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Abstract

Referring image segmentation is a task that
aims to predict pixel-wise masks correspond-
ing to objects in an image described by natu-
ral language expressions. Previous methods
for referring image segmentation employ a cas-
cade framework to break down complex prob-
lems into multiple stages. However, its lim-
itations are also apparent: existing methods
within the cascade framework may encounter
challenges in both maintaining a strong focus
on the most relevant information during spe-
cific stages of the referring image segmenta-
tion process and rectifying errors propagated
from early stages, which can ultimately result
in sub-optimal performance. To address these
limitations, we propose the Joint Mask Contex-
tual Embedding Learning Network (JMCELN).
JMCELN is designed to enhance the Cascade
Framework by incorporating a Learnable Con-
textual Embedding and a Progressive Align-
ment Network (PAN). The Learnable Contex-
tual Embedding module dynamically stores and
utilizes reasoning information based on the cur-
rent mask prediction results, enabling the net-
work to adaptively capture and refine pertinent
information for improved mask prediction accu-
racy. Furthermore, the Progressive Alignment
Network (PAN) is introduced as an integral part
of JMCELN. PAN leverages the output from
the previous layer as a filter for the current
output, effectively reducing inconsistencies be-
tween predictions from different stages. By
iteratively aligning the predictions, PAN guides
the Learnable Contextual Embedding to incor-
porate more discriminative information for rea-
soning, leading to enhanced prediction qual-
ity and a reduction in error propagation. With
these methods, we achieved state-of-the-art re-
sults on three commonly used benchmarks, es-
pecially in more intricate datasets.

1 Introduction

Referring image segmentation is a task that aims to
predict a pixel-wise mask for objects referred to in

Figure 1: Comparison of our work and previous work.
(a) Representative late fusion cascade networks (i.e.
CGAN(Luo et al., 2020a) and CRIS(CRI, 2022)). The
results shown here are from CRIS. (b) Cascade networks
with early fusion (i.e. LAVT(Yang et al., 2022) and
EFN(Feng et al., 2021)). The results are from LAVT. (c)
The proposed network. CEL: Contextual Embedding
Learning Learning. MP: Mask Predicting. The Yel-
low Arrows show the Contextual Embedding Learning,
while The Brown Arrows show the Mask Predicting.

a natural language expression. It is one of the most
basic tasks in human-robot interaction(Dautenhahn,
2007; Goodrich et al., 2008). In particular, it helps
robots understand commands and localize corre-
sponding objects. Unlike semantic/instance seg-
mentation(Strudel et al., 2021; Chen et al., 2018),
which focuses on the image only, referring image
segmentation involves two different modalities: im-
age and text. Thus, in referring image segmenta-
tion, how to achieve a good alignment between the
image and the most beneficial information in text
is essential for the mask prediction.

The prevailing methods in the field of referring
image segmentation rely on the cascade framework,
where static-text are merged with feature maps pro-
duced by the current stage to generate the output
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of the subsequent stage. As illustrated in Fig. 1(a)
and (b), the late and early fusion frameworks are
the two commonly used cascade frameworks. The
late fusion framework, as adopted in methods like
CGAN and CRIS(Luo et al., 2020a; CRI, 2022), ex-
tracts text and image features separately, and then
integrates them to form multi-modality features
for reasoning. On the other hand, the early fusion
framework, employed in methods such as LAVT
and EFN(Yang et al., 2022; Feng et al., 2021), ex-
tracts language features and conducts the entire
fusion operation in the image encoding backbone.
The Cascade framework is a methodology that in-
volves breaking down complex problems into mul-
tiple stages or steps, with each step building upon
the previous ones. This approach can enhance the
salience or prominence of referent objects in multi-
stage reasoning processes. Despite their effective-
ness, its limitations are also apparent: (a) If the
static text used in each stage of the cascade frame-
work is overly complex or does not appropriately
focus on the most relevant information for that par-
ticular stage, it can hinder the effectiveness of the
approach. For instance, consider the expression in
Fig. 1, "The giraffe not eating grass from a pole."
A human observer would inspect the "giraffe" in
the image and utilize additional attributes to local-
ize the target. (b) The mistakes made in the early
stages of the Cascade Framework can propagate
and potentially affect the later stages. Since the rea-
soning process in the Cascade Framework is built
upon previous stages, any errors or incorrect infor-
mation introduced early on can impact subsequent
stages and potentially lead to incorrect conclusions
or results.

To address the aforementioned issue, we pro-
pose the Joint Mask Contextual Embedding Learn-
ing Network (JMCELN). JMCELN is designed
to enhance the Cascade Framework by incorpo-
rating a Learnable Contextual Embedding and a
Progressive Alignment Network (PAN). The pri-
mary objective is to improve the accuracy of mask
prediction by dynamically storing and utilizing rea-
soning information for each subsequent step. The
Learnable Contextual Embedding in JMCELN al-
lows for the dynamic storage and utilization of
reasoning information. It is updated based on the
current mask prediction results, rather than rely-
ing on static natural language expressions. This
adaptability enables the network to capture and re-
fine pertinent information effectively, leading to

improved mask prediction. Additionally, we intro-
duce the Progressive Alignment Network (PAN)
as part of JMCELN. PAN operates by using the
output from the previous layer as a filter for the cur-
rent output. It addresses inconsistencies between
predictions from different stages by reducing the
response of the current output and guiding the Con-
textual Embedding to include more discriminative
information for reasoning. This iterative alignment
process enhances the quality of predictions and
reduces the propagation of mistakes. By combin-
ing the Learnable Contextual Embedding and PAN,
JMCELN achieves dynamic reasoning and refine-
ment of mask predictions. This integrated approach
overcomes the limitations of static text and offers
a powerful solution for enhancing the salience and
accuracy of referent objects within multi-stage rea-
soning tasks.

In summary, cascade network presents two key
challenges: the repetition of static text accumulates
noise throughout reasoning and misunderstanding
reasoning at earlier stages propagate, causing inac-
curate predictions in subsequent stages. To avoid
introduce too much noise, we introduce Learnable
Contextual Embedding. Learnable Contextual Em-
bedding aims to provide each stage dynamic and
the most pertinent information, while PAN combats
inconsistencies between stages to avoid error prop-
agation. Learnable Contextual Embedding and Pro-
gressive Alignment Network ensure the successful
operation of our error correction mechanism within
the cascade network.

To evaluate the effectiveness of the proposed
methods, we conduct extensive on three commonly
used benchmarks and we achieved state-of-the-art
results especially in in more intricate datasets.

In conclusion, our main contributions are as fol-
lows:

• We designed a Joint Mask and Contextual
Embedding Learning Network (JMCELN) in
which replace static-text with Learnable Con-
textual Embedding for stage reasoning, which
endows the network with the ability to capture
pertinent information for mask predicting in
every stage.

• To obtain a more accurate mask, we propose
the Progressive Alignment Network (PAN). If
the predictions of the two stages are inconsis-
tent, the PAN will reduce response of the later
output and then force the Contextual Embed-
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ding to generate more discriminative informa-
tion.

• Our methods achieved state-of-the-art perfor-
mance on three commonly used datasets: Re-
fcoco(Yu et al., 2016), Refcoco+(Yu et al.,
2016) and Refcocog(Mao et al., 2016), es-
pecially in in more intricate datasets, Ref-
coco+(Yu et al., 2016) and Refcocog(Mao
et al., 2016). Extensive ablation studies
demonstrated the validity of each of the pro-
posed components.1.

2 Related Work

Referring Image Segmentation The task of refer-
ring image segmentation was first proposed by Hu
et al. (Hu et al., 2016). All work in this area can be
categorized into two types. The first type includes
one-stage image and language fusing of different
layer feature maps in the image encoding backbone
followed by a multi-layer feature exchange for bet-
ter results. For example, RMI(Liu et al., 2017) and
DMN(Margffoy-Tuay et al., 2018) utilize a mem-
ory unit(Hochreiter and Schmidhuber, 1997; Lei
et al., 2018) to fuse individual words with visual
features. CMPC(Huang et al., 2020) first perceives
all entities in the image and then suppresses unre-
lated ones by graph reasoning. CMSA(Ye et al.,
2019) has a cross-modal self-attention module to
capture long-range dependencies between image
and language. BRINet(Hu et al., 2020) utilizes
vision-guided linguistic attention to get useful lan-
guage information and then language-guided visual
attention to get the final outputs. BUSNet(Yang
et al., 2021) uses a bottom-up shift that progres-
sively locates the referent. All these methods work
separately on feature maps from different layers in
the image encoding backbone. Then, they fuse the
feature maps produced by different layers by us-
ing a memory unit(Liu et al., 2017; Margffoy-Tuay
et al., 2018; Huang et al., 2020) or multi-level fea-
ture exchange(Ye et al., 2019). Not so much work
implements methods like those above anymore be-
cause a one-stage interaction between visual and
language information is not enough to predict accu-
rate pixel-wise masks. The more recent second type
of method aims at achieving better language and
visual alignment. In particular, CGAN(Luo et al.,
2020a) has a cascade framework in which language
features can fuse many times with multi-modality

1Code: https://github.com/toyottttttt/referring-
segmentation.

features output from the previous layer. CRIS(CRI,
2022) utilizes a similar framework as CGAN(Luo
et al., 2020a), while it benefits from a pre-trained
CLIP(Radford et al., 2021a) model. EFN(Feng
et al., 2021) and LAVT(Yang et al., 2022) show
that better cross-modal alignments can be achieved
through early fusion of linguistic and visual fea-
tures. VLT(Ding et al., 2021) generates multiple
sets of word attention weights to represent different
understandings. All of these methods employ static
text to fuse with multi-modality features, while the
information required in every stage is different.

Dynamic Query based Segmentation Inspired
by DETR(Carion et al., 2020), some studies have
proposed to use a zero/random initial vector to
hook helpful information from the image fea-
ture map in semantic/instance/panoptic segmen-
tation. MaskFormer(Cheng et al., 2021) and
Mask2Former(Cheng et al., 2022) treat segmen-
tation as a mask classification task and use a ran-
dom initial query to generate information from
the image feature map for final segmentation. K-
Net(Zhang et al., 2021) employs semantic kernels
and instance kernels as dynamic kernels to gen-
erate helpful information stage-by-stage from the
image encoding backbone (i.e. the CNN and Trans-
former) for the final mask prediction. Panoptic
SegFormer(Li et al., 2022) proposes to use things
queries and stuff queries to store different types
of information. All these studies verify that learn-
able embedding can catch demanding information
based on the task requirements. Our study is the
first to introduce a learnable embedding which can
be updated adaptively in accordance with the re-
quirements of each stage for stage reasoning.

3 Methods

The overall framework is presented below. Then,
we detail the image and text encoder, LSRAN, and
JMCELN. Finally, the upsampling module and loss
is introduced.

3.1 Overall Framework

First, we feed an image and a natural language
expression into the image encoder and language
encoder to generate image features and language
features. Fig.2 (a) shows the overall framework.
Then, the Neck fuses these two modalities into
multi-modality features Fm ∈ R

H
8
×W

8
×C , where

H and W are the height and width of the input
image and C is the channel dimension. Then, the
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Figure 2: (a) Overall framework of our methods. It consists of a text encoder for the natural language expressions
and an image encoder for the input images. Language features and image features are fused by the neck. The
Long-Short Relation-Aware Network (LSRAN) captures long and short relations between objects in the image. We
employ a cascade framework. q0 is updated in each stage. (b) Details of LSRAN. Conv(k, d) means convolutions
with a kernel size of k and dilated rate of d. w is the window size for window attention. (c) Details of the Progressive
Alignment Network (PAN).

spatial relations between objects in one image are
estimated by using the LSRAN based on Fm. The
output is Fmt ∈ R

H
8
×W

8
×C . Unlike previous meth-

ods which utilize static-text to interface with the
multi-modality output of each stage, we use Learn-
able Contextual Embedding q0 ∈ RQ×C , where
Q is the dimensionality of contextual embedding
to control the description ability. Each contextual
embedding is randomly initialized by different pa-
rameters which means the information taken by
different contextual embedding is not exactly same.
The information carried by qi is updated to qi+1

in accordance with Fm and F i
mt. q

i+1 serves as a
K, V to update F i

mt into F
(i+1)
mt′ . F (i+1)

mt′ is fed into
the Progressive Alignment Network (PAN) to ob-
tain the output F (i+1)

mt . There are n stages in total.
Finally, we upsample the refined Fn

mt as the final
output.

3.2 Image & Text Encoder and Neck

The referring image segmentation task has two in-
puts: image I ∈ RH×W×3 and natural language
expression L ∈ RT , where T is the number of
words in the natural language expression.

The image encoder uses the third-, fourth-, and
fifth-layer feature maps of ResNet(He et al., 2016).

The maps represent Fv1 ∈ R
H
8
×W

8
×C1 , Fv2 ∈

R
H
16

×W
16

×C2 and Fv3 ∈ R
H
32

×W
32

×C3 , where Ci de-
notes the channel dimension of of the 3rd-5th lay-
ers. The Transformer(Vaswani et al., 2017) is used
as the language encoder to extract the global textual
representation Fs ∈ R1×C and textual representa-
tion for every word Ft ∈ RT×C .

We obtain a multi-modality feature from the
multi-level image features Fv1 , Fv2 , Fv3 and global
textual feature Fs in a top-down manner. We re-
shape and repeat the global textual feature Fs,H32 ×
W
32 × C and multiply the result with the highest
level image feature Fv3 to form multi-modal fea-
tures (Eq.1). Then, the lower level feature Fv2 and
Fv1 are blended into the multi-modal feature by
using Eq.2, where i ∈ [1, 2]. Here, σ(·) means
batch normalization(Ioffe and Szegedy, 2015) with
LeakyReLu, Up(·) denotes 2× upsampling, [·, ·]
means concatenation, while Ws is a linear em-
bedding and Wvi and Wmi are convolution lay-
ers for channel projection. The final output is
Fm = Fm0 ∈ R

H
8
×W

8
×C .

Fm2 = σ(FsWs)⊙ σ(Fv3Wv3) (1)

Fmi−1 = σ(Wmi([Up(Fmi), σ(FviWvi)])) (2)
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3.3 Long-Short Relation-Aware Network
There are likely to be various relations in one im-
age. A relation between two distant objects is
called a long relation, whereas a relation between
two nearby objects is called a short relation. To
better represent long relations and short relations,
we propose the Long-Short Relation-Aware Net-
work (LSRAN), as depicted in Fig.2 (b). Differ-
ent from previous work, LSRAN aims to estimate
object-wise relationships, instead of traditional
pixel-wise relationship analysis (e.g., ASPP(Chen
et al., 2017)), on feature maps for correctly iden-
tifying target objects. Considering that, we use a
window attention(Liu et al., 2021a) to transfer in-
formation to every pixel inside window to identify
semantic meaning. Then, the LSRAN employs di-
lated convolutions to capture the different types of
relations between objects. We concatenate the four
different relations and mix their channels by using a
1× 1 convolution. To obtain boundary information
more precisely, we feed Fm into a 3×3 convolution
and multiply the results with the relation features
obtained. The final output is Fmt.

3.4 Joint Mask Contextual Embedding
Learning Network

The total framework for Joint Mask and Contextual
Embedding Learning Network is shown in Fig.2 (a).
It is composed of two parts: contextual embedding
learning and mask predicting with the Progressive
Alignment Network.

3.4.1 Contextual Embedding Learning
Different from the previous work(Luo et al., 2020a;
CRI, 2022; Yang et al., 2021; Ding et al., 2021)
which uses a static text for reasoning, we intro-
duce a learnable embedding q0 that can be updated
adaptively based on the output of the current stage.
Here, we use n to denote the total number of stages
and i to represent the order of stage. The contextual
embedding learning is based on multi-head atten-
tion(Vaswani et al., 2017). The (i + 1)-th stage
Contextual Embedding is updated from the i-th
stage Contextual Embedding, multi-modality fea-
tures Fm, and the output of the i-th features F i

mt.
Fm provides the initial multi-modality features and
F i
mt provides reasoning results in the i-th stage.

Eq.3 is the (i+1)-th query generation process. The
target for contextual embedding learning is to hook
the most expedient information based on the cur-
rent reasoning output. Because initial Contextual
Embedding is random randomly initialized, so it

has no useful information. Multiplication with Fm

leds to a reasonable correlation (attention map) be-
tween contextual embedding and original text and
visual features. This attention map is applied to
Fmt to reduce distinct responses and discard un-
necessary information.

qi+1 = softmax(
qiF T

m√
dk

)F i
mt + qi (3)

3.4.2 Mask Predicting
Multi-Head Attention After obtaining the updated
qi+1, we refresh F i

mt to F i+1
mt . qi+1 already con-

tains the information required for generating F i+1
mt ,

so we set F i
mt as the Q and qi+1 as the K and V in

the multi-head attention to obtain F i+1
mt′ , as shown

in Eq.4.

F i+1
mt′ = softmax(

F i
mt(q

i+1)T√
dk

)qi+1 + F i
mt (4)

Progressive Alignment Network Inspired by Hor-
Net(Rao et al., 2022), we propose a progressive
alignment network for a two-stage feature align-
ment and update. Our progressive alignment net-
work contains three layers, as shown in Fig.2
(c). First, F i+1

mt′ is projected by a 1 × 1 convo-
lution into (C4 + C

2 + C) in channel dimension.
After a 7 × 7 depthwise convolution, we split
F i+1
mt′ into three parts whose dimensions are [F1 ∈

R
H
8
×W

8
×C

4 ,F2 ∈ R
H
8
×W

8
×C

2 ,F3 ∈ R
H
8
×W

8
×C ].

Here, the output of the previous stage F i
mt is also

projected by a 1× 1 convolution into C
4 in channel

dimension. The output is multiplied by F1 and
the result is fed into a 3× 3 convolution with C

2 in
channel dimension to form a new filter for F2. This
process is repeated three times to reduce inconsis-
tent responses in F i+1

mt′ progressively. The output
produced by filtering is fed into SwitchNorm(Luo
et al., 2019) and then F i

mt is added to form the final
output F i+1

mt . In the PAN, the output from the pre-
vious layer acts as filters to reduce the responses of
inconsistent pixels predicted by the current layer
progressively, which in turn forces the query to
generate more discriminative information for the
next stage.

3.5 Training Loss

After the multi-stage reasoning decoder, we already
have reasonable results with accurate locations. We
progressive upsample reasoning results into origi-
nal size. The output feature map is F ∈ RH×W×2,
and the target mask is M ∈ RH×W . Here, we use
the cross-entropy loss to regress the final segmen-
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tation mask.

4 Experiments

Datasets To verify the effectiveness of our ap-
proach, we conducted experiments on three com-
monly used datasets: Refcoco(Yu et al., 2016), Ref-
coco+(Yu et al., 2016), Refcocog(Mao et al., 2016).
The Refcoco dataset targets 50,000 different ob-
jects in 19,994 images with 142,209 unique natural
language expressions, which means each image
contains more than one instance and each instance
is described by more than one natural language
expressions. Different from the Refcoco dataset,
Refcoco+ has no location words in their referring
expressions, which means we can locate instances
by their attributes only. The length of a sentence
in Refcoco+ is longer than in Refcoco. Refcoco+
consists of 141,564 expressions, 49856 objects and
19,992 images. The natural language expressions
for these two datasets are generated by a two-player
game(Kazemzadeh et al., 2014). Refcocog is the
most challenging one among the three. Refcocog
utilizes Mechanical Turk to generate natural lan-
guage expressions. The dataset contains richer and
longer descriptions. There are 104,560 expressions
that describe 54,822 objects in 25,711 images. The
average length of the referring expressions is 8.3
words. We used the UNC partition on the Refcocog
dataset. The images of the three datasets were col-
lected from MS-COCO(Lin et al., 2014).

Implementation Details The text and image
encoder were initiated by CLIP(Radford et al.,
2021b). For the image encoder, we employed
ResNet-101(He et al., 2016). All of the experi-
ments are conducted on two A100 GPUs. In what
follows, n represents the number of stages of the
Joint Mask and Contextual Embedding Learning
Network and it is set to n=6. Q represents the
number of Contextual Embedding. Here, it is set
to Q=20. The channel dimension C=1024 unless
otherwise stated. The input images were resized
to 416×416. For all three datasets, Refcoco, Ref-
coco+ and Refcocog, we set all sentence lengths to
30. All multi-head attentions had eight heads. The
model was trained by the AdamW(Loshchilov and
Hutter, 2017) optimizer for 60 epochs with a batch
size of 20. The initial learning rate was 0.000006
and it was decreased by polynomial learning rate
decay with power 0.9. argmax along the channel
dimension of the score maps was used as the predic-
tion during inference. Following previous methods,

we train our model on its training set, choose the
model’s parameters with the best mIoU on the val
split, and evaluate on test set. Evaluation metric
details are show in Supplymentary Material.

4.1 Main results

Tab.1 compares the mIoUs of our method with
those of other state-of-the-art methods. For a fair
comparison, we report mIoU scores for all meth-
ods by standardized the data preprocessing method
and trained previous methods using their released
source code, strictly adhering to the training pro-
cess outlined in their papers2. Our method outper-
formed the previous methods on almost all datasets.
On the Refcoco dataset, our method surpassed the
state-of-the-art LAVT(Yang et al., 2022) by 0.7%
and 2.02% on val and testA splits, respectively,
while all methods obtained similar mIoUs on the
testB split. Moreover, it outperformed LAVT by
2.77%, 4.38%, and 0.52% on val, testA, and testB
of the Refcoco+ dataset, respectively. On the most
challenging dataset, Refcocog, which has signifi-
cantly longer sentences, our model also achieved
a noticeable improvement of 1.84% and 2.11% on
the val and test splits. It is evident that our method
demonstrates superior performance on more chal-
lenging datasets, particularly Refcoco+ and Ref-
cocog, which are characterized by longer sentence
lengths and more attribute descriptions.

It’s worth mentioning that it outperformed
CRIS(CRI, 2022) by a large margin, around 4%,
on all datasets and splits. CRIS(CRI, 2022) utilizes
the same pre-trained parameters as our method and
it also employs the cascade framework; however,
it keeps a input language features for every stage
static. These results demonstrate the effectiveness
of our method.

4.2 Ablation Study

The Proposed Components Tab.2 show the exper-
iments on Refcoco testB to verify the effectiveness
of our proposed model. We train our model on its
training set, choose the model’s parameters with the
best mIoU on the val split, and evaluate on test set.
Due to the space limit, we report the ablation ex-
periments on Refcoco testB as it is considered the
most difficult one, which better demonstrates the
effectiveness of our proposed modules. 1 denotes
our baseline whose design only contains image en-
coder, language encoder, neck and upsampleing

2more details can be found in supplymentary material.
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Year
Refcoco Refcoco+ Refcocog

val testA testB val testA testB val test
RMI(Liu et al., 2017) ICCV’17 41.98 43.46 42.56 24.98 26.89 24.91 31.78 31.70
RRN(Li et al., 2018) CVPR’18 54.33 56.12 52.78 37.22 40.24 34.12 41.22 41.90
CMSA(Ye et al., 2019) CVPR’19 59.00 62.22 55.99 40.41 45.19 34.60 40.07 40.27
BRINet(Hu et al., 2020) CVPR’20 62.74 65.23 60.80 49.32 54.20 43.20 47.55 47.74
CMPC(Huang et al., 2020) CVPR’20 63.82 66.78 61.49 52.08 56.83 45.84 52.66 53.27
LSCM(Hui et al., 2020) ECCV’20 63.46 65.88 61.52 52.01 56.51 45.24 50.87 51.15
MCN(Luo et al., 2020b) CVPR’20 62.91 64.88 60.22 52.19 56.43 46.99 48.64 49.22
CGAN(Luo et al., 2020a) MM’20 64.86 68.04 62.07 51.03 55.51 44.06 51.01 51.69
LTS(Jing et al., 2021) CVPR’21 65.43 67.76 63.08 54.21 58.32 48.02 54.40 54.25
EFN(Feng et al., 2021) CVPR’21 65.02 65.98 63.28 53.18 56.45 47.31 55.01 54.85
VLT(Ding et al., 2021) ICCV’21 65.65 68.29 62.73 55.50 59.20 49.36 52.99 56.65
CRIS(CRI, 2022) CVPR’22 70.28 73.39 65.41 62.92 67.75 53.24 60.72 61.04
LAVT(Yang et al., 2022) CVPR’22 73.70 75.67 70.44 64.22 68.31 56.84 62.24 62.88
Ours - 74.40 77.69 70.43 66.99 72.69 57.34 64.08 64.99

Table 1: Comparison with state-of-the-art methods on three widely used datasets. We trained all methods on their
released code with 416×416 input resolution and used mIoU as the evaluation metric.

# Methods mIoU Pr@50 Pr@90
1 Baseline 62.57 70.11 23.73
2 +LSRAN 68.03 77.53 27.36
3 +Cascade 69.23 78.08 29.54
4 Ours(w/o PAN) 69.46 78.86 30.56
5 Ours(w/ PAN) 70.43 79.88 31.54
6 w/o adaptive LCE 69.11 77.60 29.22

Table 2: Ablation study on Refcoco testB.

module. In order to enhance the baseline perfor-
mance, we introduce LSRAN, a novel approach
that incorporates the capability to capture relations
between objects within a single image. Our pro-
posed method not only achieves a significant im-
provement of approximately 5% in mIoU, but also
enhances the target rate (Pr@50) and mask quality
(Pr@90). We further investigate the impact of in-
tegrating the Cascade framework with Learnable
Contextual Embedding, and present the results in 3.
The Cascade framework with Learnable Contextual
Embedding leads to a significant improvement of
approximately 7% in mIoU which demonstrate the
effectiveness of combining the Cascade framework
and Learnable Contextual Embedding in improving
the quality of reasoning outcomes.

In 4, we take a step further by combining
LSRAN with the Cascade framework. In this hy-
brid approach, the outputs from the neck compo-
nent solely provide image and language informa-
tion, while LSRAN introduces additional relation
information. By incorporating LSRAN into the

Cascade framework, we slight improve mIoU, tar-
geting rate and mask quality. To address the issue
of error propagation from early stages, we intro-
duce the Progressive Alignment Network (PAN)
at the end of each stage. In comparison to the
results presented in Experiment 4, Experiment 5
showcases the effectiveness of PAN in rectifying
error propagation. Specifically, PAN demonstrates
its ability to improve the mean mIoU by approxi-
mately 1%, increase the targeting rate by 1.02%,
and enhance mask quality. These findings high-
light the important role of PAN in mitigating the
impact of error propagation and further improving
the performance of the overall system.

In Experiment 6, we investigate the effectiveness
of the feedback mechanism by excluding the up-
date of Learnable Contextual Embedding (LCE)
based on each stage’s output. Instead, we input the
previous stage’s fused features, denoted as Fm and
F 0
mt, into each subsequent stage. The purpose of

this evaluation is to assess the impact of feedback
on the overall performance. Surprisingly, the re-
sults reveal a decrease in mIoU by approximately
1.32% compared to previous experiments. This
indicates that updating the Learnable Contextual
Embedding based on each stage’s output plays a
crucial role in refining the reasoning process and
improving the accuracy of the segmentation task.

5 Visualization

Fig.3 shows some qualitative results, comparing
our method and previous state-of-the-art methods.
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Figure 3: Qualitative comparison of our work and previous work: LAVT and CRIS.

Figure 4: Qualitative comparison of ablation study. #4 and #5 indicates the number in Table 2.

Model Split mIoU Pr@50 Pr@90
LAVT testA 68.31 78.31 26.77
Ours 72.69(+4.38) 83.74(+5.43) 29.71(+2.94)
LAVT testB 56.84 63.24 24.34
Ours 57.34(+0.50) 64.31(+1.07) 24.34(+0.00)

Table 3: Results for refcoco+, testA and testB.

While LAVT and CRIS encountered difficulties
and made mistakes in these four challenging cases,
our method demonstrated robust performance and
successfully tackled them.

Figure 4 presents qualitative results obtained
from the ablation study. Starting from the base-
line and progressing to experiment #4, the Cascade
framework with Learnable Contextual Embedding
is introduced. This addition results in improved per-
formance, as observed in the case of the "blue car"
where the Cascade framework with Learnable Con-
textual Embedding predicts a more compact mask
compared to the baseline. Experiment #5 intro-
duces the Progressive Alignment Network (PAN).
Notably, in the cases of "robertson" and "girl front
right with hair up", PAN demonstrates its ability
to rectify incorrect predictions during the reason-
ing process. This showcases the effectiveness of
PAN in refining and improving the accuracy of the
segmentation outputs.

6 Limitations

As shown in Tab.3, our methods produce a relative
improvement in the mIoU metric of 4.38% in testA
and 0.50% in testB. Moreover, in testA, there is
4.38% improvement in Pr@50, while Pr@90 only
improves by 2.94%. The improvement in Pr@50
in testB is 1.07%, while Pr@90 shows no improve-
ment. By analyzing testA and testB, we find the
target in testA is the human instances whose size
are larger while the target in testB is mainly ob-
jects whose size are smaller. This indicates that
our methods have more ability to identify larger
target objects, but for the smaller objects, the im-
provement is limited. And our method is not good
at producing high-quality output mask. Compared
with LAVT, our cascade stages only uses 52× 52
feature maps for reasoning, while LAVT utilizes
a clear-sighted early fusion method, in which the
query is fused with a larger feature map with a
104× 104 size in the first stage. The larger feature
map is good for finding smaller objects and keep-
ing the boundary. However, because the number
of layers in image encoding backbone designed
for other task is fixed, it is difficult for early fu-
sion methods to define their own reasoning stages,
which limits their performance. For example, Swin-
Transformer(Liu et al., 2021b) has four layers, so
LAVT performs image-text alignment four times.
By comparison, we adopt the late fusion cascade
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framework which is more flexible in defining the
number of reasoning stages fit for this task.

7 Conclusion and Future Work

We proposed a Joint Mask and Contextual Em-
bedding Learning Network that dynamically up-
dates the Contextual Embedding on the basis of the
reasoning output and a long-short relation-aware
network to learn objects relations. Experimental
results demonstrate the effectiveness of our meth-
ods. In the future, we want to handle the limitation
mentioned in Sec.6 and improve the targeting rate
for small objects and recover boundary information
better.
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