (vB ,yB) for each ongoing path.

This improved subroutine is illustrated in Figure 2b.
Its pseudocode is Algorithm 11 in Appendix B.5.

The full method. Except for the score definitions, the
planning-based inference method looks the same as the
no-planning method: the top selections and deductions
will expand their ongoing paths and update their scores
f and g; the buffer will only keep B paths with the
highest g. But the planning-based method will tend to
end up with a different set of reasoning paths than the
no-planning method since the scores have been affected
by the roll-outs. The full inference algorithm is Algo-
rithm 1 in Appendix B.1: when D ≥ 1, it does explicit
planning; when D = 0, it doesn’t roll out future steps
and becomes the no-planning method.

System 1 vs. System 2 reasoning. According to the
“dual process” theories of reasoning (Evans, 2003), hu-
man cognition can be thought of as an interplay between
a fast and intuitive “System 1” and a slow but analytical
“System 2”. Given enough time, System 2 can analyze
the default behavior of System 1 and override it if neces-

sary. In analogy to this process, our base system can be
considered as System 1, while the advanced planning-
based system is like System 2, which requires more
computation but performs more deliberative reasoning.

Precisely, at each step of reasoning, the no-planning
base system needs 3B operations (i.e., select, deduce,
and verify). In contrast, the planning-based inference
needs 3B + 3B2D + 3B2D operations: for each ongo-
ing reasoning path in the buffer, we need to examine its
B possible expansions (selection or deduction), and roll
out D future steps (via one-best decoding) for each ex-
pansion. Overall, the planning-based system consumes
1 + 2BD times of computation. Fortunately, our imple-
mentation is efficient because of careful tensorization
and parallelism; please see section 6.1 for an analysis
of its actual walk-clock time.

3.3 Improvement-B: Refined Verification Model
The key limitation of the planning method is that it
may exploit the pretrained verification model pver such
that the final proof score f(theory, goal) is inflated: this
method keeps ongoing paths that have high pver(goal |
possible future deductions). This will result in a high
rate of false positive: even when the goal is not provable,
explicit planning will still try its best to find out the
reasoning paths that have high proof scores; a high
proof score will then fool the system itself to believe
that this goal is provable. This issue is illustrated in
our experiments (see Figure 5c and related analysis in
section 6.1). In this section, we propose to resolve this
issue by refining our verification model. We refer to this
version of our LEAP system as System-B.

Our method is to tune the verification model pver such
that pver(goal | deduction) is low when the deduction
can not prove the goal. Technically, given a theory T
and a non-provable goal x̄0, we first call our planning-
based method to find a reasoning path that tries to prove
x̄0, and then make pver(x̄0 | ȳ) to be low for each
deduction ȳ in the reasoning path. Precisely, we locally
minimize ℓ:

log pver(x̄0 | ȳ)− log (pver(x̄0 | ȳ) + pver(x0 | y))
(2)

where x0 is a provable goal and y is a deduction in a
reasoning path that actually proves x0. This objective
ℓ is a typical contrastive learning objective (Ma and
Collins, 2018). In our setting, it means: if we are given

11158

x0

provable goal

x1

x2

x3

x4

current

theory

ground-truth reasoning path

തx0

non-provable goal

y

model-proposed incorrect reasoning path

… …

… …

തy

pver(തx0 | തy)

pver(തx0 | തy) + pver(x0 | y)

minimize log

Figure 3: Illustration of our contrastive learning frame-
work for refining verification model.

a non-provable goal x̄0 paired with a model-proposed
reasoning path as well as a provable goal x0 paired with
a correct reasoning path, our verification model pver
should learn to correctly judge that “x̄0 proved by path
of ȳ” is less likely than “x0 proved by path of y”. This
framework is illustrated in Figure 3.

Additionally, we augment the loss ℓ with

Ω = − p−ver(x0 | y) log pver(x0 | y) (3a)

−
(
1− p−ver(x0 | y)

)
log (1− pver(x0 | y))

(3b)

where p−ver is the pretrained verification model used in
sections 3.1 and 3.2. It is the KL-divergence (minus
H(p−ver), which is a constant wrt. model parameters) be-
tween the pretrained and tuned verification models, and
minimizing it aims to prevent the tuned model from de-
viating too much from the pretrained. This is desirable
since the pretrained model already enjoys a high rate of
true positive for provable goals; see results in Figure 5b
and relevant analysis in section 6.1.

Technical details (including visualization) about the
verification model are in Appendix B.2.

4 Small and Large Model Versions

Now we introduce two specific versions of our proposed
framework: the small language model (SLM) version
that uses pretrained T5 (Raffel et al., 2020) and the large
language model (LLM) version that utilizes GPT-3.5.

4.1 SLM Version

Our SLM version adapts pretrained T5 models (Raffel
et al., 2020) to be the selection and deduction models.
We use the T5-small instance (from Huggingface) that
has only 60M parameters because we would like to
investigate how well a very small system will work in
practice. Shortly in section 6, we will see that this small
system works very well.

Given a theory T and a goal x0, the selection T5
model reads them as input and produces the probability
psel(xn | T ,x0) that each premise xn is selected in the
attempt to prove the goal x0. Then we can use these
probabilities to compute the probability psel(s | T ,x0)
that a multi-premise combination s (e.g., s = x2x4) is

T5

Encoder

T5

Decoder

h

psel(xi | x1 x2 x3 x4 x5 x0) = σ(hTwi) =

x1 x4SP1 SP4SP0 x0 …ENC DECx5SP5

special tokens with trainable embeddings: ENC SP0 SP1 … SP5 DEC

SP1 SP4 SP5…

0.15 0.75 0.83…

w1 w4 w5…

hidden state

embeddings of special tokens

current theory goal
selection turns out to be x4 x5 (high psel)

(a) A selection step. The T5 encoder reads special to-
kens, the goal x0, and the theory T . The decoder com-
putes psel(xn | T ,x0)

def
= σ(h⊤wn) where wn is the

embedding of special token SPn.

x6 : Eagles only ?

T5

Encoder
T5 Decoder

ENC DEC

x4: Eagles do not eat plants. x5: Eagles eat animals.

x6 : Eagles only

x6: Eagles only eat animals.
T5 vocabulary

x4 x5

content of selection

ground-truth deduction

a the …… …eat…

softmax prob 0.01 0.03 …… …0.17…

special tokens with trainable embeddings: ENC DEC

(b) A deduction step. The T5 encoder reads special
tokens and the selection s = x4 x5 and generates a
deduction autoregressively. It is currently trying to find
the token after “only”, and “eat” wins.

Figure 4: An illustration of how the SLM selection and
deduction models in the example procedure of Figure 1.

selected:2
∏

n:xn∈s

psel(xn | T ,x0)
∏

n:xn /∈s

(1− psel(xn | T ,x0))

Then finding the most probable selection is to choose
the premises xn that have psel(xn | T ,x0) > 0.5.3 This
procedure is illustrated in Figure 4a.

Give a selection s, the deduction T5 model reads
s and produces a logical deduction y one token after
another. The probability of y under the model is pded(y |
s). Figure 4b shows a deduction step.

Training the SLM version requires a corpus of theo-
ries and goals as well as their ground-truth reasoning
paths. The selection steps are training examples for psel;
the deduction steps are training examples for pded. Tak-
ing Figure 1 as an example, the selection training data
(green background) is

• T = {x1,x2,x3,x4} and s = x2 x3

• T = {x1,x2,x3,x4,x5} and s = x4 x5

• T = {x1,x2,x3,x4,x5,x6} and s = x1 x6

and the deduction training data (blue background) is

• s = x2 x3 and new statement y = x5

2We treat each xn independently.
3For each xn, if psel > 0.5, we will have psel > 1 − psel.

That is, including it in s will increase the probability of s.

11159

• s = x4 x5 and new statement y = x6

• s = x1 x6 and new statement y = x7

The training objectives for the selection model psel
and deduction model pded are log psel(s | T ,x0) and
log pded(y | s), respectively.

Appendix B.3 includes more details about the SLM
version (e.g., pseudocode for training and inference).

4.2 LLM Version
Our LLM uses GPT-3.5-turbo as the selection and de-
duction models. GPT-3.5 is the current largest and state-
of-the-art language model that we have access to. We
instruct GPT-3.5 to perform selection and deduction by
few-shot prompting; please see Appendices B.4 and C.6
for technical details and the prompts used in our ex-
periments. This is similar to the selection-inference
framework proposed by Creswell et al. (2023) except
that we request GPT-3.5 to propose multiple possible
selections and deductions at each step. This design al-
lows us to perform explicit planning for each possible
selection and deduction and then choose the best option
based on planning. Since GPT-3.5 doesn’t give the val-
ues of the probabilities psel and pded, we set u = v = 0
in the inference methods, conditioning the selection and
deduction entirely on the planning signals. The proof
score f is still given by the DeBERTa verification model
that we introduced in section 3.

5 Related Work
Reasoning has been a long-standing research topic in
natural language processing. For a long time, the ma-
jority of research in this direction has been focused
on simple tasks such as single-sentence language infer-
ence (Bernardi, 2002; Zamansky et al., 2006; MacCart-
ney and Manning, 2009; Angeli et al., 2016; Hu et al.,
2020; Chen et al., 2021) and single-step commonsense
inference (Rajani et al., 2019; Latcinnik and Berant,
2020; Shwartz et al., 2020).

Recently, there has been an increasing research inter-
est in the more complex problem of multi-step logical
reasoning, which we study in this paper. Saha et al.
(2020), to the best of our knowledge, is the first to pro-
pose an interpretable LM-based model for this problem.
They and Tafjord et al. (2021) work on synthesized data
of limited language variability. The LM-based system
proposed by Bostrom et al. (2022) has an architecture
similar to the SLM version of our base system except
that their inference is one-best decoding without plan-
ning and their deduction model is trained with extra
data collected by Bostrom et al. (2021). The selection-
inference system of Creswell et al. (2023) is similar to
the LLM version of our base system but their selection
and deduction models are few-shot-prompted GPT-3;
we compare with them in section 6.3. Liu et al. (2022)
also use a similar architecture which they train by rein-
forcement learning. Weir and Van Durme (2022) embed
LMs into a backward chaining framework, achieving

strong performance in scientific reasoning. Our main
contribution is complementary to the previous work: we
integrate explicit planning into LM-based reasoning sys-
tems and design a training method to mitigate the model
exploitation issue that arises in planning. Our system is
a kind of general model programs (Dohan et al., 2022)—
especially those with verification models (Cobbe et al.,
2021)—which use language models inside as probabilis-
tic programs and apply disparate inference algorithms
to the models. Other kinds of approaches to use LMs for
reasoning include training discriminative models (Clark
et al., 2020; Picco et al., 2021; Ghosal et al., 2022;
Zhang et al., 2023), prompting GPT-3 with spelled-out
reasoning procedure (Wei et al., 2022; Talmor et al.,
2020), and distilling GPT-3.5 (Fu et al., 2023).

Another straightforward approach for text-based logi-
cal reasoning is to first translate natural language state-
ments into formal logic expressions and then use a for-
mal logic inference engine (Weber et al., 2019; Lev-
kovskyi and Li, 2021; Nye et al., 2021; Lu et al., 2022b;
Betz and Richardson, 2022). We tried this approach in
our experiments; please see Appendix C.3 for details.

Another research area related to multi-step logical
reasoning is to reason over graph-structured data. A pop-
ular kind of graph is knowledge graphs, i.e., relational
graphs over symbolic tuples (Lao and Cohen, 2010;
Wang et al., 2013; Neelakantan et al., 2015; Cohen et al.,
2017; Xiong et al., 2017; Chen et al., 2018; Das et al.,
2018). Another kind of graph is built by linking texts via
lexical overlap or hyperlink connections (Welbl et al.,
2018; Yang et al., 2018; Khot et al., 2020, 2021). Meth-
ods in this area involve multi-step navigation through
graphs. But they rely on pre-defined symbolic and re-
lational structures, thus not directly applicable to our
setting. Additionally, recent research (Chen and Durrett,
2019; Min et al., 2019) shows that optimizing the perfor-
mance on these datasets is not well aligned to improving
the models’ fundamental reasoning abilities.

6 Experiments
We carried out a diverse set of experiments that can
demonstrate the effectiveness of our proposed methods.
We implemented our methods with PyTorch (Paszke
et al., 2019) and Transformers (Wolf et al., 2020). Our
code is at https://github.com/cindermond/leap.

6.1 SLM Experiments on Entailment Bank
We first trained and evaluated our SLM version on
the standard benchmark Entailment Bank (Dalvi et al.,
2021) dataset. This dataset is a corpus of human-
annotated (theory, provable goal, reasoning path) tuples,
including the example in Figure 1. It uses informal lan-
guage, which closely aligns with how humans engage in
logical reasoning during everyday conversations. This
dataset has two versions: in Version-I, for each pair of
theory and goal, all the premises have to be used to
prove the goal; in Version-II, each theory includes a
few distractors that are not useful for proving the goal.

11160

https://github.com/cindermond/leap

0.0 0.2 0.4 0.6 0.8 1.0
false positive rate

0.0

0.2

0.4

0.6

0.8

1.0
tru

e
po

sit
iv

e
ra

te

Baseline-T5
Base System
System A
System B

(a) ROC curves.

0.0 0.2 0.4 0.6 0.8 1.0
threshold

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

Baseline-T5
Base System
System A
System B

(b) Acc curves on positive examples.

0.0 0.2 0.4 0.6 0.8 1.0
threshold

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

Baseline-T5
Base System
System A
System B

(c) Acc curves on negative examples.
Figure 5: Test results with 95% bootstrap confidence intervals (CFs) on Entailment Bank Version-I.

METHOD AUROC AUACCPOS AUACCNEG F1

BASELINE-T5 0.67 (0.63, 0.71) 0.53 (0.49, 0.57) 0.75 (0.72, 0.78) 0.62 (0.59, 0.64)
BASE SYSTEM 0.56 (0.51, 0.60) 0.42 (0.38, 0.47) 0.78 (0.76, 0.81) 0.67 (0.67, 0.67)
SYSTEM A 0.87 (0.84, 0.89) 0.86 (0.84, 0.89) 0.54 (0.50, 0.57) 0.82 (0.80, 0.84)
SYSTEM B 0.94 (0.92, 0.95) 0.87 (0.84, 0.89) 0.82 (0.79, 0.85) 0.89 (0.87, 0.91)

RULETAKER 0.90 (0.88, 0.93) 0.91 (0.88, 0.94) 0.73 (0.69, 0.77) 0.84 (0.83, 0.86)
NEURALUNIF 0.72 (0.68, 0.76) 0.56 (0.56, 0.57) 0.49 (0.48, 0.50) 0.72 (0.71, 0.74)
GPT-3 (0-SHOT) - - - 0.89

Table 1: Test results with 95% bootstrap CFs on Entailment Bank Version-I.

We trained the models on Version-I training data, but
evaluated them on both Version-I and Version-II test
data. Experiment details are in Appendix C, includ-
ing data statistics (Table 5) and training details (e.g.,
hyperparameter tuning in Appendix C.2).

Evaluation-I: binary classification. We evaluated
the abilities of the systems to classify provable and
non-provable goals. For this purpose, we gave a non-
provable goal to each dev and test theory by selecting it
from other (theory, goal, reasoning path) samples. The
selection is adversarial: we tuned a pretrained T5 model
to generate a provable goal given a theory; for each
theory T , we looped over all the goals in the dataset that
are guaranteed to be not provable under T , and chose
the one that the T5 thinks is the most probable given T
(see details in Appendix C).

For each given theory T and goal x0, we let the
system generate a reasoning path that tries to prove the
goal, and obtain the proof score f(T ,x0) of the path.
Given a threshold τ ∈ (0, 1), we say “x0 is provable” if
f(T ,x0) ≥ τ and “x0 is not provable” otherwise. For a
systematic investigation, we varied τ and plot a receiver
operating characteristic (ROC) curve for each system;
the larger the area under ROC curve (AUROC) is, the
better the system is.

The ROC curves are shown in Figure 5a: our LEAP
System-A and System-B substantially and significantly
outperform the base system and a T5 model (trained
on generating goals given theories); System-B further
significantly outperforms System-A. Surprisingly, our
base system underperforms the T5 model even though
it has learned to spell out its reasoning steps which we
expect to help the classification.

Figure 5b and Figure 5c show the results broken
down into the accuracies on the provable goals and
non-provable goals, respectively. On provable goals, the

accuracy is the number of true positive divided by the
total number of test cases; on non-provable goals, the ac-
curacy is the number of true negative divided by the total
number of test cases. As we can see, System-A works
very well on the provable goals, but performs poorly
on the non-provable goals. That is because System-A
exploits the verification model by explicit planning: as
we have discussed in section 3.3, the proof scores given
by System-A tend to be high, thus yielding a high rate
of false positive. System-B works well on both provable
and non-provable goals: the refined verification model
pver successfully avoided being exploited by planning.
Actual values of the areas under curves are shown in
Table 1: AUACCpos and AUACCneg correspond to the
curves in Figure 5b and Figure 5c, respectively. The
F1 numbers were computed as follows: we chose an
optimal threshold τ by maximizing the F1 score on the
development set, and then computed F1 on the test set
according to the chosen τ .

For a comprehensive evaluation, we also compared
with three other kinds of methods: GPT-3-davinci with
0-shot prompting, RuleTaker (Clark et al., 2020), and
Neural Unification (Picco et al., 2021). GPT-3 achieves
a strong F1 of 0.89, and our System-B performs as
well as this strong model. RuleTaker is a discrimina-
tive method, training a RoBERTa (Liu et al., 2019) to
perform logical reasoning as binary classification (prov-
able or not). Neural Unification is also a discriminative
method but has a different architecture than RuleTaker.
It requires more sophisticated annotation and prepara-
tion of the training data than RuleTaker and our methods.
Neither of them spells out a reasoning process. For these
methods, we matched their numbers of trainable param-
eters with our methods for a fair comparison. Overall,
RuleTaker performs better than our System-A but worse
than System-B. Neural Unification performs worse than

11161

0.0 0.2 0.4 0.6 0.8 1.0
false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tru
e

po
sit

iv
e

ra
te

Baseline-T5
Base System
System A
System B

(a) ROC curves.

0.0 0.2 0.4 0.6 0.8 1.0
threshold

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

Baseline-T5
Base System
System A
System B

(b) Acc curves on positive examples.

0.0 0.2 0.4 0.6 0.8 1.0
threshold

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

Baseline-T5
Base System
System A
System B

(c) Acc curves on negative examples.
Figure 6: Test results with 95% bootstrap CFs on Entailment Bank Version-II.

RuleTaker and our System-A. Note that these results are
orthogonal to our main finding that explicit planning is
helpful for text-based multi-step logical reasoning.

Analysis-I: robustness to size of training data. We
also trained the models with (randomly sampled) 50%
of the training data, and evaluated them on the same
test set. It turns out that our System-B still performs
the best; see Figure 8 (which looks boringly similar to
Figure 5) in Appendix C.4 for details.

Analysis-II: About the regularization in equation (3).
We compared the system B with and without the regu-
larization term Ω: without Ω, System-B only achieves
AUROC = 0.79 (AUROCpos = 0.68 and AUROCneg =
0.65), worse than System-A. We also evaluated the
tuned verification models on the MNLI dataset (on
which they were fine-tuned) and found that: the model
tuned without Ω only achieved 62.0% accuracy; the
model tuned with Ω achieved 91.4% accuracy, almost
as good as it originally was (91.7%). It means that the
regularization term indeed helps the verification model
preserve its ability to judge the entailment relationship.

Analysis-III: Robustness to distractors. We inves-
tigated the robustness of the systems to distractors by
evaluating them on Version-II test data. Note that they
were only trained on Version-I training data. As shown
in Figure 6, all the systems perform worse than they
did on Version-I test data, but the performance drop of
our systems is much smaller than that of the T5 model.
It means that our systems are more robust to the dis-
tractors. That is perhaps because our systems explicitly
spell out their reasoning steps and explicit planning can
help the systems (A and B) focus on the premises that
are actually relevant to the goal at each selection step.

Analysis-IV: About model size and denoising. To
examine the effect of model size, we reran the main
experiments with T5-small (60M) replaced by T5-base
(220M): using a larger model achieved a consistently
stronger performance; our planning-based systems still
significantly outperform the base system. We also ex-
perimented with denoising training of the selection and
deduction models: every time we used a training exam-
ple, we randomly permuted the input statements. The
denoising training led to a better generalization to the

METHOD VERSION-I VERSION-II

BASELINE-T5 0.60 (0.55, 0.65) 0.20 (0.16, 0.24)
BASE SYSTEM 0.46 (0.41, 0.52) 0.29 (0.25, 0.34)
SYSTEM A 0.80 (0.76, 0.84) 0.44 (0.39, 0.49)
SYSTEM B 0.88 (0.85, 0.92) 0.63 (0.58, 0.68)

RULETAKER 0.83 (0.79, 0.87) 0.73 (0.68, 0.77)
NEURALUNIF 0.62 (0.55, 0.69) 0.62 (0.57, 0.67)
GPT-3 (0-SHOT) 0.72 0.20
GPT-3 (5-SHOT) 0.97 0.96
GPT-3 (COT) 0.98 0.98

Table 2: Test accuracy with 95% bootstrap CFs in
multiple-choice QA. Accuracy of random guess is 25%.

evaluation settings with distractors. We also found that
training with distractors (i.e., using Verstion-II training
data) significantly improved the results. Detailed results
and analysis are in Table 6 and Table 7 of Appendix C.4.

Analysis-V: About buffer size. The buffer size B
is a tunable hyperparameter. In our experiments, we
chose B = 5, a common choice in text generation. A
pilot experiment with B ∈ {2, 3, 5, 10} showed that:
a smaller B tends to slightly decrease the accuracy on
positive samples, but increase it on negative samples;
a larger B tends to slightly increase the accuracy on
positive samples, but decreases it on negative samples;
overall, there are only tiny changes in AUROC, which
depends on accuracies on both kinds of samples.

Analysis-VI: Computation Cost. In our experiments,
we used B = 5 and D = 2, i.e., a buffer size of 5 and
a roll-out depth of 2. According to the theoretical anal-
ysis in section 3.2, the planing-based inference should
be 1 + 2BD = 21 times slower than the no-planning
method. In practice, it takes an average of 2.8 seconds
for the no-planning method to work on a theory-goal
pair from Entailment Bank. For the planning-based in-
ference, it takes an average of 31 seconds, only 11 times
slower. The implementation is faster than the theoretical
analysis thanks to tensorization and parallelism.

Evaluation-II: Multiple-Choice QA. We further
evaluated the systems in a multiple-choice question an-
swering (QA) setting. Particularly, given a theory T
in Entailment Bank, each system is asked to select the
provable goal from four choices {x(1)

0 ,x
(2)
0 ,x

(3)
0 ,x

(4)
0 }:

one of them is the ground-truth provable goal while the

11162

METHOD ACC

BASE SYSTEM 0.68 (0.65, 0.71)
SYSTEM A 0.84 (0.82, 0.87)
SYSTEM B 0.85 (0.83, 0.87)

Table 3: Dev accuracy with 95%
bootstrap CFs on QASC.

METHOD DEPTH=1 DEPTH=3 DEPTH=5

COT 0.71 (0.62, 0.80) 0.57 (0.47, 0.67) 0.52 (0.42, 0.62)
SI 0.88 (0.81, 0.94) 0.51 (0.41, 0.61) 0.45 (0.35, 0.55)
SYSTEM A 0.90 (0.84, 0.95) 0.55 (0.45, 0.65) 0.55 (0.45, 0.65)

Table 4: Accuracy with 95% bootstrap confidence intervals on PrOntoQA.
The “depth” denotes the number of ground-truth reasoning steps.

others are negative choices selected by a tuned T5.
We took the systems trained in section 6.1 and eval-

uated them on the Version-I and Version-II of this
multiple-choice task: in the Version-II setting, each the-
ory has a few distractors, so it is more challenging than
Version-I. For each theory, a system tries to prove each
choice x(c)

0 , ranks the four choices by their proof scores
f(T ,x(c)

0), and then chooses the one with the highest
score. The systems were evaluated by accuracy. As
shown in Table 2, the systems behave similarly as they
do on the binary classification: in both Version-I and
Version-II settings, System-A and System-B perform
significantly better than the baselines, and System-B
significantly outperforms System-A.

We also evaluated GPT-3-davinci with 0-shot, 5-shot,
and chain-of-thought (COT) prompting (Brown et al.,
2020; Wei et al., 2022). The COT prompts include
the ground-truth reasoning paths of the correct choices;
examples are in Appendix C.5. Our full system outper-
forms 0-shot GPT-3, but underperforms 5-shot and COT
GPT-3. Interestingly, 0-shot GPT-3 works worse than
random guess when theories have distractors, which
indicates the difficulty of this problem. In addition,
we evaluated RuleTaker and Neural Unification, with
their numbers of trainable parameters matched with our
methods. In the Version-I setting, they both perform
worse than our System-B and Neural Unification per-
forms even worse than System-A. Interestingly, they
seem to be more robust to distractors: in the Versition-II
setting, Neural Unification performs competitive to our
System-B, and RuleTaker performs significantly better
than System-B. However, these methods do not generate
interpretable reasoning processes.

6.2 SLM Experiments on QASC

We also trained and evaluated the systems on the QASC
dataset (Khot et al., 2020), a multiple-choice question
answering dataset where each question has eight candi-
date answers. Each training QA pair has two premises
and a deduction, which can be used to train our de-
duction model. Each development QA pair has two
premises so the reasoning system only needs to do a
step of deduction but no selection. Test QA pairs have
no premises given and one has to search through a pool
of millions of statements to find the relevant premises,
which is not the focus of this paper. So we only evalu-
ated the systems on the development set. The results are
in Table 3. Although this data only requires one step of
reasoning, the planning-based systems still significantly
outperform the base system, suggesting that explicit
planning is indeed helpful for LM-based reasoning.

6.3 LLM Experiments on PrOntoQA
We evaluated the LLM version on the “fictional” version
of the PrOntoQA dataset (Saparov and He, 2023). It is
a binary classification task like Entailment Bank (sec-
tion 6.1), but it is more challenging to large language
models such as GPT-3.5 since its logical statements are
about fictional characters (e.g., wumpus), meaning that
a large model can not bypass the reasoning and draw
correct conclusions by commonsense or memorization.

The main results are shown in Table 4. In all cases,
our planning-based system outperforms the selection-
inference (SI) method, meaning that explicit planning is
consistently helpful. In most cases, our planning-based
system performs better than the strong chain-of-thought
(COT) prompting. We also experimented with the De-
BERTa model tuned on the Entailment Bank training
data (sections 3.3 and 6.1) and found that it couldn’t
improve the performance on PrOntoQA. Appendix C.6
includes more details about this set of experiments as
well as more results.

7 Conclusion
In this paper, we presented LEAP, an LM-based logi-
cal reasoning system that integrates explicit planning
into the inference method. We also proposed a method
that learns to prevent the explicit planning from being
misguided. Our proposed methods exhibit intriguing
technical connections to other reasoning systems and
can be likened to the deliberative System 2 in “dual
process” theories of reasoning. In our experiments,
our planning-based system outperforms strong baseline
methods including the selection-inference method and
chain-of-thought prompting. We will discuss several ex-
citing avenues for further improvements in Appendix A.

Acknowledgments
This work was supported by a research gift to the last
author by Adobe Research. We thank the anonymous
EMNLP reviewers and meta-reviewer for their construc-
tive feedback. We thank our colleagues at UChicago
and TTIC for helpful discussion. We also thank Hao Tan
at Adobe Research, Yisi Sang at Apple, Benjamin Van
Durme at Johns Hopkins University, and David Dohan
at OpenAI for their helpful comments.

Limitations
The main limitation of our proposed framework is that
it requires more computation than the baseline methods
that do not perform explicit planning. As discussed
in section 3.2, the no-planning methods are like the

11163

intuitive and fast System 1 (Evans, 2003) while our
methods are like the analytical and slow System 2: after
all, more analysis consumes more computation and thus
our framework is less energy-efficient. This limitation
has inspired us to explore new methods such as bandit
learning to switch between two types of systems and
more efficient planning (see Appendix A).

Ethics Statement
Our work complies with the ACL Ethics Policy. It aims
to build more intelligent language-based logical reason-
ing systems which would have a broad positive impact
to the society. For example, in our daily life, an intelli-
gent logical reasoning system may help us verify facts
and identify fake news; in legal domain, it may work as
an automatic paralegal and assist lawyers with their doc-
ument processing and decision making; in education,
it may help students reason about their mistakes and
improve learning experience. Meanwhile, our methods
share the same risks as other machine learning methods,
such as misusage, containing data bias, and suffering
from adversarial attacks. However, this paper is orthog-
onal to the research efforts to mitigate these issues.

References
Gabor Angeli, Neha Nayak, and Christopher D. Man-

ning. 2016. Combining natural logic and shallow
reasoning for question answering. In Proceedings of
the Annual Meeting of the Association for Computa-
tional Linguistics (ACL).

Raffaella Anna Bernardi. 2002. Reasoning with polarity
in categorial type logic. Ph.D. thesis.

Gregor Betz and Kyle Richardson. 2022. DeepA2: A
modular framework for deep argument analysis with
pretrained neural Text2Text language models. In
Proceedings of the 11th Joint Conference on Lexical
and Computational Semantics.

Kaj Bostrom, Zayne Sprague, Swarat Chaudhuri, and
Greg Durrett. 2022. Natural language deduction
through search over statement compositions. In Find-
ings of the Conference on Empirical Methods in Nat-
ural Language Processing (Findings of EMNLP).

Kaj Bostrom, Xinyu Zhao, Swarat Chaudhuri, and Greg
Durrett. 2021. Flexible generation of natural lan-
guage deductions. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in Neural Information Processing
Systems (NeurIPS).

Jifan Chen and Greg Durrett. 2019. Understanding
dataset design choices for multi-hop reasoning. In

Proceedings of the Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics (NAACL).

Wenhu Chen, Wenhan Xiong, Xifeng Yan, and William
Wang. 2018. Variational knowledge graph reasoning.
In Proceedings of the Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics (NAACL).

Zeming Chen, Qiyue Gao, and Lawrence S. Moss. 2021.
NeuralLog: Natural language inference with joint
neural and logical reasoning. In Proceedings of
*SEM 2021: The Tenth Joint Conference on Lexical
and Computational Semantics.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2020.
Transformers as soft reasoners over language. In
Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI).

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

William W Cohen, Fan Yang, and Kathryn Rivard
Mazaitis. 2017. Tensorlog: Deep learning meets
probabilistic dbs. Journal of Artificial Intelligence
Research (JAIR).

Antonia Creswell, Murray Shanahan, and Irina Higgins.
2023. Selection-inference: Exploiting large language
models for interpretable logical reasoning. In Pro-
ceedings of the International Conference on Learning
Representations (ICLR).

Bhavana Dalvi, Peter Jansen, Oyvind Tafjord, Zheng-
nan Xie, Hannah Smith, Leighanna Pipatanangkura,
and Peter Clark. 2021. Explaining answers with en-
tailment trees. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer,
Luke Vilnis, Ishan Durugkar, Akshay Krishnamurthy,
Alex Smola, and Andrew McCallum. 2018. Go for
a walk and arrive at the answer: Reasoning over
paths in knowledge bases using reinforcement learn-
ing. In Proceedings of the International Conference
on Learning Representations (ICLR).

David Dohan, Winnie Xu, Aitor Lewkowycz, Jacob
Austin, David Bieber, Raphael Gontijo Lopes, Yuhuai
Wu, Henryk Michalewski, Rif A Saurous, Jascha
Sohl-Dickstein, et al. 2022. Language model cas-
cades. arXiv preprint arXiv:2207.10342.

Jonathan St BT Evans. 2003. In two minds: dual-
process accounts of reasoning. Trends in cognitive
sciences.

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and
Tushar Khot. 2023. Specializing smaller language
models towards multi-step reasoning. In Proceedings
of the International Conference on Machine Learning
(ICML).

11164

https://www.aclweb.org/portal/content/acl-code-ethics
https://aclanthology.org/P16-1042
https://aclanthology.org/P16-1042
https://dspace.library.uu.nl/bitstream/handle/1874/614/full.pdf
https://dspace.library.uu.nl/bitstream/handle/1874/614/full.pdf
https://aclanthology.org/2022.starsem-1.2
https://aclanthology.org/2022.starsem-1.2
https://aclanthology.org/2022.starsem-1.2
https://arxiv.org/abs/2201.06028
https://arxiv.org/abs/2201.06028
https://aclanthology.org/2021.emnlp-main.506
https://aclanthology.org/2021.emnlp-main.506
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/N19-1405
https://aclanthology.org/N19-1405
https://arxiv.org/abs/1803.06581
https://aclanthology.org/2021.starsem-1.7
https://aclanthology.org/2021.starsem-1.7
https://arxiv.org/abs/2002.05867
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/1605.06523
https://arxiv.org/abs/1605.06523
https://arxiv.org/abs/2205.09712
https://arxiv.org/abs/2205.09712
https://aclanthology.org/2021.emnlp-main.585
https://aclanthology.org/2021.emnlp-main.585
https://arxiv.org/abs/1711.05851
https://arxiv.org/abs/1711.05851
https://arxiv.org/abs/1711.05851
https://arxiv.org/abs/1711.05851
https://arxiv.org/abs/2207.10342
https://arxiv.org/abs/2207.10342
https://www.sciencedirect.com/science/article/abs/pii/S1364661303002250
https://www.sciencedirect.com/science/article/abs/pii/S1364661303002250
https://arxiv.org/abs/2301.12726
https://arxiv.org/abs/2301.12726

Deepanway Ghosal, Navonil Majumder, Rada Mihal-
cea, and Soujanya Poria. 2022. Two is better than
many? binary classification as an effective approach
to multi-choice question answering. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention. In Proceedings of
the International Conference on Learning Represen-
tations (ICLR).

Hai Hu, Qi Chen, Kyle Richardson, Atreyee Mukher-
jee, Lawrence S. Moss, and Sandra Kuebler. 2020.
MonaLog: a lightweight system for natural language
inference based on monotonicity. In Proceedings of
the Society for Computation in Linguistics.

Daniel Jurafsky and James H. Martin. 2000. Speech
and Language Processing: An Introduction to Natu-
ral Language Processing, Computational Linguistics,
and Speech Recognition.

Tushar Khot, Peter Clark, Michal Guerquin, Peter
Jansen, and Ashish Sabharwal. 2020. Qasc: A dataset
for question answering via sentence composition. In
Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI).

Tushar Khot, Daniel Khashabi, Kyle Richardson, Pe-
ter Clark, and Ashish Sabharwal. 2021. Text mod-
ular networks: Learning to decompose tasks in the
language of existing models. In Proceedings of the
Conference of the North American Chapter of the
Association for Computational Linguistics – Human
Language Technologies (NAACL HLT).

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the International Conference on Learning Repre-
sentations (ICLR).

Ni Lao and William W Cohen. 2010. Relational re-
trieval using a combination of path-constrained ran-
dom walks. Machine Learning.

Veronica Latcinnik and Jonathan Berant. 2020. Explain-
ing question answering models through text genera-
tion. arXiv preprint arXiv:2004.05569.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt tun-
ing. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Oleksii Levkovskyi and Wei Li. 2021. Generating pred-
icate logic expressions from natural language. In
SoutheastCon.

Tengxiao Liu, Qipeng Guo, Xiangkun Hu, Yue Zhang,
Xipeng Qiu, and Zheng Zhang. 2022. RLET: A re-
inforcement learning based approach for explainable
QA with entailment trees. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692.

Ximing Lu, Sean Welleck, Peter West, Liwei Jiang,
Jungo Kasai, Daniel Khashabi, Ronan Le Bras, Lian-
hui Qin, Youngjae Yu, Rowan Zellers, Noah A. Smith,
and Yejin Choi. 2022a. NeuroLogic a*esque de-
coding: Constrained text generation with lookahead
heuristics. In Proceedings of the Conference of the
North American Chapter of the Association for Com-
putational Linguistics (NAACL).

Xuantao Lu, Jingping Liu, Zhouhong Gu, Hanwen Tong,
Chenhao Xie, Junyang Huang, Yanghua Xiao, and
Wenguang Wang. 2022b. Parsing natural language
into propositional and first-order logic with dual re-
inforcement learning. In Proceedings of the 29th
International Conference on Computational Linguis-
tics.

Zhuang Ma and Michael Collins. 2018. Noise con-
trastive estimation and negative sampling for condi-
tional models: Consistency and statistical efficiency.
In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP).

Bill MacCartney and Christopher D. Manning. 2009.
An extended model of natural logic. In Proceedings
of the Eight International Conference on Computa-
tional Semantics.

Sewon Min, Eric Wallace, Sameer Singh, Matt Gardner,
Hannaneh Hajishirzi, and Luke Zettlemoyer. 2019.
Compositional questions do not necessitate multi-hop
reasoning. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics (ACL).

Arvind Neelakantan, Benjamin Roth, and Andrew Mc-
Callum. 2015. Compositional vector space models
for knowledge base inference. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI).

Maxwell Nye, Michael Tessler, Josh Tenenbaum, and
Brenden M Lake. 2021. Improving coherence and
consistency in neural sequence models with dual-
system, neuro-symbolic reasoning. In Advances in
Neural Information Processing Systems (NeurIPS).

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems (NeurIPS). Curran Associates, Inc.

Gabriele Picco, Hoang Thanh Lam, Marco Luca Sbodio,
and Vanessa Lopez Garcia. 2021. Neural unification
for logic reasoning over natural language. In Findings
of the Conference on Empirical Methods in Natural
Language Processing (Findings of EMNLP).

11165

https://arxiv.org/abs/2210.16495
https://arxiv.org/abs/2210.16495
https://arxiv.org/abs/2210.16495
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://aclanthology.org/2020.scil-1.40
https://aclanthology.org/2020.scil-1.40
https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf
https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf
https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf
https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf
https://arxiv.org/abs/1910.11473
https://arxiv.org/abs/1910.11473
https://aclanthology.org/2021.naacl-main.99
https://aclanthology.org/2021.naacl-main.99
https://aclanthology.org/2021.naacl-main.99
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://www.cs.cmu.edu/~wcohen/postscript/ecml-2010-ni.pdf
https://www.cs.cmu.edu/~wcohen/postscript/ecml-2010-ni.pdf
https://www.cs.cmu.edu/~wcohen/postscript/ecml-2010-ni.pdf
https://arxiv.org/abs/2004.05569
https://arxiv.org/abs/2004.05569
https://arxiv.org/abs/2004.05569
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.emnlp-main.243
https://ieeexplore.ieee.org/document/9401852
https://ieeexplore.ieee.org/document/9401852
https://aclanthology.org/2022.emnlp-main.483
https://aclanthology.org/2022.emnlp-main.483
https://aclanthology.org/2022.emnlp-main.483
https://arxiv.org/pdf/1907.11692.pdf
https://arxiv.org/pdf/1907.11692.pdf
https://arxiv.org/abs/2112.08726
https://arxiv.org/abs/2112.08726
https://arxiv.org/abs/2112.08726
https://aclanthology.org/2022.coling-1.481
https://aclanthology.org/2022.coling-1.481
https://aclanthology.org/2022.coling-1.481
https://arxiv.org/abs/1809.01812
https://arxiv.org/abs/1809.01812
https://arxiv.org/abs/1809.01812
https://aclanthology.org/W09-3714
https://aclanthology.org/P19-1416
https://aclanthology.org/P19-1416
https://arxiv.org/abs/1504.06662
https://arxiv.org/abs/1504.06662
https://arxiv.org/abs/2107.02794
https://arxiv.org/abs/2107.02794
https://arxiv.org/abs/2107.02794
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/2109.08460
https://arxiv.org/abs/2109.08460

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, Peter J Liu, et al. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research
(JMLR).

Nazneen Fatema Rajani, Bryan McCann, Caiming
Xiong, and Richard Socher. 2019. Explain yourself!
leveraging language models for commonsense rea-
soning. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics (ACL).

Kyle Richardson and Ashish Sabharwal. 2020. What
does my QA model know? devising controlled probes
using expert knowledge. Transactions of the Associa-
tion for Computational Linguistics (TACL).

Stuart Russell and Peter Norvig. 2010. Artificial Intelli-
gence: A Modern Approach. Prentice Hall.

Swarnadeep Saha, Sayan Ghosh, Shashank Srivastava,
and Mohit Bansal. 2020. PRover: Proof generation
for interpretable reasoning over rules. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Abulhair Saparov and He He. 2023. Language models
are greedy reasoners: A systematic formal analysis of
chain-of-thought. In Proceedings of the International
Conference on Learning Representations (ICLR).

Vered Shwartz, Peter West, Ronan Le Bras, Chandra
Bhagavatula, and Yejin Choi. 2020. Unsupervised
commonsense question answering with self-talk. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP).

Richard S Sutton and Andrew G Barto. 2018. Reinforce-
ment learning: An introduction.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021.
ProofWriter: Generating implications, proofs, and
abductive statements over natural language. In Find-
ings of the Annual Meeting of the Association for
Computational Linguistics (Findings of ACL).

Alon Talmor, Oyvind Tafjord, Peter Clark, Yoav Gold-
berg, and Jonathan Berant. 2020. Leap-of-thought:
Teaching pre-trained models to systematically rea-
son over implicit knowledge. In Advances in Neural
Information Processing Systems (NeurIPS).

William Yang Wang, Kathryn Mazaitis, and William W
Cohen. 2013. Programming with personalized pager-
ank: a locally groundable first-order probabilistic
logic. In Proceedings of the ACM International Con-
ference on Information & Knowledge Management
(CIKM).

Leon Weber, Pasquale Minervini, Jannes Münchmeyer,
Ulf Leser, and Tim Rocktäschel. 2019. NLProlog:
Reasoning with weak unification for question answer-
ing in natural language. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics (ACL).

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. Advances in Neural Information
Processing Systems (NeurIPS).

Nathaniel Weir and Benjamin Van Durme. 2022. Dy-
namic generation of interpretable inference rules in
a neuro-symbolic expert system. arXiv preprint
arXiv:2209.07662.

Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel.
2018. Constructing Datasets for Multi-hop Read-
ing Comprehension Across Documents. Transac-
tions of the Association for Computational Linguis-
tics (TACL).

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus for
sentence understanding through inference. In Pro-
ceedings of the Conference of the North American
Chapter of the Association for Computational Lin-
guistics – Human Language Technologies (NAACL
HLT).

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transformers:
State-of-the-art natural language processing. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP).

Wenhan Xiong, Thien Hoang, and William Yang Wang.
2017. Deeppath: A reinforcement learning method
for knowledge graph reasoning. In Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP).

Mo Yu, Shiyu Chang, Yang Zhang, and Tommi Jaakkola.
2019. Rethinking cooperative rationalization: Intro-
spective extraction and complement control. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP).

Anna Zamansky, Nissim Francez, and Yoad Winter.
2006. A ‘natural logic’inference system using the
lambek calculus. Journal of Logic, Language and
Information.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei
Chang, and Guy Van den Broeck. 2023. On the para-
dox of learning to reason from data. In Proceedings
of the International Joint Conference on Artificial
Intelligence (IJCAI).

11166

https://www.jmlr.org/papers/volume21/20-074/20-074.pdf
https://www.jmlr.org/papers/volume21/20-074/20-074.pdf
https://www.jmlr.org/papers/volume21/20-074/20-074.pdf
https://aclanthology.org/P19-1487
https://aclanthology.org/P19-1487
https://aclanthology.org/P19-1487
https://aclanthology.org/2020.tacl-1.37
https://aclanthology.org/2020.tacl-1.37
https://aclanthology.org/2020.tacl-1.37
https://aima.cs.berkeley.edu/
https://aima.cs.berkeley.edu/
https://aclanthology.org/2020.emnlp-main.9
https://aclanthology.org/2020.emnlp-main.9
https://arxiv.org/abs/2210.01240
https://arxiv.org/abs/2210.01240
https://arxiv.org/abs/2210.01240
https://aclanthology.org/2020.emnlp-main.373
https://aclanthology.org/2020.emnlp-main.373
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://aclanthology.org/2021.findings-acl.317
https://aclanthology.org/2021.findings-acl.317
https://proceedings.neurips.cc/paper/2020/file/e992111e4ab9985366e806733383bd8c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e992111e4ab9985366e806733383bd8c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e992111e4ab9985366e806733383bd8c-Paper.pdf
https://dl.acm.org/doi/10.1145/2505515.2505573
https://dl.acm.org/doi/10.1145/2505515.2505573
https://dl.acm.org/doi/10.1145/2505515.2505573
https://aclanthology.org/P19-1618
https://aclanthology.org/P19-1618
https://aclanthology.org/P19-1618
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2209.07662
https://arxiv.org/abs/2209.07662
https://arxiv.org/abs/2209.07662
https://doi.org/10.1162/tacl_a_00021
https://doi.org/10.1162/tacl_a_00021
https://arxiv.org/pdf/1704.05426.pdf
https://arxiv.org/pdf/1704.05426.pdf
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/1707.06690
https://arxiv.org/abs/1707.06690
https://aclanthology.org/D18-1259
https://aclanthology.org/D18-1259
https://arxiv.org/abs/1910.13294
https://arxiv.org/abs/1910.13294
https://link.springer.com/article/10.1007/s10849-006-9018-x
https://link.springer.com/article/10.1007/s10849-006-9018-x
https://arxiv.org/abs/2205.11502
https://arxiv.org/abs/2205.11502

A Future Extensions

Our experiments have inspired us to explore several
exciting avenues for further improvements.

The first is to jointly refine the selection, deduction,
and verification models. In this paper, we have already
shown that adversarially refining the verification model
will significantly improve the performance. So a natural
next step is to adversarially refine the selection and de-
duction models in response to the updated verification
model. Allowing components of a system to adversari-
ally refine one another has been shown useful in natural
language processing (Yu et al., 2019).

The second is to develop implicit planning methods to
improve inference efficiency. In reinforcement learning,
explicit planning is often only used to help learn a value
function during training; during inference, calling a
value function is like planning implicitly but faster than
explicit planning. This kind of methods can apply to
our setting. Another way to improve efficiency is to
learn a bandit that could cleverly switch between the no-
planning “System 1” and our planning-based “System 2”
such that we only spend more computation in the more
difficult cases.

Another direction is to leverage unlabeled data, i.e.,
data without human-annotated reasoning paths. Such
data is less expensive to collect. An LM-based reasoning
system may be able to benefit from (the indirect training
signals of) such data by self-supervised learning.

B Method Details

In this section, we give details of our methods.

B.1 Reasoning Process Details

Algorithm 1 gives a detailed explanation for how our
inference method works. When D = 0, it is the naive
method. When D ≥ 1, it is the inference with explicit
planning. During selection, we constrain the model to
only select two premises for a more controllable behav-
ior. When we compute the proof score we only consider
the newly generated deductions for convenience. Its
effect to results is negligible since later deductions tend
to more directly prove the goal.

Algorithm 2 is designed to select a set of statements
from the current theory T , with the goal of inferring x0.
We fix the size of the selection set to 2 in our experi-
ments, but in principle this restriction can be removed.
Algorithm 3 draws Bded new deductions. Their SLM
versions are Algorithms 5 and 6 and the LLM versions
are Algorithms 8 and 9.

B.2 Details of Tuning the Verification Model

We use the soft prompt tuning method (Lester et al.,
2021): we augment the input with a few special tokens
and the only trainable parameters are the embeddings
of those tokens; it is illustrated in Figure 7.

Where do we get x0, y, x̄0, and ȳ? Recall that we
have a training corpus of theories and goals as well

Algorithm 1 Reasoning (Inference) with Our System

Hyperparam: max number of inference steps M ;
depth of planning D (D = 0 means “no planning”);
inference beam size Binf

Input: theory T = {x1,x2, . . . ,xN} and goal x0;
selection model psel, deduction model pded;
verification model pver

Output: reasoning pathR with proof score f
1: procedure INFERENCE(T ,x0, psel, pded, pver)
2: ▷ has access to M , Binf, D
3: B ← PriorityQueue(Binf)
4: ▷ max size is Binf ; priority is first element of tuple
5: B.add((0, ∅, T ,−∞))
6: ▷ init with empty path and current theory
7: for m = 1 to M :
8: ▷ do inference at each step
9: ▷ selection at step m

10: Bold ← B; B ← PriorityQueue(Binf)
11: for gb,Rb, Tb, fb in Bold :
12: ▷ g is log-prob of path and f is its proof score
13: Sb ← SELECT(Tb,x0, psel)
14: if D > 0 :
15: ▷ rank selections based on D-step roll-outs
16: Sb ← PLANS(Tb,x0,Sb, psel, pded, pver)

17: for uk, sk in Sb :
18: ▷ add expanded path into priority queue
19: ▷ priority score changes by uk

20: B.add((gb + uk,Rb + {sk}, Tb, fb))
21: ▷ B has a fixed size Binf: if |B| > Binf

22: ▷ auto-delete lowest-priority element

23: ▷ deduction at step m

24: Bold ← B; B ← PriorityQueue(Binf)
25: for gb,Rb, Tb, fb in Bold :
26: sb ← the most recent selection inRb

27: Yb ← DEDUCE(sb, pded)
28: if D > 0 :
29: ▷ rank deductions based on D-step roll-outs
30: Yb ← PLAND(Tb,x0,Yb, psel, pded, pver)

31: for vk,yk in Yb :
32: B.add((gb+vk,Rb+{yk}, Tb+{yk}, fb))
33: for gb,Rb, Tb, fb in B :
34: yb ← the most recent deduction inRb

35: ▷ if yb entails x0 better than any prev deduction
36: ▷ update proof score of path Rb

37: if pver(x0 | yb) > fb : fb ← pver(x0 | yb)

38: ▷ choose reasoning path with highest proof score
39: bmax ← argmaxb fb
40: returnRbmax , fbmax

x0 : Eagles are carnivores.

pretrained DeBERTa with classification head

VER x6 : Eagles only eat animals.

special tokens with trainable embeddings: VER

CLS

pver(x0 | x6)

Figure 7: The structure of the verification model.

11167

Algorithm 2 Selection Subroutine

Hyperparam: selection beam size Bsel
Input: current theory T = {x1, . . . ,xN+m} and goal

x0; selection model psel
Output: selections with their scores {(uk, sk)}

1: procedure SELECT(T ,x0, psel)
2: ▷ generic method for illustration only
3: ▷ in practice, we call the SLM or LLM version
4: ▷ see Algorithm 5 for SLM version
5: ▷ see Algorithm 8 for LLM version
6: ▷ has access to Bsel

7: ▷ return list S which contains Bsel scored selections
8: ▷ each scored selection is (u, s)
9: ▷ score u is defined in section 3.2

10: return S
11: procedure ONEBESTSELECT(T ,x0, psel)
12: ▷ only keeps selection with highest score
13: S ← SELECT(T ,x0, psel)
14: (u, s)← highest-scored element in S
15: return s

Algorithm 3 Deduction Subroutine

Hyperparam: deduction beam size Bded
Input: current selection s of statements;

deduction model pded
Output: deductions with their scores {(vk,yk)}

1: procedure DEDUCE(s, pded)
2: ▷ generic method for illustration only
3: ▷ in practice, we call the SLM or LLM version
4: ▷ see Algorithm 6 for SLM version
5: ▷ see Algorithm 9 for LLM version
6: ▷ has access to Bded

7: ▷ return list Y which contains Bded scored deductions
8: ▷ each scored deduction is (v,y)
9: ▷ score v is defined in section 3.2

10: return Y
11: procedure ONEBESTDEDUCE(s, pded)
12: ▷ only keeps deduction with highest score
13: Y ← DEDUCE(s, pded)
14: (v,y)← element in Y with highest v
15: return y

as their ground-truth reasoning paths. For each pair
of theory T and provable goal x0, we could randomly
sample a deduction y from its ground-truth reasoning
path. We use the goal of another training example as our
non-provable goal x̄0, call the planning-based inference
method to get a reasoning path, and sample a deduction
from the reasoning path as our ȳ.

Algorithm 4 shows how we refine the verification
model using the contrastive loss with regularization.

Algorithm 4 Refining Verification Model

Input: provable goal x0 and gold reasoning pathR;
non-provable goal x̄0 and model-generated path R̄;
verification model pver

Output: updated verification model pver
1: procedure REFINE(x0,R, x̄0, R̄, pver)
2: ▷ refining procedure
3: p−ver ← a copy of pretrained pver
4: ▷ sample deductions from reasoning paths
5: randomly draw y from deductions inR
6: randomly draw ȳ from deductions in R̄
7: ▷ refine verification model
8: ℓ← LOSSVER(x0,y, x̄0, ȳ, pver, p

−
ver)

9: compute∇ℓ wrt. trainable parameters θver of pver
10: update θver with chosen optimization method
11: return pver

12: procedure LOSSVER(x0,y, x̄0, ȳ, pver, p
−
ver)

13: ▷ contrastive loss
14: ℓ← log pver(x̄0|ȳ)

pver(x̄0|ȳ)+pver(x0|y)
15: ▷ compute regularization
16: ℓ −= p−ver(x0 | y) log pver(x0 | y)
17: ℓ −= (1− p−ver(x0 | y)) log(1− pver(x0 | y))
18: return ℓ

B.3 SLM Details
We give SLM details in this section.

Selection model. The selection model psel uses a
pretrained encoder-decoder model T5 (Raffel et al.,
2020). The encoder reads a context string concatenat-
ing the goal x0 and the premises x1, . . . ,xN of cur-
rent theory T ; the decoder computes the probabilities
psel(xn | T ,x0) that each premise xn is selected in the
attempt to prove the goal x0. It is illustrated in Fig-
ure 4a: besides the statements, T5 also reads a few
special tokens (ENC,SP0,SP1, . . . ,SPN ,DEC); its de-
coder gives a hidden state h, which is involved in com-
puting psel(xn | T ,x0)

def
= σ(h⊤wn) where wn is the

embedding of SPn. For training and inference efficiency,
we keep the pretrained T5 frozen so the only trainable
parameters of the selection model psel—denoted as θsel—
are the embeddings of the special tokens. The pseu-
docode of using it for inference is in Algorithm 5.

Deduction model. Given the selection s, the deduc-
tion model pded produces a logical deduction y by com-
bining the premises in s. The new statement y is added
to the theory T whose size is then increased by one;

11168

therefore, for a theory of size N , we also denote y
as xN+1. The deduction model pded uses another pre-
trained T5. As shown in Figure 4b, its encoder reads an
input string concatenating the selected premises along
with a few special tokens; its autoregressive decoder pro-
duces a deduction one token after another. Its trainable
parameters θded are the embeddings of the special to-
kens. The pseudocode of deploying it is in Algorithm 6.

Algorithm 5 Selection Subroutine for SLM

Hyperparam: selection beam size Bsel
Input: current theory T = {x1, . . . ,xN+m} and goal

x0; prompted encoder-decoder language model psel
Output: selections with their scores {(uk, sk)}

1: procedure SELECT(T ,x0, psel)
2: ▷ has access to Bsel

3: ▷ build context by concatenating hypothesis and theory
4: c = SP0+x0+SP1+x1+. . .+SPN+m+xN+m

5: for i = 1 to N +m :
6: ▷ compute prob that each statement is selected
7: pi ← psel(SPi|c)
8: S ← PriorityQueue(Bsel)
9: ▷ max size is Bsel; priority is first element of tuple

10: for i = 1 to N +m :
11: for j = i+ 1 to N +m :
12: sk ← xi + xj

13: uk ← log pi+log pj+
∑

ℓ̸=i,ℓ ̸=j log(1−pℓ)
14: S.add((uk, sk))
15: ▷ if B is larger than Bsel, element with
16: ▷ lowest priority will be automatically deleted

17: return S

Algorithm 6 Deduction Subroutine for SLM

Hyperparam: deduction beam size Bded
Input: current selection s of statements;

prompted encoder-decoder language model pded
Output: deductions with their scores {(vk,yk)}

1: procedure DEDUCE(s, pded)
2: ▷ has access to Bded

3: ▷ has access to standard beam search implementation
4: Y ← BEAMSEARCH(pded, Bded, s)
5: ▷ assume:
6: ▷ BEAMSEARCH gives a list of tuples {(vk,yk)}
7: ▷ text string yk sorted in descending order of vk
8: return Y

Training. Algorithm 7 elaborates how the SLM selec-
tion and deduction models are trained. We use prompt-
learning because we do not want to distort the pretrained
weights too much. It is well known that pretrained lan-
guage models have already captured substantial amounts
of commonsense knowledge such as hypernymy (A is
a type of B) and meronymy (A is part of B) (Richard-
son and Sabharwal, 2020); we would like to keep such
knowledge to benefit our settings.

Algorithm 7 Training for SLM

Input: theory T = {x1, . . . ,xN} and goal x0;
reasoning pathR; verification model pver
selection model psel, deduction model pded

Output: updated models psel and pded
1: procedure TRAIN(R, T ,x0, psel, pded, pver)
2: ▷ training method for selection and deduction models
3: ▷ init extended theory that will include deduction
4: T̃ ← T
5: for m = 1 to |R|/2 :
6: ▷ loop over each step of selection and deduction
7: sm ←mth selection ▷ i.e., (2m− 1)th entry in R
8: ym ←mth deduction ▷ i.e., (2m)th element in R
9: ▷ train selection model

10: ℓ← LOSSSEL(T̃ , sm, psel)
11: compute ∇ℓ wrt. trainable params θsel of psel
12: update θsel with chosen optimization method
13: ▷ train deduction model
14: ℓ← LOSSDED(sm,ym, pded)
15: compute∇ℓ wrt. trainable params θded of pded
16: update θded with chosen optimization method
17: ▷ extend theory with new deduction
18: T̃ ← T̃ + {ym}
19: return psel, pded

20: procedure LOSSSEL(T , s, psel)
21: ▷ construct context for selecting statements from theory
22: c← SP0+x0+SP1+x1+. . .+SPN+m+xN+m

23: ℓ← 0 ▷ loss is negative log-likelihood of selection
24: for i = 1 to N +m :
25: pi ← psel(SPi|c) ▷ prob that xi is included in s

26: if xi in s : ∆ℓ← log pi else ∆ℓ← log(1−pi)
27: ℓ← ℓ−∆ℓ ▷ update ℓ with minus log-probability

28: return ℓ
29: procedure LOSSDED(s,y, pded)
30: ▷ loss is negative log-prob of deduction under model
31: ℓ← − log pded(y | s)
32: ▷ log pded(y | s) sums log-probabilities of tokens in y

33: return ℓ

11169

B.4 LLM Details
We give LLM details in this section. For selection, we
use a large language model as a black box and prompt
it to choose several different multi-premise selections
from the given theory T . The pseudocode is in Algo-
rithm 8. Below is the prompt template:

few−shot examples to demonstrate selection
see Appendix C.6 for an example

...

end of demonstration

Please refer to these examples, select four
pairs of indexes from the theory (e.g. 12 and
3 / 12 and 6 / 12 and 7 / 12 and 11) that

can potentially help us answer the question,
no need to say anything else.

You must choose four pairs even if there are
no valid selections.

theory and question/goal of interest

For deduction, we also use a large language model
as a black box and prompt it to draw new deductions
conditioned on a given selection s. The pseudocode is
in Algorithm 9. The prompt template is as follows:

few−shot examples to demonstrate deduction
see Appendix C.6 for an example

...

end of demonstration

Please refer to these examples and generate
the inference.

selection of statements of interest

Algorithm 8 Selection Subroutine for LLM

Hyperparam: selection beam size Bsel
Input: current theory T = {x1, . . . ,xN+m} and goal

x0; selection model psel
Output: selections with their scores {(uk, sk)}

1: procedure SELECT(T ,x0, psel)
2: ▷ has access to Bsel

3: prompt LLM to select Bsel different multi-
premise selections s from the theory T

4: ▷ prompt templates are in Appendix B.4
5: each selection s is assigned a score u = 0
6: construct list S to contain the multiple (u, s)
7: return S

B.5 Details of Planning-Based Methods
Algorithm 10 illustrates the details of how we use ex-
plicit planning for selection. The method considers how
each selection could affect future in D steps. One-best
search is applied in the roll-out process to simplify the

Algorithm 9 Deduction Subroutine for LLM

Hyperparam: deduction beam size Bded
Input: current selection s of statements;

deduction model pded
Output: deductions with their scores {(vk,yk)}

1: procedure DEDUCE(s, pded)
2: ▷ has access to Bded

3: prompt LLM to draw Bded new deductions
4: ▷ prompt templates are in Appendix B.4
5: each deduction y is assigned a score v = 0
6: construct list Y to contain the multiple (v,y)
7: return Y

Algorithm 10 Planning for Selection

Hyperparam: deduction beam width Bded;
depth of planning D; planning scale α

Input: current theory T = {x1, . . . ,xN+m} and goal
x0; verification model pver
selection candidates at current step S = {(uk, sk)};
selection model psel and deduction model pded

Output: selections with updated scores {(uk, sk)}
1: procedure PLANS(T ,x0,S, psel, pded, pver)
2: ▷ has access to Bded, D, α
3: ▷ init hypothetical extended theory
4: for uk, sk in S : T̃k ← T
5: for uk, sk in S :
6: ▷ iterate over all candidate selections
7: ▷ find hypothetical next-step deduction
8: ỹk ← ONEBESTDEDUCE(sk, pded)
9: ▷ extend theory with new deduction

10: T̃k ← T̃k + {ỹk}
11: ▷ planning with roll-outs
12: ▷ what’s given by ROLLOUT is ∆u in section 3.2
13: uk ← uk + α ROLLOUT

14: sort S in descending order of updated uk

15: return S
16: procedure ROLLOUT
17: ▷ roll out D steps of imaginary selection and deduction
18: ▷ make in-place edits to s̃k, ỹk, T̃k

19: f ← −∞ ▷ init score of roll-out
20: for d = 1 to D : ▷ step-by-step roll-out
21: s̃k ← ONEBESTSELECT(T̃k,x0, psel)
22: ỹk ← ONEBESTDEDUCE(s̃k, pded)
23: T̃k ← T̃k + {ỹk}
24: if pver(x0 | ỹk) > f : f ← pver(x0 | ỹk)

25: return log f

11170

Algorithm 11 Planning for Deduction

Hyperparam: deduction beam width Bded;
depth of planning D; planning scale β

Input: current theory T = {x1, . . . ,xN+m} and goal
x0; deduction candidates at current step Y =
{(vk,yk)}; selection model psel and deduction
model pded; verification model pver

Output: deductions with updated scores {(vk,yk)}
1: procedure PLAND(T , x0, Y , psel, pded, pver)
2: ▷ has access to Bded, D, β
3: ▷ init hypothetical extended theory
4: for vk,yk in Y : T̃k ← T
5: for vk,yk in Y :
6: ▷ iterate over all candidate deductions
7: T̃k ← T̃k + {yk} ▷ extend theory with deduction
8: vk ← vk + β ROLLOUT
9: ▷ ROLLOUT is in Algorithm 10

10: ▷ what’s given by ROLLOUT is ∆v in section 3.2

11: sort Y in descending order of updated vk
12: return Y

planning. Intuitively, a higher log f means that the fu-
ture reasoning path conditioned on this selection is more
likely to prove the goal. Similar to Algorithm 10, Algo-
rithm 11 measures how the newly generated deduction
could affect the future reasoning path in D steps, and
honors the deduction which improves the possibility of
proving the goal in the future.

C Experiment Details

We present experiment details in this section.

C.1 Data Statistics

The data statistics of Entailment Bank is shown in Ta-
ble 5. In Version-I of Entailment Bank, there is one
sample in the test set that has a theory with a single
statement. We ignore this sample since it can not be
dealt by our system in the normal way. The dataset
can be downloaded from https://allenai.org/data/

entailmentbank.

SPLIT # OF SAMPLES MAX STEPS AVG STEPS

TRAIN 1313 17 3.2
DEV 187 15 3.2
TEST 340 11 3.3

Table 5: Data statistics of Entailment Bank.

C.2 Hyperparameters

For SLM experiments, we use “t5-small” in the Hug-
gingface transformers (Wolf et al., 2020) library for the
selection and deduction models. We use “deberta-v2-
xlarge-mnli” for the verification model. We prompt tune
these models, with a prompt length of 4 for the selection
and deduction models, and a prompt length of 32 for the

verification model. Note that for T5 models, the prompt
is added to the beginning of both the encoder and the
decoder (weight not shared). For the selection model, a
layernorm is added before the sigmoid operation.

In training, we use the Adam (Kingma and Ba, 2015)
optimizer with β1 = 0.9, β2 = 0.999, ϵ = 1e− 8, λ =
0. We use learning rate γ = 0.1 for the T5 models, and
γ = 0.01 for the verification model. We use a batch size
of 16. We set a very large epoch number like 1000 and
use the validation set to do early stopping. In practice,
the best epoch is often within 100.

For LLM experiments, we use GPT-3.5-turbo model
provided by OpenAI. We set the temperature to reduce
randomness. We keep the default role “system” with the
message “You are an AI assistant that speaks English.”

We used a fixed random seed for all our data gen-
eration and training, so that our results can be easily
reproduced with our codes.

During inference, we set Binf = Bded = 5 and retain
the selections formed by 4 top-scored statements. We
set α = 10 and β = 0.5 to roughly match the scale of
the beam score. We roll out 3 steps for selection and
2 steps for deduction. We set the maximum step to be
M = 20.

We do not tune hyperparameters except the learning
rate, and we only tune it in our first training of every
model. We try [0.1, 0.01, 0.001, 0.0001] and choose the
one that yields the best dev set performance.

Our experiments were run on 8 A6000 GPUs. Train-
ing takes about 1 hour. Time for inference is discussed
in section 6.1.

C.3 Details of FOL Translations
The classical approach of logical reasoning is to use
formal logic systems. So we also evaluated the perfor-
mance of a first-order-logic (FOL) system. Because the
Entailment Bank dataset does not have human-annotated
FOL translations for the natural language statements, we
translated all the statements into FOL expressions using
a T5 model trained on the corpus of (natural language,
FOL) pairs collected by Levkovskyi and Li (2021), and
then used a FOL engine to perform reasoning. This
approach failed because the FOL translations are mostly
of very poor quality. Here is a summary of the errors:

• inconsistency in variable naming. The FOL transla-
tions often use inconsistent variable naming, making
it difficult to pattern-match relevant expressions.

• incorrect translations. Some FOL translations inaccu-
rately represent the original sentences, resulting in a
failure to capture the intended meaning. For example,
“driving is a kind of skill” is incorrectly translated into
“∃x.(driving(x)&∃y.(vehicle(y)kind(x, y))).

• syntax errors. Some FOL translations contain syntax
errors, making them difficult to be process.

• missing or incomplete information. In several in-
stances, the FOL translations do not capture all rel-

11171

https://allenai.org/data/entailmentbank
https://allenai.org/data/entailmentbank

0.0 0.2 0.4 0.6 0.8 1.0
false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tru
e

po
sit

iv
e

ra
te

Baseline-T5
Base System
System A
System B

(a) ROC curves.

0.0 0.2 0.4 0.6 0.8 1.0
threshold

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

Baseline-T5
Base System
System A
System B

(b) Acc curves on positive examples.

0.0 0.2 0.4 0.6 0.8 1.0
threshold

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

Baseline-T5
Base System
System A
System B

(c) Acc curves on negative examples.
Figure 8: Test results with 95% bootstrap CFs on Entailment Bank Version-I under 50% training data.

METHOD AUROC AUACCPOS AUACCNEG F1

BASE SYSTEM (T5-BASE) 0.73 (0.69, 0.77) 0.61 (0.56, 0.65) 0.81 (0.79, 0.84) 0.68 (0.66, 0.71)
SYSTEM A (T5-BASE) 0.91 (0.89, 0.93) 0.90 (0.88, 0.92) 0.62 (0.58, 0.65) 0.85 (0.83, 0.87)
SYSTEM B (T5-BASE) 0.94 (0.93, 0.96) 0.89 (0.87, 0.91) 0.84 (0.80, 0.87) 0.90 (0.88, 0.91)

BASE SYSTEM (DENOISE) 0.55 (0.50, 0.59) 0.39 (0.35, 0.43) 0.83 (0.80, 0.85) 0.67 (0.67, 0.67)
SYSTEM A (DENOISE) 0.88 (0.85, 0.90) 0.87 (0.85, 0.89) 0.55 (0.52, 0.59) 0.83 (0.81, 0.85)
SYSTEM B (DENOISE) 0.93 (0.91, 0.95) 0.83 (0.80, 0.86) 0.88 (0.85, 0.90) 0.85 (0.84, 0.86)

Table 6: Test results with 95% bootstrap CFs on Entailment Bank Version-I.

METHOD VERSION-I VERSION-II

BASE SYSTEM (T5-BASE) 0.65 (0.60, 0.70) 0.26 (0.22, 0.31)
SYSTEM A (T5-BASE) 0.88 (0.85, 0.91) 0.45 (0.39 ,0.50)
SYSTEM B (T5-BASE) 0.91 (0.88, 0.94) 0.55 (0.50, 0.60)

BASE SYSTEM (DENOISE) 0.46 (0.40, 0.52) 0.27 (0.22, 0.32)
SYSTEM A (DENOISE) 0.83 (0.80, 0.87) 0.40 (0.35, 0.46)
SYSTEM B (DENOISE) 0.90 (0.87, 0.93) 0.67 (0.62,0.72)

BASE SYSTEM (VERSION-II) - 0.49 (0.44, 0.54)
SYSTEM A (VERSION-II) - 0.73 (0.69, 0.78)
SYSTEM B (VERSION-II) - 0.80 (0.76, 0.84)

Table 7: Test accuracy with 95% bootstrap CFs in multiple-choice QA. A random guess gives 25% accuracy. The
systems in the third block were trained on Version-II training data.

evant information from the original sentences. For
example, it may leave out an entity or quantifier.

This analysis reveals a fundamental need for tools that
work directly with natural language statements for rea-
soning like ours.

C.4 Results of Ablation Studies

Figure 8 shows the results of the systems trained on 50%
training data. Some results of ablation studies described
in section 6.1 are shown in Table 6 and Table 7.

C.5 Examples of Prompts for GPT-3

In section 6.1, we used three kinds of prompts for GPT-
3: 0-shot, 5-shot and COT. In this section, we provide
some examples of these prompts.

An in-context demonstration is

Based on the statements that:
the earth rotating on its axis causes stars /
the moon to appear to move across the sky at
night.

diurnal motion is when objects in the sky
appear to move due to earth 's rotation on
its axis.
stars appear to move relative to the horizon
during the night.

Which of the following conclusions can be
inferred?
0. earth rotating on its axis causes horizon
of stars and night on earth.
1. earth 's horizon on its rotating axis
causes stars to occur in new york night.
2. the earth revolving around the axis causes
stars to appear in different night in the

sky at different horizon of year.
3. the earth rotating on its axis causes
stars to appear to move relative to the
horizon during the night.

A: 3.

For COT prompting, we used the ground-truth reason-
ing path for the correct choice as the “chain-of-thought”,
so the last line of the (say) above example will be:

Reason: diurnal motion is when objects in the

11172

METHOD DEPTH=1 DEPTH=3 DEPTH=5

SYSTEM A WITH MODIFIED PROOF SCORE 0.90 (0.84, 0.95) 0.55 (0.45, 0.65) 0.55 (0.45, 0.65)
SYSTEM A WITH ORIGINAL PROOF SCORE 0.85 (0.78, 0.92) 0.64 (0.54, 0.74) 0.5 (0.41, 0.6)
SYSTEM B TRAINED ON ENTAILMENT BANK 0.87 (0.80, 0.94) 0.54 (0.44, 0.64) 0.46 (0.36, 0.56)

Table 8: Results of ablation studies on PrOntoQA with 95% bootstrap CFs.

sky appear to move due to earth 's rotation
on its axis & stars appear to move relative
to the horizon during the night −> int1:
stars appearing to move relative to the
horizon during the night is an example of
diurnal motion; int1 & the earth rotating on
its axis causes stars / the moon to appear to
move across the sky at night −> the earth

rotating on its axis causes stars to appear
to move relative to the horizon during the
night.

A:3.

C.6 Experiment Details on PrOntoQA
The PrOntoQA data has three subsets of different
“depths”. The “depth” denotes the number of ground-
truth reasoning steps so a “deeper” subset is harder. For
each depth, we draw (using the released data generation
code of Saparov and He (2023)) 5 training examples
and 100 test examples.

For the experiments on PrOntoQA, our final verifica-
tion is performed by a few-shot-prompted GPT-3.5: it
reads the extended theory and judges whether the given
goal is proved. By doing this, we do not need to tune a
threshold for the proof scores given by the verification
model (although those scores are still very important
in the process of explicit planning). In this dataset, the
non-provable goals are often definitively disapprovable.
So we would like the explicit planning to favor not only
the future steps that have large proof scores but also
those of large contradiction scores. Therefore, we re-
place the proof score f in the planning procedure by the
generalized score g defined below

g(T ,x0)
def
= max

n
max(pver(x0 | xn), pcon(x0 | xn))

(4)

where pcon(x0 | xn) is the probability of “xn contra-
dicts x0” given by the pretrained DeBERTa. Table 8
shows how much this modification helps: if we do not
use g, the average performance doesn’t change but we
will suffer a higher variance. Table 8 also shows the
results of using System B trained on Entailment Bank
data. We did this to see if the verification model could
generalize to out-of-domain data. In this experiment, it
hurts the performance.

In this section, we also show the prompts for GPT-3.5
used in the experiments in section 6.3. For selection and
deduction, we employed 5-shot prompting to enhance
the model’s comprehension. An in-context training ex-
ample for 5-shot selection prompt is

Contexts:
0.Every tumpus is not earthy.
1.Wumpuses are not red.
2.Wumpuses are vumpuses.
3.Each vumpus is bitter.
4.Vumpuses are zumpuses.
5.Every zumpus is cold.
6.Zumpuses are numpuses.
7.Numpuses are aggressive.
8.Numpuses are dumpuses.
9.Dumpuses are opaque.
10.Dumpuses are yumpuses.
11.Yumpuses are not small.
12.Each yumpus is a rompus.
13.Every rompus is earthy.
14.Each rompus is a jompus.
15.Jompuses are metallic.
16.Each jompus is an impus.
17.Alex is a dumpus.
Question:True or false: Alex is not earthy.

Selection:17 and 10 / 17 and 1 / 17 and 13 /
17 and 15.
Alex is a dumpus and dumpuses are yumpuses.
Alex is a dumpus and wumpuses are not red.
Alex is a dumpus and every rompus is earthy.
Alex is a dumpus and jompuses are metallic.

An in-context example for deduction prompt is

We know that: Sally is a tumpus and each
tumpus is hot.
Inference: Sally is hot.

Note that we didn’t let GPT to propose multiple de-
ductions in this experiment because the no-planning
deduction is almost always correct as long as the selec-
tion is correct.

11173

