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Abstract

Large Language Models (LLMs) have achieved
remarkable success in many formal language
oriented tasks, such as structural data-to-text
and semantic parsing. However current bench-
marks mostly follow the data distribution of
the pre-training data of LLMs. Therefore, a
natural question rises that do LLMs really un-
derstand the structured semantics of formal lan-
guages. In this paper, we investigate this prob-
lem on a special case, converse binary relation.
We introduce a new benchmark ConvRe fo-
cusing on converse relations, which contains
17 relations and 1240 triples extracted from
popular knowledge graph completion datasets.
Our ConvRe features two tasks, Re2Text and
Text2Re, which are formulated as multi-choice
question answering to evaluate LLMs’ ability
to determine the matching between relations
and associated text. For the evaluation proto-
col, apart from different prompting methods,
we further introduce variants to the test text
and few-shot example text. We conduct ex-
periments on three popular LLM families and
have observed various scaling trends. The re-
sults suggest that LLMs often resort to shortcut
learning and still face challenges on our pro-
posed benchmark.

1 Introduction

Large Language Models (LLMs) have demon-
strated impressive empirical results on various NLP
tasks (Bubeck et al., 2023; OpenAI, 2023; An-
thropic, 2023), including formal language-oriented
tasks such as structural data-to-text (Xiang et al.,
2022) and semantic parsing (Chen et al., 2021; Li
et al., 2023a), which require sophisticated com-
prehension and production of structured language
content. Despite these promising advances, a criti-
cal concern remains largely unexplored: do these
LLMs genuinely understand the nuanced semantics

♣ Equal contribution.
† Corresponding authors.

of formal languages, or are they merely exploiting
statistical patterns inherent in their pre-training
data? If such shortcuts exist, it implies that LLMs
may struggle to generalize to novel and unique for-
mal language definitions, potentially hindering the
robustness and scalability of practical applications.

In this work, we delve into this question by focus-
ing on a specific aspect of formal language under-
standing: the comprehension of converse relations.
As shown in Figure 1, the converse relation rede-
fines the semantic relation between entities while
keeping the surface form of the triple unchanged.
For instance, the triple (x, has part, y) should be
interpreted as "x has a part called y" in the normal
relation (Codd, 1983), while "y has a part called
x" in converse form. Notably, LLMs are largely
unfamiliar with converse relations, as the data they
learn in pre-training mostly comprises normal rela-
tion. It’s imperative for LLMs to accurately under-
stand and utilize these converse relations, i.e., truly
following instructions rather than recalling memo-
rized patterns (shortcuts) about normal relation, as
it significantly impacts the semantic coherence of
their output.

To systematically evaluate the competence of
LLMs in recognizing and processing converse re-
lations, we introduce a novel benchmark, ConvRe.
This benchmark draws upon 17 diverse relations
and 1240 triples derived from prominent knowl-
edge graph completion datasets. ConvRe intro-
duces two primary tasks, Re2Text and Text2Re,
formatted as multiple-choice question answering
tests. These tasks challenge LLMs to correctly
match relations (Re) with their corresponding natu-
ral language text (Text).

During empirical evaluation, we add various
prompting methods and introduce variants to the
text. More specifically, we manually craft exam-
ples of different types in the few-shot prompting,
creating a more challenging testbed for these mod-
els. Our findings, based on thorough experiments
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Figure 1: Illustration of converse relation comprehension by LLMs. This diagram highlights the unique challenges
converse relations present for LLMs, potentially leading to diverse scaling trends.

Triple Relation Notation Associated Text Text Variants

Normal R s s′

(x,R, y) x has a part called y. x possesses a specific component named y.

(x, has part, y) Converse R⊤ s⊤ s⊤′

y has a part called x. y contains x.

Table 1: The definition of normal and converse relation. Examples are provided below the notations. A triple can be
defined to represent the normal relation R or the converse relation R⊤. Each relation is associated with a pairing
natural language text, which can further be paraphased.

using three popular LLM families, reveal interest-
ing scaling trends and suggest that performance on
understanding formal languages might be inflated
by shortcut learning. This exploration contributes
to the growing body of literature that seeks to as-
sess the true capabilities of LLMs, and the extent
to which they genuinely comprehend the semantics
of formal languages.

2 ConvRe Benchmark

In this section, we will introduce the motivation,
task formulation and design choice of our ConvRe
benchmark as well as the details surrounding data
collection.

2.1 Motivation

The recent surge in the performance of LLMs in
understanding formal language, including tasks
such as semantic parsing or data2text, can poten-
tially be misleading. Traditional evaluation bench-
marks used in such tasks often reflect statistical
patterns similar to those found in the pre-training

data of LLMs. We posit that this could lead LLMs
to take a shortcut * as described in Geirhos et al.
(2020), thereby inflating the understanding of for-
mal language semantics. Instead of comprehen-
sively grasping the semantics, the LLMs might
simply be learning the statistical tendencies present
in their training data. To this end, we propose a
new benchmark that uses normal and converse rela-
tions to examine the true semantic comprehension
capabilities of LLMs.

2.2 Normal and Converse Relation
Normal Relation Formally, a binary relation R
over sets X and Y is a set of ordered pairs (x, y)
consisting of elements x ∈ X and y ∈ Y (Codd,
1983). Usually, a normal relation R is represented
as R = {(x,R, y) =⇒ xRy}, where R is the
specific relation phrase. Normal relations usually
appear in the knowledge graph, along with a pair of

*There are some terminologies, such as spurious correla-
tion and superficial cues/bias/artifacts, that are similar to the
term shortcut used in this paper. We provide supplementary
explanations of these terms in Appendix A for better clarity.
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Triple Relation Notation Associated NL NL Variants

Normal R s s0

(x, R, y) x is a hypernym of y. y is more specific than x.

(x, hypernym, y)
Converse R> s> s>0

y is a hypernym of x. y is more general than x.

Table 1: The definition of normal and converse relation. Examples are provided below the notations. A triple can be
defined to represent the normal relation R or the converse relation R>. Each relation is associated a pairing natural
language representation, which can further be paraphased.

Re2Text Task
Read the instruction and then answer the question using A or B.

Instruction: (x, has part, y) indicates that y has a part called x.
Question: (?, has part, hilt)

A: Find an entity that has a part called hilt.
B: Find an entity that is a part of hilt.

To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer:

Re2Text Task (hard)
Read the instruction and then answer the question using A or B.

Instruction: (x, has part, y) indicates that y has a part called x.
Question: (?, has part, hilt)

A: Find an entity that has a part called hilt.
B: Find an entity that hilt contains.

To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer:

Figure 2: Examples of Re2Text and Text2Re tasks on converse relation. We additionally paraphrase the natural
language representations (answer candidates for Re2Text, question for Text2Re) to make them differ from the
sentences in the Instruction.

language representation along with a query triple,137

the model is asked to determine the natural lan-138

guage representation that best aligns semantically139

with the query triple.140

Text2Re The second task can be considered141

as the reverse of Re2Text. Given an instruc-142

tion—formatted similarly to Re2Text—and a query143

sentence, the model is required to identify the query144

triple that best matches the query sentence.145

Following McKenzie et al. (2022), both tasks146

are formulated as multi-choice question-answering147

tasks (illustrated in Figure 3), providing a concrete148

method for evaluation.149

2.4 Text Variants150

Test Variants in Zero-shot Prompting Geirhos151

et al. (2020), highlighted a phenomenon in deep152

learning known as shortcut learning. These are de-153

cision rules that achieve high performance on stan- 154

dard benchmarks but fail to generalize under more 155

challenging testing conditions such as real-world 156

scenarios. This issue is particularly significant in 157

language processing tasks, where a language model 158

may show an ability to reason that is learned from 159

the training data, but its performance can plummet 160

drastically—sometimes to levels equivalent to ran- 161

dom guessing—when superficial correlations are 162

removed from the dataset (Niven and Kao, 2019). 163

To assess how extensively current LLMs lever- 164

age shortcut learning for the evaluation tasks we 165

have designed, we introduce variants to the text in 166

both our tasks. In the Re2Text task, we paraphrase 167

one answer candidate, while in the Text2Re task, 168

we paraphrase the question. Specifically, we mod- 169

ify the key predicate and restructure the sentence 170

(as illustrated in figure 3). We note that the subtle 171

variations on the test text bring different effects 172

3

x

Triple: (sword, has part, hilt)

Text: sword has a part called hilt

LLM Pre-Training Corpus

Triple: (sword, has part, hilt)

Text: sword has a part called hilt

LLM Pre-Training Corpus

shortcut

shortcut

shortcut

no shortcut(altered)

⭐

Expected answer: B

Expected answer: B

Figure 2: The Re2Text task converts relation into semantically equivalent natural language text. Given that LLMs
mostly encounter normal relations during pre-training, deciphering converse relations poses a significant challenge.
LLMs tend to exploit textual similarity shortcuts for prediction, which can mislead the model’s performance as it
bypasses genuine comprehension. In the regular scenario (top), two shortcuts lead the model towards divergent
answers, where the incorrect answer (A) will not be overly preferred. In the hard scenario (bottom), the text for
the correct response (B) is modified, transforming two shortcuts into a single one. This solitary shortcut is more
likely to misdirect the model towards the incorrect answer (A), highlighting the pitfalls of shortcuts learning.

subject x and object y. This triple can be mapped
to a semantically equivalent natural language text
s. Examples can be found in Table 1.

Converse Relation In addition to the normal re-
lation, we also introduce a converse relation that
utilizes the same triple format (x,R, y) to denote
the converse mapping R⊤. It defines a new form by
swapping the pairing order, which can be expressed
as R⊤ = {(x,R, y) =⇒ yRx}. Accordingly, in
the converse mapping, the triple (x,R, y) corre-
sponds to the converse natural language text s⊤.
Examples are provided in Table 1 for further clar-
ity.

It’s worth noting that both the normal and con-
verse relation definitions used in our evaluation
have a localized scope to minimize ambiguity. This
process helps us ascertain whether LLMs can un-
derstand the semantics of the custom relation defi-
nition rather than resorting to shortcut learning.

2.3 Task Formulation

We designed two tasks to assess LLMs’ understand-
ing of normal and converse relations. Both tasks
focus on semantic equivalence translation between
relations (Re) and natural language text (Text).

Re2Text In this task, given the specification of a
normal/converse relation and its associated natural
language text along with a query triple, the model
is asked to determine the natural language text that
best aligns semantically with the query triple.

Text2Re The second task can be considered
as the reverse of Re2Text. Given an instruc-
tion—formatted similarly to Re2Text—and a query
sentence, the model is required to identify the query
triple that best matches the query sentence.

Following McKenzie et al. (2023), both tasks
are formulated as multi-choice question-answering
tasks, providing a concrete method for evaluation.

2.4 Text Variants

Geirhos et al. (2020) highlighted a phenomenon in
deep learning known as shortcut learning. These
are decision rules that achieve high performance
on standard benchmarks but fail to generalize un-
der more challenging testing conditions such as
real-world scenarios. This issue is particularly sig-
nificant in language processing tasks, where a lan-
guage model may show an ability to reason that
is learned from the training data, but its perfor-
mance can drop drastically—sometimes to levels
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Text2Re Task
Read the instruction and then answer the question using A or B.

Instruction: (x, has part, y) indicates that y has a part called x.
Question: Find an entity that possesses a specific component named hilt.

A: (?, has part, hilt)
B: (hilt, has part, ?)

To convert the question into a semantically equivalent triple query, which choice is correct?
Answer:

Text2Re Task (hard)
Read the instruction and then answer the question using A or B.

Instruction: (x, has part, y) indicates that y has a part called x.
Question: Find an entity that has a part called hilt.

A: (?, has part, hilt)
B: (hilt, has part, ?)

To convert the question into a semantically equivalent triple query, which choice is correct?
Answer:

Figure 3: Examples of Re2Text and Text2Re tasks on converse relation. We additionally paraphrase the natural
language representations (answer candidates for Re2Text, question for Text2Re) to make them differ from the
sentences in the Instruction.

to the two tasks, which will be evidenced by the173

empirical results in our experiments (section 4.2).174

An intuitive explanation is provided in figure 3. De-175

tailed zero-shot prompting methods can be found176

in table 2.2177

Example Variants in Few-shot Prompting Be-178

side the variants on the test text, we additionally179

introduce variants to the text in examples for the180

few-shot prompting. Since we have identified the181

most challenging settings for the two tasks in zero-182

shot, we will employ such settings for the test text183

and dub them as hard tests in few-shot. Accord-184

ingly, we incorporate text variants to the examples185

used in the few-shot prompting. Comprehensively,186

the few-shot prompts used in our benchmark are187

listed in table 3. Details of arrangement of text188

variants are illustrated in table 4. More specifically,189

if the hard test setting corresponds to the unaltered190

test text, then the unaltered examples will be de-191

noted as hard. On the contrary, the altered exam-192

ples will be denoted as regular. This setup shares193

the similar spirit as the complexity based prompt-194

ing (Fu et al., 2022) that hard examples would help195

clarify the problem and reduce the model bias.196

2Relation settings and hint will be thoroughly disscussed
in section 3.2.

2.5 Data Collection 197

To make our tasks more comprehensive, and thus 198

test the LLMs’ ability to reason in more complex 199

ways, plausible relations must satisfy two require- 200

ments: 201

• The relation is asymmetric, implying that 202

R 6= R>. An example of such a relation is 203

parent of. Here, the order of the involved 204

entities significantly changes the meaning, as 205

the parent-child relationship is not reciprocal. 206

Conversely, if the relation is symmetric, such 207

as neighboring country, it would be mean- 208

ingless to determine whether a given entity 209

should be a head or a tail, as the both are se- 210

mantically equivalent. 211

• The involved subject and object are inter- 212

changeable. That is, the relation R and its 213

converse counterpart R> should be semanti- 214

cally plausible, though not equivalent. An 215

example of a relation we would avoid under 216

this criterion is native language, which as- 217

sociates a person with a language. A language 218

cannot logically be the subject of native 219

language, thereby disqualifying this relation. 220

Relations of this sort could allow LLMs to 221

rely on shortcut learning to solve tasks. For 222

instance, in the case of native language, the 223

entity’s type inadvertently gives away the an- 224

swer so that the LLMs may exploit this leaked 225

4

x Triple: (sword, has part, hilt)

Text: sword has a part called hilt

LLM Pre-Training Corpus

shortcut

shortcut

shortcut

no shortcut
(altered)

⭐

Expected answer: B

Expected answer: B

Triple: (sword, has part, hilt)

Text: sword has a part called hilt

LLM Pre-Training Corpus

Figure 3: The Text2Re task converts natural language text into semantically equivalent relation triple. As with the
Re2Text task, this process can be misled by shortcut learning. In the regular scenario (top), an altered question is
used, resulting in a single shortcut that leads the model towards the incorrect answer (A). In the hard scenario
(bottom), the combination of natural language text and the relation definition creates two shortcuts, both leading to
the incorrect answer (A), thus increasing the likelihood of the model’s misprediction.

equivalent to random guessing—when superficial
correlations are removed from the dataset (Niven
and Kao, 2019).

To assess how extensively current LLMs lever-
age shortcut learning for the evaluation tasks we
have designed, we introduce variants to the text in
both our tasks. Concretely, we alter the natural lan-
guage text on both test side and few-shot example
side to get the paraphrased variants.

Test Variants In the Re2Text task, we paraphrase
one answer candidate, while in the Text2Re task,
we paraphrase the question. Specifically, we mod-
ify the key predicate and restructure the sentence.
We note that the subtle variations on the test text
could bring different effects to the two tasks, which
will be evidenced by the empirical results in our
experiments (see Section 4.2). Examples on the
test variants as well as intuitive explanations on
their effects on two tasks are provided in Figure 2
and 3. Detailed zero-shot prompting methods can
be found in Table 2.†

Few-shot Example Variants Beside the variants
on the test text, we further introduce variants to the
text within the examples used for few-shot prompt-
ing. Since we have identified the most challenging

†Relation settings and hint will be thoroughly discussed in
Section 3.2.

variant settings within the zero-shot tasks, we will
employ the same configurations for the test text in
the few-shot context, denoting these as hard tests.
Accordingly, we integrate text variants within the
examples for the few-shot prompting. A compre-
hensive list of few-shot prompts utilized in our
benchmark can be found in Table 3, and the spe-
cific arrangements of text variants are illustrated
in Table 4. Notably, if the hard test setting aligns
with the unaltered test text (for the Text2Re task),
then the unaltered examples are labeled as hard,
while the altered examples are labeled as regular.
This setup shares the similar spirit as the complex-
ity based prompting (Fu et al., 2022), where hard
examples serve to refine problem understanding
and mitigate model bias.

2.5 Data Collection

To make our tasks more comprehensive, and thus
test the LLMs’ ability to reason in more complex
ways, plausible relations must satisfy two require-
ments:

• The relation is asymmetric, implying that
R ̸= R⊤. An example of such a relation is
parent of. Here, the order of the involved en-
tities significantly changes the meaning, as the
parent-child relationship is not mutual. Con-
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ID∗ Prompting
Method Shot Relation† Hint Test

Variants‡

1# normal-re, normal-text 0 N
2# normal-re, altered-text 0 N ✓
3# converse-re, normal-text ( Text2Re ) 0 C
4# converse-re, altered-text ( Re2Text) 0 C ✓
5# converse-re, normal-text, hint 0 C ✓
6# converse-re, altered-text, hint 0 C ✓ ✓

Table 2: Zero-shot prompts. ∗: each prompt method has been associated with a unique ID that will be referred to in
the experimental results. †: N indicates normal relation and C indicates converse relation. ‡: whether test text are
altered. Text2Re: the hard setting for Text2Re. Re2Text: the hard setting for Re2Text.

ID Prompting Method Shot Relation Hint Examples♣ Tests♠

7# 3-shot, hard-hard 3 C hard hard
8# 3-shot, hard-hard, hint-cot 3 C ✓(w/ CoT) hard hard
9# 6-shot, hard-hard 6 C hard hard

10# 3-shot, regular-hard 3 C regular hard
11# 3-shot, regular-hard, hint-cot 3 C ✓(w/ CoT) regular hard
12# 6-shot, regular-hard 6 C regular hard

Table 3: Few-shot prompts. ♠: the hard test setting is always employed (see Table 2). ♣: examples are provided in
two options, regular and hard.

Example-Test Example
Variants

Test
Variants

Re2Text

hard-hard ✓ ✓
regular-hard ✓

Text2Re

hard-hard
regular-hard ✓

Table 4: Text variants on test and example sides for
few-shot prompting.

versely, if the relation is symmetric, such as
neighboring country, it would be mean-
ingless to determine whether a given entity
should be a head or a tail, as the both are se-
mantically equivalent.

• The involved subject and object are inter-
changeable. That is, the relation R and its
converse counterpart R⊤ should be semanti-
cally plausible, though not equivalent. An
example of a relation we would avoid under
this criterion is native language, which as-
sociates a person with a language. A language
cannot logically be the subject of native
language, thereby disqualifying this relation.
Relations of this sort could allow LLMs to
rely on shortcut learning to solve tasks. For
instance, in the case of native language,

the entity’s type inadvertently reveals the an-
swer so that the LLMs may exploit this leaked
information.

We manually select 17 relations from six
widely used knowledge graph datasets: WN18RR
(Dettmers et al., 2018), FB15K-237 (Toutanova
and Chen, 2015), Wikidata5M (only transductive
settings) (Wang et al., 2021), NELL-ONE (Xiong
et al., 2018), ICEWS14 (García-Durán et al., 2018),
ConceptNet5 (Speer et al., 2017). For each relation,
we randomly sample 80 triples from correspond-
ing datasets and manually remove the triples that
are not suitable for our task. Finally, we get 1240
triples in our benchmark, detailed breakdown of
the number of triples for each relation can be found
in Appendix B.

3 Experiment Setup

3.1 Model and Metric
We evaluated three LLM families on our ConvRe
benchmark: OpenAI GPT-3 (Brown et al., 2020),
Anthropic Claude (Anthropic, 2023), and Google
Flan-T5 (Chung et al., 2022) (model details in Ap-
pendix C). Since we do not have enough credits
for the OpenAI APIs, we evaluate OpenAI GPT-4
on a subset of our benchmark for few-shot experi-
ments.‡ We use the classification accuracy as our

‡The subset is constructed by randomly sampling 20 triples
for each relation from the full set. In the case where the
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Prompt
Read the instruction and then answer the question using A or B. Note that in this task, if the relation is defined in a
converse manner, unlike the conventional definition, you should carefully choose the answer.

Instruction: (x, has part, y) indicates that x has a part called y.
Question: (?, has part, solingen)
A: Find an entity that solingen contains.
B: Find an entity that has a part called solingen.
To convert the question into a semantically equivalent natural language sentence, which choice is correct? Look out for
the ORDER of the entities in the instruction!
Answer:
Expected Answer: B

Figure 4: An illustration of zero-shot prompting with hint. Red color font indicates the hint.

main metric for both Re2Text and Text2Re tasks.

3.2 Prompting Methods

As depicted in Zhang et al. (2023), different
prompting methods can have a considerable im-
pact on the scaling trends of language models. To
account for this in our study, we utilize diverse
prompting methods. Generally, we have zero-shot
and few-shot prompting, each tailored with specific
design elements. Detailed illustrations are provided
in Table 2, 3 and 4. While we previously discussed
these from a motivation point of view, this sub-
section offers a closer look at the implementation
specifics.

Zero-shot We assess both normal and converse
relations mainly on the zero-shot setting, where
each setting is coupled with regular and altered test
text (refer to the text variations in Section 2.4). For
the converse relation evaluation, we additionally
equip the prompt with hint (Kojima et al., 2022).
An illustration of the hint used in our experiment
is shown in Figure 4.

Few-shot In this setting, we only apply the hard
settings, as documented in Table 3. The corre-
sponding zero-shot tests (ID 3# for Text2Re and ID
4# for Re2Text, detailed in Table 2) are employed
as baselines. The arrangements for the example
variants are thoroughly detailed in Table 4. Within
each group, we have three distinct sub-settings: 3-
shot, 3-shot with hint & Chain-of-Thought (CoT,
Wei et al. 2022b), and 6-shot.

number of triples for a particular relation is less than 20, we
include all of them. Ultimately, the subset comprises a total
of 328 triples. We run GPT-4 on both full set and subset in
zero-shot settings. Results show that the subset can reflect the
model’s performance. Details can be found in Appendix D.

4 Results

In this section, we demonstrate the results of dif-
ferent LLM families on ConvRe benchmark and
provide an in-depth analysis. More results on chat
models can be found in Appendix E.

4.1 Converse Relation

Our first experiment, conducted in the zero-shot
setting, involves both normal and converse relations
across all model families. As shown in Figure 5,
the performance on converse relations, within the
scope of unaltered test text, is consistently inferior
to that on normal relations across all tested models
and tasks. More specifically, we note a roughly
positive scaling trend for normal relations and an
inverse scaling trend for converse relations, despite
some outliers. The state-of-the-art LLM, GPT-4,
underperforms compared to smaller models, with
its performance falling significantly below random-
guess levels. We conjecture that larger models have
stronger priors, causing them to rely more heavily
on memorized patterns from training data, which
can conflict with the given task.

4.2 Text Variants

As introduced in Section 2.4, we are curious about
LLMs’ behaviours against text variants on the test
and the few-shot examples.

Our initial focus is the zero-shot setting (Fig-
ure 5). For normal relations, test variants cause
a noticeable performance drop. It means that if a
given answer candidate fits the superficial pattern
stated in the instruction, models are more likely to
select it although it could be incorrect. This sug-
gests that LLMs tend to take shortcut learning even
within conventional problem settings. For converse
relations, variants on the test text harm the perfor-
mance on Re2Text while enhance it on Text2Re.
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Figure 5: Zero-shot results on ConvRe. Each experimental setting has been indexed with a unique ID that can be
referred to in Table 2. Sub-figures in the same row share the same figure legend, so we only display it once in the
leftmost sub-figure to save space. The table version of the results can be found in Appendix I.
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(c) Flan-T5 Few-shot on Re2Text.
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(d) GPT Few-shot on Text2Re.
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(e) Claude Few-shot on Text2Re.
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(f) Flan-T5 Few-shot on Text2Re.

Figure 6: Few-shot results on ConvRe. Each experimental setting has been indexed with a unique ID that can be
referred to in Table 3. Sub-figures in the same row share the same figure legend, so we only display it once in the
leftmost sub-figure to save space. Detailed settings on the text variants can be found in Table 4. For GPT-4, we only
test it on a subset of our benchmark. Due to Flan-T5’s weak ability to follow CoT instructions, we do not report the
results of Flan-T5 with hint and CoT prompting.

6938



These findings lend strong support to our previous
hypothesis presented in Section 2.4.

In the few-shot setting, the zero-shot baselines
for both tasks are set to be hard (see Table 3 and
4). Generally, hard examples outperform standard
examples (hard-hard vs. regular-hard) on average
across different models on the two tasks. This can
be attributed to the fact that hard examples align
more consistently with the hard tests and effec-
tively help models in avoiding bias and shortcut
learning.

4.3 Shot Number

Examples, particularly an increased number of
examples, are expected to outperform zero-shot
prompting. However, we do not consistently ob-
serve improvements across different models and
tasks. Notably, GPT models demonstrate the most
consistent improvements, indicating superior in-
context learning abilities among these models. In-
terestingly, when using few-shot examples, the
models mostly exhibit inverse scaling or inverted U-
shaped scaling, which suggests that our benchmark
presents a challenge for the current LLMs.

4.4 Hint and CoT

The zero-shot experiments in Figure 5 indicate that
the use of hints in prompts typically yields improve-
ments for GPT and Flan-T5 models. However,
claude-1 stands out as an exception, appearing to
be negatively affected by the hint.

In the few-shot experiments, employing hints
and the Chain-of-Thought (CoT) approach substan-
tially boosts performance, particularly for larger
models. GPT models exhibit positive scaling and
U-shaped scaling on the Re2Text task. However,
for the Text2Re task, we still observe inverted U-
shaped scaling for GPT models and inverse scaling
for Claude models. This indicates that LLMs still
struggle on this task even with strong prompting
methods. We also find that Flan-T5 cannot properly
follow CoT instructions, so we do not report the
results of Flan-T5 with hint and CoT prompting.

5 Related Work

Studies on LLMs have shown positive scaling
trends, whereby larger models generally perform
better on downstream tasks (Brown et al., 2020;
Rae et al., 2021; Chowdhery et al., 2022; Srivas-
tava et al., 2022; Liang et al., 2022). However,
researchers showed that model performance scal-

ing can deviate from naive expectations. Srivastava
et al. (2022) showed slower and less smooth trends,
and that social biases sometimes scale inversely
with model size, a finding that is echoed in Parrish
et al. (2022). TruthfulQA (Lin et al., 2022) demon-
strated that while larger models can provide more
informative answers, they tend to be less truthful.
McKenzie et al. (2023) introduced the inverse scal-
ing challenge and collected tasks that are highly
atypical but still easily understandable by a human.
Wei et al. (2022a) uncovered the U-shaped scaling
trend by expanding the model scope for evaluation.
Zhang et al. (2023) proposed NeQA and showed
that this task exhibit inverse, U-shaped, or positive
scaling with different prompt methods or model
families. Miceli-Barone et al. (2023) showed that
LLMs fail to correctly generate Python code when
default identifiers are swapped.

Recent research has highlighted the issue of in-
flated performance in LLMs. Geirhos et al. (2020)
coined the term shortcut learning, revealing models’
reliance on superficial cues. Tu et al. (2020) stud-
ied the model’s robustness to spurious correlations,
which refers to the prediction rules that work for
the majority examples but do not hold in general.
Li et al. (2023b) found that LLMs tend to rely on
shallow matching rather than understanding mathe-
matical concepts. Bender et al. (2021) highlighted
the importance of understanding the mechanism by
which LLMs achieved state-of-the-art performance.
Perez et al. (2021) showed that LLMs’ few-shot
ability is often overestimated due to the use of large
held-out sets. Ji et al. (2023) surveyed the hallucina-
tion problem in language generation, highlighting
the issue of factually incorrect output. Liu et al.
(2023) identified attention glitches in Transformers,
indicating a failure in capturing robust reasoning.
Berglund et al. (2023) introduced the term reverse
curse, showing that LLMs trained on ’A is B’ fails
to learn the reverse relationship ’B is A’.

6 Concolusion

In this paper, we present an investigation into
LLMs’ understanding of structured semantics,
specifically focusing on converse binary relations.
By introducing a novel benchmark, ConvRe, we
offer a systematic and comprehensive evaluation
suite to observe the performance of LLMs across
diverse settings and prompting methods. We have
carried out a detailed experimental study and ob-
served various scaling trends that shed light on the
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capabilities and limitations of LLMs. Our findings
suggest that LLMs often resort to shortcut learn-
ing and still face considerable challenges on our
proposed benchmark, even when strong prompting
techniques are employed. Our work underscores
the importance of developing evaluation method-
ologies to improve the understanding of LLMs and
their performance across various tasks.

Limitations

This paper proposes a new benchmark ConvRe
to evaluate the competence of LLMs in recogniz-
ing and processing converse relations. Due to the
limitation of the budget, we have evaluated three
representative LLM families on the subset of our
benchmark for some settings. We note that the
LLM APIs may change over time. Although we
have set the sampling temperature to 0, we cannot
fully guarantee the reproducibility of our results.
Another potential limitation is the prompting meth-
ods used in this work. To automatically evaluate
the model’s performance, we have followed the pre-
vious studies and formatted the tasks as multiple-
choice question answering tests. This setting may
affect the performance of smaller models. Finally,
due to the unknown data sources and pretraining
methods used for proprietary models (e.g., Claude
and GPT), it’s difficult to arrive at a clear and com-
prehensive understanding of the behaviors exhib-
ited by LLMs on our benchmark.

Ethics Statement

Our work proposes a new benchmark to help reveal
the real capability of LLMs in formal language
oriented tasks. The triples in our benchmark are all
extracted from publicly available and widely used
knowledge graph dataset. We show that LLMs
have taken shortcut learning in these tasks and their
performance could be inflated. These findings may
help users have a better understanding of LLMs
and avoid the potential risks.
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A Clarification about Similar
Terminologies

As described in Tu et al. (2020), spurious correla-
tion refers to the prediction rules that work for the
majority examples but do not hold in general. Su-
perficial cues/biases/artifacts can be treated as un-
intended correlations between input and output in
existing datasets, which are often introduced during
data collection or human annotation (Bender et al.,
2021; Le Bras et al., 2020; Niven and Kao, 2019).
The shortcut used in this paper refers to decision
rules that perform well on standard benchmarks but
fail to transfer to more challenging testing condi-
tions, such as real word scenarios (Geirhos et al.,
2020).

While these terms may have nuanced differences,
their essence converges to the idea that models
might exploit unintended patterns in datasets, par-
ticularly those evident in the majority of examples.
This can harm their ability to generalize in open-
world scenarios. In this paper, we have introduced

textual variance in our benchmark to serve as adver-
sarial test sets and incorporated the counterfactual
assumption to assess the real task-level generaliza-
tion capabilities of LLMs.

B Benchmark Details

To meet the second condition for relations in Sec
2.5, we merge the relation mother of person from
NELL-ONE dataset with the relation father from
Wikidata5M to create a new relation called parent
of. In this way, there are 17 relations in total, and
the detailed number of triples for each relation is
shown in Table 5. The source knowledge graphs
these relations come from cover a wide range of
domains, such as socio-political and commonsense,
which can ensure the diverseity of our dataset.

C Model Family Details

C.1 OpenAI GPT

The models we use in our experiments are mainly
GPT-3 models (text-ada-001, text-babbage-001 and
text-curie-001), GPT-3.5 models (text-davinci-003
and gpt-3.5-turbo) and GPT-4. GPT-3 models can
understand and generate natural language. These
models were superceded by the more powerful
GPT-3.5 generation models. Among the GPT-3.5
models, gpt-3.5-turbo has been optimized for chat
but also works well for traditional completion tasks.
The version of gpt-3.5-turbo we use in our exper-
iments is gpt-3.5-turbo-0301. GPT-4 is a large
multimodal model that can solve difficult problems
with greater accuracy than any of the models in
OpenAI GPT family, and the version we use for
our experiments is gpt-4-0314.

C.2 Anthropic Claude

Claude is capable of a wide variety of conversa-
tional and text processing tasks, it can help with
use cases including summarization, search, cre-
ative and collaborative writing. Claude comes with
two different sizes: claude-1 and claude-instant-1.
claude-1 is the largest model in Claude family and
ideal for a wide range of complex tasks. claude-
instant-1 is a smaller model with far lower latency.
Both of the models are provided with many dif-
ferent sub-versions. Among them, claude-1.3
and claude-instant-1.1 are used for our experi-
ments.
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Relation Numbers Source KG

hypernym 80 WN18RR WordNet
has part 78 WN18RR WordNet
organization, organization relationship, child 75 FB15K-237 FreeBase
location, location, partially contains 77 FB15K-237 FreeBase
athlete beat athlete 80 NELL-ONE NELL
parent of (mother) 145 NELL-ONE NELL
parent of (father) Wikidata5M WikiData
represented by 79 Wikidata5M WikiData
side effect 8 Wikidata5M WikiData
has facility 62 Wikidata5M WikiData
influenced by 65 Wikidata5M WikiData
owned by 51 Wikidata5M WikiData
consult 73 ICEWS14 ICEWS
praise or endorse 78 ICEWS14 ICEWS
made of 80 ConceptNet5 ConceptNet
used of 79 ConceptNet5 ConceptNet
has property 55 ConceptNet5 ConceptNet
has subevent 75 ConceptNet5 ConceptNet

Total 1240

Table 5: The details of the relations in our ConvRe benchmark

C.3 Google Flan-T5

Flan-T5 is an enhanced version of T5 that has been
finetuned in a mixture of tasks. Unlike the OpenAI
GPT model, Flan-T5 is an encoder-decoder model.
There are five models with different sizes in Flan-
T5 family: Flan-T5-Small, Flan-T5-Base, Flan-
T5-Large, Flan-T5-XL and Flan-T5-XXL. All five
models are used in our experiments.

D Subset Results

To verify that the constructed subset can unbias-
edly reflect the performance of GPT-4 model, we
compare the performance of GPT-4 model on both
benchmark dataset and subset. The results are
shown in Table 6. The performance of the GPT-
4 model shows minimal differences between the
complete set and the subset, confirming the validity
of the subset.

Dataset Prompt
1#

Prompt
2#

Prompt
3#

Prompt
4#

Re2Text

complete set (1240) 0.987 0.935 0.227 0.164
subset (328) 0.997 0.942 0.192 0.155

Text2Re

complete set (1240) 0.936 0.953 0.171 0.144
subset (328) 0.942 0.951 0.171 0.165

Table 6: The comparison results of GPT-4 model on the
complete set and subset under zero shot settings.

E Chat Model Performance

As chat models usually have a better ability to fol-
low instructions, they may demonstrate a different
scaling trend on our benchmark. Therefore, we
independently evaluate and compare the two chat
model families (i.e. OpenAI GPT and Anthropic
Claude) on our benchmark. As GPT-4 is also opti-
mized for chat, we include it for analysis as well.
The performances of the two families are shown in
Figure 7.

In Re2Text task, it can be observed that few-shot
with Chain-of-Thought can significantly improve
the performance of GPT models. The accuracy of
GPT-4 demonstrates a remarkable improvement,
soaring from below 0.2 in the zero-shot setting to
surpassing 0.9 in the Few-shot+Hint+CoT setting.
Chain-of-Thought is also helpful in improving the
performance of Claude-1.

In Text2Re task, GPT models exhibit a distinct
and consistent inverse scaling trend in both zero-
shot and few-shot settings when the relation is con-
versed. However, the scaling trend of Claude mod-
els is more intricate. Specifically, in zero-shot set-
tings, Claude models demonstrate a positive scaling
trend in the majority of settings. In few-shot set-
tings, on the contrary, an inverse scaling trend is
exhibited by Claude models.

F Model Behaviors

This section introduces the behaviors of different
models that we observed during the experiments.
Under zero-shot settings, Claude and Flan-T5 can
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(a) Chat Zero-shot on Re2Text.
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(b) Chat Zero-shot on Text2Re.
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(c) Chat Few-shot on Re2Text.
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(d) Chat Few-shot on Text2Re.

Figure 7: Zero-shot and Few-shot results of chat models on ConvRe. Each experimental setting has been indexed
with a unique ID that can be referred in Table 2. Sub-figures in the same row share the centeral figure legend.

generate answers in the expected behavior. How-
ever, text-ada-001 and text-babbage-001 fails
in most cases, they tend to repeat our question or
instruction. In our experiments, if these two models
didn’t give a clear answer, we will treat the choice
with higher log probability in the first token as their
answers. In few-shot settings, nearly all models
except Flan-T5 conform to the expected answer
format. The generated thoughts of Flan-T5 are usu-
ally shorter than the examples, and the format of
its answer seldom aligns with the expected format.

G Neutral Relation Results

In this section, we explore the impact of neutral
relations on ConvRe benchmark. Specifically, we
change the relation text to a more neutral name:
relation R, and then run the experiments on the
subset mentioned in Appendix D. The results are
shown in Table 7.

It can be observed that altering symbols to adopt
more neutral names generally shows various effects
on the models. The performance of most models
in prompt 3# and 4# (the challenging setup) is still
around 50% or even worse. However, for Claude
models, considerable improvements on converse re-
lations (prompt 3#, 4#, 7# and 8#) can be observed
in the Text2Re task, along with the performance

drop on normal relations (prompt 1# and 2#).
In conclusion, altering relation text to more neu-

tral forms may help alleviate problems in under-
standing converse relations, but it carries the risk
of harming the performance in normal relations.

H Analysis of the Impact of Different
Entity Pairs

We firstly extract all the triples with relation
hypernym and run five different models on them
within the hard setting (prompt 4#) of Re2Text
task. Then the overlap percentages of the wrongly
answered triples across the models are calculated.
The results are shown in Table 8. The diverse accu-
racies and low overlap percentages of incorrectly
answered entity pairs indicate that different entity
pairs for the same relation indeed lead to different
results on different models.

I The Table Version of the Results

We provide our entire experimental results in Table
9 for better clarity.

J Prompt Examples

Figure 8 to Figure 19 demonstrate the 12 kinds of
prompts used in Re2Text tasks.
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Model Prompt 1# Prompt 2# Prompt 3# Prompt 4# Prompt 7# Prompt 8#

Re2Text

text-ada-001 0.494 (-0.040) 0.509 (-0.003) 0.509 (-0.003) 0.515 (+0.015) 0.494 (-0.012) 0.500 (+0.003)
text-babbage-001 0.518 (+0.051) 0.537 (+0.074) 0.537 (-0.015) 0.527 (+0.012) 0.500 (-0.009) 0.466 (-0.019)
text-curie-001 0.527 (+0.006) 0.463 (-0.031) 0.448 (-0.046) 0.439 (-0.037) 0.500 (-0.009) 0.500 (-0.009)
text-davinci-003 0.857 (-0.006) 0.567 (-0.134) 0.659 (+0.074) 0.259 (+0.027) 0.101 (-0.054) 0.774 (+0.094)
gpt-3.5-turbo 0.765 (-0.073) 0.616 (+0.134) 0.384 (-0.211) 0.229 (+0.083) 0.439 (+0.110) 0.716 (+0.253)
gpt-4 0.985 (-0.003) 0.918 (-0.027) 0.561 (+0.335) 0.439 (+0.268) 0.317 (+0.088) 0.784 (-0.146)
claude-1 0.905 (+0.003) 0.777 (-0.031) 0.732 (+0.198) 0.537 (+0.165) 0.335 (-0.055) 0.848 (+0.031)
claude-instant-1 0.762 (+0.073) 0.613 (-0.152) 0.485 (+0.113) 0.384 (-0.122) 0.558 (-0.104) 0.777 (-0.144)
flan-t5-small 0.546 (+0.025) 0.488 (+0.015) 0.546 (+0.006) 0.494 (+0.046) 0.506 (+0.027) -
flan-t5-base 0.796 (-0.042) 0.329 (+0.061) 0.665 (-0.039) 0.201 (+0.049) 0.488 (+0.049) -
flan-t5-large 0.634 (-0.061) 0.430 (-0.012) 0.558 (+0.003) 0.378 (+0.094) 0.253 (+0.146) -
flan-t5-xl 0.875 (-0.046) 0.546 (-0.201) 0.518 (+0.216) 0.210 (+0.131) 0.183 (+0.137) -
flan-t5-xxl 0.738 (-0.070) 0.591 (-0.095) 0.476 (+0.104) 0.290 (+0.064) 0.180 (+0.034) -

Text2Re

text-ada-001 0.482 (-0.021) 0.482 (-0.006) 0.485 (+0.003) 0.470 (-0.030) 0.500 (-0.009) 0.518 (-0.006)
text-babbage-001 0.530 (+0.006) 0.552 (+0.028) 0.451 (-0.049) 0.473 (-0.036) 0.500 (-0.009) 0.500 (-0.009)
text-curie-001 0.488 (-0.024) 0.500 (+0.021) 0.543 (+0.004) 0.509 (-0.055) 0.500 (-0.009) 0.500 (-0.012)
text-davinci-003 0.695 (-0.140) 0.640 (-0.144) 0.591 (+0.232) 0.564 (+0.174) 0.756 (+0.268) 0.921 (+0.171)
gpt-3.5-turbo 0.506 (-0.095) 0.503 (+0.033) 0.503 (+0.101) 0.506 (+0.000) 0.418 (+0.025) 0.512 (-0.107)
gpt-4 0.945 (+0.006) 0.899 (-0.058) 0.512 (+0.357) 0.494 (+0.351) 0.588 (+0.475) 0.674 (+0.186)
claude-1 0.506 (-0.299) 0.351 (-0.356) 0.857 (+0.241) 0.860 (+0.272) 0.677 (+0.451) 0.378 (+0.195)
claude-instant-1 0.780 (-0.095) 0.716 (-0.010) 0.808 (+0.564) 0.646 (+0.274) 0.790 (+0.622) 0.671 (+0.320)
flan-t5-small 0.503 (+0.012) 0.500 (+0.006) 0.512 (+0.033) 0.509 (+0.015) 0.512 (-0.015) -
flan-t5-base 0.494 (-0.018) 0.491 (-0.012) 0.506 (-0.003) 0.512 (-0.009) 0.500 (-0.046) -
flan-t5-large 0.668 (-0.116) 0.665 (-0.024) 0.314 (+0.082) 0.363 (+0.025) 0.421 (+0.101) -
flan-t5-xl 0.689 (-0.259) 0.530 (-0.250) 0.616 (+0.488) 0.628 (+0.378) 0.363 (+0.244) -
flan-t5-xxl 0.841 (-0.135) 0.784 (-0.134) 0.253 (+0.243) 0.290 (+0.208) 0.183 (+0.156) -

Table 7: The performance of LLMs on ConvRe benchmark after altering relation text to relation R. The number
in the parentheses represents the difference between the neutral relation naming and normal naming under the same
setup on the same subset. We do not report the results of Flan-T5 as it struggles to follow the Chain-of-Thought
instructions.

gpt-3.5-turbo gpt-4 claude-1 claude-instant-1 flan-t5-xxl

Accuracy 77.50% 71.25% 100.00% 83.75% 47.50%

overlap percentage of incorrectly answered entity pairs

gpt-3.5-turbo - 11.25% 0.00% 1.25% 17.50%
gpt-4 11.25% - 0.00% 2.50% 25.00%
claude-1 0.00% 0.00% - 0.00% 0.00%
claude-instant-1 1.25% 2.50% 0.00% - 0.00%
flan-t5-xxl 17.50% 25.00% 0.00% 0.00% -

Table 8: The accuracy of five different models on relation hypernym in the hard setting (prompt 4#) of Re2Text task.
The bottom part shows the overlap percentage of incorrectly answered entity pairs between these models.
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Model Prompt
1#

Prompt
2#

Prompt
3#

Prompt
4#

Prompt
5#

Prompt
6#

Prompt
7#

Prompt
8#

Prompt
9#

Prompt
10#

Prompt
11#

Prompt
12#

Re2Text

text-ada-001 0.506 0.504 0.504 0.495 0.493 0.481 0.498 0.494 0.470 0.496 0.481 0.468
text-babbage-001 0.524 0.484 0.556 0.532 0.511 0.499 0.500 0.484 0.500 0.500 0.471 0.500
text-curie-001 0.535 0.506 0.490 0.474 0.508 0.501 0.500 0.500 0.500 0.500 0.500 0.500
text-davinci-003 0.854 0.670 0.558 0.237 0.620 0.293 0.171 0.733 0.208 0.165 0.206 0.139
gpt-3.5-turbo 0.835 0.490 0.590 0.156 0.683 0.194 0.317 0.502 0.389 0.231 0.394 0.367
gpt-4 0.987 0.935 0.227 0.164 0.377 0.288 0.229 0.930 0.253 0.192 0.704 0.216
claude-instant-1 0.657 0.767 0.368 0.523 0.448 0.579 0.679 0.924 0.643 0.441 0.554 0.394
claude-1 0.897 0.787 0.514 0.373 0.466 0.502 0.409 0.840 0.398 0.377 0.560 0.417
flan-t5-small 0.518 0.470 0.519 0.465 0.500 0.500 0.493 - 0.493 0.490 - 0.488
flan-t5-base 0.846 0.252 0.730 0.170 0.680 0.215 0.447 - 0.480 0.464 - 0.489
flan-t5-large 0.715 0.445 0.556 0.262 0.598 0.270 0.077 - 0.082 0.076 - 0.082
flan-t5-xl 0.915 0.735 0.318 0.079 0.357 0.113 0.042 - 0.052 0.048 - 0.066
flan-t5-xxl 0.794 0.663 0.366 0.207 0.444 0.332 0.147 - 0.152 0.152 - 0.147

Text2Re

text-ada-001 0.502 0.496 0.482 0.498 0.496 0.501 0.500 0.554 0.506 0.500 0.507 0.507
text-babbage-001 0.534 0.527 0.486 0.489 0.485 0.485 0.500 0.500 0.499 0.500 0.500 0.498
text-curie-001 0.498 0.481 0.533 0.543 0.500 0.500 0.500 0.500 0.500 0.500 0.502 0.500
text-davinci-003 0.838 0.802 0.348 0.399 0.497 0.509 0.531 0.694 0.606 0.451 0.751 0.446
gpt-3.5-turbo 0.607 0.484 0.390 0.498 0.452 0.490 0.498 0.559 0.524 0.381 0.627 0.417
gpt-4 0.936 0.953 0.171 0.144 0.184 0.171 0.183 0.527 0.354 0.113 0.488 0.165
claude-instant-1 0.872 0.744 0.262 0.331 0.466 0.480 0.256 0.502 0.379 0.190 0.373 0.252
claude-1 0.823 0.744 0.566 0.556 0.477 0.420 0.177 0.344 0.197 0.207 0.166 0.142
flan-t5-small 0.501 0.498 0.495 0.498 0.500 0.500 0.528 - 0.548 0.528 - 0.544
flan-t5-base 0.512 0.498 0.502 0.526 0.481 0.481 0.529 - 0.500 0.535 - 0.499
flan-t5-large 0.773 0.696 0.212 0.296 0.366 0.417 0.315 - 0.388 0.288 - 0.363
flan-t5-xl 0.906 0.784 0.178 0.246 0.155 0.266 0.198 - 0.230 0.180 - 0.207
flan-t5-xxl 0.978 0.932 0.048 0.086 0.027 0.101 0.027 - 0.031 0.038 - 0.029

Table 9: The table of our entire experiments.

Prompt
Read the instruction and then answer the question using A or B.

Instruction: (x, has part, y) indicates that x has a part called y.
Question: (?, has part, solingen)
A: Find an entity that solingen contains.
B: Find an entity that has a part called solingen.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer:
Expected Answer: B

Figure 8: Prompt Design 1#

Prompt
Read the instruction and then answer the question using A or B.

Instruction: (x, has part, y) indicates that x has a part called y.
Question: (?, has part, solingen)
A: Find an entity that is a part of solingen.
B: Find an entity that possesses a specific component named solingen.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer:
Expected Answer: B

Figure 9: Prompt Design 2#
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Prompt
Read the instruction and then answer the question using A or B.

Instruction: (x, has part, y) indicates that y has a part called x.
Question: (?, has part, solingen)
A: Find an entity that possesses a specific component named solingen.
B: Find an entity that is a part of solingen.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer:
Expected Answer: B

Figure 10: Prompt Design 3#

Prompt
Read the instruction and then answer the question using A or B.

Instruction: (x, has part, y) indicates that y has a part called x.
Question: (?, has part, solingen)
A: Find an entity that has a part called solingen.
B: Find an entity that solingen contains.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer:
Expected Answer: B

Figure 11: Prompt Design 4#

Prompt
Read the instruction and then answer the question using A or B. Note that in this task, if the relation is defined in a
converse manner, unlike the conventional definition, you should carefully choose the answer.

Instruction: (x, has part, y) indicates that y has a part called x.
Question: (?, has part, solingen)
A: Find an entity that possesses a specific component named solingen.
B: Find an entity that is a part of solingen.
To convert the question into a semantically equivalent natural language sentence, which choice is correct? Look out for
the ORDER of the entities in the instruction!
Answer:
Expected Answer: B

Figure 12: Prompt Design 5#

Prompt
Read the instruction and then answer the question using A or B. Note that in this task, if the relation is defined in a
converse manner, unlike the conventional definition, you should carefully choose the answer.

Instruction: (x, has part, y) indicates that y has a part called x.
Question: (?, has part, solingen)
A: Find an entity that has a part called solingen.
B: Find an entity that solingen contains.
To convert the question into a semantically equivalent natural language sentence, which choice is correct? Look out for
the ORDER of the entities in the instruction!
Answer:
Expected Answer: B

Figure 13: Prompt Design 6#
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Prompt
Read the instruction and then answer the question using A or B.

[Example1]
Instruction: (x, works for, y) indicates that y works for x.
Question: (?, works for, anthony fauci)
A: Find an entity that works for anthony fauci.
B: Find an entity that anthony fauci is employed by.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer: B

[Example2]
Instruction: (x, bigger than, y) indicates that y is bigger than x.
Question: (?, bigger than, elephant)
A: Find an entity that is smaller than elephant.
B: Find an entity that is bigger than elephant.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer: A

[Example3]
Instruction: (x, in the south of, y) indicates that y is in the south of x.
Question: (?, in the south of, china)
A: Find an entity that is in the north of china.
B: Find an entity that is in the south of china.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer: A

Instruction: (x, has part, y) indicates that y has a part called x.
Question: (?, has part, solingen)
A: Find an entity that has a part called solingen.
B: Find an entity that solingen contains.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer:
Expected Answer: B

Figure 14: Prompt Design 7#
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Prompt
Read the instruction and then answer the question using A or B. Note that in this task, if the relation is defined in a
converse manner, unlike the conventional definition, you should carefully choose the answer. Your answer should be in
JSON format with the following keys: thought, answer.

[Example1]
Instruction: (x, works for, y) indicates that y works for x.
Question: (?, works for, anthony fauci)
A: Find an entity that works for anthony fauci.
B: Find an entity that anthony fauci is employed by.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer: {’thought’: "Let’s think step by step. Firstly, the question is asking for x. Then, the instruction indicates
y works for x. According to the question, y is anthony fauci, and therefore anthony fauci works for x. So x is the
employer of anthony fauci, the answer is B.", ’answer’: ’B’}

[Example2]
Instruction: (x, bigger than, y) indicates that y is bigger than x.
Question: (?, bigger than, elephant)
A: Find an entity that is smaller than elephant.
B: Find an entity that is bigger than elephant.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer: {’thought’: "Let’s think step by step. Firstly, the question is asking for x. Then, the instruction indicates y is
bigger than x. According to the question, y is elephant, and therefore elephant is bigger than x. So x is smaller than
elephant, the answer is A.", ’answer’: ’A’}

[Example3]
Instruction: (x, in the south of, y) indicates that y is in the south of x.
Question: (?, in the south of, china)
A: Find an entity that is in the north of china.
B: Find an entity that is in the south of china.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer: {’thought’: "Let’s think step by step. Firstly, the question is asking for x. Then, the instruction indicates y is
in the south of x. According to the question, y is china, and therefore china is in the south of x. So x is in the north
of china, the answer is A.", ’answer’: ’A’}

Instruction: (x, has part, y) indicates that y has a part called x.
Question: (?, has part, solingen)
A: Find an entity that has a part called solingen.
B: Find an entity that solingen contains.
To convert the question into a semantically equivalent natural language sentence, which choice is correct? Look out for
the ORDER of the entities in the instruction!
Answer:
Expected Answer: B

Figure 15: Prompt Design 8#
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Prompt
Read the instruction and then answer the question using A or B.

[Example1]
Instruction: (x, works for, y) indicates that y works for x.
Question: (?, works for, anthony fauci)
A: Find an entity that works for anthony fauci.
B: Find an entity that anthony fauci is employed by.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer: B

[Example2]
Instruction: (x, bigger than, y) indicates that y is bigger than x.
Question: (?, bigger than, elephant)
A: Find an entity that is smaller than elephant.
B: Find an entity that is bigger than elephant.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer: A

[Example3]
Instruction: (x, in the south of, y) indicates that y is in the south of x.
Question: (?, in the south of, china)
A: Find an entity that is in the north of china.
B: Find an entity that is in the south of china.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer: A

[Example4]
Instruction: (x, teach, y) indicates that y teaches x.
Question: (?, teach, andy bramante)
A: Find a person that teaches andy bramante.
B: Find a person that is the student of andy bramante.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer: B

[Example5]
Instruction: (x, interviewed, y) indicates that y interviewed x.
Question: (?, interviewed, biden)
A: Find a person that biden conducted an interviewed with.
B: Find a person that interviewed biden.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer: A

[Example6]
Instruction: (x, successor, y) indicates that y is the successor of x.
Question: (?, successor, barack obama)
A: Find a person that is the successor of barack obama.
B: Find a person that is the predecessor of barack obama.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer: B

Instruction: (x, has part, y) indicates that y has a part called x.
Question: (?, has part, solingen)
A: Find an entity that has a part called solingen.
B: Find an entity that solingen contains.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer:
Expected Answer: B

Figure 16: Prompt Design 9#
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Prompt
Read the instruction and then answer the question using A or B.

[Example1]
Instruction: (x, works for, y) indicates that y works for x.
Question: (?, works for, anthony fauci)
A: Find an entity that is employed by anthony fauci.
B: Find an entity that anthony fauci works for.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer: B

[Example2]
Instruction: (x, bigger than, y) indicates that y is bigger than x.
Question: (?, bigger than, elephant)
A: Find an entity so that elephant is bigger than it.
B: Find an entity so that elephant is smaller than it.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer: A

[Example3]
Instruction: (x, in the south of, y) indicates that y is in the south of x.
Question: (?, in the south of, china)
A: Find an entity so that china is in the south of it.
B: Find an entity so that china is in the north of it.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer: A

Instruction: (x, has part, y) indicates that y has a part called x.
Question: (?, has part, solingen)
A: Find an entity that has a part called solingen.
B: Find an entity that solingen contains.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer:
Expected Answer: B

Figure 17: Prompt Design 10#
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Prompt
Read the instruction and then answer the question using A or B. Note that in this task, if the relation is defined in a
converse manner, unlike the conventional definition, you should carefully choose the answer. Your answer should be in
JSON format with the following keys: thought, answer.

[Example 1]
Instruction: (x, works for, y) indicates that y works for x.
Question: (?, works for, anthony fauci)
A: Find an entity that is employed by anthony fauci.
B: Find an entity that anthony fauci works for.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer: {’thought’: "Let’s think step by step. Firstly, the question is asking for x. Then, the instruction indicates y
works for x. According to the question, y is anthony fauci, and therefore anthony fauci works for x, the answer is B.",
’answer’: ’B’}

[Example 2]
Instruction: (x, bigger than, y) indicates that y is bigger than x.
Question: (?, bigger than, elephant)
A: Find an entity so that elephant is bigger than it.
B: Find an entity so that elephant is smaller than it.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer: {’thought’: "Let’s think step by step. Firstly, the question is asking for x. Then, the instruction indicates y
is bigger than x. According to the question, y is elephant, and therefore elephant is bigger than x, the answer is A.",
’answer’: ’A’}

[Example 3]
Instruction: (x, in the south of, y) indicates that y is in the south of x.
Question: (?, in the south of, china)
A: Find an entity so that china is in the south of it.
B: Find an entity so that china is in the north of it.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer: {’thought’: "Let’s think step by step. Firstly, the question is asking for x. Then, the instruction indicates y
is in the south of x. According to the question, y is china, and therefore china is in the south of x, the answer is A.",
’answer’: ’A’}

Instruction: (x, has part, y) indicates that y has a part called x.
Question: (?, has part, solingen)
A: Find an entity that has a part called solingen.
B: Find an entity that solingen contains.
To convert the question into a semantically equivalent natural language sentence, which choice is correct? Look out for
the ORDER of the entities in the instruction!
Answer:
Expected Answer: B

Figure 18: Prompt Design 11#
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Prompt
Read the instruction and then answer the question using A or B.

[Example1]
Instruction: (x, works for, y) indicates that y works for x.
Question: (?, works for, anthony fauci)
A: Find an entity that is employed by anthony fauci.
B: Find an entity that anthony fauci works for.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer: B

[Example2]
Instruction: (x, bigger than, y) indicates that y is bigger than x.
Question: (?, bigger than, elephant)
A: Find an entity so that elephant is bigger than it.
B: Find an entity so that elephant is smaller than it.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer: A

[Example3]
Instruction: (x, in the south of, y) indicates that y is in the south of x.
Question: (?, in the south of, china)
A: Find an entity so that china is in the south of it.
B: Find an entity so that china is in the north of it.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer: A

[Example4]
Instruction: (x, teach, y) indicates that y teaches x.
Question: (?, teach, andy bramante)
A: Find a person that andy bramante is the student of.
B: Find a person that andy bramante teaches.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer: B

[Example5]
Instruction: (x, interviewed, y) indicates that y interviewed x.
Question: (?, interviewed, biden)
A: Find a person that biden interviewed.
B: Find a person that conducted an interview with biden.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer: A

[Example6]
Instruction: (x, successor, y) indicates that y is the successor of x.
Question: (?, successor, barack obama)
A: Find a person that barack obama is the predecessor of.
B: Find a person that barack obama is the successor of.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer: B

Instruction: (x, has part, y) indicates that y has a part called x.
Question: (?, has part, solingen)
A: Find an entity that has a part called solingen.
B: Find an entity that solingen contains.
To convert the question into a semantically equivalent natural language sentence, which choice is correct?
Answer:
Expected Answer: B

Figure 19: Prompt Design 12#
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