Learning to Rank Generation with Pairwise Partial Rewards

Youngwon Lee; Jinu Lee; Seung-won Hwang'
Seoul National University
ywlee@ldi.snu.ac.kr, {aquamrn, seungwonh}@snu.ac.kr

Abstract

This paper studies the use of reinforcement
learning for conditional text generation, which
overcomes the limitation of the prevalent super-
vised maximum likelihood estimation approach.
However, it still suffers from challenges includ-
ing the large action space and the delayed re-
ward, as the reward can be computed only af-
ter an entire sequence is generated. To address
these challenges, we propose a method that pro-
vides partial rewards for intermediate actions
taken on partial sequences. This enables the
model to promptly prioritize actions that lead
to the generation of more desirable sequences.
Our method’s key contribution lies in its focus
on distinguishing relatively more desirable ac-
tions rather than striving to precisely estimate
pointwise values for arbitrary partial sequences.
Instead, our reward shaping method learns to
discern the relative desirability between pairs
of actions, or rank actions in a pairwise man-
ner, only when necessary and feasible. This is
materialized in an efficient way by leveraging
the prefix tree constructed from the sampled
sequences. Experimental results on paraphrase
generation and constrained machine transla-
tion tasks showcase the effectiveness of our
method.!

1 Introduction

Conditional text generation encompasses various
tasks, with the objective of generating a sequence
y based on a given source sequence X, in a way
that maximizes the utility u. For example, in para-
phrase generation, which we use as our running
example, u is high when (1) y matches the mean-
ing of the source sequence x, (2) y is fluent in
terms of language modeling, and (3) it has high
lexical dissimilarity from x (Kumar et al., 2020;

*Equal contribution.
fCorresponding author.
'Our code is publicly available at: https://github.com/
jinulee-v/PairwisePartialReward

state, action at time step ¢ final outcome

(a) be
| want to { (b) go
(c) return

Figure 1: Reinforcement learning boils down to either
implicitly or explicitly maintain pointwise estimates of
values at each state, corresponding to utility of partially
generated sequences.

... at home. 75
... back home.| 60
... tohome. 80

Cao and Wan, 2020; Nighojkar and Licato, 2021,
inter alia).

Supervised learning, particularly maximum like-
lihood estimation (MLE) training, has typically
been the standard approach for conditional text
generation. In this approach, the model is trained
to maximize the likelihood of the reference given
the source. During inference, it generates output
sequences for which it assigns high probability.

This approach is known to suffer from two sig-
nificant challenges: exposure bias and train-test
objective discrepancy (Ranzato et al., 2016). To ad-
dress both challenges, reinforcement learning (RL)
has gained attention as an alternative (Shen et al.,
2016; Kreutzer et al., 2017). RL formulates au-
toregressive text generation as a Markov decision
process where a state corresponds to a generated
prefix under construction, > an action represents
the selection of the next token, guided by the policy
network, which is essentially the language model.
The agent’s goal is to maximize the reward it re-
ceives, which is determined by the utility u of the
output sequence.

However, this utility can be computed only af-
ter the generation is finished. This sparse and
delayed reward problem introduces challenges in
learning the impact of each action taken by the
model, known as the credit assignment problem in
RL, as depicted in Figure 1 (Guo et al., 2022; Li

20r, defined to include the source, s; = (x,y<t)-

6078

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 6078—6092
December 6-10, 2023 ©2023 Association for Computational Linguistics

https://github.com/jinulee-v/PairwisePartialReward
https://github.com/jinulee-v/PairwisePartialReward

T © Ours (C)
0]
Q
C
@®
£
]
o A
a \1 Baseline (A)
violates monotonicity

Beamsize —

Figure 2: (Beam monotonicity and resilience) Baselines
fall into either of the failure cases: (A) fails to achieve
monotonicity while exhibits monotonicity but fails
at resilience. Our method (C) achieves both, retaining
the performance even with smaller beam sizes.

et al., 2017). When a pointwise estimation of each
partial candidate is unreliable, generation leads to
undesirable sequences such as blank or repeated
n-grams (Holtzman et al., 2020).

We hypothesize that such pointwise estimation
of state values, or equivalently expecting models
to predict a total order over all partially generated
sequences, is an overly ambitious objective. In this
sense, while text degeneration is often attributed
to the failure of decoding, we show that the policy,
the model itself, is more responsible to the failure.

To support our claim that language models in-
deed struggle with the pointwise estimation of the
final outcome from partially generated sequences,
we suggest comparing their performance with beam
search using different beam sizes, as illustrated in
Figure 2. Beam search can be seen as providing
some tolerance for the model’s mistakes by hold-
ing on to candidate sequences even when its prefix
values are underestimated (Meister et al., 2020).
Ideally, if the model’s belief about the sequence’s
utility aligns positively with the actual utility of the
fully generated sequence, increasing the beam size
should only increase such a tolerance. We refer
to this property as beam monotonicity, which is
violated in a baseline model shown in Figure 2A.

Similarly, reducing the beam size should not
significantly hurt the performance if the model
accurately estimates values of prefixes in earlier
stages, as higher-ranked candidates would still sur-
vive with a smaller beam size. We call this property
beam resilience, which is violated in Figure 2B. A
reliable policy should satisfy both properties, as
shown in Figure 2C.

Our distinction is proposing a reliable policy in

state, action at time step ¢ final outcome

(a) be ... athome. 75
| want to { (b) go)\) ... back home.| 60
(c) return ... tohome. 80

Partial order t]

Figure 3: The proposed PPR learns to rank actions,
defining partial (rather than total) order over partial
sequences. The model receives partial reward, instead
of waiting for the delayed reward.

Figure 2C, by adjusting an overly ambitious re-
quirement of full ordering, to partially ordering a
subset of possible pairs of partial sequences. Essen-
tially, we aim to train the model to choose actions
that will lead to better outcomes, aligning with our
training objective. This approach also provides the
model with partial rewards, offering direct feed-
back on individual actions long before the delayed
reward becomes available.

Our method, called PPR (Pairwise Partial Re-
ward), implements this idea by utilizing a pre-
fix tree constructed from the sampled sequences.
PPR employs a pairwise ranking objective for the
branching nodes in the prefix tree. Firstly, we as-
sess the desirability of following each branch by
considering the leaf nodes in the corresponding sub-
tree and their associated observed utilities. Then,
we compare pairs of branches and encourage the
model to prefer the branch with a higher expected
return, effectively establishing a partial order over
partially generated sequences. For example, in
Figure 3, PPR can encourage the model to prefer
action (or the resulting partial sequence) c over a or
b, defining ordering of a — ¢ and b — ¢ as shown
in the figure.

Importantly, PPR does not require the model to
directly compare its value estimate of ¢ with other
partial sequences apart from a or b. Additionally,
it can be seen as the model receiving partial reward
for choosing the action c. In summary, this paper
makes two contributions:

* We introduce a novel method for reward shap-
ing in conditional text generation through pair-
wise learning to rank.

* We demonstrate the effectiveness of our ap-
proach, showcasing not only high-quality gen-
eration but also improved estimation of partial
sequence values through beam monotonicity
and resilience.

6079

2 Background

As a background, we formulate the description
of how autoregressive conditional text generation
is formulated as a Markov decision process and
the agent-environment interaction is defined to
transform the task into an RL problem. As men-
tioned before, state s; at time step ¢ corresponds
to (x, y<t), and the possible action a; at this mo-
ment is the act of choosing the next token, y:41
to reach the next state s;1;. Here the environ-
ment is fully observable and the state transition
given the action is deterministic, that is, select-
ing an action (the next token) is equivalent to se-
lecting the next state (prefix with length increased
by 1). A conditional language model then can
be regarded as directly parameterizing the policy,
mo(ac| se) = po(yi+1 | X, y<i)-

Typically, the interaction with the environment
is simulated as the delayed reward

u(y;x), ift=lyl,
R, — (y;x) _ | 0
0, otherwise,
where Ry := R(s;—1,a¢—1,S¢) is the reward for

making transition from s;_; to s; by choosing the
action a;. Delayed reward hinders the model from
figuring out which actions in the past should be
attributed to the final outcome.

3 Method

3.1 Baselines

We first briefly introduce the baseline methods we
consider and proceed to our proposed method.

3.1.1 Minimum risk training

Minimum risk training (MRT) (Shen et al., 2016)
is one of the most representative RL practices for
conditional text generation. It is a slightly altered
variation of the REINFORCE algorithm (Williams,
1992), or Monte Carlo policy gradient. Initially
adopted in NLP for machine translation task, MRT
uses sequences sampled from the model to estimate
the gradient of the expected cumulative reward to
be obtained under the current policy. It minimizes
the risk, or the negative expected reward

L=-> qly)uly;x),)
yeEY

where Y is the set of samples generated with beam
search, and ¢(y) is the weight of y, which is com-
puted as the normalized model-assigned likelihood

of y with tempering. The weight term ¢ is similar
to the importance weight in importance sampling,
but it differs in that here q values are normalized
over the set Y.

3.1.2 BRIO

BRIO (Liu et al., 2022), one of the state-of-the-art
models for abstractive summarization, also serves
as the baseline for our study.

Contrastive learning has been proven effec-
tive at learning embeddings of images and sen-
tences (Chen et al., 2020; Gao et al., 2021), and
it has recently gained attention within conditional
text generation. BRIO utilizes a contrastive objec-
tive between full sequences for rank learning. It
assigns higher (length-normalized) probability f
to sequences with high utility v using a pairwise
contrastive loss

Le= Y max (0, f(j)— f(i)+ ([—1)),
ut>ul

3

where i and j are the ranks of two samples y*
and y7, with ¢ being the higher rank, that is,
ut = u(y';x) > u(y’;x) =: v/, and f(i) =
(1/T*) >, log po(yi | x,y%,) is the length penal-
ized log likelihood of the sequence y* with length
penalty hyperparameter «. A is a hyperparameter
for determining the margin which is proportional
to the rank difference j — ¢. This contrastive loss
is then used in conjunction with the MLE loss (the
negative log-likelihood loss for the reference) to
train the model:

L=Lyig+7-Le. 4)

3.2 Motivation

Our primary goal is to have the ability to evaluate
individual actions. However, MRT and BRIO can
compare only fully generated sequences y' and
y?, making it challenging to estimate the values of
individual actions or partial sequences y%l and ytz2
within those sequences.

To address this limitation and enable the model
to understand the consequences of individual ac-
tions, we have the following requirements:

* R1: We need a way to measure the desirabil-
ity of an action or a partial sequence based on
sparse sequence-level utility u. This would
allow us to estimate how desirable a partial se-
quence is, even with this limited information.

6080

* R2: We should be able to determine which
actions or partial sequences participate in the
model update. When we modify the BRIO
objective to focus on partial sequences instead
of full sequences, we should identify a subset
of partial sequence pairs that contribute to
rank learning, to avoid requiring the model to
meet an overly ambitious goal of estimating a
full order of partial sequences.

By fulfilling these requirements, we can over-
come the limitations of existing methods and en-
able the model to learn the value of individual ac-
tions and enhance their estimation of desirability.

3.3 Proposed: PPR

We now formally present our proposed method,
PPR, that addresses R1 and R2, posed in 3.2, ele-
gantly at once. This is achieved by leveraging the
prefix tree 7 constructed from the set of sample se-
quences Y generated from the model conditioned
on the source sequence x.

For R1, PPR infers the value V7 (y<¢) of a par-
tially generated sequence y<; using the prefix tree

T as
Vr(y<i) == max u(y'; x), 3

Y<tTY<t

where the max operator ranges over y’ € Y. In
other words, Vr(y<:) is the highest utility ob-
served among the sequences sharing the common
prefix y<;. It serves as the missing ground-truth
quality measure for partially generated sequences,
just as the utility metric u evaluates fully generated
sequences.

The prefix tree structure allows to efficiently enu-
merate over all sequences with the prefix y<¢, as
they correspond to the leaf nodes of the subtree
rooted at the node y<;. This way, Vi (y<;) can be
efficiently determined for any given prefix y<;.

As previously explained in Section 1, although
with V- we can measure the desirableness of any
prefix of any sequence in Y, it can be an unrealistic
goal to learn to make pointwise estimates of Vi,
which requires the model to decide ordering for
arbitrary pairs of partially generated sequences in
essence. Rather, we adopt the pairwise ranking
approach of considering two actions as a pair and
encourage the model to find the action that results
in a partial sequence with higher V.

Regarding R2 and how to construct the set of
pairs to present to the model, the prefix tree also

1. Generate outputs and rank with u().

1. What is the best way to deal with social anxiety?
2. How can I get rid of social anxiety?|

3. What is the best way to get over social anxiety?
4. How can I get over social anxiety?
5. How do you get over social anxiety?

2. Construct a prefix tree from outputs.

==

3. Train for p(v;|v) — p(vj|v) > A for each branch.

v;: action to higher final score

with social anxiety?

v: prefix
What is the
best way to v;: action to lower final score

get H over social anxiety?]

Figure 4: Brief illustration of the PPR training objective.
For all ‘branching nodes’ found from the prefix tree of
outputs, PPR applies a max-margin style loss function to
assign higher probabilities to actions that will eventually
lead to higher sequence-level utility scores.

provides a natural solution. We select the branch-
ing nodes in the prefix tree and compare the actions
corresponding to each branch.

The branching nodes in the prefix tree T are
well-suited for the task of selecting a feasible and
necessary set of pairs to maximize the benefit of
learning to rank. This is because:

* We present the model with pairs of partial se-
quences that share all but the last token. This
requirement allows the model to assess the
impact of a one-step move, which is more
feasible compared to distinguishing pairs of
partial sequences with much longer chains of
differing actions.

* The branches in the prefix tree were kept
during the beam search because they were
assigned sufficient probability mass by the
model. Therefore, the model should be capa-
ble of distinguishing these challenging pairs
in order to perform well.

We now provide a detailed description of how
the pairwise ranking objective is obtained.

As illustrated in Figure 4, we begin by construct-
ing a prefix tree 7 using the outputs generated with

6081

the beam search. > In this tree, each node v repre-
sents a prefix of at least one sample sequence in Y,
and each edge corresponds to a token.

Next, we determine the rank of each token
w; following the same prefix v in accordance to
maz(Vy(7;)), the maximum possible utility when
the generation starting from v; = vw; is complete.
For all branching node v in 7 with deg(v) > 1
children nodes, we rank the associated edges w;
and next states v; by Vr(v;). As a result, select-
ing w; and transitioning from v to v; leads to the
best outcome, while choosing wgeg(y) 18 the worst
choice possible.

We provide a higher reward for assigning a
higher probability to w; as the next token compared
to wj if 7+ < j. The resulting pairwise ranking loss
of PPR is in the form

Lc = Z Z maX(Ovp/(Uj) _p/(vi) +)‘)’

deg(v) 22 (i,7)€Py
(6)

where p'(v;) := pg(w; | v,x) is the probability of
choosing the token w; conditioned on the source
x and the prefix v, and P, is the set of pairs of
indices that will participate in the comparison. For
nodes with more than two children, deg(v) > 2,
there are several possibilities for selecting which
pairs to contrast, P,. We considered the following
candidates,

* Dominate:
P, = {(172)a (173)7 T 7(17N)}’

* Adjacent pairs:
P, = {(172),(2,3),"' 7(N_17N)}7

* All pairs:
Py =A{00,j)|1 <i<j <N}

where N = deg(v), and proceeded with Dominate
which performed well in our preliminary experi-
ments. In practice, the difference was almost indis-
tinguishable as most of the branching nodes had
two children.

Finally, we add pseudo-reference loss Ly g,
where the sequence with the highest utility in Y
serves as another reference sequence to obtain the
following training objective for PPR:

L= Lwie + Lypg +7 - Le)

Ly g encourages the model to prefer high-quality
sequences it has generated on sequence-level, as
elaborated in Section 5.1.

3A prefix tree is generated on-fly per each input sequences,
as described in Equation 7.

4 Experiments

4.1 Experiment settings
4.1.1 Task

As a main evaluation task, we focus on paraphrase
generation to evaluate the effectiveness of the pro-
posed PPR for conditional text generation, we ex-
periment on the paraphrase generation task. A
paraphrase y of the source x exhibits high utility
u(y; x) if it (1) preserves the meaning x conveys,
(2) is a fluent sentence, and (3) deviates lexically
and structurally from x, discouraging the copying
behaviors y = x as a low utility. Regarding gener-
alization to other tasks, please see Subsection 5.4.

4.1.2 Architecture and training details

We utilize an encoder-decoder transformer archi-
tecture as the policy network. Specifically, we start
from the pretrained checkpoints of BART (Lewis
et al., 2020) and T5 (Raffel et al., 2020). We pro-
vide the detailed hyperparmeter settings and other
relevant configuration in Appendix A.

4.1.3 Datasets

We use two popular benchmarks on paraphrase gen-
eration, namely QQP-Pos (Chen et al., 2017) and
MSCOCO (Lin et al., 2014) for training and evalu-
ation. QQP-Pos is a subset of Quora Question Pairs
(QQP) paraphrase identification corpus, where only
positive paraphrase pairs are selected. Throughout
this paper, we denote QQP-Pos as QQP for simplic-
ity. MSCOCO is a dataset for image captioning,
and two captions that describe the same image are
treated as a paraphrase pair. For both datasets, we
use the standard data splits.

Roughly, QQP consists of more semantically and
lexically similar paraphrases than MSCOCO. The
self-BLEU (BLEU score between two paraphrases)
measured from the test split is 18.35 in QQP, while
only 2.46 in MSCOCO.

4.1.4 Metrics

While numerous metrics have been proposed for
evaluating paraphrase generation automatically
(Cao and Wan, 2020; Shen et al., 2022; Nigho-
jkar and Licato, 2021), we choose BERT-iBLEU
(Niu et al., 2021), which is a reference-free metric
capturing both semantic similarity (using BERT-
score) and lexical dissimilarity (using iBLEU). It
is reported to outperform most of the source-only
and reference-only metrics in human judgement

6082

correlation with low computation overhead (Shen
et al., 2022; Nighojkar and Licato, 2021).

BERT-iBLEU score is calculated as a weighted
harmonic mean of the BERT-score and the iBLEU
score between the source and the output. Following
the original paper, we set the weight hyperparam-
eter S = 4 to match the scale of the two metrics.
Outputs that are nearly identical to the source sen-
tence result in low iBLEU, and thus penalized in
terms of BERT-iBLEU score.

B+1
— ®
+
BERT-score 1-BLEU

We used BERT-iBLEU as the utility u(-), that is,
both for evaluating the model performance and for
rewarding the model during training.

BERT-iBLEU =

4.2 Results

The result on two base architectures (BART, T5)
and two paraphrase generation benchmarks (QQP,
MSCOCO) is presented in Table 1. We have evalu-
ated the models with different decoding strategies,
namely (1) unbiased sampling and (2) beam search
with varying beam sizes (1, 2, 4, 8 and 16) where
beam size of 1 is precisely the greedy decoding.
The full results, including scores for all beam sizes
along with the standard deviation can be found in
Appendix C; also, the score-beam size plot can be
found in Figure 5.

Our proposed PPR consistently outperforms all
baselines in all (model, dataset) pairs. We also
present the interpretation of these results through
the lens of beam monotonicty and resilience intro-
duced in Section 1.

First, regarding the beam monotonicity, MLE
and MRT failing to benefit from increasing beam
size and thus violating it indicates a poor correla-
tion or calibration between the likelihood assigned
by these models and the target utility score. This
suggests that the values of partial sequences implic-
itly maintained by these models do not align well
with the final desired outcome.

Second, for beam resilience, while BRIO does
show performance improvement with larger beam
sizes, its significant performance decline with
smaller beam sizes or unbiased sampling, failing to
achieve resilience indicates a failure to consistently
estimate the values of partial sequences. This sug-
gests that BRIO’s high-ranking candidates are not
trustworthy in early decoding stages, as we further
anayze in Section 5.2.

QQP dataset

Model Sampling Beam=1 Beam=16
MLE 75.86 67.92 68.64
MRT 78.12 73.64 77.59
BART BRIO 80.04 81.49 95.39
PPR 93.62 96.65 96.79
MLE 71.81 52.16 45.57
Ts MRT 72.20 67.57 65.06
BRIO 80.88 84.84 95.27
PPR 92.14 95.31 95.64
Reference 79.28
MSCOCO dataset
Model Sampling Beam=1 Beam=16
MLE 73.72 76.40 75.32
MRT 73.98 77.10 76.20
BART prio 7591 8189 96.62
PPR 90.78 96.03 97.00
MLE 73.72 74.93 71.22
Ts MRT 68.94 72.13 71.70
BRIO 74.25 81.74 95.87
PPR 91.39 95.96 96.10
Reference 73.61

Table 1: BERT-iBLEU scores on paraphrase generation
with different decoding strategies: unbiased sampling,
greedy (‘Beam=1") and beam search (‘Beam=16"). The
row ‘Reference’ denotes the average score of reference
paraphrases.

Model QQP MSCOCO
MLE 1241 2.6
MRT 231 1.89
BART prio 007 0.00
PPR 0.03 0.00
MLE 3836 647
s MRT 3602 5.66
BRIO 001 0.00
PPR 0.02 0.00

Table 2: The portion of model output exactly copying
the source sequence (%). MLE clearly fails to learn that
copying is not desirable.

Our distinction is that PPR exhibits a nearly flat
curve in Figure 5, indicating that the values of par-
tial sequences estimated by our model align well
with the actual final rewards obtained by continuing
generation from those sequences. Although PPR
was not explicitly designed for fully stochastic pol-
icy scenarios, where unbiased sampling is used for
decoding, it demonstrates significant performance
improvement in such circumstances.

Now we examine the failure of MLE in more
detail. In addition to its BERT-iBLEU scores gen-
erally ranking the lowest, Table 2 highlights its
another weakness: the exact copy rate. This metric
represents the percentage of model outputs that are
exactly the same as the input sequence. Despite
the training data consisting of (source, reference)
pairs that explicitly discourage exact copying as a

6083

Model TS5

Dataset QQP MSCOCO
LMLE 45.57 71.22
Lie 77.41 91.24
L 82.48 96.21
Lavie + Ly 43.48 70.37
Le~+ Lmie 94.50 95.44
Le+ Lyne 95.50 96.42
All 95.64 96.10

Table 3: Ablation results for three training objectives
in Equation 7, with beam size of 16 at inference time.
Results are from single-run experiments.

desirable paraphrase, MLE training fails to capture
this aspect from the data.

From an RL perspective, MLE training can be
seen as behavioral cloning, where an expert demon-
strates desirable sequences of actions, and the agent
learns by simply imitating those actions. Our re-
sults indicate that, when the desired goal is com-
plex and multifaceted, simply following good paths
leads to simple copying behaviors, which is wors-
ened in QQP, which contains a larger proportion
of similar (quantitatively, high self-BLEU) para-
phrases compared to MSCOCO.

5 Analysis

We provide in-depth analysis of the behavior of our
model and baselines.

5.1 Ablation study

Table 3 presents the ablation study results, where
we compare the different composition of training
objective components listed in Equation 7.

First, the importance of the contrastive objective
L. is clearly demonstrated, as models trained with
L. generally outperform ones trained without it.
Furthermore, alongside the performance gain in
sufficient beam sizes, L. alone can achieve beam
monotonicity and resilience, ¢.e. model’s robust-
ness with varying beam sizes during inference as
illustrated in Table 7.

Also, the pseudo-reference loss plays a key role
in promoting the top-ranked candidate based on
sequence-level utility. More detailed results regard-
ing the pseudo-reference loss are available in Table
8. Finally, training without the reference loss, or
reference-free in other words, led to a small drop
in score for the QQP task but a gain for MSCOCO.
This suggests that the reference sequences in QQP
were better aligned with the source sequences, pro-
viding more helpful guidance during training.

5.2 Step-wise analysis

We analyze the model’s beam resilience in a de-
tailed, step-wise fashion. First, we select the top-
ranked sequence with a beam size of 16 (referred as
top beam). For each generation step, we computed
the reciprocal rank of the chosen token within the
entire vocabulary and averaged it over all sequences
with a length of 10 (including EOS), which was the
most common length observed.

Figure 6 illustrates an interesting finding regard-
ing the behavior of baseline methods compared to
PPR. During the early to middle steps, baselines
often do not consider the prefix of the top beam
sequence as desirable. However, as they progress,
they change their decisions and favor the prefix.
In contrast, PPR consistently achieves high token
MRR scores across all time steps and in all cases.
This implies that, even with greedily following the
best actions, PPR is able to generate a sequence
that closely resembles the one obtained through
beam search.

This observation has two important implications.
Firstly, it directly explains PPR’s success in achiev-
ing beam resilience during greedy decoding. Sec-
ondly, it strongly supports the effectiveness of
PPR’s pairwise ranking loss for partial sequences in
enabling the model to consistently and accurately
estimate the values of partial sequences, eliminat-
ing the need for looking ahead possible continua-
tions as in beam search, to obtain sequences with
high utility.

5.3 Additional metrics

To prove robustness of the proposed PPR against
different metrics, we propose a variant of BERT-
iBLEU, BiP (BERT-iBLEU-PPL), which includes
an additional perplexity term for measuring fluency
of the generated paraphrase. When an output y’s
perplexity is higher than the source sentence x in a
scale of k, the score is proportionally penalized.

BiP — BERT4BLEU -min (1, P (o)
PPL(y)

Automatic evaluation results for models trained
with BiP as utility are provided in Table 4, where
PPR clearly demonstrates beam monotoniticy and
resilience together with high performance. For this
purpose we have also reported results obtained by
evaluating with metrics other than BiP, including
ParaScore (Shen et al., 2022), which was designed
to better align with human judgment.

6084

T5-QQP T5-MSCOCO BART-QQP BART-MSCOCO
95| —————| o 951 951 Ours
BRIO
2 90 90 90 1 90 — MRT
3 —— MLE
12
S 85 85 85 85
w
@
D g 80 80 80
i
o =
_—
B 75 75 751 751
B
£ 70 70 0 o~ | 709
65 T 65 65 1 651
1 2 4 8 16 1 2 4 8 B 1 2 4 8 16 1 2 4 8 16
Beam size

Figure 5: Test BERT-iBLEU score obtained from beam search decoding with varying beam sizes, 1 to 16. Shaded
area represents standard deviation. The MLE curve for T5-QQP is excluded due to y-axis coverage.

—— Ours

BRIO
—— MRT
— MLE

T5-QQP T5-MSCOCO BART-QQP BART-MSCOCO

° w * h b
+ 08 08 08 \X/ 08
[=4
@
@
3 o6 0.6 { 06 061
<
&8
3
€ oa 041 04 041
&
s

02 021 02 021

00 00 00 00

2 4 6 8 1 2 4 6 6 & 10 2 4 6 8 10

8 0 . 2
Token position

Figure 6: The token mean reciprocal rank (MRR) for the top ranked sequence over time steps. The curve from PPR
consistently remains at the top, maintaining values close to 1 as opposed to baseline methods displaying their strong
dependence on the tolerance provided by beam search. Shaded area represents standard deviation.

BiP
Model Sampling Beam=1 Beam=16
MLE 54.01 69.47 67.28
T5 BRIO 51.53 81.11 88.84
PPR 74.84 87.79 88.57
BERT-iBLEU
Model Sampling Beam=1 Beam=16
MLE 73.72 74.93 71.22
T5 BRIO 75.12 85.30 90.52
PPR 85.37 90.13 90.55
Parascore
Model Sampling Beam=1 Beam=16
MLE 32.55 17.35 3.00
T5 BRIO 72.91 85.46 89.91
PPR 84.52 89.89 89.98

Table 4: Automatic evaluation results of TS5 models
trained on BiP and MSCOCO dataset. We also present
cross-evaluation results to show the effectiveness of
training with PPR using BiP metric.

Also, we report human evaluation results for
different models. We performed example-wise
comparison between randomly chosen outputs of
PPR and BRIO/MLE trained models (generated by
beam search with beam size of 16), asking the an-
notators to decide which one is a better paraphrase
of the given source sentence, or if they are compara-
ble in terms of faithfulness, lexical divergence and

fluency. As aresult, PPR won 24%/58% of the case
and lost 18%/12% of the case compared to BRIO
and MLE, respectively. Qualitatively, our strength
was found with respect to faithfulness out of the
three main requirements. Examples of generated
samples and more details on (automatic) evaluation
results can be found in Appendix C and B.

5.4 Generalizing PPR to constrained MT

In addition to the paraphrase generation task mainly
considered in this paper, we also conducted ex-
periments on lexically constrained machine trans-
lation, where the goal is to output a hypothesis
given a source sentence to translate plus lexical
constraints, which are series of chunks of tokens
that must appear on the generated sentence. This
dual goal of generating plausible and constraints-
satisfying translation has been assessed with two
metrics, namely BLEU and copying success rate
(CSR*) (Wang et al., 2022; Chen et al., 2021).
Table 5 shows the results on constrained machine
translation task on the WMT16 En-Ro benchmark.
BRIO and PPR used BLEU-CSR, the product of
sentence-level BLEU score and CSR as the util-

4Sometimes also denoted as EM (exact match).

6085

BLEU

Model Sampling Beam=1 Beam=16
MLE 22.92 27.01 27.79
Marian BRIO 23.67 26.37 27.21
PPR 24.70 27.86 28.46

CSR

Model Sampling Beam=1 Beam=16
MLE 81.96 83.97 84.99
Marian BRIO 89.48 90.29 92.33
PPR 89.98 92.33 93.23

BLEU-CSR

Model Sampling Beam=1 Beam=16
MLE 20.01 23.97 24.87
Marian BRIO 21.76 24.81 25.59
PPR 23.12 26.36 27.14

Table 5: BLEU, CSR (Copying Success Rate), and
BLEU-CSR scores from the constrained machine trans-
lation task in WMT16 En-Ro benchmark.

ity for training. It is shown that our proposed PPR
effectively pursues the dual goal of generating plau-
sible translation containing the required constraints.
Further experimental details and complete results
can be found in Appendix A and C.

6 Related work

This section describes previous work addressing
the misbehavior often observed from conditional
text generation. Null sequences, repeated n-grams
and gibberish can be generated as the model as-
signs high probability to them under certain cir-
cumstances (Stahlberg and Byrne, 2019; Holtzman
et al., 2020, inter alia). We categorize efforts based
on whether they attribute these to the decoding
method (Subsection 6.1) or to the model’s policy
(Subsection 6.2).

6.1 Decoding methods

Some attribute the degeneration problem to the
decoding method itself, as Meister et al. (2020)
examined the inductive bias of beam search. Alter-
native decoding methods to mitigate ill-formed out-
puts, such as sampling-based approaches (Fan et al.,
2018; Holtzman et al., 2020), regularized beam
search (Yang et al., 2018; Meister et al., 2020), and
constrained decoding (Kajiwara, 2019; Niu et al.,
2021) have been propsoed. In paraphrase gener-
ation, constrained decoding has been explored to
discourage direct copying of the input.

These methods can be seen as ad-hoc solutions
without addressing the root cause, unreliable value
estimation, as we argue with beam monotonicity
and resilience in Section 4.2.

6.2 Reward shaping

On the other hand, reward shaping can be em-
ployed to directly address the value prediction prob-
lem, either by (1) providing additional reward on
top of the original one to nudge the model towards
accomplishing subgoals, or (2) distributing the re-
ward over actions through potential-based method.
An example of the former is Chan et al. (2019),
where generating each keyphrase is rewarded by
using recall as the utility in keyphrase generation.

As an example of the latter, in the potential-
based method proposed by Bahdanau et al. (2017)
for training actor-critic model on neural machine
translation task, a partial reward at each time step is
defined as the difference between the BLEU scores
of the prefix of length ¢ and £ — 1 with respect to
the entire reference sentence:

Rt = up(y<;x) — up(y<s;x), (10)

where the potential, or the utility of a partial se-
quence u,(y<¢;X) = Up(y<¢; X, y) is the BLEU
score of the partial sequence y<; with respect to
the whole reference sequence y.

However, it is hard to define such a task-specific
potential over all states so that the resulting rewards
would faithfully reflect the desirableness of each
action, which explains a marginal gain from the
above partial reward. In contrast, our design of PPR
allows to provide partial rewards directly based on
the values of the resulting states.

7 Conclusion

We proposed PPR (Pairwise Partial Reward), a
novel approach to reward shaping through provid-
ing partial rewards in reinforcement learning for
conditional text generation. Our method utilizes
prefix tree constructed from the set of sample se-
quences to learn to rank between action pairs, sup-
porting any sequence-level utility metrics u for opti-
mization. By considering samples collectively, our
approach enables the model to reflect on its past de-
cisions and immediately determine which actions
led to favorable outcomes. This allows PPR to ef-
fectively guide the model in estimating values and
selecting desirable actions during generation. Ex-
perimental results demonstrate that our model out-
performs baselines, especially with smaller beam
sizes or unbiased sampling, indicating a signifi-
cant improvements in assessing the values of par-
tial sequences and enhancing language models as
stochastic policies.

6086

Acknowledgements

This work was supported by Institute of Informa-
tion & Communications Technology Planning &
Evaluation (IITP) grant funded by the Korean gov-
ernment (MSIT) (No. 2022-0-00077, Al Tech-
nology Development for Commonsense Extrac-
tion, Reasoning, and Inference from Heteroge-
neous Data).

Limitations

One limitation of our work is that it incurs explo-
ration (sampling) overhead during training, which
is common among reinforcement learning ap-
proaches to text generation. With this, PPR may
require more time to update the model parame-
ters compared to MLE, but surpasses MLE with a
smaller number of updates. The trade-off analysis
between two factors needs further exploration.

Another limitation of this paper is that, though
our work is readily applicable to any conditional
generation tasks with any sequence-level evalua-
tion metric, it still requires an extensive analysis of
generalization to more diverse set of tasks with pos-
sibly longer target sequences and utility functions
with even more complex designs.

References

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu,
Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron C.
Courville, and Yoshua Bengio. 2017. An actor-critic
algorithm for sequence prediction. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net.

Yue Cao and Xiaojun Wan. 2020. DivGAN: Towards di-
verse paraphrase generation via diversified generative
adversarial network. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
2411-2421, Online. Association for Computational
Linguistics.

Hou Pong Chan, Wang Chen, Lu Wang, and Irwin King.
2019. Neural keyphrase generation via reinforcement
learning with adaptive rewards. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 2163-2174, Florence,
Italy. Association for Computational Linguistics.

Guanhua Chen, Yun Chen, and Victor O.K. Li. 2021.
Lexically constrained neural machine translation
with explicit alignment guidance. Proceedings
of the AAAI Conference on Artificial Intelligence,
35(14):12630-12638.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In
Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 1597-1607.
PMLR.

Zihang Chen, Hongbo Zhang, Xiaoji Zhang, and Leqi
Zhao. 2017. Quora question pairs.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889—-898, Melbourne, Australia. Association
for Computational Linguistics.

Tianyu Gao, Xingcheng Yao, and Dangi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894—6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Han Guo, Bowen Tan, Zhengzhong Liu, Eric Xing, and
Zhiting Hu. 2022. Efficient (soft) Q-learning for text
generation with limited good data. In Findings of the
Association for Computational Linguistics: EMNLP
2022, pages 6969-6991, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Tomoyuki Kajiwara. 2019. Negative lexically con-
strained decoding for paraphrase generation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6047—
6052, Florence, Italy. Association for Computational
Linguistics.

Julia Kreutzer, Artem Sokolov, and Stefan Riezler. 2017.
Bandit structured prediction for neural sequence-to-
sequence learning. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1503—1513,
Vancouver, Canada. Association for Computational
Linguistics.

Ashutosh Kumar, Kabir Ahuja, Raghuram Vadapalli,
and Partha Talukdar. 2020. Syntax-guided controlled
generation of paraphrases. Transactions of the Asso-
ciation for Computational Linguistics, 8:329-345.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,

6087

https://openreview.net/forum?id=SJDaqqveg
https://openreview.net/forum?id=SJDaqqveg
https://doi.org/10.18653/v1/2020.findings-emnlp.218
https://doi.org/10.18653/v1/2020.findings-emnlp.218
https://doi.org/10.18653/v1/2020.findings-emnlp.218
https://doi.org/10.18653/v1/P19-1208
https://doi.org/10.18653/v1/P19-1208
https://doi.org/10.1609/aaai.v35i14.17496
https://doi.org/10.1609/aaai.v35i14.17496
https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://aclanthology.org/2022.findings-emnlp.518
https://aclanthology.org/2022.findings-emnlp.518
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.18653/v1/P19-1607
https://doi.org/10.18653/v1/P19-1607
https://doi.org/10.18653/v1/P17-1138
https://doi.org/10.18653/v1/P17-1138
https://doi.org/10.1162/tacl_a_00318
https://doi.org/10.1162/tacl_a_00318
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703

pages 7871-7880, Online. Association for Computa-
tional Linguistics.

Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan
Ritter, and Dan Jurafsky. 2017. Adversarial learning
for neural dialogue generation. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2157-2169, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollar,
and C. Lawrence Zitnick. 2014. Microsoft COCO:
common objects in context. In Computer Vision -
ECCV 2014 - 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings,
Part V, volume 8693 of Lecture Notes in Computer
Science, pages 740-755. Springer.

Yixin Liu, Pengfei Liu, Dragomir Radev, and Graham
Neubig. 2022. BRIO: Bringing order to abstractive
summarization. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2890-2903,
Dublin, Ireland. Association for Computational Lin-
guistics.

Clara Meister, Ryan Cotterell, and Tim Vieira. 2020. If
beam search is the answer, what was the question?
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2173-2185, Online. Association for Computa-
tional Linguistics.

Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott,
Michael Auli, and Sergey Edunov. 2019. Facebook
FAIR’s WMT19 news translation task submission.
In Proceedings of the Fourth Conference on Machine
Translation (Volume 2: Shared Task Papers, Day
1), pages 314-319, Florence, Italy. Association for
Computational Linguistics.

Animesh Nighojkar and John Licato. 2021. Improv-
ing paraphrase detection with the adversarial para-
phrasing task. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 71067116, Online. Association for
Computational Linguistics.

Tong Niu, Semih Yavuz, Yingbo Zhou, Nitish Shirish
Keskar, Huan Wang, and Caiming Xiong. 2021. Un-
supervised paraphrasing with pretrained language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 5136-5150, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,

21(140):1-67.

Marc’ Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In 4th Inter-
national Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings.

Lingfeng Shen, Lemao Liu, Haiyun Jiang, and Shuming
Shi. 2022. On the evaluation metrics for paraphrase
generation. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Process-
ing, pages 3178-3190, Abu Dhabi, United Arab Emi-
rates. Association for Computational Linguistics.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Minimum
risk training for neural machine translation. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1683-1692, Berlin, Germany. Associ-
ation for Computational Linguistics.

Felix Stahlberg and Bill Byrne. 2019. On NMT search
errors and model errors: Cat got your tongue? In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-1IJCNLP), pages 3356—
3362, Hong Kong, China. Association for Computa-
tional Linguistics.

Shuo Wang, Peng Li, Zhixing Tan, Zhaopeng Tu,
Maosong Sun, and Yang Liu. 2022. A template-
based method for constrained neural machine trans-
lation. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 3665-3679, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Mach. Learn., 8(3—4):229-256.

Yilin Yang, Liang Huang, and Mingbo Ma. 2018. Break-
ing the beam search curse: A study of (re-)scoring
methods and stopping criteria for neural machine
translation. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 3054-3059, Brussels, Belgium. Associa-
tion for Computational Linguistics.

6088

https://doi.org/10.18653/v1/D17-1230
https://doi.org/10.18653/v1/D17-1230
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.18653/v1/2022.acl-long.207
https://doi.org/10.18653/v1/2022.acl-long.207
https://doi.org/10.18653/v1/2020.emnlp-main.170
https://doi.org/10.18653/v1/2020.emnlp-main.170
https://doi.org/10.18653/v1/W19-5333
https://doi.org/10.18653/v1/W19-5333
https://doi.org/10.18653/v1/2021.acl-long.552
https://doi.org/10.18653/v1/2021.acl-long.552
https://doi.org/10.18653/v1/2021.acl-long.552
https://doi.org/10.18653/v1/2021.emnlp-main.417
https://doi.org/10.18653/v1/2021.emnlp-main.417
https://doi.org/10.18653/v1/2021.emnlp-main.417
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/1511.06732
http://arxiv.org/abs/1511.06732
https://aclanthology.org/2022.emnlp-main.208
https://aclanthology.org/2022.emnlp-main.208
https://doi.org/10.18653/v1/P16-1159
https://doi.org/10.18653/v1/P16-1159
https://doi.org/10.18653/v1/D19-1331
https://doi.org/10.18653/v1/D19-1331
https://aclanthology.org/2022.emnlp-main.240
https://aclanthology.org/2022.emnlp-main.240
https://aclanthology.org/2022.emnlp-main.240
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.18653/v1/D18-1342
https://doi.org/10.18653/v1/D18-1342
https://doi.org/10.18653/v1/D18-1342
https://doi.org/10.18653/v1/D18-1342

A Experimental settings in detail

Here we provide the detailed experimental settings.

A.1 Paraphrase Generation experiments

We used pretrained T5-small (60M) and BART-
base (139M) checkpoints, publicly available at
Huggingface Transformers > with each correspond-
ing tokenizers (with approximately 30k and 50k
vocab size).

We used Adam optimizer with (81, 02) =
(.9,.999) and € = le — 8. We also used the linear
learning rate scheduler with initial learning rate
of 5e-5, batch size of 16, dropout rate of 0.1. We
trained models for 5 epochs for both QQP and
MSCOCO datasets and then chose the best check-
point with target metric score (BERT-iBLEU) on
the development set.

For methods other than MLE, we used beam
search for obtaining on-policy samples at train time.
For MRT, we used the fixed beam size of 16. For
BRIO and PPR, we experimented with both 16 and
32, and chose the one with better performance on
the development set. As a result, for all model and
dataset combinations, BRIO performed better with
16 while ours enjoyed the benefit of the larger beam
size, 32.

Now we describe method-specific hyperparame-
ter settings for BRIO and PPR. For BRIO, we used
the fixed length penalty of @ = 1.0 for normal-
izing the sequence likelihood. We have searched
over .001, .005, .01, .05, .1 for determining the unit
margin A, and A = .1 was the best for all configura-
tions. For the loss scale hyperparameter we found
that v = 10 worked the best for most of the cases,
over 1,2, 3,5,10 while v = 2 gave the best result
for BART on MSCOCO.

For PPR, all the model-dataset combinations
shared the same best performing hyperparameter
settings, where we have determined the contrastive
loss scale hyperparamter «y as 10 in the same way
as for BRIO, and the margin as A = 0.5 among
0.1,0.5. As described before, we have put the same
weight on the negative log-likelihood loss from the
ground-truth reference sequence and the pseudo-
reference sequence.

A.2 Constrained MT experiments

Following previous works, as a fully annotated set
of training examples for constrained machine trans-
lation task is not widely available, we chose the

5https://github.com/huggingface/transformers

approach of extracting constraints from public MT
benchmarks for unconstrained MT in which only
paired sentences without constraints are available.
In order to best align with the actual use case of con-
strained MT in practice, we leveraged a pretrained
MarianMT model trained on En-Ro direction avail-
able at Huggingface Transformers®, and the corre-
sponding tokenizer (with approximately 59k vocab
size) to identify the words in the target sentences
that the model is least confident with, based on the
model’s output log probabilities. Note that we used
word-level constraints, rather than token-level ones,
allowing a series of tokens to constitute a single
constraint; the confidence for a word was calculated
as the average confidence for tokens in that word.
We selected 1-3 words as constraints, proportional
to the sentence length. In order for the extracted
constraints to be reasonable, we applied language
filtering based on language detection tools which is
a widely adopted practice in building MT systems
based on publicly available data (Ng et al., 2019),
removing noisy examples such as those containing
German(de) sentences. Among the 610k training
examples in WMT16 En-Ro dataset, we only used
pairs of which (1) source sentence is classified as
En and target sentence is classified as Ro, and (2)
both source and target sentences are shorter than 32
tokens, which leaves slightly less than 100k sam-
ples. The constraints were appended to the source
sentence, where the source and constraints were
separated by <eos> token, to be fed as input to the
model. Validation and test splits were processed in
the same manner.

We initialized the models with the aforemen-
tioned pretrained MarianMT checkpoint, which
exhibited nearly 40-50% of CSR on its own. The
models were trained for 5 epochs with initial learn-
ing rate 2e-3, effective batch size 128 and beam size
16. For other method-specific hyperparameters we
used the same values as in the main experiments.

B Examples of generated paraphrases

Table 6 includes generated paraphrase samples
from models trained with different metrics and
training objectives.

Models trained with MLE often generate a direct
copy of the source as shown in Table 2, or omit
important details. On the other hand, PPR and
BRIO trained with BERT-iBLEU clearly learns to

®https://huggingface.co/Helsinki-NLP/
opus-mt-en-ro

6089

https://github.com/huggingface/transformers
https://huggingface.co/Helsinki-NLP/opus-mt-en-ro
https://huggingface.co/Helsinki-NLP/opus-mt-en-ro

exploit the design of BERT-iBLEU, which allows
copying up to 3-grams from the source to maintain
high semantic similarity captured by BERTscore
yet still avoiding being penalized by BLEU score.
The difference between models trained on BRIO
and PPR is best shown in BiP examples. BRIO
often leads to generating false information that is
not faithful to the content of the source, as high-
lighted in italic. In contrast, PPR effectively re-
tains, or at least does not flip or change the mean-
ing of important keywords present in the source
sentence through directly contrasting token-level
actions given the prefix, leading to better choices
in critical steps. This showcases our method’s ef-
fectiveness in token-level credit assignment in au-
toregressive conditional text generation.

BERT-iBLEU
Model Example
An office cubicle with four different types of
Input
computers.
An office cubicle with four different types of
MLE
computers.
BRIO An office cubicle,with 4 different computers
types.
PPR An office cubicle containing 4 different types
computers.
Input A Marine that is looking at his cell phone.
MLE A man is looking at his cell phone.
BRIO A Marine that’s looking at his cell-phone.

PPR A Marine who is looking on his cellphone.

BiP
Model Example
Input A hotel has a small tv on the dresser.
MLE A tvon adresser in a hotel room.
BRIO A hotel is equipped with a large TV on top of

the dresser.
PPR A hotel features a tv on top of the dresser.
Two yellow fruits hanging on branches full of

Input 1
eaves.
MLE Two fruits are hanging on the branches of a tree.
BRIO Two orange fruits are hanging on a branch full
of leaves.
PPR Two yellow fruits hang on a branch full of leaves.

Table 6: Generation examples from models trained with
BERT-iBLEU and BiP on MSCOCO dataset with T5 as
the base architecture.

C Complete results

Table 9 shows the results for paraphrasing in more
detail including the standard deviation of each re-
ported figure. Substantially improved performance
with oracle reranker shows that MLE and MRT
failing to achieve beam monotonicity is largely due
to that their failing to align probability and target
utility.

In addition, Table 10 displays the complete result

for models trained in BiP. Strong performance gain
is achieved with PPR compared to its counterparts,
especially with unbiased sampling and beam search
decoding with small beam sizes.

Finally, Table 11 shows the full results on lexi-
cally constrained machine translation task, where
PPR outperforms others not only in the given met-
ric for training, BRIO-CSR, but also in its individ-
ual components (BRIO and CSR). While models
trained using MLE or BRIO objectives tend to fre-
quently violate beam monotonicity, PPR can gener-
ally take advantage of the increased beam size.

6090

Model-Dataset Sampling Beam=1 Beam=2 Beam=4 Beam=8 Beam=16 Oracle
T5-MSCOCO 92.21 96.02 96.18 96.21 96.21 96.21 97.29

Table 7: BERT-iBLEU scores only trained with £, without any NLL loss(Lmig, Ly g)-

Model-Dataset ~ Sampling Beam=1 Beam=2 Beam=4 Beam=8 Beam=16 Oracle
BART-QQP 90.02+12 96.72+06 96.77+03 96.78+.05 96.78+05 96.79+04 97.34+04
BART-MSCOCO 82.75+16 9631108 96.65+0s 96.68+07 96.69+07 96.69+07 97.33+08
T5-QQP 88.03+03 9424106 94.53+07 94.59+08 94.591+08 94.591+0s 96.34+06
T5-MSCOCO 84.77+05 9513106 9534100 9542+ 9543100 9544100 96.71+03

Table 8: BERT-iBLEU scores from PPR without the pseudo-reference loss. Still, shrinking the beam size has little
effect on the performance.

QQP dataset
Model Sampling Beam=1 Beam=2 Beam=4 Beam=8 Beam=16 Oracle
MLE 7586104+ 67.92+2¢ 69.60+115 6832+2 68.50+3 68.64+2 88.61+0s
MRT 78.12+u5 73.64+27 7697140 77.42+3 77.49+3 77.59+3 88.75+10

BART BRIO 80.04+1s3 81.49455¢ 90.51+71 94.06+3¢ 95.04+22 9539+135 96.16+2

PPR 93.62:0: 96.65:1> 96.78:06 96.80+06 96.80+06 96.79+0s 97.23:107

MLE 71.81+t0 52.16+s50 47.81+43 46.23+3¢ 45.72+3 45.57+3 88.60+.0s

TS MRT 72.20+05 67.57+16 6598119 6534115 65.13+15 65.06+19 81.71+0:

BRIO 80.88+116 84.84+103 92.51+123 94.92+11 9523104 9527+13 96.51+0s

PPR 9214+ 9531+ 9559+ 95.63:2 95.64+:* 95.64:2" 97.00+08
Reference 79.28

MSCOCO dataset
Model Sampling Beam=1 Beam=2 Beam=4 Beam=8 Beam=16 Oracle

MLE 73.72+3 76.40+4 76.30+37 75.78+3 7548+s 75.32+4 84.33:0

BART MRT 73.98+30 77.10x26 76.99+3 76.67+17 7642105 762011 84.57+3

BRIO 7591+0s 81.89+66 92.15+t111 95.68+16 9643106 96.62+03 96.85+0:

PPR 90.78:1 96.93:10 9699+ 97.00:10 97.00:10 97.00L10 97.571i0s

MLE 73.72+n1 7493100 739916 72.52+u 71.69+21 T71.22130 85.45108

TS MRT 6894106 72.13+00 7224108 72.05+t00 71.87+10 71.70+10 78.96+06

BRIO 74.25+s5 81.74+172 90.96+ss 94.88+22 95.63+14 95.87+1u1 96.37+.10

PPR 91.39:12 9596+02 96.09+0c 96.10+0c 96.10+0c 96.10+t02 97.16+02
Reference 73.61

Table 9: BERT-iBLEU scores on paraphrase generation with different decoding strategies, with standard deviation.
The column ’Oracle’ denotes the average score of the sequence with the highest score in each set of candidates
generated with beam search (of beam size 16), that is, the score obtained with oracle reranking. Our model not
only outperforms baselines in all cases but also retains the performance with greedy decoding or unbiased sampling
compared to applying beam search with beam size 16, which clearly demonstrates its excelling at estimating the
values of partial sequences. All values are averaged over 3 runs with different random seeds. Boldfaced numbers
indicate statistical significance under p < .05, while boldfaced with stars indicate p < .07.

6091

BiP

Model Sampling Beam=1 Beam=2 Beam=4 Beam=8 Beam=16 Oracle
MLE 54.01 69.47 68.40 68.36 67.77 67.28 84.03

T5 BRIO 51.53 81.11 86.44 88.17 88.60 88.84 92.24
PPR 74.84 87.79 88.37 88.49 88.57 88.57 92.58

BERT-iBLEU

Model Sampling Beam=1 Beam=2 Beam=4 Beam=8 Beam=16 Oracle
MLE 73.72 74.93 73.99 72.52 71.69 71.22 85.45

T5 BRIO 75.12 85.30 88.77 90.04 90.40 90.52 92.73
PPR 85.37 90.13 90.46 90.54 90.54 90.55 93.46

Parascore
Model Sampling Beam=1 Beam=2 Beam=4 Beam=8 Beam=16 Oracle
MLE 32.55 17.35 11.69 6.91 4.32 3.01 34.39

T5 BRIO 72.91 85.46 88.39 89.50 89.81 89.91 92.06
PPR 84.52 89.69 89.89 89.96 89.97 89.98 92.25

Table 10: Complete automatic evaluation results of TS models trained with BiP metric as utility on MSCOCO
dataset, evaluated by different metrics. Note that significant performance gain can be achieved in sampling and
small beam size settings when trained with PPR, and even when assessed with different evaluation metrics other
than the one used as the utility (reward) to train the model, PPR exhibits beam monotonicity and resilience. Values
for BRIO and PPR are from single-run experiments.

BLEU
Model Sampling Beam=1 Beam=2 Beam=4 Beam=8 Beam=16
MLE 22.92 27.01 27.39 27.89 27.82 27.79
MarianMT BRIO 23.67 26.37 27.01 27.36 27.36 27.21
PPR 24.70 27.86 28.33 28.21 28.43 28.46
CSR
Model Sampling Beam=1 Beam=2 Beam=4 Beam=8 Beam=16
MLE 81.96 83.97 84.31 85.55 85.21 84.99
MarianMT BRIO 89.48 90.29 92.10 92.10 92.43 92.33
PPR 89.98 92.33 92.66 92.89 93.00 93.23
BLEU-CSR
Model Sampling Beam=1 Beam=2 Beam=4 Beam=8 Beam=16
MLE 20.01 23.97 24.17 25.00 24.95 24.87
MarianMT BRIO 21.76 24.81 25.49 25.69 25.73 25.59
PPR 23.12 26.36 26.90 26.82 27.06 27.14

Table 11: BLEU, CSR(Copying Success Rate%), and BLEU-CSR scores from the constrained machine translation
task on WMT16 En-Ro benchmark. BRIO and PPR used BLEU-CSR as utility. Values are from single-run
experiments.

6092

