
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 8154–8173
December 6-10, 2023 ©2023 Association for Computational Linguistics

Reasoning with Language Model is Planning with World Model

Shibo Hao∗♣ Yi Gu∗∗♣ Haodi Ma♢ Joshua Jiahua Hong♣

Zhen Wang♣ ♠ Daisy Zhe Wang♢ Zhiting Hu♣

♣UC San Diego, ♢University of Florida
♠Mohamed bin Zayed University of Artificial Intelligence
{s5hao, yig025, jjhong, zhw085, zhh019}@ucsd.edu

{ma.haodi, daisyw}@ufl.edu

Abstract

Large language models (LLMs) have shown
remarkable reasoning capabilities, particularly
with chain-of-thought (CoT) prompting. How-
ever, LLMs sometimes still struggle with prob-
lems that are easy for humans, such as gener-
ating action plans to achieve given goals in an
environment, or performing complex math or
logical reasoning. The deficiency stems from
the key fact that LLMs lack an internal world
model to predict the world state (e.g., envi-
ronment status, intermediate variable values)
and simulate long-term outcomes of actions.
This prevents LLMs from performing deliber-
ate planning akin to human brains, which in-
volves exploring alternative reasoning paths,
anticipating future states and rewards, and it-
eratively refining existing reasoning steps. To
overcome the limitations, we propose a new
LLM reasoning framework, Reasoning via
Planning (RAP). RAP repurposes the LLM
as both a world model and a reasoning agent,
and incorporates a principled planning algo-
rithm based on Monte Carlo Tree Search for
strategic exploration in the vast reasoning space.
During reasoning, the LLM (as agent) incre-
mentally builds a reasoning tree under the guid-
ance of the LLM (as world model) and rewards,
and efficiently obtains a high-reward reason-
ing path with a proper balance between explo-
ration vs. exploitation. We apply RAP to vari-
ous challenging reasoning problems including
plan generation, math reasoning, and logical
inference, and demonstrate its superiority over
strong baselines. RAP with LLaMA-33B even
surpasses CoT with GPT-4, achieving 33% rela-
tive improvement in a plan generation setting.1

1 Introduction

Large language models (LLMs) have exhibited
emergent reasoning abilities in a wide range of
tasks (Brown et al., 2020; Chowdhery et al., 2022;

∗equal contribution
1The code is available at https://github.com/Ber666/

llm-reasoners

OpenAI, 2023). Recent approaches further boost
their ability by prompting LLMs to generate inter-
mediate reasoning steps, e.g., Chain-of-Thought,
CoT (Wei et al., 2022) or answer a series of sub-
questions, e.g., least-to-most prompting (Zhou
et al., 2022). However, LLMs still face difficul-
ties with tasks that humans find easy. For example,
in creating action plans to move blocks to a tar-
get state, GPT-3 (Brown et al., 2020) achieves a
success rate of only 1%, compared to 78% for hu-
mans (Valmeekam et al., 2022); these models also
struggle with complex tasks that require multiple
steps of math, logical, or commonsense reason-
ing (Huang and Chang, 2022; Mialon et al., 2023).

Humans possess an internal world model, a
mental representation of the environment (Johnson-
Laird, 1983, 2010; Gentner and Stevens, 2014),
which enables humans to simulate actions and their
effects on the world’s state for deliberate planning
for complex tasks of motor control, imagery, infer-
ence, and decision making (Tolman, 1948; Briscoe,
2011; Schulkin, 2012; LeCun, 2022). For example,
to make an action plan towards a goal, planning
with the world model involves exploring various
alternative courses of actions, assessing the likely
outcomes by rolling out possible future scenarios,
and iteratively refining the plan based on the assess-
ment (Huys et al., 2012; Gasparski and Orel, 2014;
Ho et al., 2021). This is in stark contrast to the
current LLM reasoning, which instinctively gener-
ates a reasoning trace in an autoregressive manner.
In particular, we identify several key limitations
of the current reasoning with LLMs, including (1)
the lack of an internal world model to simulate the
state of the world (e.g., the configuration of blocks,
the values of intermediate variables), which is the
foundation of human planning; (2) the absence of
a reward mechanism to assess and guide the rea-
soning towards the desired state; and due to both
limitations, (3) the incapability of balancing explo-
ration vs. exploitation to efficiently explore vast

8154

https://github.com/Ber666/llm-reasoners
https://github.com/Ber666/llm-reasoners

World
Model

Language Model
Reasoning via Planning (RAP)

Chain-of-Thought

Language Model

Figure 1: An overview of Reasoning via Planning (RAP). Compared with previous LLM reasoning methods like
Chain-of-Thought (Wei et al., 2022), we explicitly model the world state from a world model (repurposed from the
language model), and leverage advanced planning algorithms to solve the reasoning problems.

reasoning space.
To address these limitations, this paper proposes

a new framework, Reasoning via Planning (RAP),
that enables LLMs to reason in a manner close
to humans’ conscious planning. RAP augments
the LLM with a world model, and reasons with
principled planning (specifically Monte Carlo Tree
Search, MCTS) to produce high-reward reasoning
traces after efficient exploration (Figure 1). No-
tably, we acquire the world model by repurpos-
ing the LLM itself with appropriate prompts. Dur-
ing the reasoning, the LLM strategically builds a
reasoning tree by iteratively considering the most
promising reasoning steps (actions) and using the
world model (the same, repurposed LLM) to look
ahead for future outcomes. The estimated future re-
wards are then backpropagated to update the LLM’s
beliefs about the current reasoning steps, guiding
it to refine the reasoning by exploring better al-
ternatives. Our MCTS-based planning effectively
maintains a proper balance between exploration (of
unvisited reasoning traces) and exploitation (of the
best reasoning steps identified so far).

We show RAP is a general framework applica-
ble to a diverse range of challenging problems and
achieves substantial improvements over recent pop-
ular LLM reasoning methods. For plan generation,
particularly in 2/4/6-step problems of Blocksworld
(Valmeekam et al., 2023), RAP achieves an aver-
age success rate of 64% while CoT fails almost
completely. Moreover, LLaMA-33B with RAP
surpasses GPT-4 with CoT by 33% relative im-
provement. In the domains of mathematical reason-

ing, such as GSM8K (Cobbe et al., 2021) and logi-
cal inference exemplified by PrOntoQA (Saparov
and He, 2022), RAP also consistently improves
over strong baselines, including CoT, least-to-most
prompting, and their self-consistency variants.

2 Related Work

Reasoning with LLMs. LLM reasoning typically
involves decomposing complex questions into se-
quential intermediate steps (a.k.a. chains) before
producing the final answer, exemplified by Chain-
of-Thought (CoT) prompting and its variants (Wei
et al., 2022; Kojima et al., 2022). The basic CoT
generates chains all at once and can induce ad-
ditional errors as the step count increases. Self-
Consistency (Wang et al., 2022) samples multi-
ple chains to choose the best answer via major-
ity voting. Least-to-most prompting (Zhou et al.,
2022) reduces the question into simpler subques-
tions and answers them sequentially. Similar to our
reward formulation, recent works have explored
self-evaluation approaches to provide feedback for
intermediate steps (Welleck et al., 2022; Shinn
et al., 2023; Paul et al., 2023). Aligned with our
state formulation, Li et al. (2022) incorporate la-
tent “situations” into LLMs, referring to the state
of entities from the context. More relevantly, re-
cent works have started to explore more complex
structures guided by some search algorithms. For
instance, CoRe (Zhu et al., 2022) fine-tunes rea-
soning step generator and verifier for math word
problems with MCTS for decoding. Concurrently
to our work, Yao et al. (2023) apply heuristic-based

8155

Pickup orange

(r = 0.6) (r = 0.4)
Pickup blue

Stack it on blueStack it on orange

…

…

{ }

Initial State: The orange block is on the table, the
blue block is on the table, and the red block…
Goal: The orange block is on the blue block, and
the yellow block is on the orange block.

Julie is reading… She wants to read half of the remaining
pages tomorrow. How many pages should she read?

(r = 0.7)

Q1: How many pages
has she read?

(r = 0.5)

Q1: How many pages did
Julie read today?

Q1: How … read?
A1: 30

Q1: How …Today?
A1: 24

Q2: How many pages has Julie
read till now?

(r = 0.8)
(r = 0.3)

Q2: How many pages
should she read

tomorrow?

Q1: …
Q2: How …now?
A2: 36

Q1: How… today?
A1: 24
…
QT: How ... tomorrow?
AT: 42

(r = 0.3) (r = 0.9)

…

(Answer: 42)

(1) Carnivores are carnivorous
(2) Animals are not unicellular
(3) Carnivores are mammals …
Fact: Fae is a feline
Hypothesis: Fae is unicellular?

(1) Carnivores are
carnivorous

(4) Every cat is a feline

(r = 0.8) (r = 0.1)

(3) Carnivores are
mammals
(r = 0.8)(r = 0.8)

… Fae is a mammal

Fae is a not unicellular

(The hypothesis is false)

Fae is a feline

Fae is a cat

(5) Each feline is a
carnivores

Fae is a carnivore

(Goal achieved)

Figure 2: RAP for plan generation in Blocksworld (left), math reasoning in GSM8K (middle), and logical reasoning
in PrOntoQA (right).

search, like depth-/breadth-first search, for better
reasoning paths. However, none of the above meth-
ods formally introduce the world model and instan-
tiates the reward and state into a unified framework.
Compared with these search-guided methods, RAP
is a more principled framework to combine world
model and reward with advanced planning.
Planning with LLMs. Planning, a central ability
in intelligent agents, involves generating a series
of actions to achieve a specific goal (McCarthy,
1963; Bylander, 1994). Classical planning methods
have been widely adopted in robots and embod-
ied environments (Camacho and Alba, 2013; Jiang
et al., 2019). Recently, prompting LLMs to do
planning directly has gained attention and shown
potential (Huang et al., 2022; Singh et al., 2022;
Ding et al., 2023). Moreover, based on LLMs’ pow-
erful programming ability (Lyu et al., 2023; Jojic
et al., 2023; Liu et al., 2023), recent works first
translate natural language instructions into the exe-
cutable programming languages, such as Planning
Domain Description Language (PDDL), and runs
classical planning algorithms, such as LLM+P (Liu
et al., 2023). However, code-based planning is
constrained by its narrow domains and the environ-
ment, while RAP can handle open-domain prob-
lems, such as math and logical reasoning. More
related works on world models and planning are
discussed in the Appendix D.

3 Reasoning via Planning (RAP)

In this section, we present the Reasoning via Plan-
ning (RAP) framework that enables LLMs to strate-
gically plan a coherent reasoning trace for solving
a wide range of reasoning tasks. We first build
the world model by repurposing the LLM with

prompting (Section 3.1). The world model serves
as the foundation for deliberate planning, by al-
lowing the LLM to plan ahead and seek out the
expected outcomes in the future. We then intro-
duce the rewards for assessing each state during
reasoning in Section 3.2. Guided by the world
model and rewards, the planning with Monte Carlo
Tree Search (MCTS) efficiently explores the vast
reasoning space and finds optimal reasoning traces
(Section 3.3). Finally, when multiple promising
reasoning traces are acquired during planning, we
further introduce an aggregation method in Sec-
tion 3.4 that yields an ensembled result and further
boosts the reasoning performance.

3.1 Language Model as World Model

In general, a world model predicts the next state of
the reasoning after applying an action to the current
state (Ha and Schmidhuber, 2018b; Matsuo et al.,
2022). RAP enables us to instantiate the general
concepts of state and action in different ways de-
pending on the specific reasoning problems at hand
(Figure 2). For example, in Blocksworld, it is natu-
ral to define a state as the configuration of blocks
(described in natural language), and an action to be
a behavior of moving a block (e.g., “pickup the
orange block”). In a math reasoning problem, we
use the state to represent the values of intermedi-
ate variables, and set an action to be a subquestion
that drives the reasoning to derive new values. In
logical reasoning, a state is a fact we are focusing
on, and an action is to choose a rule for the next
deduction.

With the definition of state and action, the rea-
soning process can thus be described as a Markov
decision process (MDP): given the current state

8156

st,t=0,1,...,T , e.g., the initial state s0, the LLM (as
a reasoning agent) generates an action space by
sampling from its generative distribution at ∼
p(a|st, c), where c is a proper prompt (e.g., in-
context demonstrations). Once an action is cho-
sen, the world model then predicts the next state
st+1 of the reasoning. Specifically, we repurpose
the same LLM to obtain a state transition distribu-
tion p(st+1|st, at, c′), where c′ is another prompt
to guide the LLM to generate a state. For instance,
in Blocksworld, the LLM (as the world model) gen-
erates text st+1 to describe the new configuration
of blocks, given previous state st and the action at.

Continuing the process results in a reasoning
trace, which consists of a sequence of interleaved
states and actions (s0, a0, s1, . . . , aT−1, sT). This
differs from the previous reasoning methods, such
as Chain-of-Thought (Wei et al., 2022), where
the intermediate reasoning steps consist of only
a sequence of actions, e.g., (a0 = “pickup red
block”, a1 = “stack on yellow block”, . . .)
(see comparisons in Figure 1). Augmenting the
reasoning with the (predicted) world states helps
the LLM with a more grounded and coherent infer-
ence. Note that the full reasoning trace is simulated
by the LLM itself (as a reasoning agent with an
internal world model) without interacting with the
external real environment. This resembles humans
contemplating a possible plan in their minds. The
capability of simulating future states, by introduc-
ing the world model, allows us to incorporate prin-
cipled planning algorithms to efficiently explore the
vast reasoning space as described in Section 3.3.

3.2 Reward Design

During reasoning, we want to assess the feasibil-
ity and desirability of each reasoning step, and
guide the reasoning based on the assessment (Sec-
tion 3.3). The assessment of each reasoning step
(i.e., applying an action at to the state st) is per-
formed by a reward function rt = r(st, at) ∈ R.
Similar to the state and action, the reward function
can be specified in different ways to accommodate
any knowledge or preferences about the reason-
ing problem of interest. Here we introduce several
common rewards applicable to different tasks and
shown to be effective in our experiments.
Likelihood of the action. When an action is gen-
erated by the LLM conditioning on the in-context
demonstration and the current state, the probability
of the specific action reflects the LLM’s preference.

We thus can incorporate the log probability of the
action as a reward. This reward reflects the “in-
stinct” of LLMs as an agent, and can be also used
as a prior for which action to explore.
Confidence of the state. State prediction is non-
trivial in some problems, e.g., in math reasoning
(Figure 2, middle), given an action (i.e., a subques-
tion), the world model predicts the next state by
answering the subquestion. We incorporate the con-
fidence of the state (i.e., answers in this case) as
a reward. Specifically, we draw multiple sample
answers from the world model, and use the propor-
tion of the most frequent answer as the confidence.
Higher confidence indicates that the state predic-
tion is more consistent with the world knowledge
of LLMs (Hao et al., 2023b), which typically leads
to a more reliable reasoning step.
Self-evaluation by the LLM. It’s sometimes eas-
ier to recognize the errors in reasoning than avoid
generating them in advance. Thus, it’s beneficial
to allow the LLM to criticize itself with the ques-
tion “Is this reasoning step correct?”, and
use the next-word probability of the token “Yes”
as a reward. The reward evaluates LLM’s own
estimation of the correctness of reasoning. Note
that the specific problems for self-evaluation can
be different depending on the tasks.
Task-specific heuristics. RAP also allows us to
flexibly plug in other task-specific heuristics into
the reward function. For example, in plan gener-
ation for Blocksworld, we compare the predicted
current state of blocks with the goal to calculate a
reward (Section 4.1). The reward encourages the
plan of movements to actively pace towards the
target.

3.3 Planning with Monte Carlo Tree Search

Once equipped with the world model (Section 3.1)
and rewards (Section 3.2), LLMs can reason with
any planning algorithms. We adopt Monte Carlo
Tree Search (MCTS) (Kocsis and Szepesvári, 2006;
Coulom, 2007), a powerful planning algorithm
that strategically explores the space of reasoning
trees and strikes a proper balance between explo-
ration and exploitation to find high-reward reason-
ing traces efficiently.

Specifically, MCTS builds a reasoning tree it-
eratively, where each node represents a state, and
each edge represents an action and the transition
from the current state to the next state after apply-
ing the action (Figure 1). To guide the LLM agent

8157

Pickup
orange

Pickup
blue

Stack it
on blue

Stack it
on orange

…

Pickup
orange

Pickup
blue

Stack it
on blue

Stack it
on orange

…

Pickup
orange

Pickup
red

Pickup
orange

Pickup
blue

Stack it
on blue

Stack it
on orange

…

Pickup
orange

Pickup
red

Q

…

Q

Q

Q

Q

Q

reward

(a) Selection (b) Expansion (c) Simulation (d) Back-propagation

Q

𝑠!

𝑎!

𝑠"

𝑎"

𝑠#

𝑎#

𝑠$

𝑠%

…

Figure 3: An illustration of the four phases in an iteration in MCTS planning (Section 3.3).

to expand and explore the most promising nodes
of the tree, the algorithm maintains a state-action
value function Q : S ×A 7→ R, where Q(s, a) es-
timates the expected future reward of taking action
a in state s. Figure 3 illustrates four operations
in each iteration to expand the tree and update Q
values. The process continues until a specified com-
putational budget (e.g., the number of iterations) is
reached, and the resulting traces are acquired from
the tree. More details and the pseudo-code of the
planning algorithm are given in Appendix A and
Algorithm 1.
Selection. The first phase selects a portion of the
existing tree that is most promising for further ex-
pansion in the next phase. Starting from the root
node (i.e., initial state s0), at each level of the tree,
the algorithm selects a child node as the next node.
The phase finishes when a leaf node of the cur-
rent tree is reached. Figure 3(a) highlights the
selected path in red. To balance between explo-
ration (of less-visited nodes) and exploitation (of
high-value nodes), we use the well-known Upper
Confidence bounds applied to Trees (UCT) (Kocsis
and Szepesvári, 2006) to select each child node.
Specifically, at node s, we select the action in the
tree by considering both the Q value (for exploita-
tion) and uncertainty (for exploration):

a∗ = arg max
a∈A(s)

[
Q(s, a) + w

√
lnN(s)

N(c(s, a))

]
, (1)

where N(s) is the number of times node s has
been visited in previous iterations, and c(s, a) is the
child node of applying a in state s. The less a child
node was visited before (i.e., the more uncertain
about this child node), the higher the second term

in the equation. The weight w controls the balance
between exploration and exploitation.

Expansion. This phase expands the tree by adding
new child nodes to the leaf node selected above.
Given the state of the leaf node, we use the LLM (as
agent) to sample d possible actions (e.g., subques-
tions in math reasoning), and then use the LLM (as
world model) to predict the respective next state,
resulting in d child nodes. Note that if the leaf
node selected above is a terminal node (the end of
a reasoning chain) already, we will skip expansion
and jump to back-propagation.

Simulation. To estimate the expected future re-
wards (Q values), this phase simulates the future sit-
uations of the current node using the world model.
Starting from the current node as above, at each
node s, we create an action following a roll-out
policy and use the world model to predict the next
state. The roll-out process continues until a termi-
nal state is reached. There could be many ways to
define the roll-out policy (e.g., by adding different
randomness). In our experiments, for simplicity
and reduced noises, we follow a similar process as
in the expansion above, i.e., generating d candidate
actions and picking one of the largest local reward
a′ = maxa′ r(s, a). In practice, for efficiency, we
discard the computationally costly components in
r (e.g., the reward from the confidence of state re-
quires sampling the answer multiple times), and
use the resulting lightweight reward function for
selecting actions during simulation.

Back-propagation. Once we reach a terminal state
in the above phases, we obtain a reasoning path
from the root node to the terminal node. We now
back-propagate the rewards on the path to update

8158

the Q value of each state-action pair along the path.
Specifically, we update Q(s, a) by aggregating the
rewards in all future steps of node s.

Once a predetermined number of MCTS itera-
tions is reached, we terminate the algorithm and
select the final reasoning trace from the constructed
tree for evaluation. There are various ways for the
selection. One is to start from the root node and it-
eratively choose the action with the highest Q value
until reaching a terminal. Also, one can directly
select the path from the iterations that yielded the
highest reward, or opt to choose the leaf node (and
the respective root-to-leaf path) that has been vis-
ited the most. In practice, we observed that the
second strategy often yields the best results.

3.4 RAP-Aggregation

For problems, such as math reasoning (Section 4.2)
where only the final answer is required, RAP could
produce multiple traces and answers from differ-
ent MCTS iterations, which will be aggregated to
produce the final answer. We refer to such a mech-
anism as RAP-Aggregation. Note that problems
like plan generation or logical inference require
a complete reasoning trace as output; thus, RAP-
Aggregation will not be applied.

4 Experiments

In this section, we demonstrate the flexibility and
effectiveness of our RAP framework by applying
it to a wide range of problems, including plan gen-
eration in an embodied environment (4.1), mathe-
matical reasoning for solving math word problems
(4.2), and logical reasoning for verifying hypothe-
ses (4.3). The subsequent sections demonstrate
how the world model formulation in RAP enables
a versatile design of the state and action, catering
to various reasoning contexts.

We primarily compare RAP with chain-of-
thought (CoT) (Wei et al., 2022), and its variants
like least-to-most prompting (Zhou et al., 2022) as
baselines. We also consider ensembling multiple
reasoning paths if applicable (also known as self-
consistency (Wang et al., 2022)). Moreover, we
compare RAP with GPT-4 (OpenAI, 2023) when
computation resources allow. By default, we use
the LLaMA-33B model (Touvron et al., 2023a) as
the base LLM for both our methods and baselines,
with a sampling temperature of 0.8. All prompts
are listed in Appendix C.

4.1 Plan Generation

The plan generation task aims to produce a se-
quence of actions to achieve a given goal, possibly
with additional constraints. The ability to generate
plans is important for intelligent embodied agents,
e.g. household robots (Puig et al., 2018).
Task setup. To explore the viability of the RAP
framework for plan generation tasks, we adapt
and evaluate RAP on the Blocksworld bench-
mark (Valmeekam et al., 2022), where an agent
is asked to rearrange the blocks into stacks in a par-
ticular order. We define a state as the current orien-
tation of the blocks and an action as an instruction
that moves blocks. Specifically, an action is com-
posed of one of the 4 verbs (i.e., STACK, UNSTACK,
PUT, and PICKUP) and manipulated objects. For
the action space, we generate the currently valid
actions given the domain restrictions on actions
and the current orientation of the blocks. To tran-
sit between states, we take the current action and
query the LLM to predict the state changes to the
relevant blocks. We then update the current state
by adding the new block conditions and removing
the conditions that are no longer true. Once a state
has met all conditions in the goal or the depth limit
of the tree is reached, we terminate the associated
node.

To assess the quality of actions within this do-
main, we use two separate rewards. First, we
prompt the LLM with some example test cases
along with their solutions, and then calculate the
log probability of the action given the current state
(“Likelihood of action” reward in Section 3.2), de-
noted as r1. This reward reflects the intuition of
the LLM as the reasoning agent. It’s typically in-
dicative when there are few steps left to the goal,
while not as reliable for a distant goal. Additionally,
we compare the new state after performing an ac-
tion with the goal and provide a reward, r2, scaling
with the number of conditions met (“Task-specific
heuristics” reward). Specifically, when all the con-
ditions are met, we assign a super large reward to
make sure this plan will be selected as the solution.
Results. We use test cases from the Blocksworld
dataset (Valmeekam et al., 2023) and group them
by minimum number of actions required, resulting
in 30 cases solvable within 2 steps, 57 cases within
4 steps, and 114 cases within 6 steps. There are
at most 5 blocks in each test case. As the baseline
method, we prompt the LLM with 4 test cases with
corresponding solutions, and ask it to generate a

8159

CoT

unstack the orange
block from on top of the
yellow block

stack the orange block
on top of the red block

pick up the yellow block

stack the yellow block
on top of the blue block

(Goal: The red block is on blue block; the orange block is on the red block)RAP
I have that, the red block is clear, the blue block is clear, the orange block is clear,
the hand is empty, the orange block is on top of the yellow block, the red block is
on the table, the blue block is on the table and the yellow block is on the table.

Pick up the red block.

I have that, the blue block is clear, the orange block is clear, the red block is in the
hand, the hand is holding the red block, the orange block is on top of the yellow
block, the blue block is on the table, and the yellow block is on the table.

Stack the red block on top of the blue block.

I have that, the orange block is clear, the red block is clear, the hand is empty, the
orange block is on top of the yellow block, the red block is on top of the blue block,
the blue block is on the table, and the yellow block is on the table.

Unstack the orange block from on top of the yellow block.

I have that, the orange block is in the hand, the red block is clear, the yellow block
is clear, the hand is holding the orange block, the red block is on top of the blue
block, the blue block is on the table, and the yellow block is on the table.

Stack the orange block on top of the red block.

I have that, the orange block is clear, the yellow block is clear, the hand is empty,
the orange block is on top of the red block, the red block is on top of the blue
block, the blue block is on the table, and the yellow block is on the table.

Figure 4: Comparing reasoning traces in Blocksworld from CoT (left) and RAP (right).

Method 2-step 4-step 6-step

CoT 0.17 0.02 0.00
CoT - pass@10 0.23 0.07 0.00

CoT (GPT-4) 0.50 0.63 0.40

RAP(10) 1.00 0.86 0.26
RAP(20) 1.00 0.88 0.42

Table 1: Results on Blocksworld. RAP(10) and RAP(20)

refer to our method where the iteration number is set to
10 and 20, respectively. “pass@10” means 10 plans are
sampled for each test case, and the test case is regarded
as solved if at least one plan is correct. All other settings
including RAP, only evaluate a single plan.

plan for a new question. This setting is the same
as one described in Valmeekam et al. (2022), and
we denote it as Chain-of-Thought (CoT) as the
solution is generated step by step. For RAP, the
same prompt is shown to help LLMs calculate r1.

As shown in Table 1, CoT with LLaMA-33B
can only generate successful plans for a few 2-step
cases, and completely fails on harder problems.
RAP substantially improves over CoT by nearly
solving all problems within 4 steps, and a part of
6-step problems, achieving an average success rate
of 64%. It’s worth noting that the searching space
of 6-step problems can be as large as 56, while our
algorithm can find a successful plan 42% of the
time within 20 iterations. Even more, our frame-
work allows LLaMA-33B to outperform GPT-4 by
33% relative gain, which is known to have much
stronger reasoning ability (Bubeck et al., 2023).

Case study. We compare the reasoning paths from
CoT and RAP in Figure 4. We summarize the
reasons accounting for the improvement: (1) By
maintaining the world state during reasoning, RAP
can recognize valid actions for the current state,
avoiding generating illegal plans. (2) RAP is capa-
ble of backtracking and trying out other solutions

when the first intuition from the LLM doesn’t work.
Specifically, CoT attempts to achieve the second
goal, i.e. “orange on red”, and achieve that with
the first two steps. However, accomplishing the
second goal first would prevent the first goal from
being satisfied. On the contrary, even though RAP
makes the same mistakes in the first iterations, our
framework drives the agent to explore other possi-
ble paths (as described in Section 3.3) and finally
generate a successful plan. (3) When calculating
rt, we can only feed the current state to the LLM
and hide the history. E.g., in the case of Figure 4,
to calculate the reward for a2, the LLM is provided
with a “new” test case, in which s2 is the initial
state. This significantly lowers the difficulties of
the last few steps, and saves more iterations for
harder decisions of the first few steps.

4.2 Math Reasoning

Task setup. Math reasoning tasks, such as GSM8k
(Cobbe et al., 2021), often include a description and
a final question. To arrive at the answer to the final
question, it is necessary to undertake multi-step
mathematical calculations based on the problem’s
context. It is thus natural to decompose the final
question into a sequence of smaller sub-questions
(Figure 2, right). We define a state as the values
of intermediate variables, and an action as to pro-
pose an incremental sub-question about a unknown
intermediate variable. The world model then re-
sponds to the sub-question using the intermediate
variables and the problem description, adding the
new intermediate variable value into the next state.
We combine the self-evaluation of helpfulness by
LLM rt,1 and the confidence of state rt,2 using
weighted geometric mean rt = rαt,1 ∗ r1−α

t,2 as the
reward function. This reward encourages more rel-
evant and useful sub-questions. To account for the

8160

Method Accuracy (%)

Chain-of-Thought 29.4
+ SC(10) 46.8

Least-to-Most 25.5
+ SC(10) 42.5

RAP(1) 40.0
RAP(10) 48.6

+ aggr 51.6

Table 2: Results on GSM8k. The superscripts indicate
the number of samples or iterations.

1 2 3 4 5 6 7 8 9 10
Number of samples (iterations)

25

30

35

40

45

50

Ac
cu

ra
cy

Method
Least-to-most
Chain-of-thoughts
RAP
RAP (aggr)

Figure 5: Results on GSM-8K, with different numbers
of sampled paths or iterations.

impact of the reasoning path’s length on the reward,
we compute the Q value by using the maximum
of average rewards in future steps.

Q∗(st, at) = max
st,at,rt,...,sl,al,rl,sl+1

avg(rt, . . . , rl). (2)

As a related work, Least-to-Most prompting
(Zhou et al., 2022) shares a similar idea to us in
sub-question decomposition, but they generate sub-
questions all at once. On the contrary, RAP con-
siders each action at based on the current state st,
which enables more informed decisions.
Results. We evaluate our framework on GSM8k, a
dataset of grade school math word problems. We
also evaluate the base model with CoT prompting
(Wei et al., 2022), Least-to-Most prompting (Zhou
et al., 2022), and their self-consistency (Wang et al.,
2022) variants, as the baselines. We use the same
4-shot examples demonstrations for all methods.

As shown in Table 2, our RAP framework an-
swers 48.8% of the problems correctly, outperform-
ing both the Chain-of-Thought and the Least-to-
Most prompting with Self-Consistency. Notably,
this result is achieved when RAP only selects only
one reasoning trace based on the reward. The in-
troduction of RAP-Aggregate further improves the
accuracy by ∼ 3%. We also calculate the accuracy
with different numbers of iterations in MCTS and
self-consistency samples in baselines, as illustrated

Method Pred Acc Proof Acc

CoT 87.8 64.8
CoT + SC 89.8 -

RAP (Ours) 94.2 78.8

Table 3: Results on ProntoQA.

in Figure 5. We find that across all numbers of itera-
tions/samples, RAP-Aggregation outperforms base-
lines consistently, which indicates that when only a
few iterations/samples are allowed, our framework
is significantly better at finding reliable reasoning
paths with the guide of reward.

4.3 Logical Reasoning
Task setup. A logical reasoning task (e.g. PrOn-
toQA (Saparov and He, 2022)) typically provides
a set of facts and logical rules, and a model is re-
quired to verify if a hypothesis fact is true or false
by applying the logical rules to the given facts, as
illustrated in Figure 2. These tasks not only re-
quire the correct final answer (true/false), but also
a detailed proof demonstrating the result. To apply
our framework, we define the state as a fact we
are focusing on, analogous to the human’s working
memory (Baddeley, 1992) for inference. An action
is defined as selecting a rule from the fact set. The
world model performs a one-hop reasoning step to
get a new fact as the next state. The reward is cal-
culated with Self-evaluation (Section 3.2. Specif-
ically, we prompt the LLM with a few examples
with their labels to help it better understand the
quality of reasoning steps. We use the average re-
ward of future steps to update the Q function, the
same as Equation (2) for GSM8k.
Results. We assess the performance of our RAP
framework on PrOntoQA (Saparov and He, 2022)
and adopt their settings of “true” ontology (using
real-world knowledge), “random” ordering of rules.
We mix the examples requiring 3, 4, and 5 rea-
soning hops in a correct proof to prevent LLM
from memorizing when to finish the reasoning. We
sample 500 examples from the generation script
released by Saparov and He (2022). We compare
both the prediction accuracy of the final answer and
the accuracy of the entire proof. We do 20 iterations
for MCTS and 20 samples for self-consistency.

As the results presented in Table 3, our frame-
work achieves a correct answer rate of 94.2%
and a proof accuracy of 78.8%, surpassing the
CoT baseline by 14% proof accuracy and the self-
consistency CoT baseline by 4.4% prediction ac-
curacy. Such substantial improvements clearly

8161

Setting Method 2-step 4-step 6-step 8-step 10-step 12-step All

Easy CoT 0.49 0.18 0.06 0.01 0.01 0.00 0.08
RAP(10) 1.00 0.99 0.75 0.61 0.32 0.32 0.65

Hard CoT 0.22 0.14 0.02 0.02 0.00 0.00 0.05
RAP(10) 0.67 0.76 0.74 0.48 0.17 0.09 0.51

Table 4: Results on the full Blocksworld with Llama-2 70B.

demonstrate the effectiveness of RAP in solving
logical reasoning problems in PrOntoQA. Also, as
the case illustrated in Figure 2, RAP can effectively
recognize when a reasoning chain comes to a dead
end, and propagate the signal back to earlier reason-
ing steps, with the planning algorithm allowing it to
explore alternatives to the previous steps. The self-
evaluation reward further helps RAP to recognize
potential incorrect reasoning steps, encouraging the
agent to avoid them in future iterations.

5 Analysis

5.1 Complex problems

To further study whether RAP can help stronger
LLMs to solve more complex problems, we
conduct experiments on the full Blocksworld
(Valmeekam et al., 2023) dataset using a more ca-
pable LLM, Llama-2 70B (Touvron et al., 2023b).

The full Blocksworld (Valmeekam et al., 2023)
comprises 602 test cases. We group them based
on the minimum number of actions required for
each test case. Our experiments are conducted in
two distinct settings: Easy and Hard. In Easy set-
ting, we assume prior knowledge of the minimum
number of actions for each case. Leveraging this
information, we use demonstration cases that share
the same minimum number of actions as the test
case. For each group of cases, we randomly select
10 cases to create a pool of demonstration cases,
leaving the remaining cases as the test set. Dur-
ing inference, we randomly sample 4-shot demon-
stration cases from this pool and utilize them to
formulate prompts. In the Hard setting, we ran-
domly select 10 cases from the full dataset to form
a demonstration pool and subsequently exclude
these cases from the test set. During inference,
we randomly sample 4-shot demonstration cases
from this global pool, irrespective of the minimum
number of actions required for the test case.

We employ chain-of-thought prompting (Wei
et al., 2022) as a baseline, and evaluate our RAP(10)

(with 10 iterations) with an improved prompting
technique (Appendix E). Our experimental results
are summarized in Table 4. In both the Easy and

Hard settings, RAP demonstrates superior perfor-
mance over CoT by a substantial margin. Notably,
when the test case necessitates a larger number of
steps (six or more) to solve, CoT exhibits a severe
drop in success rates, whereas RAP maintains a
relatively high success rate. Comparing these re-
sults with Section 4.1, we additionally conclude
that RAP is a general framework able to enhance
the reasoning abilities of LLMs, regardless of their
intrinsic capabilities.

5.2 Reward Choice

In our main experiments, we choose the combina-
tion of rewards in our current experiments based on
heuristics and our exploratory experiments. To un-
derstand the effects of the reward choice for LLM
reasoning, we supplement comprehensive experi-
ments on rewards for plan generation (Table 5) and
math reasoning (Table 6).

Generally, the combination of multiple rewards
contributes to the performance. However, the ef-
fects of a reward depends on the nature of tasks.
For example, the action likelihood reward is es-
sential for plan generation, but not very helpful to
mathmatical reasoning. More discussions are in
Appendix F.

6 Conclusion

In this paper, we present Reasoning via Planning
(RAP), a novel LLM reasoning framework that
equips LLMs with an ability to reason akin to
human-like strategic planning. Our framework,
which repurposes the LLM to act as both a world
model and a reasoning agent, enables the LLM
to simulate states of the world and anticipate ac-
tion outcomes, and achieve an effective balance
between exploration and exploitation via Monte-
Carlo Tree Search. Extensive experiments on a
variety of challenging reasoning problems demon-
strate RAP’s superiority over several contemporary
CoT-based reasoning approaches, and even the ad-
vanced GPT-4 in certain settings.

8162

Limitations

In this work, we mainly focus on utilizing frozen
LLMs, whose abilities might be bounded by the
pre-training. In the future, it is worth exploring how
to fine-tune LLMs to better reason and serve as a
world model (Xiang et al., 2023), as well as how to
combine external tools (Hao et al., 2023a; Schick
et al., 2023) with RAP to solve more complex real-
world problems.

Ethics Statement

In this paper, we primarily focus on the applica-
tions on plan generation, mathematical reasoning,
and logical reasoning, posing no significant ethical
concerns. We recognize that future research on bor-
der applications of reasoning with LLMs may pose
a risk of misuse, and we recommend careful con-
sideration of all aspects of safety before relevant
techniques are applied to the real world.

References
Alan Baddeley. 1992. Working memory. Science,

255(5044):556–559.

Robert Eamon Briscoe. 2011. Mental imagery and the
varieties of amodal perception. Pacific Philosophical
Quarterly, 92(2):153–173.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Tom Bylander. 1994. The computational complexity of
propositional strips planning. Artificial Intelligence,
69(1-2):165–204.

Eduardo F Camacho and Carlos Bordons Alba. 2013.
Model predictive control. Springer science & busi-
ness media.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Rémi Coulom. 2007. Efficient selectivity and backup
operators in monte-carlo tree search. In Comput-
ers and Games: 5th International Conference, CG
2006, Turin, Italy, May 29-31, 2006. Revised Papers
5, pages 72–83. Springer.

Yan Ding, Xiaohan Zhang, Chris Paxton, and Shiqi
Zhang. 2023. Task and motion planning with large
language models for object rearrangement. arXiv
preprint arXiv:2303.06247.

Wojciech W Gasparski and Tufan Orel. 2014. Desig-
nology: Studies on Planning for Action, volume 1.
Transaction Publishers.

Dedre Gentner and Albert L Stevens. 2014. Mental
models. Psychology Press.

David Ha and Jürgen Schmidhuber. 2018a. Recurrent
world models facilitate policy evolution. Advances
in neural information processing systems, 31.

David Ha and Jürgen Schmidhuber. 2018b. World mod-
els. arXiv preprint arXiv:1803.10122.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mo-
hammad Norouzi. 2019. Dream to control: Learn-
ing behaviors by latent imagination. arXiv preprint
arXiv:1912.01603.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi,
and Jimmy Ba. 2020. Mastering atari with discrete
world models. arXiv preprint arXiv:2010.02193.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu.
2023a. Toolkengpt: Augmenting frozen language
models with massive tools via tool embeddings. Ad-
vances in neural information processing systems, 36.

Shibo Hao, Bowen Tan, Kaiwen Tang, Bin Ni, Xiyan
Shao, Hengzhe Zhang, Eric Xing, and Zhiting Hu.
2023b. Bertnet: Harvesting knowledge graphs with
arbitrary relations from pretrained language models.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 5000–5015.

Mark K Ho, David Abel, Carlos G Correa, Michael L
Littman, Jonathan D Cohen, and Thomas L Griffiths.
2021. Control of mental representations in human
planning. arXiv e-prints, pages arXiv–2105.

Jie Huang and Kevin Chen-Chuan Chang. 2022. To-
wards reasoning in large language models: A survey.
arXiv preprint arXiv:2212.10403.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky
Liang, Pete Florence, Andy Zeng, Jonathan Tomp-
son, Igor Mordatch, Yevgen Chebotar, et al. 2022.
Inner monologue: Embodied reasoning through
planning with language models. arXiv preprint
arXiv:2207.05608.

8163

Quentin JM Huys, Neir Eshel, Elizabeth O’Nions, Luke
Sheridan, Peter Dayan, and Jonathan P Roiser. 2012.
Bonsai trees in your head: how the pavlovian system
sculpts goal-directed choices by pruning decision
trees. PLoS computational biology, 8(3):e1002410.

Yu-qian Jiang, Shi-qi Zhang, Piyush Khandelwal, and
Peter Stone. 2019. Task planning in robotics: an
empirical comparison of pddl-and asp-based systems.
Frontiers of Information Technology & Electronic
Engineering, 20:363–373.

Philip N Johnson-Laird. 2010. Mental models and
human reasoning. Proceedings of the National
Academy of Sciences, 107(43):18243–18250.

Philip Nicholas Johnson-Laird. 1983. Mental models:
Towards a cognitive science of language, inference,
and consciousness. 6. Harvard University Press.

Ana Jojic, Zhen Wang, and Nebojsa Jojic. 2023. Gpt is
becoming a turing machine: Here are some ways to
program it. arXiv preprint arXiv:2303.14310.

Levente Kocsis and Csaba Szepesvári. 2006. Bandit
based monte-carlo planning. In Machine Learning:
ECML 2006: 17th European Conference on Machine
Learning Berlin, Germany, September 18-22, 2006
Proceedings 17, pages 282–293. Springer.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. arXiv preprint
arXiv:2205.11916.

Yann LeCun. 2022. A path towards autonomous ma-
chine intelligence version 0.9. 2, 2022-06-27. Open
Review, 62.

Belinda Z Li, Maxwell Nye, and Jacob Andreas. 2022.
Language modeling with latent situations. arXiv
preprint arXiv:2212.10012.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu,
Shiqi Zhang, Joydeep Biswas, and Peter Stone.
2023. Llm+ p: Empowering large language mod-
els with optimal planning proficiency. arXiv preprint
arXiv:2304.11477.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning. arXiv preprint arXiv:2301.13379.

Yutaka Matsuo, Yann LeCun, Maneesh Sahani, Doina
Precup, David Silver, Masashi Sugiyama, Eiji
Uchibe, and Jun Morimoto. 2022. Deep learning,
reinforcement learning, and world models. Neural
Networks.

John McCarthy. 1963. Situations, actions, and causal
laws. Technical report, STANFORD UNIV CA
DEPT OF COMPUTER SCIENCE.

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christo-
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu,
Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu,
Asli Celikyilmaz, et al. 2023. Augmented language
models: a survey. arXiv preprint arXiv:2302.07842.

OpenAI. 2023. Gpt-4 technical report.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beat-
riz Borges, Antoine Bosselut, Robert West, and
Boi Faltings. 2023. Refiner: Reasoning feedback
on intermediate representations. arXiv preprint
arXiv:2304.01904.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li,
Tingwu Wang, Sanja Fidler, and Antonio Torralba.
2018. Virtualhome: Simulating household activities
via programs.

Abulhair Saparov and He He. 2022. Language models
are greedy reasoners: A systematic formal analysis of
chain-of-thought. arXiv preprint arXiv:2210.01240.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
arXiv preprint arXiv:2302.04761.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hu-
bert, Karen Simonyan, Laurent Sifre, Simon Schmitt,
Arthur Guez, Edward Lockhart, Demis Hassabis,
Thore Graepel, et al. 2020. Mastering atari, go, chess
and shogi by planning with a learned model. Nature,
588(7839):604–609.

Jay Schulkin. 2012. Action, perception and the brain:
Adaptation and cephalic expression. Springer.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter
Abbeel, Danijar Hafner, and Deepak Pathak. 2020.
Planning to explore via self-supervised world models.
In International Conference on Machine Learning,
pages 8583–8592. PMLR.

Noah Shinn, Beck Labash, and Ashwin Gopinath. 2023.
Reflexion: an autonomous agent with dynamic mem-
ory and self-reflection. ArXiv, abs/2303.11366.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioan-
nis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore
Graepel, et al. 2017. Mastering chess and shogi by
self-play with a general reinforcement learning algo-
rithm. arXiv preprint arXiv:1712.01815.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. 2022.
Progprompt: Generating situated robot task plans
using large language models. arXiv preprint
arXiv:2209.11302.

Edward C Tolman. 1948. Cognitive maps in rats and
men. Psychological review, 55(4):189.

8164

http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/1806.07011
http://arxiv.org/abs/1806.07011

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan,
and Subbarao Kambhampati. 2022. Large language
models still can’t plan (a benchmark for llms on plan-
ning and reasoning about change). arXiv preprint
arXiv:2206.10498.

Karthik Valmeekam, Sarath Sreedharan, Matthew Mar-
quez, Alberto Olmo, and Subbarao Kambhampati.
2023. On the planning abilities of large language
models (a critical investigation with a proposed
benchmark). arXiv preprint arXiv:2302.06706.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, and Denny Zhou. 2022. Self-consistency im-
proves chain of thought reasoning in language mod-
els. arXiv preprint arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

Sean Welleck, Ximing Lu, Peter West, Faeze Brah-
man, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. 2022. Generating sequences by learning to
self-correct. arXiv preprint arXiv:2211.00053.

Philipp Wu, Alejandro Escontrela, Danijar Hafner,
Pieter Abbeel, and Ken Goldberg. 2023. Day-
dreamer: World models for physical robot learning.
In Conference on Robot Learning, pages 2226–2240.
PMLR.

Jiannan Xiang, Tianhua Tao, Yi Gu, Tianmin Shu, Zirui
Wang, Zichao Yang, and Zhiting Hu. 2023. Language
models meet world models: Embodied experiences
enhance language models. Advances in neural infor-
mation processing systems, 36.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. arXiv
preprint arXiv:2305.10601.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc Le, and Ed Chi. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

Xinyu Zhu, Junjie Wang, Lin Zhang, Yuxiang Zhang,
Ruyi Gan, Jiaxing Zhang, and Yujiu Yang. 2022.
Solving math word problem via cooperative rea-
soning induced language models. arXiv preprint
arXiv:2210.16257.

8165

A MCTS Planning

We adapt MCTS to search for the optimal reason-
ing path (Algorithm 1). Compared with traditional
applications of MCTS, we are faced with a large
reasoning space, and the heavy computational cost
of LLMs. Thus, we made several modifications
to the classic MCTS in our implementation: (1)
For open domain problems, e.g., math problems,
it’s impossible to enumerate all actions (subques-
tions), so we reduce the action space by sampling
a fixed number of potential actions from LLMs,
conditioned on a prompt of the current state and in-
context demonstration. (2) In the selection phase,
if there are actions that haven’t been visited before,
we estimate the Q value with lightweight local re-
wards, e.g., self-evaluation reward, and then select
the action with UCT. This provides prior knowl-
edge for the exploration, which is crucial given the
limited iteration budgets.

B Experiment Settings

B.1 Language Model Decoding

We use random sampling with a temperature of 0.8.
The generation is cut off at the maximum length of
2048 or a newline token.

B.2 Computing Resources

All of our experiments run on 4 × NVIDIA A5000
GPUs with 24GB memory.

C Prompt

C.1 Plan Generation

We show the prompt to calculate the action likeli-
hood for RAP below. The same prompt is also ap-
plied in CoT baseline. <init_state> and <goals>
would be instantiated by the problem to solve.

I am playing with a set of blocks where
I need to arrange the blocks into
stacks. Here are the actions I can
do

Pick up a block
Unstack a block from on top of another

block
Put down a block
Stack a block on top of another block

I have the following restrictions on my
actions:

I can only pick up or unstack one block
at a time.

I can only pick up or unstack a block
if my hand is empty.

I can only pick up a block if the block
is on the table and the block is
clear. A block is clear if the
block has no other blocks on top of
it and if the block is not picked
up.

I can only unstack a block from on top
of another block if the block I am
unstacking was really on top of the
other block.

I can only unstack a block from on top
of another block if the block I am
unstacking is clear.

Once I pick up or unstack a block, I am
holding the block.

I can only put down a block that I am
holding.

I can only stack a block on top of
another block if I am holding the
block being stacked.

I can only stack a block on top of
another block if the block onto
which I am stacking the block is
clear.

Once I put down or stack a block, my
hand becomes empty.

[STATEMENT]
As initial conditions I have that, the

red block is clear, the yellow
block is clear, the hand is empty,
the red block is on top of the blue
block, the yellow block is on top
of the orange block, the blue block
is on the table and the orange
block is on the table.

My goal is to have that the orange
block is on top of the red block.

My plan is as follows:

[PLAN]
unstack the yellow block from on top of

the orange block
put down the yellow block
pick up the orange block

8166

Algorithm 1 RAP-MCTS
Require: Initial state s0, state transition probability function pθ , reward function rθ , action generator pϕ, number

of generated actions d, depth limit L, number of roll-outs N , and exploration weight w
1: Initialize memory of actions A : S 7→ A, children c : S ×A 7→ S and rewards r : S ×A 7→ R
2: Initialize the state-action value function Q : S ×A 7→ R and visit counter N : S 7→ N
3: for n← 0, . . . , N − 1 do
4: t← 0
5: while N(st) > 0 do ▷ Selection
6: N(st)← N(st) + 1

7: at ← argmaxa∈A(st)

[
Q(st, a) + w

√
lnN(st)

N(c(st,a))

]

8: rt = r(st, at), st+1 ← c(st, at)
9: t← t+ 1

10: end while
11: while st is not a terminal state ∧ t ≤ L do
12: for i← 1, . . . , d do ▷ Expansion
13: Sample a

(i)
t ∼ pϕ(a | st), s(i)t+1 ∼ pθ(st, a

(i)
t), and r

(i)
t ∼ rθ(st, a

(i)
t)

14: Update A(st)← {a(i)
t }di=1, c(st, a

(i)
t)← s

(i)
t+1, and r(st, at)← r

(i)
t

15: end for
16: at+1 ← argmaxa∈A(st) r(st, at) ▷ Simulation
17: rt ← r(st, at), st+1 ← c(st, at)
18: t← t+ 1
19: end while
20: for t′ ← t, . . . , 0 do ▷ Back propagation
21: Update Q(st′ , at′) with {rt′ , rt′+1, . . . , rt}
22: end for
23: end for

stack the orange block on top of the
red block

[PLAN END]

[STATEMENT]
As initial conditions I have that, the

orange block is clear, the yellow
block is clear, the hand is empty,
the blue block is on top of the red
block, the orange block is on top
of the blue block, the red block is
on the table and the yellow block
is on the table.

My goal is to have that the blue block
is on top of the red block and the
yellow block is on top of the
orange block.

My plan is as follows:

[PLAN]
pick up the yellow block
stack the yellow block on top of the

orange block
[PLAN END]

[STATEMENT]
As initial conditions I have that, the

red block is clear, the blue block

is clear, the orange block is
clear, the hand is empty, the blue
block is on top of the yellow
block, the red block is on the
table, the orange block is on the
table and the yellow block is on
the table.

My goal is to have that the blue block
is on top of the orange block and
the yellow block is on top of the
red block.

My plan is as follows:

[PLAN]
unstack the blue block from on top of

the yellow block
stack the blue block on top of the

orange block
pick up the yellow block
stack the yellow block on top of the

red block
[PLAN END]

[STATEMENT]
As initial conditions I have that, the

red block is clear, the blue block
is clear, the yellow block is
clear, the hand is empty, the

8167

yellow block is on top of the
orange block, the red block is on
the table, the blue block is on the
table and the orange block is on
the table.

My goal is to have that the orange
block is on top of the blue block
and the yellow block is on top of
the red block.

My plan is as follows:

[PLAN]
unstack the yellow block from on top of

the orange block
stack the yellow block on top of the

red block
pick up the orange block
stack the orange block on top of the

blue block
[PLAN END]

[STATEMENT]
As initial conditions I have that,

<initial_state>
My goal is to have that <goals>.

My plan is as follows:

[PLAN]

For the next state prediction with the world
model, we apply the prompts conditioned on the
last action. Here we show the prompt to update
the state after a “pick up” action as an example.
Again, <state> and <action> would be instanti-
ated with the current state and action.

I am playing with a set of blocks where
I need to arrange the blocks into
stacks. Here are the actions I can
do

Pick up a block
Unstack a block from on top of another

block
Put down a block
Stack a block on top of another block

I have the following restrictions on my
actions:

I can only pick up or unstack one block
at a time.

I can only pick up or unstack a block
if my hand is empty.

I can only pick up a block if the block
is on the table and the block is
clear. A block is clear if the
block has no other blocks on top of
it and if the block is not picked
up.

I can only unstack a block from on top
of another block if the block I am
unstacking was really on top of the
other block.

I can only unstack a block from on top
of another block if the block I am
unstacking is clear. Once I pick up
or unstack a block, I am holding
the block.

I can only put down a block that I am
holding.

I can only stack a block on top of
another block if I am holding the
block being stacked.

I can only stack a block on top of
another block if the block onto
which I am stacking the block is
clear. Once I put down or stack a
block, my hand becomes empty.

After being given an initial state and
an action, give the new state after
performing the action.

[SCENARIO 1]
[STATE 0] I have that, the white block

is clear, the cyan block is clear,
the brown block is clear, the hand
is empty, the white block is on top
of the purple block, the purple
block is on the table, the cyan
block is on the table and the brown
block is on the table.

[ACTION] Pick up the brown block.
[CHANGE] The hand was empty and is now

holding the brown block, the brown
block was on the table and is now
in the hand, and the brown block is
no longer clear.

[STATE 1] I have that, the white block
is clear, the cyan block is clear,
the brown block is in the hand, the
hand is holding the brown block,

8168

the white block is on top of the
purple block, the purple block is
on the table and the cyan block is
on the table.

[SCENARIO 2]
[STATE 0] I have that, the purple block

is clear, the cyan block is clear,
the white block is clear, the hand
is empty, the white block is on top
of the brown block, the purple
block is on the table, the cyan
block is on the table and the brown
block is on the table.

[ACTION] Pick up the cyan block.
[CHANGE] The hand was empty and is now

holding the cyan block, the cyan
block was on the table and is now
in the hand, and the cyan block is
no longer clear.

[STATE 1] I have that, the cyan block
is in the hand, the white block is
clear, the purple block is clear,
the hand is holding the cyan block,
the white block is on top of the
brown block, the purple block is on
the table and the brown block is on
the table.

[SCENARIO 3]
[STATE 0] <state>
[ACTION] <action>
[CHANGE]

C.2 Math Reasoning
We show the prompt of RAP for math reasoning
as below. The prompt is used for both action pro-
posal and next state prediction. After instantiate
<question>, we append a prefix Question 5.1 to
the prompt, so that we can sample the first action
with the LLM. The future actions are sampled sim-
ilarly, except that all previous sub-questions and
sub-answers need to be appended to the prompt,
following the formats of in-context demonstration.
The next state prediction, i.e., answering the sub-
question, works in the same way.

Given a question, please decompose it
into sub-questions. For each
sub-question, please answer it in a
complete sentence, ending with "The
answer is". When the original

question is answerable, please
start the subquestion with "Now we
can answer the question: ".

Question 1: Four years ago, Kody was
only half as old as Mohamed. If
Mohamed is currently twice as 30
years old, how old is Kody?

Question 1.1: How old is Mohamed?
Answer 1.1: He is currently 30 * 2 = 60

years old. The answer is 60.
Question 1.2: How old was Mohamed four

years ago?
Answer 1.2: Four years ago, he must

have been 60 - 4 = 56 years old.
The answer is 56.

Question 1.3: How old was Kody four
years ago?

Answer 1.3: Kody was half as old as
Mohamed four years ago. Thus, Kody
was 56 / 2 = 28 years old. The
answer is 28.

Question 1.4: Now we can answer the
question: How old is Kody?

Answer 1.4: She is currently 28 + 4 =
32 years old. The answer is 32.

Question 2: On a moonless night, three
fireflies danced in the evening
breeze. They were joined by four
less than a dozen more fireflies
before two of the fireflies flew
away. How many fireflies remained?

Question 2.1: How many fireflies joined?
Answer 2.1: The fireflies were joined

by four less than a dozen more
fireflies, which are 12 - 4 = 8
fireflies. The answer is 8.

Question 2.2: Now we can answer the
question: How many fireflies
remained?

Answer 2.2: Three fireflies were
dancing originally. They were
joined by 8 fireflies before two of
them flew away. So there were 3 + 8
- 2 = 9 remaining. The answer is 9.

Question 3: Ali has four $10 bills and
six $20 bills that he saved after
working for Mr. James on his farm.
Ali gives her sister half of the

8169

total money he has and uses 3/5 of
the remaining amount of money to
buy dinner. Calculate the amount of
money he has after buying the
dinner.

Question 3.1: How much money does Ali
have in total?

Answer 3.1: Ali has four $10 bills and
six $20 bills. So he has 4 * 10 + 6
* 20 = 160 dollars. The answer is
160.

Question 3.2: How much money does Ali
give to his sister?

Answer 3.2: Ali gives half of the total
money he has to his sister. So he
gives 160 / 2 = 80 dollars to his
sister. The answer is 80.

Question 3.3: How much money does Ali
have after giving his sister the
money?

Answer 3.3: After giving his sister the
money, Ali has 160 - 80 = 80
dollars left. The answer is 80.

Question 3.4: How much money does Ali
use to buy dinner?

Answer 3.4: Ali uses 3/5 of the
remaining amount of money to buy
dinner. So he uses 80 * 3/5 = 48
dollars to buy dinner. The answer
is 48.

Question 3.5: Now we can answer the
question: How much money does Ali
have after buying the dinner?

Answer 3.5: After buying the dinner,
Ali has 80 - 48 = 32 dollars left.
The answer is 32.

Question 4: A car is driving through a
tunnel with many turns. After a
while, the car must travel through
a ring that requires a total of 4
right-hand turns. After the 1st
turn, it travels 5 meters. After
the 2nd turn, it travels 8 meters.
After the 3rd turn, it travels a
little further and at the 4th turn,
it immediately exits the tunnel. If
the car has driven a total of 23
meters around the ring, how far did
it have to travel after the 3rd
turn?

Question 4.1: How far did the car
travel except for the 3rd turn?

Answer 4.1: It travels 5 meters after
the 1st, 8 meters after the 2nd,
and 0 meters after the 4th turn.
It’s a total of 5 + 8 + 0 = 13
meters. The answer is 13.

Question 4.2: Now we can answer the
question: How far did the car have
to travel after the 3rd turn?

Answer 4.2: The car has driven a total
of 23 meters around the ring. It
travels 13 meters except for the
3rd turn. So it has to travel 23 -
13 = 10 meters after the 3rd turn.
The answer is 10.

Question 5: <question>

C.3 Logical Reasoning
We show the prompt for action proposal, action
likelihood calculation, and next state prediction.
<fact> and <query> would be instantiated with
the problem.

Given a list of facts, and a current
claim, output one possible fact as
the next step. Be sure to copy the
exact sentences in the facts. Do
not change any wording. Do not
create your own words.

Facts 1: Each lepidopteran is an
insect. Each arthropod is a
protostome. Every animal is
multicellular. Protostomes are
invertebrates. Each whale is bony.
Each painted lady is a butterfly.
Invertebrates are animals.
Butterflies are lepidopterans. Each
insect is six-legged. Every insect
is an arthropod. Arthropods are not
bony.

Query 1: True or false: Sally is not
bony.

Claim 1.1: Sally is an insect.
Next 1.1: Each insect is six-legged.
Claim 1.2: Sally is a butterfly.
Next 1.2: Butterflies are lepidopterans.
Claim 1.3: Sally is a lepidopteran.
Next 1.3: Each lepidopteran is an

insect.

8170

Claim 1.4: Sally is not bony.
Next 1.4: Finish.
Claim 1.5: Sally is an arthropod.
Next 1.5: Arthropods are not bony.
Claim 1.6: Sally is a painted lady.
Next 1.6: Each painted lady is a

butterfly.

Facts 2: Prime numbers are natural
numbers. Every Mersenne prime is
not composite. Imaginary numbers
are not real. Every real number is
a number. Natural numbers are
integers. Every real number is
real. Every Mersenne prime is a
prime number. Natural numbers are
positive. Prime numbers are not
composite. Integers are real
numbers.

Query 2: True or false: 127 is not real.
Claim 2.1: 127 is real.
Next 2.1: Finish.
Claim 2.1: 127 is a natural number.
Next 2.1: Natural numbers are integers.
Claim 2.2: 127 is a prime number.
Next 2.2: Prime numbers are natural

numbers.
Claim 2.3: 127 is a real number.
Next 2.3: Every real number is real.
Claim 2.4: 127 is a Mersenne prime.
Next 2.4: Every Mersenne prime is a

prime number.
Claim 2.5: 127 is an integer.
Next 2.5: Integers are real numbers.

Facts 3: Lepidopterans are insects.
Every animal is multicellular. Each
insect is an arthropod. Each
invertebrate is an animal. Insects
are six-legged. Arthropods are
small. Arthropods are
invertebrates. Each butterfly is a
lepidopteran. Whales are not small.

Query 3: True or false: Polly is not
small.

Claim 3.1: Polly is an arthropod.
Next 3.1: Arthropods are small.
Claim 3.2: Polly is an insect.
Next 3.2: Each insect is an arthropod.
Claim 3.3: Polly is small.
Next 3.3: Finish.

Claim 3.4: Polly is a lepidopteran.
Next 3.4: Lepidopterans are insects.

Facts 4: Every cat is a feline. Mammals
are vertebrates. Bilaterians are
animals. Vertebrates are chordates.
Carnivores are mammals. Mammals are
not cold-blooded. Each chordate is
a bilaterian. Every feline is a
carnivore. Snakes are cold-blooded.
Animals are not unicellular. Every
carnivore is not herbivorous.

Query 4: True or false: Fae is not
cold-blooded.

Claim 4.1: Fae is a feline.
Next 4.1: Every feline is a carnivore.
Claim 4.2: Fae is not cold-blooded.
Next 4.2: Finish.
Claim 4.2: Fae is a mammal.
Next 4.2: Mammals are not cold-blooded.
Claim 4.3: Fae is a cat.
Next 4.3: Every cat is a feline.
Claim 4.4: Fae is a carnivore.
Next 4.4: Carnivores are mammals.

Facts 5: Prime numbers are prime. Real
numbers are numbers. Every integer
is a real number. Real numbers are
not imaginary. Mersenne primes are
prime numbers. Complex numbers are
imaginary. Each prime number is a
natural number. Natural numbers are
positive. Each Mersenne prime is
prime. Each natural number is an
integer.

Query 5: True or false: 7 is imaginary.
Claim 5.1: 7 is not imaginary.
Next 5.1: Finish.
Claim 5.1: 7 is a natural number.
Next 5.1: Each natural number is an

integer.
Claim 5.2: 7 is a prime number.
Next 5.2: Each prime number is a

natural number.
Claim 5.3: 7 is a real number.
Next 5.3: Real numbers are not

imaginary.
Claim 5.4: 7 is an integer.
Next 5.4: Every integer is a real

number.

8171

Facts 6: Spiders are not six-legged.
Insects are six-legged. Insects are
arthropods. Every animal is not
unicellular. Invertebrates are
animals. Lepidopterans are insects.
Every arthropod is segmented.
Arthropods are invertebrates. Every
butterfly is a lepidopteran. Stella
is a butterfly.

Query 6: True or false: Stella is
six-legged.

Claim 6.1: Stella is an insect.
Next 6.1: Insects are six-legged.
Claim 6.2: Stella is a lepidopteran.
Next 6.2: Lepidopterans are insects.
Claim 6.3: Stella is a butterfly.
Next 6.3: Every butterfly is a

lepidopteran.
Claim 6.4: Stella is six-legged.
Next 6.4: Finish.

Facts 7: <fact>
Query 7: <query>

D Related work: world model and
planning

Recent years have witnessed successful applica-
tions of planning algorithms (Sekar et al., 2020),
such as AlphaZero (Silver et al., 2017), and
MuZero (Schrittwieser et al., 2020). These algo-
rithms are typically based on tree-structured search
and are designed to effectively maintain the balance
of exploration and exploitation. Knowledge of tran-
sition dynamics is the prerequisite for planning,
and recent research on model-based reinforcement
learning propose to learn a world model (or dynam-
ics model) to plan or assist policy learning. To im-
prove sample efficiency, previous research attempts
to learn a world model from offline trajectories, and
directly learn a policy within the world model (Ha
and Schmidhuber, 2018a,b). With latent imagina-
tion in a world model, RL agents can be trained to
solve long-horizon tasks (Hafner et al., 2019, 2020).
Besides, the world model is also shown to be help-
ful to physical robot learning (Wu et al., 2023). In
this paper, we use LLMs as world models and apply
a planning algorithm to search for a reasoning path.
This is similar in spirit to model predictive control
(Camacho and Alba, 2013). Compared with pre-
vious works, our framework uses general LLMs
as the world model and can be adapted to a wide

Table 5: Ablation study on Blocksworld. R1 is action
likelihood reward, R2 is task-specific reward, and R3 is
self-evaluation reward.

R1 R2 R3 Success

✓ ✓ ✗ 0.88
✓ ✓ ✓ 0.91
✓ ✗ ✗ 0.46
✗ ✓ ✗ 0.21
✗ ✗ ✓ 0.14
✗ ✗ ✗ 0.02

Table 6: Ablation study on GSM8k (first 300 examples).
R1 is state transition confidence reward, R2 is action
likelihood reward, and R3 is self-evaluation reward.

R1 R2 R3 RAP(1) RAP(10) +aggr

✓ ✗ ✓ 0.410 0.450 0.503
✓ ✗ ✗ 0.350 0.447 0.490
✓ ✓ ✗ 0.373 0.423 0.443

range of open-domain reasoning tasks. Xiang et al.
(2023) propose to train LLMs wih a external world
model to gain embodied experience, while RAP
focuses on the inference stage and is compatible
with any training methods.

E Adaptive Prompting

Through our preliminary experiments, we observed
that the performance of LLMs is impacted by the
discrepancy in difficulty between demonstration
cases and the test cases. In the case of RAP, when
a new state is predicted, we reformulate the remain-
ing task as a new test case, initialized with the pre-
dicted new state. This new test case would require
a smaller minimum number of actions, leading to
a disparity in the distribution of the demonstration
cases and the new cases. To mitigate this issue, we
pre-compute the intermediate states of the demon-
stration cases beforehand. During inference, we
truncate the trace from the beginning for each new
state in an iteration, which reduces the minimum
action number of the demonstration cases as the
search tree deepens. This technique significantly
enhances the performance of RAP, especially for
more intricate problems, which are more suscepti-
ble to distribution mismatches.

8172

F Reward Choice

Results. We conduct comprehensive experiments
on rewards for plan generation (Table 5) and math
reasoning (Table 6). Note that, in both tables, the
first row indicates the setting we use in the main
experiments. As shown in Table 5, the combina-
tion of action likelihood and task-specific reward
(row 1) can significantly outperform the single re-
ward baselines (row 3, 4, 5). Interestingly, adding
the self-evaluation reward can further improve the
performance slightly (row 2). Furthermore, as
the results on the first 300 samples of GSM8k
shown in Table 6, we can see adding either ac-
tion likelihood (row 3) or self-evaluation (row 1)
on top of confidence reward (row 2) can boost the
RAP performance of only using confidence reward
(row 1) with one iteration, but action likelihood
reward downgrades the accuracy with more itera-
tions. The self-evaluation reward leads to the best
performance overall. This indicates the importance
of self-evaluation reward in guiding reasoning as
an effective and computationally efficient prior to
exploration.
Self-evaluation and action likelihood. The re-
wards of self-evaluation and action likelihood are
of particular interest, as they can be applied to a
wide range of reasoning tasks. Generally, the best
usage and combination with other rewards require
empirical design and understanding of the task na-
ture, and their effectiveness can vary significantly
across different tasks. Here, we provide some intu-
itions behind the reward choices:

(a) For the problems in which one reasoning step
is short and structured, the action likelihood can
be very indicative. Otherwise, it may be disturbed
by unimportant tokens and become unreliable. For
instance, a single step within the Blocksworld do-
main typically adheres to specific patterns (e.g.,
PICK/PUT/STACK a block. . .), rendering the ac-
tion likelihood indicative. However, in the math
domain, a reasoning step is expressed in natural
language sentences, allowing for greater freedom
and potentially introducing noise.

(b) For the problems where it’s easier to recog-
nize some errors afterward than avoid them during
generation, self-evaluation emerges as a helpful
mechanism for enhancing reasoning accuracy. In
mathematical reasoning, LLMs may struggle to
generate a correct reasoning step in the first place,
but the detection of calculation or logic errors is
more feasible. In Blocksworlds, however, assessing

the quality of a candidate action is not straightfor-
ward and still requires multi-step reasoning. This
characteristic diminishes the accuracy of the self-
evaluation reward, making it less helpful especially
given that likelihood already provides a good intu-
ition for search.

8173

