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Abstract
In this work, we present a post-processing so-
lution to address the hubness problem in cross-
modal retrieval, a phenomenon where a small
number of gallery data points are frequently
retrieved, resulting in a decline in retrieval per-
formance. We first theoretically demonstrate
the necessity of incorporating both the gallery
and query data for addressing hubness as hubs
always exhibit high similarity with gallery and
query data. Second, building on our theoret-
ical results, we propose a novel framework,
Dual Bank Normalization (DBNORM). While
previous work has attempted to alleviate hub-
ness by only utilizing the query samples, DB-
NORM leverages two banks constructed from
the query and gallery samples to reduce the
occurrence of hubs during inference. Next,
to complement DBNORM, we introduce two
novel methods, dual inverted softmax and dual
dynamic inverted softmax, for normalizing
similarity based on the two banks. Specifi-
cally, our proposed methods reduce the sim-
ilarity between hubs and queries while im-
proving the similarity between non-hubs and
queries. Finally, we present extensive experi-
mental results on diverse language-grounded
benchmarks, including text-image, text-video,
and text-audio, demonstrating the superior per-
formance of our approaches compared to previ-
ous methods in addressing hubness and boost-
ing retrieval performance. Our code is avail-
able at https://github.com/yimuwangcs/
Better_Cross_Modal_Retrieval.

1 Introduction

Cross-modal retrieval (CMR) facilitates flexible
information retrieval across various modalities, in-
cluding images, videos, audio, and text, by extract-
ing discriminative features and summarizing infor-
mation from multiple modalities. Recently, sup-
ported by the development of pre-training multi-
modal models (Tsai et al., 2019; Li et al., 2020a;
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Figure 1: Top: The hubness problem (Radovanovic
et al., 2010) in cross-modal retrieval where queries q1,
q2, and q3 are associated with their respective galleries
g1, g2, and g3. The hub (g1) is the nearest neighbor to
multiple queries (q1, q2, and q3), resulting to subopti-
mal retrieval performance. Middle: Previous methods
employ a query bank to normalize similarities. Bottom:
Our DBNORM tackles the hubness problem by utilizing
both gallery and query banks. It reduces the similarity
between the hub g1 and all queries while simultaneously
enhancing the similarity between non-hubs g2 and g3

and all queries, resulting in improved performance.

Yu et al., 2021; Frank et al., 2021; Fang et al.,
2023b), innovative retrieval methods (Wang et al.,
2020b,a; Luo et al., 2022b; Jian and Wang, 2023),
and cross-modal benchmarks (Xu et al., 2016; Kim
et al., 2023), significant advances have been made
in image-text retrieval (Liu and Ye, 2019; Rad-
ford et al., 2021; Wang et al., 2021; Luo et al.,
2022b), video-text retrieval (Xu et al., 2021; Wu
et al., 2022; Park et al., 2022a; Chen et al., 2022;
Park et al., 2022a; Zhao et al., 2022; Fang et al.,
2022, 2023a; Wang and Shi, 2023), and audio-text
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retrieval (Koepke et al., 2022), achieving satisfac-
tory retrieval performance.

In the most popular CMR paradigm, deep neu-
ral networks are employed to project data from
diverse modalities into a shared high-dimensional
vector space, enabling direct comparison through
distance measures such as cosine similarity and
ℓ2 similarity. However, within this paradigm, the
occurrence of hubness (Radovanovic et al., 2010)
poses a challenge. Hubness refers to the phe-
nomenon where certain data points, known as hubs,
frequently emerge as nearest neighbors of other
points, resulting in a decline in retrieval perfor-
mance. To empirically illustrate the existence of
hubness, we visualize the distribution of the fre-
quency at which each gallery data point is retrieved
by queries, as shown in Figure 3 and Figure 6 in the
Appendix. We observe that hubness is prevalent
in video-text, image-text, and audio-text retrieval,
significantly impacting the performance of retrieval
systems (Bogolin et al., 2022).

Prior research on mitigating hubness can be
roughly categorized into training methods (Liu
et al., 2020) and post-processing methods (Suzuki
et al., 2013; Dinu et al., 2015; Smith et al., 2017;
Lample et al., 2018; Huang et al., 2019; Liu and Ye,
2019), with particular attention in zero-shot learn-
ing (Lazaridou et al., 2015; Huang et al., 2020)
and bilingual word translation (Smith et al., 2017;
Huang et al., 2019, 2020). Due to the limitation
of space, detailed related works are presented in
Appendix A. In this paper, we focus on addressing
hubness in a post-processing manner.

However, hubness in the context of CMR re-
ceived limited attention until the introduction of
QBNorm (Bogolin et al., 2022), which is a pio-
neering method specifically designed for CMR and
incorporates a novel technique called DIS. It ad-
dresses hubness by selectively reducing the similar-
ity between queries and hubs, thereby mitigating
the impact of hubs. It follows the principle that
hubs exhibit high similarity with query data to iden-
tify hubs. This prompts us to investigate whether
hubs also demonstrate high similarity with gallery
data. Therefore, the first research question is:

RQ1: Do hubs exhibit high similarity with gallery
data?

To answer it and provide a theoretical validation
for the principle of QBNorm, we theoretically
demonstrate that hubness is a universal character-
istic across different modalities. In other words, a

hub exhibits high similarity with data from vari-
ous modalities, which shows the necessity of using
gallery data. The second research question is:

RQ2: How can we leverage gallery data to
mitigate hubness?

Motivated by our theoretical results, instead of only
using query data as QBNorm, we propose a uni-
fied framework, namely Dual Bank Normalization
(DBNORM) as shown in Figure 1, along with two
novel normalizing methods, namely dual inverted
softmax and dual dynamic inverted softmax, which
leverage both query and gallery data banks to alle-
viate the occurrence of hubs by reducing the simi-
larity between hubs and queries and improving the
similarity between non-hubs and queries.

Finally, to evaluate the effectiveness of our pro-
posed DBNORM, we conducted experiments on
several cross-modal benchmarks, including four
video-text retrieval benchmarks (Chen and Dolan,
2011; Fabian Caba Heilbron and Niebles, 2015; Xu
et al., 2016; Hendricks et al., 2017), two image-text
retrieval benchmarks (Lin et al., 2014; Plummer
et al., 2017), and two audio-text retrieval bench-
marks (Kim et al., 2019; Drossos et al., 2020). Ben-
efiting from gallery and query banks, DBNORM

outperforms previous methods without requiring
access to any additional data.

In summary, our contributions are as follows1:

• We propose a unified framework DBNORM

and two novel post-processing methods,
namely dual inverted softmax and dual dy-
namic inverted softmax. These methods effec-
tively mitigate hubness by reducing the sim-
ilarity between hubs and queries with query
and gallery banks.

• Our proposed methods achieve state-of-the-
art performance on eight cross-modal re-
trieval benchmarks, outperforming previous
approaches across multiple evaluation met-
rics.

• We are the first to theoretically demonstrate
that hubs exhibit high similarity with data
from different modalities and the necessity
of utilizing both query and gallery data to ad-
dress the issue of hubness.

1The code is released at link.
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2 Our Methods

In this section, we first address RQ1 through a theo-
retical demonstration of the universality of hubness
and the necessity of incorporating both query and
gallery data to address hubness. Next, to answer
RQ2, we propose a novel method called DBNORM,
which builds upon our theoretical analysis, along
with two novel similarity normalization techniques:
Dual Inverted Softmax and Dynamic Dual Inverted
Softmax. These methods effectively utilize both
query and gallery data to mitigate hubness.

2.1 Preliminaries

In this paper, we focus on cross-modal retrieval
(CMR), aiming to learn a pair of encoders that map
data from different modalities into a common space
where they can be directly compared.

The query and gallery modalities are denoted
as X and Y . The (test) gallery, denoted by G =
{g1, . . . ,gNG

}, contains all the embeddings of the
gallery data, where NG is the size of the gallery
data. In cross-modal retrieval, the gallery data does
not overlap with the training data. Moreover, as our
proposed methods require training data to address
hubness, we define the sets of embeddings of train-
ing query and gallery data as Q̂ = {q̂1, . . . , q̂NQ̂

}
and Ĝ = {ĝ1, . . . , ĝNĜ

}, where NQ̂ and NĜ are
the sizes. Finally, the query data is denoted as q.
Following QBNorm, we focus on a practical sce-
nario where only a single query occurs at a time and
queries are unable to observe each other. In such
a situation, we are limited to utilizing the training
data for constructing banks.

2.2 RQ1: Theoretical Analysis

In cross-modal retrieval, we consider two spaces,
denoted as X and Y , that contain embeddings or
representations of data points from two modalities.
We assume that the two spaces, X and Y , follow
symmetric distributions2 although they may have
different means, variances, and distribution types.
Specifically, the mean of X and Y are denoted as
µx and µy.

First, we demonstrate that points (embeddings or
representations) close to the mean point are more
likely to exhibit hubness compared to points situ-
ated farther away from the mean. We use the ℓ2
distance measure to compute distances.

2This assumption is reasonable since various symmetric
distributions, such as Uniform, Normal, or Laplacian distribu-
tions, exist.

Theorem 1. Assuming that x1 and x2 are sampled
from a distribution X with mean µ, if x1 is closer
to µ than x2, then x1 is more likely to be a hub
than x2 on the space X , such that,

E
[
∥x2 − x∥2

]
> E

[
∥x1 − x∥2

]
, ∀x ∼ X .

Next, we demonstrate that a hub will have high
similarity (small distance) with points from another
space (distribution).

Theorem 2. Assuming x1,x2 ∼ X and y ∼ Y ,
similarly, if x1 is closer to the mean point µx of the
space X than x2, such that ∥x2−µx∥ > ∥x1−µx∥,
then even in a different space (distribution) Y , x1

is still more likely to be a hub than x2, such that:

E
[
∥x2 − y∥2

]
> E

[
∥x1 − y∥2

]
,∀y ∼ Y .

Based on the previous theoretical results, we
introduce the following corollary.

Corollary 3. Under the ℓ2 distance measure, a hub
will exhibit high similarity (small distance) with
any point from X or Y .

Remark 1. This corollary implies that a hub will
be frequently retrieved by both the query and
gallery points, as the similarity between that point
and any other point will be high (small distance).

Additionally, we extend our theoretical findings
beyond the ℓ2 distance measure and explore the
use of hyper-spheres, which can be regarded as
using cosine similarity for measuring the distance
between data points in CMR. This is particularly
relevant since the cosine similarity is widely used
in recent work (Luo et al., 2022a; Gao et al., 2021).

Theorem 4. Hubs will have high similarity with
any point from X and Y under the cosine distance
measure.

Now, we have shown that it is necessary to use
gallery and query data to identify whether a point
is a hub, as the hub will exhibit high similarity
with any point under ℓ2 and cosine metrics. Fur-
thermore, our theoretical results also suggest that
hubness can be better mitigated by utilizing larger
data banks3, as demonstrated by Smith et al. (2017);
Bogolin et al. (2022). All the proofs are deferred
to Appendix C due to the limitation of space.

3With more data, the estimation of the mean will be more
precise.
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Algorithm 1 DBNORM

Require: the query point q, the gallery set G.
1: Construct dual banks Q̂ and Ĝ from the train-

ing or validation sets. ▷ Dual Bank
Construction.

2: Calculate the unnormalized similarity sq,gi =
sim(q,gi), ∀i ∈ [NG]. ▷ Similarity
Computation.

3: Calculate normalized similarity ŝq,gi ,∀i ∈
[NG], with DualIS (Equation (1)) or DualDIS
(Equation (2)). ▷ Similarity Normalization.

4: return Ranking argsorti∈[NG] ŝq,gi .

2.3 RQ2: DBNORM

To mitigate the pervasive hubness problem ob-
served in various cross-modal retrieval bench-
marks and tasks (Figures 3 and 6), we propose
a novel approach named Dual Bank Normalization
(DBNORM), as summarized in Algorithm 1. DB-
NORM first constructs banks from the training data
of both modalities and then normalizes the similar-
ity. Specifically, DBNORM reduces the similarity
between the query and hubs in the gallery data,
i.e., data points that appear as nearest neighbors of
many queries, and increases the similarity between
the query and non-hub gallery data. DBNORM

includes the following steps.
Dual Bank Construction. In order to iden-

tify hubs in the gallery, DBNORM constructs
two banks, Q̂ = {q̂1, . . . , q̂NQ̂

} and Ĝ =

{ĝ1, . . . , ĝNĜ
}, where NQ̂ and NĜ are the sizes

of the two banks. As suggested by our theoret-
ical results, using both query and gallery banks
simultaneously allows for a better estimation of the
hubness of a data point.

Similarity Computation. The similarity be-
tween the query and the gallery is calculated as
sq,gi = sim(q,gi), ∀i ∈ [NG], where sim(·, ·) is
a similarity metric.

Similarity Normalization. To normalize the
similarity, we introduce two novel methods: Du-
alIS (Equation (1)) and DualDIS (Equation (2)).
These methods allow for the normalization of the
similarity ŝq,gi , ∀i ∈ [NG].

Finally, with the normalized similarity
ŝq,gi ,∀i ∈ [NG], we can obtain the ranking of
gallery data. It is worth noting that in practice,
the query and gallery banks should be precom-
puted and reused across all queries, resulting
in significant improvements in computational

efficiency.

2.3.1 Normalization Methods
As existing methods are either designed for only
using the query bank or cannot be directly incor-
porated into DBNORM4, we propose two novel
methods to efficiently implement DBNORM, as
outlined below.

First, drawing inspiration from IS (Smith et al.,
2017), by inverting the softmax, and normalizing
the probability over query and gallery banks rather
than the test gallery, we propose Dual Inverted
Softmax (DualIS). Given the query q and a gallery
gi, the normalized similarity ŝq,gi is calculated as
follows,

ŝq,gi =ŝgq,gi
∗ ŝqq,gi

ŝgq,gi
=

exp(β1sq,gi)∑
j∈[NĜ] exp(β1sgi,ĝj

))

ŝqq,gi
=

exp(β2sq,gi)∑
j∈[NQ̂] exp(β2sgi,q̂j

))
,

(1)

where β1 and β2 are temperatures and sq,gi is the
similarity between q and gi. We employ multipli-
cation as an aggregation method to combine the
normalized similarities from two banks because it
effectively summarizes the information from both
sides. A detailed comparison with other aggrega-
tion methods is presented in Appendix B.5. The
intuition behind DualIS is to measure the proba-
bility that the corresponding gallery retrieves the
query data, rather than testing whether the query
retrieves the corresponding gallery.

Previous research (Bogolin et al., 2022) has
shown that when the bank fails to effectively rep-
resent the space, possibly due to sampling bias,
the performance is significantly degraded, even
falling below that of unnormalized similarities, be-
cause the similarities with non-hubs might be inac-
curately normalized by IS and DualIS. To address
this issue, we introduce the Dual Dynamic Inverted
Softmax (DualDIS). Firstly, we precompute two
activation sets, AĜ and AQ̂, storing the indices of
gallery data that might be hubs. Then, DualDIS
only normalize the similarity with the gallery points
in these sets to avoid inaccurately normalizing the
similarity with non-hubs. Specifically, for a query

4In practice, queries are isolated from each other, making it
infeasible to include CSLS (Lample et al., 2018) and GC (Dinu
et al., 2015) as they require queries to be visible to each other.
A detailed comparison with CSLS and GC is in Appendix B.6.
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q, ∀i ∈ [NG], we have,

ŝq,gi =s̄gq,gi
∗ s̄qq,gi

,

s̄gq,gi
=




ŝgq,gi

, if arg max
j∈[NG]

sq,gj ∈ Ag

sq,gi , otherwise
,

s̄qq,gi
=




ŝgq,gi

, if arg max
j∈[NG]

sq,gj ∈ Aq

sq,gi , otherwise
,

(2)

where A∗ = {argmaxkj∈[NG] sgj ,∗̂i , i ∈ [N∗]},
and argmaxkj∈[NG] sgj ,∗̂i return the top k indices
that maximize sgj ,∗̂i (∗ ∈ {g,q}). In other words,
A∗ contains the indices of the top k retrieved
gallery points by any bank point. As the activa-
tion sets can be computed before inference and
reused, thereby not increasing the computational
complexity of inference. On the other hand, ben-
efiting from these two activation sets, DualDIS is
shown to be more robust than DualIS.

3 Experiments

In this section, we first conduct experiments to
demonstrate that DBNORM can efficiently improve
the retrieval performance as a by-product. Next,
our ablation studies indicate that DBNORM effec-
tively mitigates hubness by reducing skewness and
exhibiting robustness to hyperparameters. For clar-
ity, we use IS, DIS, DualIS, and DualDIS to rep-
resent QBNorm (IS), QBNorm (DIS), DBNorm
(DualIS), and DBNorm (DualDIS), respectively.
Following QBNorm, queries remain independent
of each other as in practice, queries do not always
occur at the same time. Detailed comparison with
GC and CSLS is deferred to Appendix B.6.

3.1 Datasets, Experimental Settings, and
Evaluation Metrics

While we mainly focus our experiments on stan-
dard benchmarks for text-video retrieval, i.e., MSR-
VTT (Xu et al., 2016), MSVD (Chen and Dolan,
2011), ActivityNet (Fabian Caba Heilbron and
Niebles, 2015), and DiDemo (Hendricks et al.,
2017), we also explore the generalization of DB-
NORM on two text-image retrieval benchmarks
(MSCOCO (Lin et al., 2014) and Flickr30k (Plum-
mer et al., 2017)) and two audio-text retrieval
benchmarks (AudioCaps (Kim et al., 2019) and
CLOTHO (Drossos et al., 2020)). We test DB-
NORM with DualIS and DualDIS on five video-
text retrieval methods: CE+ (Liu et al., 2019),

Methods Normalization R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
MSR-VTT (full split)

RoME 10.7 29.6 41.2 17.0 -
Frozen 32.5 61.5 71.2 - -

CE+

12.62 33.87 46.38 12.0 74.99
+ IS 13.31 35.00 47.46 12.0 74.16
+ DIS 13.31 35.00 47.46 12.0 74.16

+ DualIS 14.88 37.36 50.00 11.0 70.13
+ DualDIS 14.88 37.36 50.00 11.0 70.13

TT-CE+

14.61 37.81 50.78 10.0 63.31
+ IS 16.58 40.75 53.44 9.0 60.52
+ DIS 16.59 40.73 53.44 9.0 60.51

+ DualIS 17.06 41.63 54.25 8.0 60.10
+ DualDIS 17.02 41.60 54.23 8.0 60.01

MSR-VTT (1k split)

DiscreteCodebook 43.4 72.3 81.2 - 14.8
VCM 43.8 71.0 - 2.0 14.3
CenterCLIP 44.2 71.6 82.1 2.0 15.1
Align&Tell 45.2 73.0 82.9 2.0 -
CLIP2TV 45.6 71.1 80.8 2.0 15.0
X-Pool 46.9 72.8 82.2 2.0 14.3
TS2-Net 47.0 74.5 83.8 2.0 13.0
CAMoE 47.3 74.2 84.5 2.0 11.9

CLIP4Clip

44.10 71.70 81.40 2.0 15.51
+ IS 44.20 71.70 81.60 2.0 15.64
+ DIS 44.20 71.70 81.60 2.0 15.64

+ DualIS 45.00 72.50 82.10 2.0 15.32
+ DualDIS 45.00 72.50 82.10 2.0 15.32

CLIP2Video

46.00 71.60 81.60 2.0 14.51
+ IS 47.00 72.80 82.10 2.0 13.91
+ DIS 47.00 72.80 82.10 2.0 13.91

+ DualIS 47.20 73.20 82.30 2.0 13.90
+ DualDIS 47.20 72.70 82.30 2.0 13.90

X-CLIP

46.30 74.00 83.40 2.0 12.80
+ IS 48.60 74.10 84.10 2.0 13.35
+ DIS 48.60 74.10 84.10 2.0 13.35

+ DualIS 48.80 74.30 84.10 2.0 13.30
+ DualDIS 48.70 74.30 84.10 2.0 13.30

Table 1: Text-to-Video Retrieval performance on MSR-
VTT (full split and 1k split). Best in Bold and the
second best is underlined.

TT-CE+ (Croitoru et al., 2021), CLIP4Clip (Luo
et al., 2022a), X-CLIP (Ma et al., 2022), and
CLIP2Video (Park et al., 2022a), two image-text
retrieval methods: CLIP (Radford et al., 2021) and
Oscar (Li et al., 2020b), and one audio-text retrieval
method: AR-CE (Koepke et al., 2022).

For evaluation metrics, we employ recall at Rank
K (R@K, higher is better), median rank (MdR,
lower is better), and mean rank (MnR, lower is
better) as commonly utilized retrieval metrics in
previous retrieval works (Radford et al., 2021; Luo
et al., 2022a; Ma et al., 2022).

3.2 Quantitative results

In this section, we provide quantitative results for
eight cross-modal retrieval benchmarks. We com-
pare our methods with IS (Smith et al., 2017) and
DIS (Bogolin et al., 2022), which are two represen-
tative post-processing methods. Due to limitations
of space, some retrieval results and detailed analy-
ses are presented in Appendix B.3.

Text-video retrieval. The text-to-video results
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Methods Normalization R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
FSE 11.5 31.8 77.7 13.0 -
HiT 27.7 58.6 94.7 4.0 -
VCM 40.8 72.8 98.2 2.0 7.3
CenterCLIP 43.9 74.6 85.8 2.0 6.7
Align&Tell 42.6 73.8 98.7 2.0 -
CLIP2TV 44.1 75.2 98.4 2.0 6.5
TS2-Net 41.0 73.6 84.5 2.0 8.4
CAMoE 51.0 77.7 - - -

CE+

19.16 47.79 65.79 6.0 21.99
+ IS 20.13 50.58 66.44 5.0 21.07
+ DIS 20.20 50.50 66.32 5.0 21.20

+ DualIS 22.66 52.21 68.09 5.0 19.02
+ DualDIS 22.35 51.96 68.25 5.0 19.22

TT-CE+

23.29 56.42 73.78 4.0 13.59
+ IS 24.69 57.98 74.42 4.0 13.48
+ DIS 24.65 57.64 74.31 4.0 13.35

+ DualIS 27.15 60.81 76.67 4.0 12.10
+ DualDIS 26.80 60.16 76.35 4.0 12.18

CLIP4Clip

41.85 74.44 84.84 2.0 6.84
+ IS 45.93 77.52 87.07 2.0 6.39
+ DIS 46.02 77.29 86.83 2.0 6.29

+ DualIS 46.71 77.47 87.35 2.0 6.01
+ DualIS 46.76 77.48 87.28 2.0 6.01

X-CLIP

46.25 76.02 86.05 2.0 6.37
+ IS 49.36 79.16 88.36 2.0 5.71
+ DIS 49.39 78.60 87.97 2.0 5.80

+ DualIS 49.96 78.51 88.62 2.0 5.48
+ DualDIS 50.17 78.03 88.06 1.0 5.61

Table 2: Text-to-Video Retrieval performance on Activ-
ityNet. Best in Bold and the second best is underlined.

Methods Normalization R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
FSE 18.2 44.8 89.1 7.0 -
Frozen 33.7 64.7 76.3 3.0 -
CenterCLIP 47.3 76.9 86.0 2.0 9.7
Align&Tell 47.1 77.0 85.6 2.0 -
CLIP2TV 47.0 76.5 85.1 2.0 10.1
X-Pool 47.2 77.4 86.0 2.0 9.3
CAMoE 49.8 79.2 87.0 - 9.4

CE+

23.94 54.98 69.00 4.0 18.46
+ IS 24.64 56.64 70.45 4.0 20.43
+ DIS 24.66 56.64 70.46 4.0 20.42

+ DualIS 25.04 56.01 69.59 4.0 20.70
+ DualDIS 25.06 56.02 69.65 4.0 20.64

TT-CE+

24.42 56.20 70.44 4.0 17.16
+ IS 26.55 59.68 72.85 4.0 17.72
+ DIS 26.57 59.68 72.83 4.0 17.71

+ DualIS 27.21 60.23 73.35 4.0 16.88
+ DualDIS 27.24 60.20 73.35 4.0 16.91

CLIP4Clip

44.64 74.66 83.99 2.0 10.32
+ IS 46.05 75.60 84.36 2.0 10.16
+ DIS 46.05 75.60 84.37 2.0 10.16

+ DualIS 46.33 75.91 84.35 2.0 10.14
+ DualDIS 46.34 75.95 84.34 2.0 10.12

CLIP2Video

47.05 76.97 85.59 2.0 9.53
+ IS 47.52 77.95 86.01 2.0 9.47
+ DIS 47.52 77.95 86.00 2.0 9.47

+ DualIS 47.95 77.95 86.22 2.0 9.30
+ DualDIS 47.97 77.93 86.20 2.0 9.30

X-CLIP

46.31 76.84 85.31 2.0 9.59
+ IS 47.06 77.44 85.22 2.0 10.34
+ DIS 47.06 77.43 85.22 2.0 10.34

+ DualIS 47.95 78.36 86.00 2.0 9.70
+ DualDIS 47.95 78.35 86.00 2.0 9.70

Table 3: Text-to-Video Retrieval performance on
MSVD. Best in Bold and the second best is underlined.

on MSR-VTT, AcvitityNet, and MSVD are pre-
sented in Tables 1 to 3. Due to the limitation of

Methods Normalization R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
MSCOCO (5k split)

ViLT 40.4 70.0 81.1 - -
ALIGN 45.6 69.8 78.6 - -
CODIS 53.9 79.5 87.1 - -
ALBEF 60.7 84.3 90.5 - -

CLIP

30.31 54.74 66.12 4.0 25.39
+ IS 35.15 60.71 71.20 3.0 21.69
+ DIS 35.16 60.70 71.19 3.0 21.69

+ DualIS 37.93 63.36 73.37 3.0 21.23
+ DualDIS 37.92 63.35 73.37 3.0 21.17

Oscar

52.50 80.03 87.96 1.0 10.68
+ IS 52.77 80.03 87.99 1.0 10.94
+ DIS 53.47 80.02 87.69 1.0 12.34

+ DualIS 53.86 80.39 88.09 1.0 11.83
+ DualDIS 53.91 80.57 88.10 1.0 11.59

Flickr30k

ViLT 55.0 82.5 89.8 - -
UNITER 68.7 89.2 93.9 - -
ALIGN 75.7 93.8 96.8 - -
CODIS 79.7 94.8 97.3 - -
ALBEF 85.6 97.5 98.9 - -

CLIP

58.98 83.48 90.14 1.0 6.04
+ IS 57.78 83.40 90.16 1.0 6.20
+ DIS 59.02 83.40 90.10 1.0 6.04

+ DualIS 58.02 83.40 90.22 1.0 6.20
+ DualDIS 59.02 83.42 90.10 1.0 6.04

Oscar

71.60 91.50 94.96 1.0 4.24
+ IS 72.26 91.74 94.88 1.0 4.26
+ DIS 72.26 91.74 94.88 1.0 4.26

+ DualIS 73.00 91.74 94.80 1.0 4.19
+ DualDIS 73.00 91.70 94.78 1.0 4.21

Table 4: Text-to-Image Retrieval performance on
MSCOCO (5k split) and Flickr30k. Best in Bold and
the second best is underlined. Due to the limitation of
the computational resources, we only use 20% of data
from the training data to construct the dual banks.

Methods Normalization R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
AudioCaps

MoEE 23.00 55.70 71.00 4.0 16.30
MMT 36.10 72.00 84.50 2.3 7.50

AR-CE

22.23 54.49 70.54 5.0 15.89
+ IS 23.19 55.96 70.05 4.0 20.44
+ DIS 23.19 55.93 70.05 4.0 20.45

+ DualIS 24.04 56.84 71.03 4.0 18.44
+ DualDIS 24.04 56.81 71.03 4.0 18.44

CLOTHO

MoEE 6.00 20.80 32.30 23.0 60.20
MMT 6.50 21.60 66.90 23.0 67.70

AR-CE

6.27 22.32 33.30 23.0 58.95
+ IS 6.83 23.50 35.04 22.0 56.52
+ DIS 6.83 23.46 34.97 22.0 56.61

+ DualIS 7.06 24.42 36.29 21.0 54.12
+ DualDIS 7.12 24.50 36.17 21.0 54.85

Table 5: Text-to-Audio Retrieval performance on Au-
dioCaps and CLOTHO. Best in Bold and the second
best is underlined.

space, the results for DiDemo and video-to-text
retrieval results on MSR-VTT, ActivityNet, and
MSVD are deferred to the Appendix. Moreover,
we compare our results with state-of-the-art meth-
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ods in video retrieval, i.e., FSE (Zhang et al., 2018),
HiT (Liu et al., 2021b), RoME (Rony et al., 2022),
Frozen (Bain et al., 2021), DiscreteCodebook (Liu
et al., 2022a), VCM (Cao et al., 2022), Center-
CLIP (Zhao et al., 2022), Align&Tell (Wang et al.,
2022b), CLIP2TV (Gao et al., 2021), X-Pool (Gorti
et al., 2022), TS2-Net (Liu et al., 2022b), and
CAMoE (Cheng et al., 2021). Notably, our ap-
proach, DBNORM, outperforms previous normal-
ization methods by a significant margin on all
four benchmarks. Specifically, with DualIS and
DualDIS, the retrieval performance of CLIP4Clip
yields the best performance, achieving R@1 of
45.00 and R@5 of 72.50. Similar observations
can be obtained on other benchmarks. However, it
is important to note that using the activation sets
(DualDIS) may have an adverse effect on retrieval
performance, possibly due to the biased construc-
tion of these sets.

Text-image retrieval. Quantitative results are
shown in Table 4 and Table 10 in the Appendix.
Similar observations can be obtained on MSCOCO
and Flickr30k. DBNorm (DualIS and DualDIS)
effectively improves R@1 compared with IS and
DIS. We also compare our results with ALBEF (Li
et al., 2021), ViLT (Kim et al., 2021b), ALIGN (Jia
et al., 2021), UNITER (Chen et al., 2020b), and
CODIS (Duan et al., 2022).

Text-audio retrieval. Results are presented in
Table 5 and Table 11 in the Appendix. We observed
that employing DualIS and DualDIS leads to sig-
nificant improvements in R@1 for text-to-audio
retrieval on two benchmarks. Specifically, R@1 on
AudioCaps is increased to 24.04 with DualIS and
DualDIS. Besides, we compare with MoEE (Miech
et al., 2020), MMT (Gabeur et al., 2020).

3.3 Qualitative Results

To qualitatively validate the effectiveness of our
proposed methods, we present examples of video-
to-text and text-to-video retrieval on MSR-VTT in
Figure 2 and Figure 5 in the Appendix, respectively.
The retrieval results demonstrate that our proposed
DualIS and DualDIS, leveraging gallery and query
banks, exhibit better performance and robustness
compared to IS and DIS. Specifically, Figure 2 (a)
highlights the capability of DualIS and DualDIS to
distinguish three distinct characters, while Figure 2
(b) showcases a specific case where the vanilla
CLIP4Clip and CLIP4Clip with IS/DIS fails to cap-
ture the presence of a man wearing a black shirt in

(Text) Query: cartoons of a sponge a squid and a 
starfish

Retrieval Results by CLIP4Clip

Retrieval Results by CLIP4Clip + IS/DIS

Retrieval Results by CLIP4Clip + DualIS/DualDIS

1

2

3

1

2

3

1

2

3

(a) Top-3 Text-to-Video retrieval examples.

a woman is talking in the tv 
channel

a news reader describing 
about a news

a girl in blue color dress wearing siting 
speaking and television screen with black shirt 

man beside still image displaying on screen

1

2

3

a girl in blue color dress wearing siting 
speaking and television screen with black shirt 

man beside still image displaying on screen

a news reader describing 
about a news

a woman is talking in the tv 
channel

1

2

3

a cnn report is talking about 
their dogs

a girl in blue color dress wearing siting 
speaking and television screen with black shirt 

man beside still image displaying on screen

a news reader describing 
about a news

1

2

3

CLIP4ClipQuery

CLIP4Clip + DualIS/DualDISCLIP4Clip + IS/DIS

(b) Top-3 Video-to-Text retrieval examples.

Figure 2: Retrieval examples on MSR-VTT. More ex-
amples are presented in Figure 5 due to the limitation
of space.

the background. In contrast, DualIS and DualDIS
excel in capturing such intricate details, thereby
yielding superior retrieval performance.

3.4 DBNORM

In this section, we answer several research ques-
tions of DBNORM on MSR-VTT and ActivityNet
with CLIP4Clip. Due to the limitation of space,
the questions on the sensitivity to β1, β2, and k
in DualDIS, the relationship between skewness
and performance, aggregation methods, compar-
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Normalization
MSRVTT ActivityNet MSCOCO

Best
CE+ TT-CE+ CLIP4Clip CLIP2Video X-CLIP CE+ TT-CE+ CLIP4Clip X-CLIP CLIP Oscar

1.38 1.28 1.13 0.84 1.24 0.94 0.76 0.83 0.98 2.71 0.55 0
+ IS 0.82 0.34 0.18 0.32 0.74 0.67 0.51 0.55 0.57 0.90 0.24 1
+ DIS 0.83 0.34 0.18 0.33 0.74 0.68 0.52 0.42 0.44 0.90 0.22 2
+ DualIS 0.37 0.33 0.57 0.26 0.70 0.54 0.37 0.36 0.42 0.42 0.31 7
+ DualDIS 0.37 0.28 0.57 0.26 0.70 0.50 0.40 0.46 0.43 0.43 0.29 5

Table 6: The hubness (skewness score) on text-video/image retrieval with CE+, TT-CE+, CLIP4Clip, CLIP2Video,
X-CLIP, CLIP, and Oscar is better reduced after applying our proposed DualIS and DualDIS than IS and DIS. The
Lower is better. Best in Bold and the second best is underlined. The hubness scores on other benchmarks, methods,
and image/video/audio-text retrieval are deferred to Table 13 in the Appendix due to the limitation of space.
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(c) MSR-VTT (CLIP4Clip).
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(d) MSR-VTT (X-CLIP).
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(f) ActivityNet (TT-CE+).
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(g) ActivityNet (CLIP4Clip).
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Figure 3: Hubness is prevalent across different methods, datasets, and tasks. These figures illustrate the
distribution of the number of times each (test) gallery video was retrieved by (test) queries. Columns (different
models): Retrieval distributions for CE, TT-CE+, CLIP4Clip, and X-CLIP. Rows (different datasets): Retrieval
distributions for the same model on MSR-VTT and ActivityNet. The statistics (maximum, minimum, and median
values) of 1-occurrence are shown in the figures. More illustrations are deferred to the Appendix (Figure 6).
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Figure 4: Text-to-Video Retrieval R@1 w.r.t the size of gallery and query banks on MSR-VTT and ActivityNet
using DualIs and DualDIS with CLIP4Clip.

ison with GC and CSLS, and the computational
complexity are presented in the Appendix.

RQ1: Can DBNORM alleviate hubness?
First, to illustrate the presence of the hubness
problem, we present 1-occurrence in text-to-
video/image/audio retrieval in Figure 3 and Fig-
ure 6 in the Appendix. Through the visual-
ization across various benchmarks and methods,
we consistently observe that a small subset of
videos/images/audio is retrieved by multiple times,

resulting in a negative impact on performance,
which empirically validates the prevalence of hub-
ness. To quantitatively evaluate hubness, following
Radovanovic et al. (2010), we report the skewness
(details are presented in Appendix B.5) of text-to-
video/image/audio and video/image/audio-to-text
retrieval in Table 6 and Table 13 in the Appendix.
The skewness is better reduced after employing
DualIS and DualDIS than IS and DIS, proving the
effectiveness of our methods in alleviating hubness.
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RQ2: How much data is desired in the banks?
To address this question, we conduct experiments
on scaling the size of query and gallery banks by
uniform sampling. The results of R@1 for text-
video retrieval using DualIS and DualDIS are pre-
sented in Figures 4 and 7. Our observations in-
dicate that as the size of the two banks increases,
the performance improves. However, even with a
relatively small number of samples in the query
and gallery banks, we still observe satisfactory per-
formance. Moreover, we examined the individual
impact of the query and gallery bank sizes by inde-
pendently sampling them at different scales. The
results demonstrate that the size of the query bank
has a greater influence on performance compared
to the gallery bank, although a bigger gallery bank
also leads to better performance.

4 Conclusion

In this work, we addressed the issue of hubness in
cross-modal retrieval through a post-processing ap-
proach. First, we theoretically proved that hubs
exhibit high similarity with data from both the
query and gallery modalities. Then, motivated
by our theoretical results, we proposed a novel
post-processing method, Dual bank Normaliza-
tion, along with two novel methods, i.e., Dual In-
verted Softmax and Dual Dynamic Inverted Soft-
max, which leveraged gallery and query banks to
reduce similarities with hubs and improve similari-
ties with non-hubs gallery data. Finally, with exten-
sive experiments across a range of tasks, models,
and benchmarks, we demonstrated the superiority
of our proposed methods over previous methods in
addressing hubness and improving performance.

Limitations

First, our proposed method, DBNORM, is capa-
ble of tackling hubness in a range of cross-modal
and single-modal retrieval tasks. However, in this
study, we focused on evaluating DBNORM in the
context of text-video, text-image, and text-audio
retrieval, while excluding audio-image, audio-text,
and audio-image retrieval tasks. It would be in-
teresting to test the empirical efficiency of our
methods on these tasks. Second, we observe that
the performance improvement of DBNORM com-
pared to single bank normalization is not signifi-
cant on certain benchmarks, such as CLOTHO and
MSVD. However, DBNORM has demonstrated sat-
isfactory performance on MSR-VTT, ActivityNet,

MSCOCO, and AudioCaps datasets. Furthermore,
we found that the hubness score (the skewness
score) does not have an absolute correlation with
the retrieval performance, as a low hubness score
can still result in poor retrieval performance. In
the future, it would be interesting to improve the
robustness of bank-based normalization techniques
and explore alternative effective metrics for mod-
eling the relationship between hubness (skewness)
and retrieval performance.
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A Related work

In this section, we present prior work from the
literature that lies in cross-modal retrieval and the
hubness problem, which are the two most related
areas to our work.

Cross-modal Retrival. Cross-modal retrieval
methods aim to learn a common representation
space, where the similarity between samples
from different modalities can be directly mea-
sured. Early methods for cross-modal retrieval
include Gaussian Mixture Models (Owens et al.,
2016) modelling translation via EM (Croitoru
et al., 2021), CCA (Mithun et al., 2018), and
KCCA (Patrick et al., 2021).

Inspired by the tremendous success of deep
learning (Devlin et al., 2019; He et al., 2016), nu-
merous methods have been proposed for image-
text retrieval (Radford et al., 2021), video-text
retrieval (Luo et al., 2022a), and audio-text re-
trieval (Oncescu et al., 2021). With the rise of
self-supervised pretraining methods (Brown et al.,
2020; Devlin et al., 2019; Radford et al., 2019),
vision-language pretraining (Gan et al., 2020; Li
et al., 2020b; Singh et al., 2022) on large-scale
unlabeled cross-modal data has shown promising
performance in various tasks, such as image re-
trieval (Liu et al., 2021a), image captioning (Jiang
et al., 2019), and video retrieval (Park et al., 2022b).
Inspired by this, recent works have attempted to
pretrain or fine-tune cross-modal retrieval mod-
els, e.g., image-text retrieval (Radford et al., 2021;
Li et al., 2020b), video-text retrieval (Chen et al.,
2020a; Cheng et al., 2021; Gao et al., 2021; Gorti
et al., 2022; Lei et al., 2021; Ma et al., 2022; Park
et al., 2022a; Wang et al., 2022a,b; Zhao et al.,
2022), and audio-text retrieval (Koepke et al., 2022)
in an end-to-end manner.

Another line of research has been focused on
improving the effectiveness of retrieval, including
k-d trees (Bellman, 2015), re-ranking (Zhong et al.,
2017; Miech et al., 2021), query expansion (Chen
et al., 2020a), vector compression schemes based
on binary codes (Su et al., 2019; Liong et al.,
2017) and quantization (Gong et al., 2013) that
help address the curse of dimensionality (Keogh
and Mueen, 2017). In addition, extracting addi-
tional information from noisy data (Hu et al., 2021),
incorporating more datasets (Yu et al., 2023), and
mitigating the domain adaptation problem (Kim
et al., 2021a) have been other solutions for cross-
modal retrieval.

Instead of improving cross-modal retrieval
through better representation, retrieval techniques,
or more data, we aim to advance cross-modal re-
trieval by addressing the hubness problem in a post-
processing manner. This problem has been empiri-
cally demonstrated to be prevalent among various
cross-modal retrieval tasks and datasets, as shown
in Figure 3 and Figure 6 in the Appendix.

The Hubness problem. This problem was ini-
tially characterized by Radovanovic et al. (2010).
They noticed that the distribution becomes consid-
erably skewed as dimensionality increases under
commonly used assumptions, leading to the emer-
gence of hubs. Hubs are points with very high
k-occurrences that effectively represent “popular”
nearest neighbors. In other words, the distribu-
tion of “k-occurrences” (the number of times a
point appears in the k nearest neighbors of other
points) skews heavily to the right. As an inherent
property of data distributions in high-dimensional
vector space, it might cause the degradation of the
retrieval (Bogolin et al., 2022) and bilingual word
translation performance (Huang et al., 2020, 2019;
Smith et al., 2017).

In the past few decades, algorithms for mitigat-
ing the hubness problem can be categorized into
three classes. The first line of research focuses on
rescaling the similarity space to symmetrize nearest
neighbor relations (Schnitzer et al., 2012), includ-
ing local (Jégou et al., 2007; Zelnik-Manor and
Perona, 2004) and global (Schnitzer et al., 2012)
scaling. Another line of research has focused on
mitigating the hub tendency of centroids of the
data through Laplacian-based kernels (Suzuki et al.,
2012) and centering (Suzuki et al., 2013; Hara et al.,
2015). Later, while CENT (Hara et al., 2015) has
better complexity, Bogolin et al. (2022) show that
CENT is not effective in terms of retrieval perfor-
mance.

The last line, which is also closest to our pa-
per, is the normalization of similarity by matching
queries with a set of data points (Bogolin et al.,
2022; Dinu et al., 2015; Lample et al., 2018; Smith
et al., 2017). Dinu et al. (2015) first proposed a
globally-corrected (GC) method to take into ac-
count the proximity distribution of potential neigh-
bors across many mapped vectors to tackle the
hubness problem. Following that, Lample et al.
(2018) proposed cross-domain similarity local scal-
ing (CSLS) using a bipartite neighborhood graph.
Next, inverted softmax (IS) (Smith et al., 2017)
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and QBNorm (DIS) (Bogolin et al., 2022) were
proposed to normalize query similarities by consid-
ering the similarity between a query bank and the
gallery points.

In contrast to IS and QBNorm, which are the two
most related works to ours, our DBNORM is built
upon a detailed theoretical analysis (Section 2.2)
and normalizes similarity considering points from
both modalities, as motivated by our theoretical
analysis. By constructing banks from two modali-
ties, DBNORM achieves better performance with-
out access to any additional data on several dif-
ferent benchmarks across various cross-modal re-
trieval tasks.

Hubness and similarity concentration. It
is known that the problem of hubness is re-
lated to concentration, the tendency of pairwise
similarities between elements in a set to con-
verge to a constant as the dimensionality of the
space increases (Radovanovic et al., 2010). Later,
Radovanović et al. (2010) show that it also holds
for the widely employed cosine similarity as the ex-
pectation of pairwise similarities becomes constant
and the standard deviation converges to 0.

B Experiments

To demonstrate the empirical efficiency of our DB-
NORM, we test it alongside DualIS and DualDIS
on five video-text retrieval methods: CE+ (Liu
et al., 2019), TT-CE+ (Croitoru et al., 2021),
CLIP4Clip (Luo et al., 2022a), X-CLIP (Ma et al.,
2022), and CLIP2Video (Park et al., 2022a), two
image-text retrieval methods: CLIP (Radford et al.,
2021) and Oscar (Li et al., 2020b), and one audio-
text retrieval method: AR-CE (Koepke et al.,
2022).

B.1 Dataset details
Experiments are conducted on eight cross-
modal benchmarks, including four video-text
retrieval benchmarks (MSR-VTT (Xu et al.,
2016), MSVD (Chen and Dolan, 2011), Activi-
tyNet (Fabian Caba Heilbron and Niebles, 2015),
and DiDemo (Hendricks et al., 2017)), two image-
text retrieval benchmarks (MSCOCO (Lin et al.,
2014) and Flickr30k (Plummer et al., 2017)),
and two audio-text retrieval benchmarks (Audio-
Caps (Kim et al., 2019) and CLOTHO (Drossos
et al., 2020)). The details of the datasets are shown
below,

• MSR-VTT (Xu et al., 2016) contains around

10k videos, each with 20 captions. For text-
video retrieval, following prior works (Liu
et al., 2019; Croitoru et al., 2021; Luo et al.,
2022a; Ma et al., 2022; Park et al., 2022a), we
use the official split (full) and the 1k-A split.
The full split contains 2,990 videos for testing
and 497 for validation while the 1k-A split
contains 1,000 videos for testing and around
9,000 for training.

• MSVD (Chen and Dolan, 2011) has 1,970
videos and around 80k captions. The results
are reported on the standard split used in prior
works (Liu et al., 2019; Croitoru et al., 2021;
Luo et al., 2022a; Park et al., 2022a) which
consists of 1,200 videos for training, 100 for
validation and 670 for testing.

• ActivityNet (Fabian Caba Heilbron and
Niebles, 2015) contains 20k videos and has
around 100K descriptive sentences. The
videos are extracted from YouTube. We use a
paragraph video retrieval as defined in prior
works (Liu et al., 2019; Croitoru et al., 2021;
Luo et al., 2022a; Park et al., 2022a). We re-
port results on the val1 split while the training
split consists of 10,009 videos, while there are
4,917 videos for testing.

• DiDemo (Hendricks et al., 2017) includes
over 10,000 25-30 second long per- sonal
videos with over 40,000 localized text descrip-
tions. Videos are split into training (8,395),
validation (1,065), and testing (1,004) sets.

• MSCOCO (Lin et al., 2014) consists of 123k
images with 5 captions for each sentence. We
use the 5k split for evaluation.

• Flickr30k (Plummer et al., 2017) dataset con-
tains 31,000 images collected from Flickr, to-
gether with 5 reference sentences provided by
human annotators.

• AudioCaps (Kim et al., 2019) dataset which
comprises sounds with event descriptions. We
use the same setup as prior work (Koepke
et al., 2022) where 49,291 samples are used
for training, 428 for validation, and 816 for
testing.

• CLOTHO (Drossos et al., 2020) consists of
4,981 audio samples of 15 to 30 seconds in
duration and 24,905 captions of eight to 20
words in length (five captions for each).
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Methods Normalization
Text-to-Video Retrieval Video-to-Text Retrieval

R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓ R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
MSR-VTT (full split)

RoME 10.7 29.6 41.2 17.0 - - - - - -
Frozen 32.5 61.5 71.2 - - - - - - -

CE+

12.62 33.87 46.38 12.0 74.99 19.83 46.72 60.94 6.0 29.42
+ IS 13.31 35.00 47.46 12.0 74.16 23.68 52.25 65.59 5.0 24.75
+ DIS 13.31 35.00 47.46 12.0 74.16 23.68 52.25 65.59 5.0 24.75

+ DualIS 14.88 37.36 50.00 11.0 70.13 25.48 56.68 69.89 4.0 21.76
+ DualDIS 14.88 37.36 50.00 11.0 70.13 25.48 56.68 69.89 4.0 21.76

TT-CE+

14.61 37.81 50.78 10.0 63.31 24.48 54.11 67.59 5.0 20.22
+ IS 16.58 40.75 53.44 9.0 60.52 29.40 60.10 72.11 3.0 16.56
+ DIS 16.59 40.73 53.44 9.0 60.51 26.69 56.49 69.06 4.0 18.90

+ DualIS 17.06 41.63 54.25 8.0 60.10 29.83 62.04 73.68 3.0 15.70
+ DualDIS 17.02 41.60 54.23 8.0 60.01 27.53 57.39 69.77 4.0 18.63

MSR-VTT (1k split)

DiscreteCodebook 43.4 72.3 81.2 - 14.8 42.5 71.2 81.1 - 12.0
VCM 43.8 71.0 - 2.0 14.3 45.1 72.3 82.3 2.0 10.7
CenterCLIP 44.2 71.6 82.1 2.0 15.1 42.8 71.7 82.2 2.0 10.9
Align&Tell 45.2 73.0 82.9 2.0 - 43.4 70.9 81.8 2.0 -
CLIP2TV 45.6 71.1 80.8 2.0 15.0 43.9 70.9 82.2 2.0 12.0
X-Pool 46.9 72.8 82.2 2.0 14.3 - - - - -
TS2-Net 47.0 74.5 83.8 2.0 13.0 45.3 74.1 83.7 2.0 9.2
CAMoE 47.3 74.2 84.5 2.0 11.9 49.1 74.3 84.3 2.0 9.9

CLIP4Clip

44.10 71.70 81.40 2.0 15.51 42.09 71.24 81.23 2.0 12.01
+ IS 44.20 71.70 81.60 2.0 15.64 44.86 72.04 82.02 2.0 11.56
+ DIS 44.20 71.70 81.60 2.0 15.64 44.86 72.04 82.11 2.0 11.61

+ DualIS 45.00 72.50 82.10 2.0 15.32 45.45 73.02 81.42 2.0 11.56
+ DualDIS 45.00 72.50 82.10 2.0 15.32 45.45 73.02 81.42 2.0 11.59

CLIP2Video

46.00 71.60 81.60 2.0 14.51 43.87 72.73 82.51 2.0 10.20
+ IS 47.00 72.80 82.10 2.0 13.91 46.15 72.63 81.92 2.0 11.15
+ DIS 47.00 72.80 82.10 2.0 13.91 46.15 72.53 81.92 2.0 11.14

+ DualIS 47.20 73.20 82.30 2.0 13.90 46.74 72.53 81.82 2.0 10.93
+ DualDIS 47.20 72.70 82.30 2.0 13.90 46.74 72.43 81.82 2.0 10.90

X-CLIP

46.30 74.00 83.40 2.0 12.80 44.81 73.69 82.39 2.0 10.99
+ IS 48.60 74.10 84.10 2.0 13.35 46.69 73.99 83.28 2.0 10.52
+ DIS 48.60 74.10 84.10 2.0 13.35 46.69 73.89 83.28 2.0 10.52

+ DualIS 48.80 74.30 84.10 2.0 13.30 46.88 74.38 83.38 2.0 10.44
+ DualDIS 48.70 74.30 84.10 2.0 13.30 46.88 74.28 83.38 2.0 10.44

Table 7: Retrieval performance on MSR-VTT (full split and 1k split). Best in Bold and the second best is underlined.

B.2 Experimental Details

The experiments are conducted using the PyTorch
framework (Paszke et al., 2019). We utilize the fol-
lowing models and their respective weights: CE+
(Model Weights: MSR-VTT, MSVD, DiDeMo,
and ActivityNet); TT-CE+ (Model Weights:
MSR-VTT, MSVD, DiDeMo, and ActivityNet);
CLIP2Video (Model Weights: MSR-VTT and
MSVD); CLIP (Model Weights: MSCOCO and
Flickr30k); Oscar (Model Weights: MSCOCO and
Flickr30k); AR-CE (Model Weights: AudioCaps
and CLOTHO) as they have released official code
and weights. However, since CLIP4Clip and X-
CLIP do not provide their trained models, we train

the models on a single A100 card using the hyper-
parameters recommended in their papers. We set
k = 1 in constructing activation sets.

B.3 More Quantitative Results
Text-video retrieval. The video-to-text results on
MSR-VTT, ActivityNet, and MSVD are presented
in Tables 7 to 9, the results on DiDeMo are in
Table 12. Similar results can be observed. Our
proposed DualIS and DualDIS outperform the pre-
vious methods, i.e., IS and DIS, by a large margin
across different benchmarks.

Text-image retrieval. The image-to-text results
on MSCOCO and Flickr30k are shown in Table 10.

Text-audio retrieval. The audio-to-text results
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Methods Normalization
Video-to-Text Retrieval

R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
FSE 12.6 33/2 77.6 12.0 -
VCM 42.6 74.9 86.2 2.0 6.4
CenterCLIP 44.5 75.7 86.2 2.0 6.5
Align&Tell 43.5 73.6 98.3 2.0 -
CAMoE 49.9 77.4 - - -

CE+

18.51 47.85 63.94 6.0 23.06
+ IS 19.36 50.13 65.87 5.0 20.81
+ DIS 19.52 49.87 65.81 5.0 21.01

+ DualIS 21.92 53.49 68.25 5.0 17.57
+ DualDIS 21.72 52.69 67.62 5.0 18.16

TT-CE+

22.49 56.38 72.67 4.0 13.90
+ IS 23.18 57.01 73.60 4.0 13.30
+ DIS 23.43 57.05 73.48 4.0 13.48

+ DualIS 27.46 61.13 76.71 4.0 11.00
+ DualDIS 27.11 60.79 75.86 4.0 11.42

CLIP4Clip

41.62 74.11 86.12 2.0 6.81
+ IS 46.23 76.72 87.26 2.0 6.46
+ DIS 46.26 76.48 87.16 2.0 6.48

+ DualIS 46.59 78.04 88.15 2.0 6.05
+ DualIS 46.73 77.90 88.06 2.0 6.05

X-CLIP

45.20 76.07 86.57 2.0 6.40
+ IS 51.13 78.95 88.14 1.0 5.62
+ DIS 50.52 78.60 87.84 1.0 5.71

+ DualIS 50.92 79.42 89.36 1.0 5.32
+ DualDIS 50.22 79.12 88.62 1.0 5.44

Table 8: Retrieval performance on ActivityNet. Best in
Bold and the second best is underlined.

Methods Normalization
Video-to-Text Retrieval

R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
FSE 16.7 43.1 88.4 7.0 -
CenterCLIP 63.5 86.4 92.6 1.0 3.8
Align&Tell 61.8 87.5 92.7 1.0 -

CE+

22.84 49.85 61.49 6.0 33.96
+ IS 26.27 54.48 65.97 4.0 27.69
+ DIS 24.63 52.99 64.63 5.0 32.57

+ DualIS 29.85 59.40 67.46 4.0 25.41
+ DualDIS 25.67 53.58 65.07 5.0 32.26

TT-CE+

25.22 55.07 64.63 4.0 29.94
+ IS 24.63 52.39 65.07 4.0 27.31
+ DIS 23.43 55.22 65.37 4.0 28.25

+ DualIS 28.06 57.46 67.61 4.0 25.64
+ DualDIS 24.18 55.97 65.82 4.0 28.16

CLIP4Clip

63.13 79.40 85.37 1.0 11.02
+ IS 67.61 84.48 89.70 1.0 7.61
+ DIS 64.48 81.49 87.16 1.0 11.10

+ DualIS 67.76 84.18 89.25 1.0 8.07
+ DualDIS 64.78 81.64 87.16 1.0 11.12

CLIP2Video

62.09 83.13 89.40 1.0 7.73
+ IS 66.57 82.84 88.36 1.0 7.94
+ DIS 62.39 82.84 88.51 1.0 8.73

+ DualIS 69.70 86.27 89.70 1.0 6.35
+ DualDIS 63.13 83.58 89.40 1.0 7.47

X-CLIP

65.67 83.73 89.85 1.0 8.15
+ IS 64.63 81.64 87.16 1.0 9.84
+ DIS 64.78 82.84 88.51 1.0 8.46

+ DualIS 67.91 83.58 88.96 1.0 8.33
+ DualDIS 66.27 83.73 88.81 1.0 8.27

Table 9: Retrieval performance on MSVD. Best in Bold
and the second best is underlined.

on AudioCaps and CLOTHO are presented in Ta-
ble 11.

Methods Normalization
Image-to-Text Retrieval

R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
MSCOCO

ViLT 56.5 82.6 89.6 - -
ALIGN 58.6 83.0 89.7 - -
CODIS 71.5 91.1 95.5 - -
ALBEF 77.6 94.3 97.2 - -

CLIP

50.02 74.82 83.34 1.0 9.23
+ IS 50.68 74.80 83.10 1.0 9.39
+ DIS 50.68 74.80 83.10 1.0 9.39

+ DualIS 53.26 77.00 85.26 1.0 8.44
+ DualDIS 53.32 76.96 85.30 1.0 8.32

Oscar

66.74 89.98 94.98 1.0 2.98
+ IS 68.36 90.16 95.32 1.0 2.91
+ DIS 69.48 90.54 95.04 1.0 2.99

+ DualIS 70.72 91.06 95.66 1.0 2.81
+ DualDIS 70.93 91.44 95.84 1.0 2.76

Flickr30k

ViLT 73.2 93.6 96.5 - -
UNITER 83.6 95.7 97.7 - -
ALIGN 88.6 98.7 99.7 - -
CODIS 91.7 99.3 99.8 - -
ALBEF 95.9 99.8 100.0 - -

CLIP

78.10 94.90 98.10 1.0 1.98
+ IS 77.80 92.90 97.40 1.0 2.15
+ DIS 77.90 92.90 97.40 1.0 2.14

+ DualIS 81.60 95.40 97.90 1.0 1.92
+ DualDIS 81.50 95.40 97.90 1.0 1.92

Oscar

86.30 96.80 98.60 1.0 1.58
+ IS 87.10 97.70 99.10 1.0 1.49
+ DIS 87.10 97.70 99.10 1.0 1.49

+ DualIS 87.10 97.60 99.30 1.0 1.49
+ DualDIS 87.10 97.60 99.30 1.0 1.49

Table 10: Image-to-Text Retrieval performance on
MSCOCO (5k split) and Flickr30k. Best in Bold and
the second best is underlined. Due to the limitation of
the computational resources, we only use 20% of data
from the training data to construct the dual banks.

Methods Normalization
Audio-to-Text Retrieval

R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
AudioCaps

MoEE* 26.60 59.30 73.50 4.0 15.60
MMT* 39.60 76.80 86.70 2.0 6.50

AR-CE

24.02 56.00 71.81 4.0 16.91
+ IS 29.90 61.64 74.75 4.0 13.95
+ DIS 29.90 61.27 74.75 4.0 15.01

+ DualIS 30.02 62.13 75.12 4.0 14.80
+ DualDIS 30.15 61.76 75.12 4.0 14.85

CLOTHO

MoEE* 7.20 22.10 33.20 22.7 71.80
MMT* 6.30 22.80 33.30 22.3 67.30

AR-CE

7.27 23.35 35.12 21.0 74.68
+ IS 8.52 23.64 37.70 20.0 72.99
+ DIS 8.33 23.35 36.84 20.0 73.35

+ DualIS 9.09 25.55 38.28 19.0 71.33
+ DualDIS 8.13 23.64 37.04 20.0 72.71

Table 11: Audio-to-Text Retrieval performance on Au-
dioCaps and CLOTHO. Best in Bold and the second
best is underlined.

B.4 More Qualitative Results

This section presents retrieval results for text-to-
video and video-to-text retrieval tasks, as illustrated
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Methods Normalization
Text-to-Video Retrieval Video-to-Text Retrieval

R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓ R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
S2VT 11.9 33.6 76.5 13.0 - 13.2 33.6 76.5 15.0 -
FSE 13.9 36.0 78.9 11.0 - 13.1 33.9 78.0 12.0 -

CE+

18.22 42.63 56.08 8.0 42.05 18.82 42.73 55,78 8.0 37.27
+ IS 21.22 46.31 59.56 7.0 37.06 20.72 45.72 59.86 7.0 33.84
+ DIS 21.02 46.31 59.56 7.0 37.37 20.72 45.72 59.76 7.0 33.87

+ DualIS 21.81 46.12 59.66 7.0 37.07 20.92 45.62 59.66 7.0 33.84
+ DualDIS 21.71 46.31 59.56 7.0 37.37 20.72 45.82 59.56 7.0 33.90

TT-CE+

22.31 49.20 62.15 6.0 31.18 21.41 47.11 60.66 6.0 29.67
+ IS 23.80 51.29 65.04 5.0 28.21 24.20 51.59 65.54 5.0 26.09
+ DIS 23.71 51.29 64.84 5.0 28.40 24.30 51.49 65.54 5.0 26.23

+ DualIS 25.60 50.30 64.44 5.0 28.49 24.40 52.59 66.33 5.0 25.01
+ DualDIS 25.60 50.40 64.44 5.0 28.88 24.60 52.49 66.24 5.0 25.08

Table 12: Retrieval performance on DiDeMo. Best in Bold and the second best is underlined. S2VT (Venugopalan
et al., 2015) and FSE (Zhang et al., 2018) are two representative methods on DiDeMo.

in Figures 2 and 5, respectively. Upon observing
both text-to-video and video-to-text retrieval sce-
narios, a notable observation emerges regarding
the susceptibility of IS and DIS to be misled by the
query bank as shown in Figure 5. In contrast, our
proposed methods, DualIS and DualDIS, capital-
ize on the utilization of both query and gallery
banks, leading to an improved retrieval perfor-
mance achieved by effectively reducing the sim-
ilarity of hubs and preserving the similarity of non-
hubs.

B.5 DBNORM

Continued RQ1: Can DBNORM alleviate hub-
ness? (Empirical Observation of Hubness in
Cross-Modal Retrieval) We first illustrate the hub-
ness phenomenon across several benchmarks and
methods of cross-modal retrieval in Figure 3 and
Figure 6. We notice that, hubness is prevalent
across different methods, datasets, and tasks as
the queries frequently retrieve a small number of
gallery data.

Moreover, to demonstrate how severe the hub-
ness problem is in a specific benchmark and
method, following Radovanovic et al. (2010), we
employ skewness of the k-occurrences distribution,
with k = 10. Specifically, the skewness of the
k-occurrences distribution is defined as

SNk
=

Ex[Nk(x)− µNk
]3

σ3
Nk

, (3)

where µNk
and σNk

are the mean and
standard deviation of Nk. Nk(x) refers
to the k-occurrence distribution, given by

∑
i∈[Ng ]

pi,k(x) =
∑

i∈[Ng ]
I(x is in the k nearest

neighbours of the i-th gallery data) and I(cond) is
the indicator function. Positive skewness indicates
that the distribution is right-tailed and higher
skewness scores mean a severer hubness problem
occurs. As shown in Tables 6 and 13, the hubness
score consistently exhibits a relatively high value
across various methods and benchmarks. However,
upon employing our DualIS and DualDIS, we
observed a notable reduction in hubness scores
across different benchmarks. This reduction
serves as empirical evidence supporting the
effectiveness and efficiency of our proposed
methods in addressing the hubness issue.

Continued RQ2: How much data is desired in
the banks? The results of R@1 for text-video re-
trieval using DualIS and DualDIS are presented in
Figures 4 and 7. Our observations indicate that as
the size of the two banks increases, the performance
improves. owever, even with a relatively small
number of samples in the query and gallery banks,
we still achieve satisfactory performance. More-
over, we examined the individual impact of the
query and gallery bank sizes by independently sam-
pling them at different scales. The results demon-
strate that the size of the query bank has a greater
influence on performance compared to the gallery
bank, although a bigger gallery bank also leads to
better performance.

RQ3: Is DBNORM sensitive to β1 and β2? In
order to investigate the sensitivity of DBNORM to
β1 and β2, we conducted an evaluation as shown
in Figure 8. Our findings indicate that the perfor-
mance of DualDIS demonstrates limited sensitivity
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(b) Top-3 Text-to-video.
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(c) Top-3 Video-to-text.
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(d) Top-3 Video-to-text.

Figure 5: Top-3 Text-to-video and Video-to-text retrieval results on MSR-VTT.

to changes in both β1 and β2. Adjusting these hy-
perparameters within a reasonable range does not
result in significant variations in the overall perfor-
mance.

RQ4: Is DualDIS sensitive to the Top-k hyper-
parameter? We conducted experiments to observe
the influence of k in the Top-k selection used to
construct the gallery activation sets. The results
are shown in Figure 9. We observed that choosing
k = 1 offers a good trade-off between performance
and computational efficiency. Therefore, we used
k = 1 for all reported experiments.

RQ5: Is hubness score related to perfor-
mance? Our current findings reveal an inverse
relationship between the hubness score and per-
formance. Specifically, we observed that as the
hubness score decreases, the performance tends
to improve. This aligns with the expectation that
lower hubness scores indicate a reduced concen-
tration of nearest neighbors, leading to improved
retrieval performance. However, it is important
to note that in certain cases (X-CLIP on MSVD),
the relationship between the hubness score and
retrieval performance may differ from this trend.
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(h) DiDeMo (TT-CE+).
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Figure 6: Hubness is prevalent across different methods, datasets, and tasks. These figures illustrate the
distribution of the number of times each (test) gallery video/image/audio was retrieved by (test) set queries. In all
visualization, severe hubness can be observed, as a small number of galleries are retrieved disproportionately often,
which might reduce the retrieval performance.
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Figure 7: Text-Video Retrieval R@1 w.r.t the size of gallery and query banks on MSR-VTT and ActivityNet using
DualIs and DualDIS with CLIP4Clip.

This can be attributed to potential biases present in
the dataset and the models, which can influence the
observed patterns. Therefore, we should carefully
interpret the hubness score as the sole indicator

of retrieval performance, particularly when dataset
biases are significant. Further investigations are
needed to gain a comprehensive understanding of
the interplay between the hubness score and re-
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Normalization
MSRVTT ActivityNet MSCOCO

Best
CE+ TT-CE+ CLIP4Clip CLIP2Video X-CLIP CE+ TT-CE+ CLIP4Clip X-CLIP CLIP Oscar

Text-to-Video/Image/Audio

1.38 1.28 1.13 0.84 1.24 0.94 0.76 0.83 0.98 2.71 0.55 0
+ IS 0.82 0.34 0.18 0.32 0.74 0.67 0.51 0.55 0.57 0.90 0.24 1
+ DIS 0.83 0.34 0.18 0.33 0.74 0.68 0.52 0.42 0.44 0.90 0.22 1
+ DualIS 0.37 0.33 0.57 0.26 0.70 0.54 0.37 0.36 0.42 0.42 0.31 7
+ DualDIS 0.37 0.28 0.57 0.26 0.70 0.50 0.40 0.46 0.43 0.43 0.29 5

Video/Image/Audio-to-Text

3.65 4.02 2.13 2.13 2.66 1.06 0.70 1.11 1.58 3.78 1.45 0
+ IS 2.29 2.34 0.43 0.28 1.58 0.63 0.56 0.77 0.44 2.21 1.08 4
+ DIS 2.54 2.50 0.47 0.31 1.61 0.65 0.57 0.58 0.56 2.21 1.17 0
+ DualIS 2.48 2.38 1.12 0.28 1.46 0.30 0.27 0.32 0.37 1.53 0.98 7
+ DualDIS 2.51 2.47 1.16 0.31 1.48 0.34 0.29 0.40 0.37 1.50 1.06 2

Normalization
MSVD DiDeMo Flickr30K AudioCaps CLOTHO

Best
CE+ TT-CE+ CLIP4Clip CLIP2Video X-CLIP CE+ TT-CE+ CLIP Oscar AR-CE AR-CE

Text-to-Video/Image/Audio

7.95 7.95 0.83 0.84 0.65 1.23 0.86 2.78 0.32 0.22 1.09 1
+ IS 7.88 7.92 0.42 0.80 1.87 0.44 0.39 4.06 0.01 0.02 0.68 4
+ DIS 7.92 7.92 0.42 0.80 1.87 0.46 0.40 2.81 0.01 0.01 0.68 4
+ DualIS 7.93 7.92 0.37 0.20 0.68 0.53 0.33 4.14 0.01 0.15 0.46 5
+ DualDIS 7.93 7.92 0.37 0.21 0.68 1.13 0.32 2.81 0.01 0.15 0.55 5

Video/Image/Audio-to-Text

3.18 4.18 4.54 6.02 4.47 1.01 0.98 2.23 1.16 1.65 2.43 0
+ IS 3.45 3.06 2.97 2.78 3.84 0.53 0.72 1.62 1.02 1.00 2.03 4
+ DIS 3.42 4.05 3.47 4.39 4.64 0.52 0.72 1.62 1.03 0.99 2.02 2
+ DualIS 2.60 3.42 3.01 3.00 3.92 0.54 0.59 1.08 0.99 1.06 1.53 4
+ DualDIS 3.43 4.04 3.60 4.23 4.57 0.56 0.59 1.06 0.99 1.04 1.60 3

Table 13: The hubness (skewness score) is significantly reduced after applying our proposed DualIS and DualDIS
than IS and DIS Best in Bold and the second best is underlined.
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Figure 8: Video-to-Text Retrieval recall at 1 w.r.t β1 and β2 on CLIP4Clip and ActivityNet using DualIS and
DualDIS.
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Figure 9: Video-Text Retrieval performance with respect to top-k hyperparameter in DualDIS.

trieval performance under different conditions and
datasets.

RQ6: How about aggreagating normalization
results by adding instead of multiplying? In Du-

alIS (Equation (1)) and DualDIS (Equation (2)),
multiplication is employed to aggregate normal-
ization results from the query and gallery banks.
To explore alternative aggregation methods, we

10564



Agg
Text-to-Video Retrieval Video-to-Text Retrieval

R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓ R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
MSR-VTT (1k)

Clip4Clip 44.10 71.70 81.40 2.0 15.51 42.09 71.24 81.23 2.0 12.01
+ DualIS + 44.20 71.70 81.60 2.0 15.64 44.86 72.04 82.02 2.0 11.56
+ DualDIS + 45.00 72.50 82.10 2.0 15.32 45.45 73.02 81.42 2.0 11.59
+ DualIS × 45.00 72.50 82.10 2.0 15.32 45.45 73.02 81.42 2.0 11.56
+ DualDIS × 45.00 72.50 82.10 2.0 15.32 45.45 73.02 81.42 2.0 11.59

ActivityNet
CLIP4Clip 41.85 74.44 84.84 2.0 6.84 41.62 74.11 86.12 2.0 6.81
+ DualIS + 46.40 77.85 87.21 2.0 6.14 47.02 77.59 87.49 2.0 6.16
+ DualDIS + 46.26 77.78 86.90 2.0 6.11 47.09 77.21 87.38 2.0 6.31
+ DualIS × 46.71 77.47 87.35 2.0 6.01 46.59 78.04 88.15 2.0 6.05
+ DualDIS × 46.76 77.48 87.28 2.0 6.01 46.73 77.90 88.06 2.0 6.05

Table 14: Retrieval results on MSR-VTT and ActivityNet with DBNORM(DualIS) and DBNORM(DualDIS). “Agg”
refers to the aggregation methods. “×” and “+” represent multiplying and addition.

QB GB w/o test
Text-to-Video Retrieval Video-to-Text Retrieval

R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓ Skewness ↓ R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓ Skewness↓
MSR-VTT (1k)

Clip4Clip 44.10 71.70 81.40 2.0 15.51 1.38 42.09 71.24 81.23 2.0 12.01 3.65
+ GC (upper bound) ✓ 45.60 71.30 81.10 2.0 16.50 0.45 46.84 70.85 80.34 2.0 18.71 0.37
+ GC ✓ ✓ 40.20 65.10 75.60 2.0 24.52 3.33 40.14 67.33 76.59 2.0 15.58 4.71
+ CSLS (upper bound, k = 1000)) ✓ ✓ 42.70 70.70 80.70 2.0 15.93 0.81 42.39 70.85 80.43 2.0 12.84 0.88
+ CSLS with k = 10 ✓ ✓ ✓ 41.70 69.20 79.20 2.0 16.55 1.33 5.57 63.04 73.42 3.0 19.11 2.71
+ CSLS with k = 100 ✓ ✓ ✓ 43.10 70.60 80.40 2.0 16.02 0.92 41.11 69.86 79.25 2.0 13.93 1.43
+ CSLS with k = 1000 ✓ ✓ ✓ 42.70 71.00 80.70 2.0 16.01 0.90 42.19 70.36 80.43 2.0 13.11 0.92
+ IS ✓ ✓ 44.20 71.70 81.60 2.0 15.64 0.82 44.86 72.04 82.02 2.0 11.56 2.29
+ DIS ✓ ✓ 44.20 71.70 81.60 2.0 15.64 0.83 44.86 72.04 82.11 2.0 11.61 2.54
+ DualIS ✓ ✓ ✓ 45.00 72.50 82.10 2.0 15.32 0.37 45.45 73.02 81.42 2.0 11.56 2.48
+ DualDIS ✓ ✓ ✓ 45.00 72.50 82.10 2.0 15.32 0.37 45.45 73.02 81.42 2.0 11.59 2.51

ActivityNet

CLIP4Clip 41.85 74.44 84.84 2.0 6.84 0.94 41.62 74.11 86.12 2.0 6.81 1.06
+ GC (upper bound) ✓ 48.03 77.57 87.42 2.0 6.59 0.13 47.09 77.48 86.71 2.0 6.52 0.20
+ GC ✓ ✓ 33.89 63.22 76.74 3.0 9.91 2.19 32.28 61.18 75.39 3.0 10.11 56.88
+ CSLS (upper bound, k = 4222) ✓ ✓ 40.29 73.00 84.46 2.0 7.32 0.79 40.90 73.38 85.53 2.0 7.04 0.92
+ CSLS k = 10 ✓ ✓ ✓ 37.54 70.46 82.35 2.0 7.89 1.18 38.42 71.06 83.37 2.0 7.70 1.30
+ CSLS k = 100 ✓ ✓ ✓ 40.34 72.50 84.23 2.0 7.36 0.90 40.31 73.05 84.98 2.0 7.11 0.99
+ CSLS k = 1000 ✓ ✓ ✓ 40.15 72.93 84.41 2.0 7.34 0.81 40.74 73.38 85.53 2.0 7.04 0.92
+ CSLS k = 4222 ✓ ✓ ✓ 40.29 72.93 84.49 2.0 7.32 0.79 40.83 73.33 85.41 2.0 7.05 0.94
IS ✓ ✓ 45.93 77.52 87.07 2.0 6.39 0.67 46.23 76.72 87.26 2.0 6.46 0.63
+ DIS ✓ ✓ 46.02 77.29 86.83 2.0 6.29 0.68 46.26 76.48 87.16 2.0 6.48 0.65
+ DualIS ✓ ✓ ✓ 46.71 77.47 87.35 2.0 6.01 0.54 46.59 78.04 88.15 2.0 6.05 0.30
+ DualIS ✓ ✓ ✓ 46.76 77.48 87.28 2.0 6.01 0.50 46.73 77.90 88.06 2.0 6.05 0.34

Table 15: Retrieval results on MSR-VTT and ActivityNet with GC, CSLS, IS, DIS, DBNORM(DualIS), and
DBNORM(DualDIS). “QB”, “GB”, and “w/o test” refers to the query bank, gallery bank, and without the access to
all test gallery data (only observing one gallery data at a time).

conducted experiments by replacing multiplication
with addition. The retrieval results are presented
in Table 14. It is observed that, for MSR-VTT,
both multiplication and addition yield compara-
ble retrieval performance, whereas for ActivityNet,
multiplication outperforms addition, providing em-
pirical evidence for the superiority of multiplica-
tion.

B.6 Comparison with GC and CSLS

Globally-corrected (GC) (Dinu et al., 2015)
and Cross-Domain Similarity Local Scaling
(CSLS) (Lample et al., 2018) are two representa-
tive post-processing methods specifically designed

to address hubness in Natural Language Processing.
Note that, GC and CSLS requires the access to all
queries.

However, in real-world settings, queries do not
always occur simultaneously, and it is common
for methods not to have access to all queries at
once. This aligns with the practical conditions
where queries are generated in a sequential or asyn-
chronous manner. To test the compatibility of GC
and CSLS with such scenarios, we adapt GC and
CSLS accordingly and conduct experiments on the
MSR-VTT and ActivityNet datasets.

GC returns the gallery element g that has the
highest rank for query q. The similarity is normal-
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ized as follows,

ŝq,gi = sq,gi −Rank(gi, Q,q) , (4)

where Rank(gi, Q,q) returns the rank of q in Q
when the query is gi and Q contains all the queries.
To investigate the applicability of GC without ac-
cessing other test queries, we modify GC as fol-
lows,

ŝq,gi = sq,gi −Rank(gi, Q̂ ∪ {q},q) , (5)

where Rank(gi, Q̂ ∪ q,q) returns the rank of q in
Q̂ ∪ q when the query is gi.

CSLS utilizes a query bank that consists of all
the test queries and a gallery bank. To adapt CSLS
for use in our method, we modify it to incorporate
(train or validation) queries and normalize the sim-
ilarity sq,gi between a query q and a gallery point
gi as follows,

ŝq,gi = 2sq,gi −
1

K

∑

i∈[K]

sq,ḡi −
1

K

∑

i∈[K]

sq,q̄i ,

(6)
where {ḡi}i∈[k] and {q̄i}i∈[k] are the k gallery and
query samples in banks that are most similar to
query q.

The quantitative results of GC and CSLS on
MSR-VTT and ActivityNet are shown in Table 15.
We denote GC and CSLS with access to test queries
as GC (upperbound) and CSLS (upperbound) re-
spectively. It is noteworthy that the retrieval perfor-
mance significantly drops without access to all test
queries, and the performance of CSLS is propor-
tional to the hyperparamter k.

Considering the unsatisfactory retrieval perfor-
mance of GC and CSLS when lacking access to all
test queries, we exclude these two methods from
our approach.

C Proofs

C.1 Proof of Theorem 1
Consider two data points x1 and x2 sampled from
N (µ), which satisfy

∥x2 − µ∥ − ∥x1 − µ∥ > 0 . (7)

The expected difference between the squared
Euclidean distances from x1 and x2 to a point x
sampled from the same distribution, is defined as

∆ =Ex

[
∥x2 − x∥2 − ∥x1 − x∥2

]

=Ex

[
∥x2 − x∥2

]
− Ex

[
∥x1 − x∥2

]
.

(8)

We notice that,

Ex

[
∥x2 − x∥2

]

=Ex

[
∥x2 − µ− (x− µ)∥2

]

=Ex

[
∥x2 − µ∥2

]
+ E

[
∥x− µ∥2

]

− 2E
[
(x2 − µ)⊤(x− µ)

]

=E
[
∥x2 − µ∥2

]
+ E

[
∥x− µ∥2

]
.

The last equality is because the mean of x2 and x
is µ.

Similarly, we have

E
[
∥x1 − x∥2

]

=E
[
∥x1 − µ∥2

]
+ E

[
∥µ− x∥2

]
.

(9)

Next, we have,

∆ =(E
[
∥x2 − µ∥2

]
+ E

[
∥µ− x∥2

]
)

− (E
[
∥x1 − µ∥2

]
+ E

[
∥µ− x∥2

]
)

=∥x2 − µ∥2 − ∥x1 − µ∥2 > 0 .

(10)

Now, we have completed the proof.

C.2 Proof of Theorem 2

The difference ∆ is defined as,

∆ =Ey,x1∼X ,x2∼X ,∥x2−µx∥2−∥x1−µx∥2>0 [∥x2−
y∥2 − ∥x1 − y∥2

]
.

(11)
We have,

E
[
∥x2 − y∥2

]

=E
[
∥x2 − µx − (y − µx)∥2

]

=E∥x2 − µx∥2 + E∥y − µx∥2

− 2E
[
(x2 − µx)

⊤(y − µx)
]

=E∥x2 − µx∥2 + E∥y − µx∥2

Similarly, we have,

E
[
∥x1 − y∥2

]
= E∥x1 − µx∥2 + E∥y − µx∥2 .

Inserting the above two equality into Eq. (11),
we have

∆ =E
[
∥x2 − y∥2 − ∥x1 − y∥2

]

=∥x2 − µx∥2 − ∥x1 − µx∥2 > 0 .
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C.3 Proof of Corollary 3
We only need to prove that if
E
[
∥x2 − y∥2 − ∥x1 − y∥2

]
> 0, we have

E
[
∥x2 − x∥2 − ∥x1 − x∥2

]
> 0, where

y ∼ Y,x ∼ X .
As E

[
∥x2 − y∥2 − ∥x1 − y∥2

]
> 0, with the

proof of Theorem 2, we have

∥x2 − µx∥2 − ∥x1 − µx∥2 > 0 .

In other words, as ∥x2 −µx∥+ ∥x1 −µx∥ > 0,
we have

∥x2 − µx∥ − ∥x1 − µx∥ > 0 .

With Theorem 1, we have
E
[
∥x2 − x∥2 − ∥x1 − x∥2

]
> 0.

Now, we complete the proof.

C.4 Proof of Theorem 4
Similarly, we first present the following theorems.

Theorem 5. Assuming that x1 and x2 are sampled
from a symmetric distribution X on a hypersphere
with mean µ, if x1 is closer to µ than x2 (i.e.,
cos(x1,µ)− cos(x2,µ)), then x1 is more likely to
be a hub than x2 on the space X .

Proof. Consider two data points x1 and x2 sam-
pled from a symmetric distribution on the surface
of a hypersphere satisfying ∥x1∥2 = ∥x2∥2 = r,
and the following holds true

cos(x1,µ)− cos(x2,µ) > 0 . (12)

where µ is the center of the distribution. That
means under the cosine metric, x1 is closer to the
mean point than x2.

The expected difference between the cosine dis-
tances from x1 and x2 to a random point x sampled
from the same distribution, is defined as

∆ =E [cos(x1,x)− cos(x2 − x)]

=
1

r2
E
[
x1x

⊤ − x2x
⊤
]

=
1

r2
E[x1 − x2]µ

⊤

=cos(x1,µ)− cos(x2,µ) > 0 .

(13)

Now, we have completed the proof.

Theorem 6. Assuming that x1 and x2 are sam-
pled from a symmetric distribution with mean µx,
if x1 is closer to µ than x2 (i.e., cos(x1,µ) −
cos(x2,µ)), then x1 is more likely to be a hub than
x2 on another space Y .

Proof. Consider two data points x1 and x2 sam-
pled from a symmetric distribution X and a ran-
dom point y sampled from a symmetric distribu-
tion Y on the surface of a hypersphere satisfying
∥x1∥2 = ∥x2∥2 = ∥y∥2 = r, and the following
holds true

cos(x1,µx)− cos(x2,µx) > 0 . (14)

where µx is the center of the distribution X . That
means under the cosine metric, x1 is closer to the
mean point than x2.

The expected difference between the cosine dis-
tances from x1 and x2 to the random point y, is
defined as

∆ =E [cos(x1,y)− cos(x2 − y)]

=
1

r2
E
[
x1y

⊤ − x2y
⊤
]

=
1

r2
E[x1 − x2](µy − µx)

⊤

+
1

r2
E[x1 − x2](µx)

⊤

=cos(x1,µx)− cos(x2,µx) > 0 .

(15)

Now, we have completed the proof.

Combining the above two theorems and with the
proof of Corollary 3, we have completed the proof.
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